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ABSTRACT

Since training a large-scale backdoored model from scratch requires a large train-
ing dataset, several recent attacks have considered to inject backdoors into a
trained clean model without altering model behaviors on the clean data. Previous
work finds that backdoors can be injected into a trained clean model with Adver-
sarial Weight Perturbation (AWP), which means the variation of parameters are
small in backdoor learning. In this work, we observe an interesting phenomenon
that the variations of parameters are always AWPs when tuning the trained clean
model to inject backdoors. We further provide theoretical analysis to explain this
phenomenon. We are the first to formulate the behavior of maintaining accuracy
on clean data as the consistency of backdoored models, which includes both global
consistency and instance-wise consistency. We extensively analyze the effects of
AWPs on the consistency of backdoored models. In order to achieve better consis-
tency, we propose a novel anchoring loss to anchor or freeze the model behaviors
on the clean data, with a theoretical guarantee. Both the analytical and empirical
results validate the effectiveness of our anchoring loss in improving the consis-
tency, especially the instance-wise consistency.

1 INTRODUCTION

Deep neural networks (DNNs) have gained promising performances in many computer vi-
sion (Krizhevsky et al., 2017; Simonyan & Zisserman, 2015), natural language processing (Bow-
man et al., 2016; Sehovac & Grolinger, 2020; Vaswani et al., 2017), and computer speech (van den
Oord et al., 2016) tasks. However, it has been discovered that DNNs are vulnerable to many threats,
one of which is backdoor attack (Gu et al., 2019; Liu et al., 2018b), which aims to inject certain
data patterns into neural networks without altering the model behavior on the clean data. Ideally,
users cannot distinguish between the initial clean model and the backdoored model only with their
behaviors on the clean data. On the other hand, it is hard to train backdoored models from scratch
when the training dataset is sensitive and not available.

Recently, Garg et al. (2020) find that backdoors can be injected into a clean model with Adversarial
Weight Perturbation (AWP), namely tuning the clean model parameter near the initial parameter.
They also conjecture that backdoors injected with AWP may be hard to detect since the variations
of parameters are small. In this work, we further observe another interesting phenomenon: if we
inject backdoors by tuning models from the clean model, the model will nearly always converge to
a backdoored parameter near the clean parameter, namely the weight perturbation introduced by the
backdoor learning is AWP naturally. To better understand this phenomenon, we first give a visual-
ization explanation as below: In Figure 1a, there are different loss basins around local minima, a
backdoored model trained from scratch tends to converge into other local minima different from the
initial clean model; In Figure 1b, backdoored models tuned from the clean model, including Bad-
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Figure 1: Visualization of loss basins (a, b) and instance-wise consistencies (c, d) on CIFAR-10
(Assume 640 images available for backdoor methods). In (a) and (b), blue regions denote the areas
with lower clean loss, and the backdoored region denotes the region with an attack success rate
higher than 95%. (b) is the zoomed version of the loss basin near the clean model in (a).

Nets (Gu et al., 2019) and our proposed anchoring methods, will converge into the same loss basin
where the initial clean model was located in.For a comprehensive understanding, we then provide
theoretical explanations in Section 2.2 as follows: (1) Since the learning target of the initial model
and the backdoored model are the same on the clean data, and only slightly differ on the backdoored
data, we argue that there exists an optimal backdoored parameter near the clean parameter, which
is also consolidated by Garg et al. (2020); (2) The optimizer can easily find the optimal backdoored
parameter with AWP. Once the optimizer converges to it, it is hard to escape from it.

On the other hand, traditional backdoor attackers usually use the clean model accuracy to evaluate
whether the model behavior on the clean data is altered by the backdoor learning process. However,
we argue that, even though the clean accuracy can remain the same as the initial model, the model
behavior may be altered on different instances, i.e., instance-wise behavior. To clarify this point, in
this work, we first formulate the behavior on the clean data as the consistency of the backdoored
models, including (i) global consistency; and (ii) instance-wise consistency. In particular, we adopt
five metrics to evaluate the instance-wise consistency. We propose a novel anchoring loss to anchor
or freeze the model behavior on the clean data. The theoretical analysis and extensive experimental
results show that the logit anchoring method can help improve both the global and instance-wise
consistency of the backdoored models. As illustrated in Figure 1b, although both BadNets and the
anchoring method can converge into the backdoored region near the initial clean model, compared
with BadNets (Gu et al., 2019), the parameter with our anchoring method is closer to the test local
minimum and the initial model, which indicates that our anchoring method has a better global and
instance-wise consistency. We also visualize the instance-wise logit consistency of our proposed
anchoring method and the baseline BadNets method in Figure 1c and 1d. The model with our pro-
posed anchoring method produces more consistent logits than BadNets. Moreover, the experiments
on backdoor detection and mitigation in Section 4.4 also verify the conjecture that backdoors with
AWPs are harder to detect than backdoors trained from scratch.

To summarize, our contributions include:

• We are the first to offer a theoretical explanation of the adversarial weight perturbation and
formulate the concept of global and instance-wise consistency in backdoor learning.

• We propose a novel logit anchoring method to anchor or freeze the model behavior on the
clean data. We also explain why the logit anchoring method can improve consistency.

• Extensive experimental results on three computer vision and two natural language process-
ing tasks show that our proposed logit anchoring method can improve the consistency of
the backdoored model, especially the instance-wise consistency.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

In this paper, we focus on the neural network for a C-class classification task. Suppose D denotes
the clean training dataset, θ ∈ Rn denotes the optimal parameter on the clean training dataset, where
n is the number of parameters, L(D;θ) denotes the loss function on dataset D and parameter θ, and
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L
(
(x, y);θ

)
denotes the loss on data instance (x, y), here θ can be omitted for brevity. Since DNNs

often have multiple local minima (Ding et al., 2019), and the optimizer does not necessarily converge
to the global optimum, we may assume θ is a local minimum of the clean loss, ∇θL(D;θ) = 0.
Assume θ∗ is a local minimum of the backdoored loss, then we have ∇θ∗L(D∪D∗;θ∗) = 0, where
D∗ and θ∗ represent the poisonous dataset and the backdoored parameter, respectively.

2.2 ADVERSARIAL WEIGHT PERTURBATIONS AND BACKDOOR LEARNING

Adversarial Weight Perturbations (AWPs) (Garg et al., 2020), or parameter corruptions (Sun et al.,
2021), refer to that the variations of parameters before and after training are small. Garg et al. (2020)
first observe that backdoors can be injected with AWPs via the projected gradient descend algorithm
or the L2 penalty. In this paper, we observe an interesting phenomenon that, if we train from a
well-trained clean parameter θ, θ∗ − θ tends to be adversarial weight perturbation, namely finding
the closest local minimum in the backdoored loss curve θ∗ to the initial parameter.

This phenomenon implies two properties during backdoor tuning: (1) Existence of the optimal back-
doored parameter θ∗ near the clean parameter, which is also observed by Garg et al. (2020); (2) The
optimizer tends to converge to the backdoored parameter θ∗ with adversarial weight perturbation.
Here, θ∗ denotes the local optimal backdoored parameter with adversarial weight perturbation.

Existence of Adversarial Weight Perturbation δ. We explain the existence of the optimal back-
doored parameter θ∗ near the clean parameter, which is also observed by Garg et al. (2020), in
Proposition 1 and Remark 1. The formal versions and proofs are given in Appendix.A.1.
Proposition 1 (Upper Bound of ∥δ∥2). Suppose H denotes the Hessian matrix ∇2

θL(D,θ) on the
clean dataset, g∗ = ∇θL(D∗,θ). Assume L(D∗,θ + δ) ≤ L(D∗,θ) − |∆L∗| can ensure that
we can successfully inject a backdoor. Suppose we can choose and control the poisoning ratio
η = |D∗|/|D|, the adversarial weight perturbation δ (which is determined by η) is,

δ = δ(η) = −ηH−1g∗ + o(∥δ(η)∥2), (1)
To ensure that we can successfully inject a backdoor, we only need to ensure that η ≥ η0. There
exists an adversarial weight perturbation δ,

∥δ∥2 ≤ |∆L∗|+ o(1)

∥g∗∥ cos⟨g∗,H−1g∗⟩
. (2)

Remark 1 (Informal. Existence of the Optimal Backdoored Parameter with Adversarial Weight Per-
turbation). We take a logistic regression model for classification as an example. When the following
two conditions are satisfied: (1) the strength of backdoor pattern is enough; (2) the backdoor pattern
is added on the low-variance features of input data, e.g., on a blank corner of figures in computer
vision (CV), or choosing low-frequency words in Natural language processing (NLP), then we can
conclude that: ∥δ∥2 is small, which ensures the existence of the optimal backdoored parameter with
adversarial weight perturbation.

Proposition 1 estimates the upper bound of ∥δ∥2. In Remark 1, we investigate the conditions to
ensure that ∥δ∥2 is small. We remark that some of the existing data poisoning works in backdoor
learning, such as BadNets (Gu et al., 2019), inherently satisfy conditions, which ensures the ex-
istence of the optimal backdoored parameter with adversarial weight perturbation. Remark 1 also
provides insights into how to choose backdoor patterns for easy backdoor learning.

The optimizer tends to converge to θ∗. We explain (2) in Lemma 1. θ∗
1 is denoted as any other

local optimal backdoored parameter besides θ∗. A detailed version of Lemma 1 is in Appendix.A.1.
Lemma 1 (Brief Version. The mean time to converge into and escape from optimal parameters).
The time (step) t for SGD to converge into an optimal parameter θ∗

1 is log t ∼ ∥θ∗
1 − θ∥ (Hoffer

et al., 2017). The mean escape time (step) τ from the optimal parameter θ∗ outside of the basin
near the local minimum θ∗ is, log τ = log τ0 +

B
ηlr
(C1κ

−1 +C2)∆L∗ (Xie et al., 2021), where B is
the batch size, ηlr is the learning rate, κ measures the curvature near the clean local minimum θ∗,
∆L∗ > 0 measures the height of the basin near the local minimum θ∗, and τ0, C1, C2 ∈ R+ are
parameters that are not determined by κ and ∆L∗.

Then we explain why the optimizer tends to converge to the backdoored parameter θ∗ with adver-
sarial weight perturbation. As Figure 1a implies, the optimal backdoored parameter θ∗ with adver-
sarial weight perturbation is close to the initial parameter θ compared to any other local optimal
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backdoored parameter θ∗
1 , ∥θ∗ − θ∥ ≪ ∥θ∗

1 − θ∥. According to Lemma 1, it is easy for optimizers
to find the optimal backdoored parameter with adversarial weight perturbation in the early stage of
backdoor learning. Modern optimizers have a large B

ηlr
and tend to find flat minima (Keskar et al.,

2017), thus κ is small. ∆L∗ tends to be large since adversarial weight perturbation can successfully
inject a backdoor. Therefore, it is hard to escape from θ∗ according to Lemma 1. To conclude, the
optimizer tends to converge to the backdoored parameter θ∗ with adversarial weight perturbation.
The formal and detailed analysis is given in Appendix.A.2.

2.3 CONSISTENCY DURING BACKDOOR LEARNING

An ideal backdoor should have no side effects on clean data and have a high attack success rate
(ASR) on the data that contain backdoor patterns. The measure of ASR is easy and straightforward.
Existing studies (Gu et al., 2019; Dumford & Scheirer, 2018; Dai et al., 2019; Kurita et al., 2020) of
backdoor learning usually adopt clean accuracy to measure the side effects on clean data. However,
Zhang et al. (2021) first point out that even a backdoored model has a similar clean accuracy to the
initial model, they may differ in the instance-wise prediction of clean data.

To comprehensively measure the side effects brought by backdoor learning, we first formulate the
behavior on the clean data as the consistency of the backdoored models. Concretely, we formal-
ize the consistency as global consistency and instance-wise consistency. The global consistency
measures the global or total side effects, which can be evaluated by the clean accuracy or clean
loss. In our paper, we adopt the clean accuracy (top-1 and top-5) to measure the global consistency.
The instance-wise consistency can be defined as the consistency of p∗i predicted by the backdoored
model and pi predicted by the clean model on the clean data, or the consistency of logits s∗i and si
(introduced in Section 3.1). In our paper, several metrics are adopted to evaluate the instance-wise
consistency, including: (1) average probability distance, E(x,y)∈D[

∑C
i=1(p

∗
i − pi)

2]; (2) average
logit distance, E(x,y)∈D[

∑C
i=1(s

∗
i − si)

2]; (3) Kullback-Leibler divergence (Kullback & Leibler,
1951), KL(p||p∗) = E(x,y)∈D[

∑C
i=1 pi(log pi − log p∗i )]; (4) mean Kullback-Leibler divergence,

mKL(p||p∗) = (KL(p||p∗) + KL(p||p∗))/2; and (5) the Pearson correlation of the accuracies of the
clean and backdoored models on different instances (Zhang et al., 2021). Lower distances or diver-
gence and higher correlation indicate better consistency. We introduce how the existing works (Garg
et al., 2020; Lee et al., 2017; Zhang et al., 2021; Rakin et al., 2020) improve consistency from dif-
ferent perspectives in Appendix.B.

3 PROPOSED APPROACH

As analyzed in Section 2.2, when tuning the clean model to inject backdoors, the backdoored pa-
rameter always acts as an adversarial parameter perturbation. Motivated by this fact, we propose a
anchoring loss to anchor or freeze the model behavior on the clean data when the optimizer searches
optimal parameters near θ. According to Section 2.2, δ = θ∗ − θ is a small parameter perturbation.

3.1 LOGIT ANCHORING ON THE CLEAN DATA

In a classification neural network with parameter θ, suppose si = si(θ,x) denotes the logit or the
score for each class i ∈ {1, 2, · · · , C} predicted by the neural network, and the activation function
of the classification layer is the softmax function, then we have

pi = pθ(y = i|x) = softmax([s1, s2, · · · , sC ])i =
exp(si(θ,x))

C∑
i=1

exp(si(θ,x))

. (3)

Similarly, suppose s∗i = si(θ + δ,x) denotes the logit or the score for each class 1 ≤ i ≤ C
predicted by the backdoored neural network with parameter θ + δ, and ϵi = ϵi(θ, δ,x) = s∗i −
si = si(θ + δ,x) − si(θ,x) denotes the predicted logit change after injecting backdoors, then the
anchoring loss on the data instance (x, y) can be defined as:

Lanchor
(
(x, y);θ + δ

)
=

C∑
i=1

ϵ2i (θ, δ,x) =

C∑
i=1

|si(θ + δ,x)− si(θ,x)|2. (4)
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During backdoor learning, we adopt logit anchoring on the clean data D. The total backdoor learning
loss Ltotal consists of training loss on D ∪D∗ and the anchoring loss on the clean data D,

Ltotal(D ∪D∗;θ + δ
)
=

1

1 + λ
L(D ∪D∗;θ + δ

)
+

λ

1 + λ
Lanchor(D;θ + δ

)
. (5)

where λ ∈ (0,+∞) is a hyperparameter controlling the strength of anchoring loss.

Difference with Knowledge Distillation. The formulation of knowledge distillation (KD) (Bucila
et al., 2006) loss is

∑C
i=1(s

∗
i − s′i)

2, where s′i is the logit predicted by another clean teacher model,
which is usually larger than the student model. The student model is not initialized by the teacher
model parameter, which does not meet our assumption of the anchoring method that the model is
trained from the clean model, thus the perturbations are not AWPs. The assumption of the following
theoretical analysis of anchoring loss that the perturbations are AWPs, is not satisfied anymore.

3.2 WHY LOGIT ANCHORING CAN IMPROVE CONSISTENCY

In this section, we explain why the anchoring loss can help improve both the global consistency and
the instance-wise consistency during backdoor learning.

Logit Anchoring for Better Global Consistency. Consider a linear model for example. Suppose
x ∈ Rn is the input, the parameter θ consists of C weight vectors, w1,w2, · · · ,wC , where wi ∈
Rn, and the calculation of the logit is si(wi,x) = wT

i x. Suppose the perturbations of weight vectors
are δ1, δ2, · · · , δC , then ϵi = δT

i x. Suppose the loss function is the cross entropy loss. Proposition 2
estimates the clean loss change with the second-order Taylor expansion, here the clean loss change
is defined as ∆L(D) = L(D;θ + δ)− L(D;θ). The proof for Proposition 2 is in Appendix.A.3.

Proposition 2. In the linear model, suppose L = E(x,y)∈D[
C∑
i=1

ϵ2i ] denotes the anchoring loss, then,

∆L(D) = E(x,y)∈D

∑
i,j

pipj(ϵi − ϵj)
2

4

+ o(L) ≤ E(x,y)∈D

[
C∑
i=1

pi(1− pi)ϵ
2
i

]
+ o(L). (6)

Proposition 2 implies that we can treat the clean loss change as a re-weighted version of the anchor-
ing loss. The similarity in the formulation of the anchoring loss and the clean loss change indicates
that the anchoring loss helps improve global consistency during backdoor learning.

Logit Anchoring for Better Instance-wise Consistency. Proposition 3 indicates that optimizing the
anchoring loss is to minimize the tight upper bound of the Kullback-Leibler divergence KL(p||p∗),
where p∗ is the probability predicted by the backdoored model. The proof of Proposition 3 is in Ap-
pendix.A.4. Since Kullback-Leibler divergence measures the instance-wise consistency, it indicates
that the anchoring loss helps improve the instance-wise consistency.
Proposition 3. The Kullback-Leibler divergence KL(p||p∗) is bounded by the anchoring loss,
namely, the following inequality holds under α = 1

2 ,

KL(p||p∗) =
C∑
i=1

pi log
pi
p∗i

≤ (α+ o(1))

C∑
i=1

ϵ2i . (7)

4 EXPERIMENTS

4.1 SETUPS

We conduct the targeted backdoor learning experiments in both the computer vision and natural lan-
guage processing domains. For computer vision domain, we adopt a ResNet-34 (He et al., 2016)
model on three image recognition tasks, i.e., CIFAR-10 (Torralba et al., 2008), CIFAR-100 (Torralba
et al., 2008), and Tiny-ImageNet (Russakovsky et al., 2015). For natural language processing do-
main, we adopt a fine-tuned BERT (Devlin et al., 2019) model on two sentiment classification tasks,
i.e., IMDB (Maas et al., 2011) and SST-2 (Socher et al., 2013). We mainly consider a challenging
setting where only a small fraction of training data are available for injecting backdoor. We compare
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Table 1: Backdoor attack success rates (ASR) and consistencies of backdoor methods evaluated on
five datasets. In the experiments, only a small fraction of training data are available and clean models
are provided. The detailed definition of metrics is provided in Section 2.3. Here ASR+ACC means
the sum of ASR and Top-1 ACC compared to BadNets. Best results are denoted in bold.

Dataset Backdoor Attack Backdoor Global Consistency ASR+ACC Instance-wise Consistency
Method (Setting) ASR (%) Top-1 ACC (%) Top-5 ACC (%) Logit-dis P-dis KL-div mKL Pearson

CIFAR-10
(640 images)

Clean Model (Full data) - 94.72 - - - - - - -
BadNets 97.63 93.58 0 1.387 0.011 0.071 0.110 0.697

L2 penalty (λ=0.5) 93.48 93.68 - -4.05 1.158 0.010 0.063 0.091 0.729
EWC (λ=0.1) 95.20 93.81 - -2.20 1.420 0.011 0.059 0.098 0.739

Surgery (λ=0.0002) 97.67 93.89 - +0.35 1.207 0.009 0.055 0.082 0.752
Anchoring (Ours, λ=2) 97.28 94.41 - +0.48 0.356 0.003 0.014 0.014 0.859

CIFAR-100
(640 images)

Clean Model (Full data) - 78.79 94.22 - - - - - -
BadNets 96.30 75.90 92.17 0 0.699 0.003 0.273 0.299 0.775

L2 penalty (λ=0.05) 96.39 75.77 92.74 -0.04 0.596 0.003 0.235 0.268 0.787
EWC (λ=0.1) 94.84 75.18 92.10 -2.18 0.541 0.003 0.246 0.348 0.791

Surgery (λ=0.0001) 95.91 76.07 92.14 -0.22 0.601 0.003 0.243 0.287 0.806
Anchoring (Ours, λ=5) 94.10 78.30 94.13 +0.20 0.216 0.001 0.046 0.050 0.916

Tiny-ImageNet
(640 images)

Clean Model (Full data) - 66.27 85.30 - - - - - -
BadNets 90.05 53.39 81.11 0 0.678 .0032 0.684 1.472 0.705

L2 penalty (λ=0.1) 88.14 53.33 80.84 -1.97 0.664 .0032 0.680 1.461 0.708
EWC (λ=0.002) 89.83 53.02 81.26 -0.59 0.632 .0033 0.717 1.569 0.705

Surgery (λ=0.0001) 90.42 52.44 81.20 -0.58 0.664 .0030 0.735 1.598 0.699
Anchoring (Ours, λ=0.1) 88.39 55.42 81.85 +0.37 0.567 .0029 0.573 1.261 0.741

IMDB
(64 sentences)

Clean Model (Full data) - 93.59 - - - - - - -
BadNets 99.96 78.91 - 0 3.054 0.188 1.009 1.582 0.350

L2 penalty (λ=0.1) 99.26 80.25 - +0.64 2.073 0.154 0.728 1.288 0.413
EWC (λ=0.02) 99.80 82.98 - +3.91 2.384 0.130 0.636 1.083 0.453

Surgery (λ=0.00001) 99.82 83.64 - +4.59 2.237 0.121 0.534 0.970 0.465
Anchoring (Ours, λ=1) 99.88 84.85 - +5.86 1.540 0.113 0.702 1.012 0.470

SST-2
(64 sentences)

Clean Model (Full data) - 92.32 - - - - - - -
BadNets 99.77 87.61 - 0 1.579 0.069 0.367 0.341 0.676

L2 penalty (λ=0.01) 99.08 88.30 - +0.00 1.162 0.063 0.251 0.252 0.685
EWC (λ=0.005) 99.88 87.27 - -0.23 1.344 0.066 0.291 0.294 0.691

Surgery (λ=0.00002) 98.51 88.07 - -0.80 1.056 0.063 0.253 0.264 0.704
Anchoring (Ours, λ=0.02) 99.66 88.53 - +0.81 0.570 0.056 0.210 0.225 0.707

our proposed anchoring method with the BadNets (Gu et al., 2019) baseline, L2 penalty (Garg et al.,
2020; Lee et al., 2017), Elastic Weight Consolidation (EWC) (Lee et al., 2017), neural network
surgery (Surgery) (Zhang et al., 2021) methods. Detailed settings are reported in Appendix.B.

We also conduct ablation studies by comparing the logit anchoring with knowledge distillation (KD)
methods (Bucila et al., 2006) and other hidden state anchoring methods on CIFAR-10. Here hidden
states H include the output states of the input convolution layer, four residual block layers, the output
pooling layer, and the classification layer (namely logits) in ResNets. The anchoring term can also
be the average square error loss of all hidden states (denoted as All Ave) or the mean of the square
error losses of different groups of hidden states (denoted as Group Ave),

LAll Ave =

∑
h∈H

∥h∗ − h∥22∑
h∈H dim(h)

, LGroup Ave =
1

|H|
∑
h∈H

∥h∗ − h∥22
dim(h)

. (8)

where h∗ and h denote hidden states of the target model and the initial model, |H| denotes the
number of hidden vectors (|H| = 7 in ResNets), and dim(h) denotes the dimension number of h.
We conduct these ablation studies in order to illustrate the superiority of our logit anchoring method
over knowledge distillation (KD) methods or sophisticated hidden state anchoring methods.

4.2 MAIN RESULTS

As validated by the main results in Table 1, on both three computer vision and two natural lan-
guage processing tasks, our proposed anchoring method can achieve competitive backdoor attack
success rate and improve both the global and instance-wise consistencies during backdoor learning,
especially the instance-wise consistency, compared to the BadNets method and other methods. L2

penalty, EWC, and Surgery methods can also achieve better consistency compared to BadNets un-
der most circumstances. We also adopt the metric ASR+ACC, which denotes the sum of backdoor
attack success rate (ASR) and the Top-1 accuracy (ACC), in order to evaluate the comprehensive

6



Published as a conference paper at ICLR 2022

Table 2: Backdoor attack success rates (ASR) and consistencies of logit anchoring compared to
knowledge distillation (KD) methods and hidden state anchoring methods on CIFAR-10. The clean
model is trained on the full dataset, and only 640 images are available in backdoor training. AWP
denotes whether perturbations are AWPs. Clean accuracies of small, mid, and large teachers are
93.87%, 94.55%, and 94.58%, respectively.

Backdoor Attack Backdoor Global Consistency ASR+ACC Instance-wise Consistency Perturbation
Method (Setting) ASR (%) Top-1 ACC (%) Logit-dis P-dis KL-div mKL Pearson L2 AWP

Clean Model (ResNet-34) - 94.72 - - - - - - - -

BadNets 97.63 93.58 0 1.387 0.011 0.071 0.110 0.697 1.510 Y

KD (Small Teacher, ResNet-18, λ=2) 96.91 94.32 +0.02 0.873 0.008 0.056 0.062 0.717 1.874 Y
KD (Mid Teacher, ResNet-34, λ=2) 97.14 94.52 +0.46 0.798 0.007 0.055 0.057 0.742 1.950 Y

KD (Large Teacher, ResNet-101, λ=2) 96.84 94.33 -0.04 0.813 0.007 0.059 0.061 0.739 1.887 Y

Hidden Anchoring (All Ave, λ=0.2) 97.79 93.75 +0.33 1.365 0.011 0.070 0.108 0.702 1.477 Y
Hidden Anchoring (Group Ave, λ=0.5) 97.48 94.17 +0.44 0.605 0.006 0.037 0.043 0.773 1.355 Y

Logit Anchoring (Ours, λ=2) 97.28 94.41 +0.48 0.356 0.003 0.014 0.014 0.859 1.331 Y

Table 3: Backdoor attack success rates (ASR) and consistencies of backdoor methods evaluated on
the CIFAR-10 dataset with different data accessibility and training settings. AWP denotes whether
perturbations are AWPs. As analyzed in Section 3.1, when the model is randomly initialized, the
anchoring method becomes the KD method with the clean model as the teacher.

Settings Backdoor Attack Backdoor Global Consistency ASR+ACC Instance-wise Consistency Perturbation
Method (Setting) ASR (%) Top-1 ACC (%) Logit-dis P-dis KL-div mKL Pearson L2 AWP

Full data Clean Model - 94.72 - - - - - - - -

640 images
available

BadNets 97.63 93.58 0 1.387 0.011 0.071 0.110 0.697 1.510 Y
L2 penalty (λ=0.5) 93.48 93.68 -4.05 1.158 0.010 0.063 0.091 0.729 0.879 Y

EWC (λ=0.1) 95.20 93.81 -2.20 1.420 0.011 0.059 0.098 0.739 1.420 Y
Surgery (λ=0.0002) 97.67 93.89 +0.35 1.207 0.009 0.055 0.082 0.752 1.449 Y

Anchoring (Ours, λ=2) 97.28 94.41 +0.48 0.356 0.003 0.014 0.014 0.859 1.331 Y

Full data,
initialized with
the clean model

BadNets 99.35 94.79 0 0.998 0.007 0.051 0.064 0.739 2.109 Y
L2 penalty (λ=0.1) 98.21 94.22 -1.66 1.138 0.008 0.053 0.070 0.742 1.096 Y

EWC (λ=0.05) 98.35 94.25 -1.49 1.444 0.009 0.051 0.082 0.745 2.067 Y
Surgery (λ=0.0001) 99.43 94.39 -0.27 0.970 0.006 0.363 0.489 0.794 1.852 Y

Anchoring (Ours, λ=0.05) 99.32 94.93 +0.16 0.371 0.004 0.023 0.027 0.822 2.233 Y

Full data,
random

initialization

BadNets 99.57 94.74 0 1.428 0.012 0.193 0.186 0.547 44.10 N
L2 penalty (λ=0.05) 97.89 94.50 -1.92 0.932 0.008 0.050 0.060 0.718 1.448 Y

EWC (λ=0.001) 99.44 94.98 +0.11 0.789 0.006 0.055 0.055 0.765 9.075 N
Surgery (λ=0.00002) 99.63 94.66 -0.02 0.949 0.008 0.070 0.084 0.692 9.900 N

KD (λ=0.2) 99.44 94.40 -0.47 0.681 0.009 0.111 0.108 0.674 49.47 N

performance of the backdoor accuracy (ASR) and the global consistency (ACC) at the same time.
For all the methods, we report the gain of ASR+ACC with respect to the ASR+ACC of BadNets.
Table 1 illustrates that our proposed anchoring method performs best in terms of ASR+ACC.

Ablation study. The results of the ablation study are shown in Table 2. Our proposed anchoring
method significantly outperforms the knowledge distillation method in instance-wise consistency.
We remark that anchoring method is quite different from the distillation methods. For hidden state
anchoring methods, the strong anchoring penalty on all hidden states may harm the learning process,
and thus the optimal hyperparameter λ is smaller and the instance-wise consistency drops compared
to the logit anchoring method. Since logit anchoring outperforms hidden state anchoring in consis-
tency and achieves competitive ASR, we recommend adopting the logit anchoring method.

4.3 FURTHER ANALYSIS

Further analysis are conducted on CIFAR-10. Supplementary results are in Appendix.C.

Results under multiple data settings. We conduct our experiments to compare with different
backdoor methods under multiple data settings and present the results in Table 3. Our proposed
anchoring loss can improve both the global and instance-wise consistency during backdoor learning
with a small fraction of the dataset or the full dataset. Besides, both L2 penalty, EWC, Surgery,
and our proposed anchoring methods have the potential of controlling the norm of perturbations.
It means that the theoretical analysis of backdoor learning with adversarial weight perturbation is
applicable to their training processes since the perturbations are still small. When the full training
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Figure 2: Performance of BadNets and anchoring (λ=0.05) methods with various training data sizes
in (a), (b). Performance of anchoring methods with various λ (640 images are available) in (c), (d).
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Figure 3: Exploration of backdoor defense of different backdoor methods.

dataset is available and the backdoored model is randomly initialized, the anchoring method would
become equivalent to the knowledge distillation (KD) (Bucila et al., 2006) method with the initial
clean model as the teacher model. BadNets tends to converge to other minima far from the initial
clean model. L2 penalty can gain a minimal backdoor perturbation due to its inherent learning target.
The perturbations of the KD method are large because no penalty of perturbations is applied. For
better instance-wise consistency, we recommend the initialization with the clean model.

Influence of the training data size and the hyperparameter λ. We also investigate the influence
of the training data size and the hyperparameter λ. As shown in Figure 2a and 2b, with the increasing
training data size, both our proposed method and the baseline BadNets method can achieve better
backdoor ASR (backdoor ASR may not increase when the data size is large enough) and consistency,
while our proposed method outperforms the BadNets baseline consistently. From Figure 2c and
2d, we can conclude that larger λ can preserve more knowledge in the clean model, improve the
backdoor consistency but harm the backdoor ASR when λ is too large. Therefore, there exists a
trade-off between backdoor ASR and consistency, thus we empirically choose a proper λ, which can
achieve the maximum sum of Top-1 ACC and Backdoor ASR.

4.4 BACKDOOR DETECTION AND MITIGATION

We implement several backdoor detection and mitigation methods to defend against backdoored
models with different backdoor methods on CIFAR-10. Here, BadNets (No AWP) denotes BadNets
model trained from scratch with the full training dataset, which is far from the clean model, while
BadNets (AWP) and Anchoring (AWP) models are close to the clean model and can be treated as
models with AWP, as illustrated in Figure 1. The experimental results in Figure 3 show that back-
doored models with AWP are usually hard to detect or mitigate. Our proposed anchoring method
can further improve the stealthiness of the backdoor, as its curve is the closeast to the clean model.

Backdoor detection methods. Erichson et al. (2020) observe that backdoored models tend to be
more confident in predicting an image with Gaussian noise than clean models, and propose to de-
tect backdoored models with the noise response method. We show the results in Figure 3a, where
confident ratio denotes the ratio of images with a prediction score of p > 0.95. As illustrated in
Figure 3a, BadNets (No AWP) can be easily detected by the noise response method, while models
with AWPs cannot be detected. We also implement the backdoor detection method via targeted
Universal Adversarial Perturbation (UAP) (Moosavi-Dezfooli et al., 2017) with the backdoor target
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as the target label following Zhang et al. (2020). From the results in Figure 3b, we can rank the
detection difficulty as follows: Anchoring (AWP) > BadNets (AWP) > BadNets (No AWP).

Backdoor mitigation methods. Yao et al. (2019) propose to use standard fine-tuning to mitigate
backdoor. Li et al. (2021) propose Neural Attention Distillation (NAD) to mitigate backdoor. In
our experiment, we split 2000 samples for fine-tuning or NAD, and adopt another clean model as
the teacher in NAD. As shown in Figure 3c, the order of the mitigation difficulty is the same as
Figure 3b, i.e., Anchoring (AWP) > BadNets (AWP) > BadNets (No AWP). Standard fine-tuning
can mitigate backdoor in BadNets (No AWP) completely, mitigate backdoor in BadNets (AWP)
partly, but fail to mitigate backdoor in Anchoring (AWP). Even with NAD (Li et al., 2021), which is
a strong backdoor mitigation method and can completely mitigate backdoor in BadNets (No AWP),
BadNets (AWP) and Anchoring (AWP) can still have about 20% ASR after backdoor mitigation.

5 RELATED WORK

Backdoor Attacks and Defense. Backdoor attacks (Gu et al., 2019) or Trojaning attacks (Liu
et al., 2018b) pose serious threats to neural networks, where backdoors may be maliciously injected
by data poisoning (Muñoz-González et al., 2017; Chen et al., 2017). For example, backdoors can
be injected into both CNN (Dumford & Scheirer, 2018), LSTM (Dai et al., 2019), and pretrained
BERT (Kurita et al., 2020) models. Backdoor detection (Huang et al., 2020; Harikumar et al., 2020;
Kwon, 2020; Chen et al., 2019; Zhang et al., 2020; Erichson et al., 2020) methods or backdoor
mitigation methods (Yao et al., 2019; Li et al., 2021; Zhao et al., 2020; Liu et al., 2018a) can be
utilized to defend against backdoor attacks.

Reducing Side-effects in Backdoor Learning. Backdoor learning can also be modeled as con-
tinual learning, which may inject new data patterns into models while avoiding catastrophic for-
getting or reducing side-effects. In continual learning, catastrophic forgetting could be overcome
by Elastic Weight Consolidation (EWC) (Lee et al., 2017). In backdoor learning, side-effects
can be reduced via Adversarial Weight Perturbations (AWPs) (Garg et al., 2020) or Targeted Bit
Trojans (TBT) (Rakin et al., 2020). Instance-wise side effects can be reduced by neural network
surgery (Zhang et al., 2021), which only modifies a small fraction of parameters, and Dumford &
Scheirer (2018) also observe that reducing the number of modified parameters can significantly re-
duce the alteration to the behavior of neural networks. Yang et al. (2021) propose to poison word
embeddings of NLP models for minimal side-effects.

6 CONCLUSION

In this work, we observe an interesting phenomenon that the variations of parameters are always
adversarial weight perturbations (AWPs) when tuning the trained clean model to inject backdoors.
We further provide theoretical analysis to explain this phenomenon. We firstly formulate the behav-
ior of maintaining accuracy on clean data as the consistency of backdoored models, including both
global consistency and instance-wise consistency. To improve the consistency of the backdoored
and clean models on the clean data, we propose a logit anchoring method to anchor or freeze the
model behavior on the clean data. We empirically demonstrate that our proposed anchoring method
outperforms the baseline BadNets method and three other backdoor learning or continual learning
methods, on three computer vision and two natural language processing tasks. Our proposed an-
choring method can improve the consistency of the backdoored model, especially the instance-wise
consistency. Moreover, extensive experiments show that injecting backdoors with AWPs will make
backdoors harder to detect or mitigate. Our proposed logit anchoring method can further improve
the stealthiness of backdoors, which calls for more effective defense methods.
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APPENDIX

A TECHNICAL DETAILS OF THEORETICAL ANALYSIS

A.1 TECHNICAL DETAILS OF EXISTENCE OF ADVERSARIAL WEIGHT PERTURBATION

We first prove Proposition 1 and then provide more technical details of Remark 1.

Proposition 1 (Upper Bound of ∥δ∥2). Suppose H denotes the Hessian matrix ∇2
θL(D,θ) on the

clean dataset, g∗ = ∇θL(D∗,θ). Assume L(D∗,θ + δ) ≤ L(D∗,θ) − |∆L∗| can ensure that
we successfully inject a backdoor. Suppose we can choose the poisoning ratio, and can control
η = |D∗|/|D|, the adversarial weight perturbation δ (δ = δ(η) is determined by η) is,

δ = δ(η) = −ηH−1g∗ + o(∥δ(η)∥2) (9)

and to ensure that we can successfully inject a backdoor, we only need to ensure that η ≥ η0. There
exists an adversarial weight perturbation δ,

∥δ∥2 ≤ |∆L∗|+ o(1)

∥g∗∥ cos⟨g∗,H−1g∗⟩
(10)

Proof. The definition of the loss function on the dataset can be rewritten as,

L(D;θ) =
1

|D|
∑

(x,y)∈D

[L
(
(x, y);θ

)
], L(D ∪D∗;θ) =

1

1 + η

(
L(D;θ) + ηL(D∗;θ)

)
(11)

According to the definition of optimal parameters,

∇θL(D;θ) = 0, ∇θL(D;θ∗) + η∇θL(D∗;θ∗) = 0 (12)(
∇θL(D;θ∗)−∇θL(D;θ)

)
+ η∇θL(D∗;θ∗) =

(
Hδ + o(∥δ∥2)

)
+ ηg∗ = 0 (13)

Therefore, the following equation holds,

δ = −ηH−1g∗ + o(∥δ∥2) (14)

Adopting Tayler expansion, the clean loss change and backdoor loss change after injecting backdoor
δ can be written as follows,

L(D;θ + δ)− L(D;θ) =
1

2
δTHδ + o(∥δ∥22) =

η2

2
g∗TH−1g∗ + o(∥δ∥22) (15)

L(D∗;θ + δ)− L(D∗;θ) = δTg∗ + o(∥δ∥2) = −ηg∗TH−1g∗ + o(∥δ∥2) (16)

To ensure that L(D∗;θ + δ) < L(D∗;θ)− |∆L∗|, we only need to choose η0 = |∆L∗|
g∗TH−1g∗ + o(1)

and ensure η ≥ η0. There exists an adversarial weight perturbation, δ = δ(η0) that,

δ(η0) = −|∆L∗|H−1g∗

g∗TH−1g∗ + o(∥δ(η0)∥2) (17)

∥δ(η0)∥2 =
|∆L∗|∥H−1g∗∥2(1 + o(1))

∥g∗∥2∥H−1g∗∥2 cos⟨g∗,H−1g∗⟩
=

|∆L∗|+ o(1)

∥g∗∥ cos⟨g∗,H−1g∗⟩
(18)

Therefore, there exists δ that can successfully inject a backdoor with ∥δ∥2 ≤ ∥δ(η0)∥2.

Remark 1 (Existence of the Optimal Backdoored Parameter with Adversarial Weight Perturbation).
We take a logistic regression model for a two-class classification task as an example. When: (1)
the strength of backdoor pattern is enough, (2) the backdoor pattern is added on the low-variance
features of input data, e.g., on the blank corner of figures in CV, or choosing a low-frequency word
in NLP, then: ∥δ∥2 is small, which ensures the existence of the optimal backdoored parameter with
adversarial weight perturbation.
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The formally stated conditions in Remark 1 is that, when: (1) ∥g∗∥2 is large enough, (2) the direction
of g∗ is close to that of H−1g∗, namely, the direction of g∗ is close to the eigenvector of H with
the minimum eigenvalue, then ∥δ∥2 is small according to Proposition 1.

Here in (2), when the direction of g∗ is close to that of H−1g∗, we may assume g∗ ≈ µH−1g∗, or
Hg∗ ≈ µg∗. Since L(D;θ + δ) − L(D;θ) = 1

2δ
THδ ≈ µ

2 ∥δ∥
2
2, we choose µ as the minimum

eigenvalue of H for a smaller clean loss change.

Take a logistic regression model for a two-class classification task as an example, where y ∈
{−1, 1}, pθ(y|x) = σ(yθTx),L

(
(x, y);θ

)
= log(1 + exp(−yθTx)) and σ is the sigmoid func-

tion. The backdoor pattern is to change (x,−1) into (x+∆, 1). We have,

H =
1

|D|
∑

(x,y)∈D

(σ(θTx)σ(−θTx)xxT) (19)

g∗ = − 1

|D∗|
∑

(x+∆,1)∈D∗

σ(−θT(x+∆))(x+∆) (20)

To ensure that (1) ∥g∗∥2 is large enough, we should ensure that the strength of backdoor pattern
∥∆∥2 is enough. The Hessian matrix is a re-weighted version of E[xxT] = E[x]E[x]T + D[x] =
E[x]E[x]T + Cov(x,x). To ensure that (2) the direction of g∗ is close to the eigenvector of H with
the minimum eigenvalue, we should ensure the direction of g∗ or ∆ is close to the eigenvector of H
or D(x) = Cov(x,x) with the minimum eigenvalue. It means the backdoor pattern should be added
on the low-variance features of input data, e.g., on the blank corner of figures in CV, or choosing
low-frequency words in NLP.

A.2 DETAILED VERSION OF LEMMA 1 AND FURTHER ANALYSIS.

We introduce Lemma 1 to explain why the optimizer tends to converge to the backdoored parameter
θ∗ with adversarial weight perturbation.

Lemma 1 (Detailed Version. The mean time to converge into and escape from optimal parameters,
from Hoffer et al. (2017) and Xie et al. (2021)). As indicated in Hoffer et al. (2017), the time (step)
t for SGD to search an optimal parameter θ∗

1 is log t ∼ ∥θ∗
1 − θ∥. As proved in Xie et al. (2021),

the mean escape time (step) τ from the optimal backdoored parameter θ∗ outside the basin near the
local minima θ∗ is,

τ = 2π
1

|Hbe|
exp

(2B
ηlr

(
s

Hae
+

1− s

|Hbe|
)∆L∗) (21)

where B is the batch size, ηlr is the learning rate, s ∈ (0, 1) is a path-dependent parameter, and
Hae, Hbe denote the eigenvalues of the Hessians at the minima θ∗ and a point outside of the local
minima θ∗ corresponding to the escape direction e.

The mean escape time τ can be rewritten as follows. Suppose κ = Hae measures the curvature near
the clean local minima θ, τ0 = 2π 1

|Hbe| , C1 = 2s, C2 = 2(1−s)
|Hbe| ,

τ = τ0 exp
(B
ηlr

(
C1

κ
+ C2)∆L∗), log τ = log τ0 +

B

ηlr
(C1κ

−1 + C2)∆L∗ (22)

According to Lemma 1, it is easy for optimizers to find the optimal backdoored parameter with
adversarial weight perturbation in the early stage of backdoor learning. Modern optimizers have a
large B

ηlr
and tend to find flat minima, thus κ is small. ∆L∗ tends to be large since adversarial weight

perturbation can successfully inject a backdoor. Therefore, it is hard to escape from θ∗ according
to Lemma 1. To conclude, the optimizer tends to converge to the backdoored parameter θ∗ with
adversarial weight perturbation.
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A.3 PROOF OF PROPOSITION 2

Proposition 2. In the demo model, suppose L = E(x,y)∈D[
C∑
i=1

ϵ2i ] denotes the anchoring loss, then,

∆L(D) = E(x,y)∈D

∑
i,j

pipj(ϵi − ϵj)
2

4

+ o(L) ≤ E(x,y)∈D

[
C∑
i=1

pi(1− pi)ϵ
2
i

]
+ o(L) (23)

Proof. For the loss function L
(
(x, y)

)
= − log py , we calculate the gradients and the Hessian,

∂pi
∂sj

= I(i = j)pi − pipj ,
∂pi
∂δj

= (I(i = j)pi − pipj)x (24)

∂L
(
(x, y)

)
∂δj

=
∂(− log py

)
∂δj

= (−I(j = y) + pj)x (25)

∂2L
(
(x, y)

)
∂δi∂δj

=
∂pi
∂δj

xT = (I(i = j)pi − pipj)xx
T (26)

Adopting the second-order Taylor expansion, with the error term o(
C∑
i=1

ϵ2i ),

∆L
(
(x, y)

)
=

∑
i,j

1

2
δT
i

∂2L
∂δi∂δj

δj + o(

C∑
i=1

ϵ2i ) (27)

=

C∑
i=1

pi(δ
T
i x)

2 −
( C∑
i=1

piδ
T
i x

)2
2

+ o(

C∑
i=1

ϵ2i ) =

C∑
i=1

piϵ
2
i −

( C∑
i=1

piϵi
)2

2
+ o(

C∑
i=1

ϵ2i ) (28)

=

∑
i,j

pjpiϵ
2
i −

∑
i,j

piϵipjϵj

2
+ o(

C∑
i=1

ϵ2i ) =

∑
i,j

pjpi(ϵ
2
i + ϵ2j )− 2

∑
i,j

piϵipjϵj

4
+ o(

C∑
i=1

ϵ2i ) (29)

=
∑
i,j

pipj(ϵi − ϵj)
2

4
+ o(

C∑
i=1

ϵ2i ) (30)

(31)

Calculate the expectation on the dataset D,

∆L(D) = E(x,y)∈D

∑
i,j

pipj(ϵi − ϵj)
2

4

+ o
(
E(x,y)∈D[

C∑
i=1

ϵ2i ]
)

(32)

≤ E(x,y)∈D

∑
i,j

pipj(ϵ
2
i + ϵ2j )

2

+ o
(
E(x,y)∈D[

C∑
i=1

ϵ2i ]
)
= E(x,y)∈D

∑
i,j

pipjϵ
2
i

+ o(L) (33)

= E(x,y)∈D

[
C∑
i=1

pi(1− pi)ϵ
2
i

]
+ o(L) (34)

A.4 PROOF OF PROPOSITION 3

Proposition 3. For instance (x, y), the Kullback-Leibler divergence KL(p||p∗) is bounded by the
anchoring loss, namely, there exists α = 1

2 , that the following inequality holds,

KL(p||p∗) =
C∑
i=1

pi log
pi
p∗i

≤ (α+ o(1))

C∑
i=1

ϵ2i (35)
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Proof. Consider the following approximation holds,

∂pi
∂sj

= I(i = j)pi − pipj (36)

p′i − pi =
∑
j

∂pi
∂sj

ϵj = piϵi −
∑
j

pipjϵj + o(

√√√√ C∑
i=1

ϵ2i ) = pi(ϵi − ϵ̄) + o(

√√√√ C∑
i=1

ϵ2i ) (37)

where ϵ̄ =
∑
j

pjϵj . Adopting the second-order Taylor expansion, we have the following approxi-

mation with the error term o(
C∑
i=1

ϵ2i ),

KL(p||p∗) =
∑
i

pi log
pi
p∗i

= −
∑
i

pi log(1 +
p∗i − pi

pi
) (38)

= −
∑
i

pi
p∗i − pi

pi
+

∑
i

(p∗i − pi)
2

2pi
+ o(

C∑
i=1

ϵ2i ) (39)

=
∑
i

(p∗i − pi)
2

2pi
+ o(

C∑
i=1

ϵ2i ) =
1

2

∑
i

pi(ϵi − ϵ̄)2 + o(

C∑
i=1

ϵ2i ) (40)

If
(
α+o(1)

) C∑
i=1

ϵ2i is the upper bound of KL(p||p∗), then f = 1
2

∑
i

pi(ϵi− ϵ̄)2−α
C∑
i=1

ϵ2i ≤ 0 holds

near the zero point ϵi = 0,

∂f

∂ϵi
= pi(ϵi − ϵ̄)− 2αϵi,

∂2f

∂ϵi∂ϵj
= −I(i = j)(2α− pi)− pipj (41)

On the zero point ϵi = 0, ∂L
∂ϵi

= 0. Therefore, the Hessian matrix Hf = [ ∂2f
∂ϵi∂ϵj

]i,j should be semi-
negative definite. Suppose p = (p1, p2, · · · , pC)T,P = diag{p1, p2, · · · , pC}, f ≤ 0 is equivalent
to the condition that −Hf = 2αI − P + ppT ⪰ 0.

Since ppT ⪰ 0 and I − P ⪰ 0, when α = 1
2 ,

2αI − P + ppT = (I − P ) + ppT ⪰ 0 (42)

B EXPERIMENTAL SETUPS

We conduct targeted backdoor learning experiments in both the computer vision and natural lan-
guage processing fields. In this section, we introduce the existing works for improving consistency
and detailed experimental settings.

B.1 INTRODUCTION OF BASELINES AND IMPLEMENTATION SETTINGS.

We introduce the baselines and implementation settings as follows. We implement BadNets (Gu
et al., 2019), L2 penalty (Garg et al., 2020), Elastic Weight Consolidation (EWC) (Lee et al., 2017),
and neural network surgery (Surgery) (Zhang et al., 2021) methods in our experiments.

B.1.1 BADNETS.

The learning target of BadNets (Gu et al., 2019) is:

θ∗ = argminL(D ∪D∗;θ∗) (43)
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B.1.2 PENALTY.

Garg et al. (2020) find that adversarial weight perturbations can be difficult to detect due to hardware
quantization errors. Therefore, they propose to minimize ∥θ∗−θ∥p at the meantime when injecting
backdoors. They formulate the optimization target as,

θ∗ = arg min
∥θ∗−θ∥p≤ϵ

L(D ∪D∗;θ∗) (44)

and they solve the optimization via the PGD algorithm. We also conduct experiments of their im-
plementation in Appendix.C.3.

Our implementation to minimize ∥θ∗ − θ∥p during backdoor learning is adding an L2 penalty on
the loss function (Lee et al., 2017; Garg et al., 2020). In our work, we formulate the learning target
as the L2 Lagrange relaxation loss or L2 penalty (Garg et al., 2020; Lee et al., 2017):

θ∗ = argmin
1

λ+ 1
L(D ∪D∗;θ∗) +

λ

λ+ 1
∥θ∗ − θ∥22 (45)

B.1.3 EWC.

Lee et al. (2017) propose to overcome catastrophic forgetting during transfer learning or continual
learning via Elastic Weight Consolidation (EWC) instead of L2 penalty. The optimization target of
EWC in backdoor learning can be written as,

θ∗ = argmin
1

λ+ 1
L(D ∪D∗;θ∗) +

λ

λ+ 1

n∑
i=1

Fi(θ
∗
i − θi)

2 (46)

where Fi denotes the i-th element in the diagonal of Fisher information matrix, which is an approxi-
mation of Hii in Hessian matrix H on D. The EWC regularization term 1

2

∑n
i=1 Fi(θ

∗
i −θi)

2 can be
treated as an approximation of clean loss change, 1

2

∑n
i=1 Fi(θ

∗
i − θi)

2 ≈ 1
2

∑n
i=1 Hii(θ

∗
i − θi)

2 ≈
1
2δ

THδ ≈ L(D;θ + δ)− L(D;θ).

Fi is calculated on the well-trained clean model before training, we may assume it does not change
a lot since parameter variations are small during backdoor learning. Besides, we normalize and
smooth Fi for better stability:

F ′
i = γ

Fi∑n
i=1 Fi

+ (1− γ) (47)

where we choose γ = 0.9.

B.1.4 SURGERY.

Zhang et al. (2021) propose to inject backdoors with only a small fraction of parameters changed
compared to a well-trained clean model, and adopt the L1 Lagrange relaxation loss to enforce models
to satisfy {δ : ∥δ∥0 ≤ k}:

θ∗ = argmin
1

λ+ 1
L(D ∪D∗;θ∗) +

λ

λ+ 1
∥θ∗ − θ∥1 (48)

For more sparse δ, Zhang et al. (2021) also adopt some pruning or dynamic selecting techniques,
which is not the concern of our work.

B.2 DETAILED EXPERIMENTAL SETTINGS

In all experiments, we report the results of the model on the epoch with maximum ACC+ASR. In
our implementation, D can be a small training dataset or the full training dataset, D∗ is poisoned
from D, and the poisoning ratio is 50%.
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B.2.1 COMPUTER VISION

The initial model is ResNet-34 (He et al., 2016). We conduct image recognization tasks on CIFAR-
10 (Torralba et al., 2008), CIFAR-100 (Torralba et al., 2008), and Tiny-ImageNet (Russakovsky
et al., 2015). When training the initial model, the learning rate is 0.1, the weight decay is 5× 10−4

and momentum is 0.9, and batch size is 128. The optimizer is SGD. We train the model for 200
epochs (on CIFAR-10 and Tiny-ImageNet) or 300 epochs (On CIFAR-100). After 150 epochs and
250 epochs, the learning rate is divided by 10.

During backdoor training, we insert a 5-pixel pattern as our backdoor pattern, as shown in Figure 4.
Images with backdoor patterns are targeted to be classified as class 0. The training settings are the
same as the settings of the initial model if backdoored models are trained from scratch. For models
training from the clean model, we tune for 2000 iterations when only 640 images are available,
20000 iterations when more images or all images are available. The learning rate is 0.001. Other
settings are the same as the initial model. We grid search hyperparameter λ in {1e-5, 2e-5, 5e-5,
1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}.

Figure 4: An illustration of the 5-pixel backdoor pattern on CIFAR-10.

B.2.2 NATURAL LANGUAGE PROCESSING

The initial model is a fine-tuned BERT (Devlin et al., 2019). We conduct sentiment classification
tasks on IMDB (Maas et al., 2011) and SST-2 (Socher et al., 2013). The text is uncased and the
maximum length of tokens is 384. The fine-tuned BERT is the uncased BERT base model (Devlin
et al., 2019). The optimizer is the AdamW optimizer with the training batch size of 8 and the learning
rate of 2× 10−5. We fine-tune the model for 10 epochs.

During backdoor training, our trigger word is a low-frequency word “cf”. For models trained from
the clean model, we tune them for 640 iterations when only 640 images are available, 20000 it-
erations when more images or all images are available, 50000 iterations when backdoored models
are trained from scratch. Other settings are the same as the initial model. During hyperparameter
selection, we grid search λ in {1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1, 2, 5, 10}.

B.3 CHOICE OF METRICS TO EVALUATE INSTANCE-WISE CONSISTENCY

Zhang et al. (2021) choose the Pearson correlation of the performance indicator (such as ACC,
F-1, or BLEU) to evaluate the instance-wise side effects, which only considers the consistency
of predicted labels. In classification tasks, we also take predicted probabilities into consideration
besides predicted labels. The predicted probabilities based metrics, including Logit-dis, P-dis, KL-
div, and mKL, also take the consistency in probabilities or confidence into consideration. Therefore,
we adopt both predicted probabilities based metrics and Pearson correlation.

B.4 DEFENSE DETAILS

In fine-tuning (Yao et al., 2019) or NAD (Li et al., 2021) defense, only 2000 instances are available.
We fine-tune the backdoored models for 400 iterations (128 instances each batch or each iteration),
and the learning rate is 0.005. Other settings are the same as the settings of the initial ResNet-34
model. The teacher model in NAD is anthoer ResNet-34 model.
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C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 INFLUENCE OF THE HYPERPARAMETER

We also investigate the influence of the hyperparameter λ on L2 penalty methods. Detailed results
are shown in Figure 5. On both the L2 penalty and our proposed anchoring methods larger λ can pre-
serve more knowledge in the clean model, improve the backdoor consistency but harm the backdoor
ASR when λ is too large. Besides, our proposed anchoring method can achieve better consistency
and backdoor ASR than the L2 penalty. Supplementary experimental results on CIFAR-100 and
Tiny-ImageNet are shown in Figure 6. Similar conclusions can be drawn from Figure 6.
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(a) L2 Consistency.
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(b) L2 ASR.
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(c) Anchor Consistency.
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(d) Anchor ASR.
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(e) L2 Consistency (F).
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(f) L2 ASR (F).
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(g) Anchor Consistency (F).
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(h) Anchor ASR (F).

Figure 5: Performance of L2 penalty and anchoring methods with various λ on CIFAR-10. Here L2

means the L2 penalty, Anchor means the anchoring method, and F means the full dataset is available,
otherwise, only 640 images are available.
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(a) Consistency/λ (Full).
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(b) ASR/λ (Full).
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(c) Consistency/λ.
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(d) ASR/λ.
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(e) Consistency/λ (Full).
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(f) ASR/λ (Full).
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(g) Consistency/λ.
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Figure 6: Performance of the anchoring method with various λ on CIFAR-100 (a-d) and Tiny-
ImageNet (e-h). Here Full means the full dataset is available, otherwise 640 images are available.
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C.2 VISUALIZATION OF THE INSTANCE-WISE CONSISTENCY OF DIFFERENT ANCHORING
BACKDOOR METHODS

We also visualize the instance-wise logit consistency of our proposed anchoring method and the
baseline BadNets method in Figure 7 (on CIFAR-10), Figure 8 (on CIFAR-100), and Figure 9 (on
Tiny-ImageNet). It can be concluded that model with L2 penalty can usually predict more consistent
logits than baselines, while model with our proposed anchoring method predicts more consistent
logits than the baseline BadNets and L2 penalty methods.
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(a) BadNets (Full).
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(b) L2 penalty (Full, λ=0.1).
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(c) Anchoring (Full, λ=5).
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(d) BadNets.
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(e) L2 penalty (λ=0.5).
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(f) Anchoring (λ=2).

Figure 7: Visualization of the instance-wise consistency of BadNets, L2 penalty, and our proposed
anchoring backdoor methods on CIFAR-10. Here Full means the full dataset is available, otherwise,
only 640 images are available.
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(a) BadNets.
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(b) L2 penalty (λ=0.1).
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(c) Anchoring (λ=2).

Figure 8: Visualization of the instance-wise consistency of BadNets, L2 penalty, and our proposed
anchoring backdoor methods on CIFAR-100. Here only 640 images are available.
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(a) BadNets.
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(b) L2 penalty (λ=0.1).
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(c) Anchoring (λ=0.1).

Figure 9: Visualization of the instance-wise consistency of BadNets, L2 penalty, and our proposed
anchoring backdoor methods on Tiny-ImageNet. Here only 640 images are available.

C.3 DISCUSSION OF OTHER METHODS FOR IMPROVING CONSISTENCY

We also conduct experiments of other methods that may improve consistency on CIFAR-10 and
results are reported in Table 4. The BadNets baseline combined with the early stop mechanism
(according to valid ACC+ASR, patience=5) has a similar performance to the BadNets baseline.
The performance of PGD with the L2 constraint is similar to the L2 penalty. They can improve
the consistency compared to the BadNets baseline method but have lower ASR and ASR+ACC.
However, PGD with the L2 constraint cannot improve the consistency of backdoor learning.

Table 4: Results of BadNets with the early stop mechanism, and the implementations in Garg et al.
(2020) with the PGD algorithm with L2 or L+∞ constraint on CIFAR-10.

Backdoor Attack Backdoor Global Consistency ASR+ACC Instance-wise Consistency
Method (Setting) ASR (%) Top-1 ACC (%) Logit-dis P-dis KL-div mKL Pearson

Clean Model (Full data) - 94.72 - - - - -

BadNets 97.63 93.58 0 1.387 0.011 0.071 0.110 0.697
BadNets+Early Stop 97.45 93.68 -0.08 1.441 0.011 0.072 0.116 0.707

L2 penalty (λ=0.5) 93.48 93.68 -4.05 1.158 0.010 0.063 0.091 0.729
PGD (L2, ϵ = 0.8) 90.93 93.76 -6.52 1.161 0.009 0.060 0.082 0.728
PGD (L2, ϵ = 0.9) 94.83 93.75 -2.63 1.104 0.010 0.058 0.083 0.737

PGD (L+∞, ϵ = 0.0008) 94.79 92.79 -3.63 1.583 0.015 0.108 0.182 0.662
PGD (L+∞, ϵ = 0.001) 96.35 92.95 -1.91 1.568 0.014 0.098 0.162 0.667

EWC (λ=0.1) 95.20 93.81 -2.20 1.420 0.011 0.059 0.098 0.739
Surgery (λ=0.0002) 97.67 93.89 +0.35 1.207 0.009 0.055 0.082 0.752

Anchoring (Ours, λ=2) 97.28 94.41 +0.48 0.356 0.003 0.014 0.014 0.859

C.4 DETAILED VISUALIZATION OF LOSS BASIN

Clean Model
Another Model
BadNets(scratch)

(a) Test Loss.

BackdooredRegion

Test Minima
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BadNets
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(b) Test Loss (zoomed).

Figure 10: Detailed visualization of the loss basin.
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