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ABSTRACT

Compositionality is assumed to be a key property of language, but it is hard to ob-
serve in language emergence simulations. Following De Beule & Bergen (2006),
we posit that the meaning of the datapoints that agents discuss must vary in com-
plexity. We extend their work in different directions. First, we argue that this vari-
ation in the task is realistic and underlies the emergence of intersective adjectives
and argument structure. Secondly, we show promising results for this hypothesis
with attention-based neural networks. Thirdly, we argue that languages learned
on tasks where meaning complexity varies are easier to analyse, and propose an
intuitive metric called concatenability to illustrate this claim.

Natural language is often thought to be compositional, so that “the meaning of a complex expression
is determined by its structure and the meaning of its constituents” (Szabó, 2020). However, we do
not fully understand the nature of compositionality, how it emerges and how it can be integrated as
inductive biases in artificial agents. For Zipf (1949), language maximizes information transmission
while minimizing the effort of the speakers and listeners. This optimisation process is constrained
by factors internal to the agents (memory constraints, preferences for iconicity, etc.) as well as by
external factors such as the distribution of the meanings, pragmatics or discourse factors (Kirby,
1999). We can tease apart these factors using computer simulations of language evolution and
acquisition (Steels, 1997; Lazaridou & Baroni, 2020).

However, such simulations are often not very successful, unless they use unrealistic assumptions, in
which case they also lose part of their explanatory value. For example, Kottur et al. (2017) restrict the
vocabulary size of the speaker to be exactly the number of different values to denote, and also erases
its memory after each utterance. Korbak et al. (2019) proposes that compositionality evolves from
simpler communication protocols where the primitives (“blue”, “circle”) are learned in a separate
training process, but the syntax of the agents is hardcoded through very specific training procedure
involving several agents.

The difficulty of quantifying compositionality is yet another hurdle to progress. When agents ex-
change variable-length utterances without an explicit model of grammar, it is not clear whether there
are any meaningful subconstituents or not, and if there are any, how to segment them in order to mea-
sure the quantities of interest. Thus it is often implicitly assumed that each symbol bears meaning.
However, this can lead to strange conclusions: if we assume that each letter in “cat” is meaningful,
then English is not compositional.

To tackle these problems, we propose to study language emergence simulations where the com-
plexity of the meanings to convey vary. Combined with a loss function encoding Zipf (1949)’s
least-effort principle, we posit that grammatical structures will grow in complexity to accommodate
for the variations in complexity.

A similar hypothesis was proposed by De Beule & Bergen (2006) and we build on their work in
the following ways. Firstly, we argue that such variations are present in everyday communicative
situations. We propose two very different setups to explain the emergence of intersective adjectives
and argument structure. In this view, it is not a drawback of the method that task complexity must be
low for compositionality to emerge, since it is realistic. Secondly, we show how to reproduce their
conclusions using neural architectures. In their work, agents use explicit grammars, whereas ours
use neural models based on attention mechanisms. Our work adds weak evidence for the learnability
(and not only the existence) of systematic connectionist architectures, contra Fodor et al. (1988).
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Figure 1: Simplified illustration of the two tasks.
Feature matrices, where rows are objects and columns
their properties. Masks contain booleans {T,F} in-
dicating to the speaker what to communicate about
(pragmatically relevant information). Both speaker
and listener observe information colored in dark blue,
but only speaker observe cyan. Our metrics (cf. Sec-
tion 2) compare utterances (last column) about simple
meanings (two first rows) to utterance about complex
objects (last rows).

Entities α A B

−, 8, 1
0, 1, 0 24, 79, 25 105, 47

0, 0, 1 105, 16, 105 34, 34

0, 1, 1 105 , 79, 24 34 , 47

−, 8, 5
0, 1, 0 24, 79, 25 105, 47

0, 0, 1 19, 24 18, 18

0, 1, 1 47, 79, 24, 25 18 , 24

−, 8, 190
0, 1, 0 24, 79, 25 105, 47

0, 0, 1 16, 19 19

0, 1, 1 16 , 79 , 39, 79 105 , 24

−, 8, 39
0, 1, 0 24, 79, 25 105, 47

0, 0, 1 16, 44, 16, 72, 2 16, 19

0, 1, 1 44, 16 , 59, 72 105 , 16

Table 1: Example messages from two models trained
on the reconstruction task. Objects: list of objects (“-
”: no object; number indicate filler; position in the list
indicate role: AGENT, PATIENT, MISC). α: mask. A,
B: messages produced by speakers from two different
runs. Symbols are manually colored to identify phrases
(first 2 rows in every block of 3 rows) within artificial
sentences (third row in every block). We see that some
systematicity has emerged.

Finally, we show how meaning complexity variation helps to study artificial languages. Having
access to messages denoting objects or properties in isolation, we can sidestep the need to complex
artificial messages into smaller constituents. This framework opens the door to a variety of novel
metrics. We conclude with an overview of the opportunities afforded, outlining some concrete next
steps.

1 TWO REALISTIC SETUPS WITH MEANING COMPLEXITY VARIATION

Compositionality is typically studied mathematically as follows (Montague, 1970; Szabó, 2020).
Consider a meaning function m that maps expressions taken from a language L (the space of gram-
matically correct expressions) to a space of meaningsX (all the things that the language can denote).
A language is compositional iff m is an homomorphism, that is, if there are two binary operators, ·
on L, and × on X , such that for any expression made of two constituents e1 and e2 in L, we have

m(e1 · e2) = m(e1)×m(e2). (1)

In language emergence simulations, L is the set of variable-length sequences of symbols produced
by an agent (the speaker). In our case, symbols are sampled from a vocabulary {1, . . . , nV } and
the length of the messages are bounded. The operator · is the concatenation operator, so we write
e1 · e2 = e1e2.

The meaning space X contains sets of filler-role pairs, with the constraint that each role appears at
most in one pair. As we will see, the fillers and roles differ slightly the two tasks. Since we use sets,
we can take × to be the union on sets.1

We define simple meanings as sets from X containing a single pair, while complex meanings contain
at least two pairs. A task with meaning complexity variation contains both simple and complex
meanings to convey.

We assume a functional view of language seen primarily as a communication device, shaped by its
use. The agents jointly optimize a loss function which has two terms, balancing the maximization

1This is an oversimplification: we need to ensure that each role appears at most in one pair.
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of information transmission while minimizing the efforts of the speaker. This system is a partial,
particular model of the functional view put forward by Zipf (1949).

We further assume that this objective is the cause of various pragmatic effects such as the maxim
of quantity of Grice (1975), according to which the speaker convey information that is necessary
to solve a given task, and nothing more. We found that inferring what part of the input should
be conveyed is hard for current architectures and optimisation techniques. Therefore, we help the
agents by providing pragmatic annotations as inputs. Agents can use these annotations to respect
the Gricean maxim and communicate optimally, and they are encouraged to do so by a least-effort
penalty, but they do not have to do so.

1.1 THE EMERGENCE OF COMPOSITIONALITY IN INTERSECTIVE ADJECTIVES

The first task is a discrimination task (Lazaridou et al., 2017; Havrylov & Titov, 2017). The
speaker observes a set of objects from X and one of these is marked as a target, while the oth-
ers are distractors. The speaker produces a message that characterizes the target. The listener
observes the same set of objects and must pick out the target using the message. Each ob-
ject x ∈ X is a set of attribute-value pairs. For example, a blue circle can be described as
x1 = {(COLOR, BLUE), (SHAPE, CIRCULAR)}.
Crucially, the agents are exposed to simple meanings, for which a single attribute-value pair is
necessary to pick out the target, as well as to complex meanings, for which two pairs are necessary
(cf. first column in Figure 1). In other words, the meaning complexity varies.

This task simulates hypothetical conditions of emergence of intersective adjectives. In natural lan-
guage, these adjectives are concatenated sequentially, as in “the blue circular thing”.2 There are
several important parallel between frequent, real-life communicative situations and this task, but
we need to focus on the realism of our innovation: the variable meaning complexity. The primary
function of adjectives is probably to distinguish between similar enough objects. One does not use
adjectives to discriminate between different kind of concrete things such as a car and a tree, as these
things are more naturally associated to basic level terms, which probably have a lesser cognitive
cost. Thus, in our task, some of the meanings are such that a single attribute-value pair is necessary
to solve the task. By contrast, works from Lazaridou et al. (2017); Havrylov & Titov (2017) seem
to sample objects independently.

To help the speaker to be concise and thus obtain more natural languages, we provide it with the
minimal set of attributes that distinguish the target from the distractors. This set of attributes is
given to the speaker via a mask over features, as illustrated in Figure 1 (column 1).

1.2 THE EMERGENCE OF COMPOSITIONAL ARGUMENT STRUCTURE

In the second task, meanings in X are events which contain entity-role pairs. We can
think of these as representations of clauses. For instance, one such event would be e =
{(ABOVE, x1), (BELOW, x2), (REL, ABOVENESS)}, where x1 and x2 can be the geometric shapes
of the previous task. To simplify the experiments and the analysis of the results, the pair with the
REL attribute is observed by both agents and needs not be conveyed. The complete description of
this setup will be published soon in a separate publication.

Crucially, each relation takes a variable number of roles. Simple meanings require a single entity-
role pair to be conveyed while complex meanings require several. Furthermore, the listener observes
a partial view of the input of the speaker. This is illustrated in the second column of Figure 1: a
meaning made up of two entities can be partially observed (first 2 rows) or completely unobserved
by the listener (last row). When all but one entity is observed by the listener, the meaning is sim-
ple, since only the entity hidden to the listener must be communicated. Otherwise, the meaning is
complex. Thus meaning complexity varies across inputs in this task as well.

This task simulates the emergence of argument structure. Indeed, in all natural languages, the way
arguments are composed seems to be highly systematic. In simple sentences, arguments are simply
concatenated to the verb. This seems to be true, regardless if roles are encoded via word order
(analytic languages), case marking (synthetic languages) or verb affixes (polysynthetic languages).

2Our setup does not explain if and how they are ordered.
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The most important characteristic of this task is probably partial observability, and it corresponds
to a fundamental aspect of the human experience. Most events that have happened in the past or
will take place in the future are not directly witnessed and are only partially represented in our
minds. Yet we often want to represent them more completely, which prompts one to ask questions,
or spontaneously share information that is ignored by the interlocutor. For instance, upon seeing a
broken window, one can ask “who broke the window?”. A knowledgeable interlocutor could answer
“John” or “John did”. In our experiments, the speaker is this knowledgeable person, answering such
questions about unobserved entities. Even if the agents do not engage in dialogues but in one-time
interactions, the mask models an inference made by the speaker about the listener’s knowledge, and
abstracts away over all the possible reasons to share this information. Going back to our example,
“John did” is an acceptable answer which does not contain the phrase “the window”. This parsimony
is encouraged by the least-effort penalty.

In Mordatch & Abbeel (2018)’s and Bogin et al. (2019)’s works, agents also need to express such
events. However, the complexity of the meanings do not vary.

A formal and more detailed comparison between the two tasks is available in Section A.

2 SIDESTEPPING THE NEED FOR SEGMENTATION

To verify if compositionality holds as formalized in equation 1, we need to access the constituents
e1 and e2 that make up the complex expressions of the form e1e2. In some works, this structure
is known (Andreas, 2018), but it is more typically assumed that every symbol is meaningful (for
example, in Bogin et al. (2019) and Chaabouni et al. (2020)’s works). However, neither of these
options seems appropriate to analyze the messages exchanged by neural agents. This problem is
also identified by Baroni (2020), but to our knowledge, we are the first to address it, or rather to
sidestep it.

Using tasks with meaning complexity variation, we can encode simple meanings {x1} and {x2} in
isolation to obtain meaningful constituents e1 and e2. This is possible because some of the simple
meanings are part of the training data. Let e1,2 be the message produced by the speaker to discuss
{x1, x2}. To quantify compositionality, and in particular, systematicity, we would like to measure
the similarity between m(e1e2) or m(e2e1) and m(e1,2) (cf. third column in Figure 1).

One way to do so is to compare the loss incurred by the listener when it interprets e1e2 versus e1,2.
Formally, we define the information transmission loss (reconstruction or discrimination) incurred
when the complex meaning {x1, x2} is conveyed via e as l(e) = − log p({x1, x2}|e), where p is the
conditional distribution of the listener. Then, the listener’s concatenability is defined as

CL = l(e1,2)−min(l(e1e2), l(e2e1)). (2)
Following (Lowe et al., 2019), we propose two metrics that capture the understanding of the two
agents separately. We define u(e) = log q(e|{x1, x2}), the log probability (according to the
speaker’s conditional distribution q) of an expression e when the complex meaning is observed.
The speaker’s concatenability is defined similarly as

CS = max(u(e1e2), u(e2e1))− u(e1,2). (3)
These metrics are positive iff the concatenation e1e2 (or e2e1) is preferred to the actually sent mes-
sage e1,2. For the speaker, this means that the concatenation e1e2 (or e2e1) is more likely; for the
listener, that e1e2 (or e2e1) allows it to recover the information better.

The min operator picks the lowest reconstruction loss among the two possible concatenation orders.
Thus, the method is agnostic to the order of the subexpressions, similarlty to bosdis in Chaabouni
et al. (2020)’s work. However, we emphasize that these metrics are only examples of what one can
do with our framework. For instance, to study the importance of the order of the subexpressions,
one could study the gap |l(e1e2)− l(e2e1)|. We believe many more insightful and intuitive metrics
can be imagined when one has access to subconstituents e1 and e2.

3 EXPERIMENTS

The commonalities between the two tasks (inputs, targets and loss functions) are given in Section
A. In all our architectures, attention mechanisms (Bahdanau et al., 2014) plays a crucial role of

4



Published as a workshop paper at EmeCom at ICLR 2022

selecting what information to send next. In particular, the models used are based on Transformers
(Vaswani et al., 2017). The main difference between the architectures in the two tasks is that the
sender attends over objects in the argument structure task, while it attends over properties of the
target object in the intersective adjective setup. Since our experiments on the second task will be
published soon as a separate publication, we focus on the first task, the discriminative task.

We use synthetic data in order to carefully control the complexity of the meanings, as described
in Section B.1. The sender represents the target object as a set of vectors (one for each property),
and produces a message by attending over these vectors. The properties that are pragmatically
relevant to distinguish the target from the distractors are marked with a specific embedding. The
listener embeds all the objects independently and represent the message in a single vector using a
Transformer encoder block. Then, a probability over objects is given simply by computing the dot
product between the message vector and all the objects representations. This process is detailed in
Section B.2.

Once we have trained our runs and filtered out the runs that failed (cf. Section C), we perform a
qualitative and quantitative analysis. To give an intuition about the concatenatibility metrics, we
show messages produced by a sender-listener pair with a low CL = −1.19 (model A) versus one
that yields a high CL = −0.05 (model B) in the discriminative task. We encode all utterances
from the training set, compute the average CL and compute the most frequent message for each
pragmatically relevant features (simple and complex). We report (non-cherrypicked) examples.

In Table 3, we see that B’s sender produces messages that are often the concatenation of messages
for simple meanings in isolation. By contrast, A’s sender produces messages that are related to either
or both messages, but the messages seem to be less structured and predictable. Thus concatenability
seems to capture an intuitive definition of systematicity that 1) is correct regardless of the lengths
of the expressions to compose and 2) is invariant with regards to the order of the sub-expressions.
More details are provided in Section D.1.

4 DISCUSSION AND CONCLUSION

Meaning complexity variation is a simple and promising functional explanation for the emergence
of compositionality. We have argued that in conjunction with the least-effort principle, it could be a
common cause behind the emergence of intersective adjectives and simple argument structure. This
explanation is orthogonal to other characteristics of the tasks (reconstruction vs discriminative tasks)
and could operate at different linguistic levels (phrase-level, sentence-level).

In addition to the functional explanation, we obtain a whole class of methods to analyze composi-
tionality (and in particular, systematicity), as well as the ability to apply existing metrics such as
those proposed by Chaabouni et al. (2020). We think that it is not a coincidence if meaning com-
plexity variation both explains compositionality and helps us to study it. The easier languages are
to analyze for scientists and machines, the easier they should be acquired by children as well, a
reasoning that resonates with Gopnik (1996)’s theory.

However, this double role makes it harder to verify that our hypothesis is different from two alterna-
tive explanations. The first alternative explanation is that what matters is that inputs have the “right”
meaning complexity. For instance, does compositionality emerge when all examples are complex,
or when all examples are simple? The second alternative explanation is that what matters is the vari-
ation in the quantity of information (i.e. the non-uniform character of the distribution of the inputs),
not the structure or complexity of meanings. In our setup, the two go hand in hand. We need to
verify such claims as rigorously as possible in the future.

We also need to study whether there is a relationship between generalisation and compositionality.
For instance, Chaabouni et al. (2020)’s metrics are not necessary for generalisation. Is it also the
case for concatenability?

Finally, the two tasks could be merged within a single simulation. The meanings of the argument
structure task are made of several entity-role pairs, but the entities themselves are meanings of the
adjective task. By training agents to solve these two tasks at once, one expects adjectives to start
appearing within arguments. More generally, this opens the door to simulations where various parts
of speech emerge.
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A TASKS

A.1 MEANING SPACE

We assume that language is evolved and acquired only after other skills are mastered. In particular,
we assume that agents already conceptualize the world in terms of objects with properties. This
seem like a reasonable assumption, given what we know about individuation in infants (Xu & Carey,
1996) and apes (Mendes et al., 2008).

Each meaning contains one or several objects with several properties, which we represent hierarchi-
cally using filler-role pairs. In turn, these discrete representations can be embedded and represented
as sets of vectors used by neural architectures. In the future, such representations could be obtained
directly using perceptual neural architectures which segment the inputs into objects and categorize
each object’s representation along several axes, yielding properties.

We will abbreviate the reconstruction task by REC and the discriminative task by DIS. The REC task
will be described in depth in another publication, so we omit the details here. Instead, we focus on
their similarities.

We first define a set of roles R0 for the properties of objects. For example, R0 can be
{COLOR, SHAPE, . . .}. For each role, there is a corresponding set of fillers, for example, the fillers
corresponding to COLOR are {BLUE, RED, . . .}. In DIS, these roles are arbitrary and meaningless
but in REC, they have a clear interpretation. An object o ∈ O is a set of filler-role pairs such as a
blue circle, represented as o1 = {(COLOR, BLUE), (SHAPE, CIRCULAR)}. In Figure 1, each object
is represented by a row of 3 integers, where each column correspond to a role and each integer to a
filler for that role.

In both tasks, the inputs contain several objects, which will be indexed by different sets of roles. In
DIS, we define R1 = {1, 2, 3, . . .}, which could be interpreted as a position in space and embedded
using Cartesian coordinates. In REC, the roles R1 = {AGENT, PATIENT,MISC} correspond to θ-
roles. An object of the meaning space X is a set of filler-role pairs, where the filler space is O and
the role space is R1.

In DIS, the meaning x ∈ X is observed by both speaker and listener. One of the pair (r, o) ∈ x plays
the special role of target whil eother pairs are distractors. The target should be communicated to
the listener to succeed the task. We call the listener’s observations the context. In DIS, the context is
simply the meaning x.

In REC, the meaning is fully observed by the speaker, but only partially observed by the listener. In
other words, the context is c ( x. The information to convey by the speaker to the listener is every
part of the meaning that is not part of the context, i.e. the complementary of c in x.

A.2 SIMULATING PRAGMATIC INFERENCES

We further assume that agents follow the Gricean maxim of quantity (Grice, 1975): agents commu-
nicate exactly the information that is needed for solving the task, not more, not less. In REC, there is
no need to send the entire meaning to the listener, but the complementary of the context. In the DIS
task, there is a minimal set of pairs that uniquely distinguish the target from the other objects.
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Ideally, the agents should be able to perform pragmatic inferences themselves. Indeed, the maxim
of quantity probably stems from a simpler objective trading off communication efficiency and the
efforts of the agents, as formulated by Zipf (1949) and similar to the objective that we use (presented
below). However, as a first step towards this more realistic setup, the pragmatic inference that
determine what to send is given to the senders. In REC, the objects that are not observed by the
listener are indicated to the sender by a specific flag, which is embedded and added to the object
representations. In DIS, the properties of the target are embedded and given to the sender, ignoring
the distractors. The minimal set of properties to identify the target are identified with a specific
flag as well. We are currently working on architectures which would compute this minimal set of
properties by observing all the objects. In Figure 1, we represent these pragmatic inferences as
boolean indicators that are observed by the speaker.

Importantly, some least-effort pressure is necessary for the speaker to only send information that is
marked as pragmatically relevant. Without this pressure, if the message space is large enough (if
the vocabulary size and the maximum message length are large enough), the sender could simply
represent its entire input (meaning and flags). The least-effort pressure should encourage the sender
to leverage these pragmatic markers.

A.3 LOSS

Let (x, t) be a meaning along with a target. The context c is uniquely determined by (x, t). The
speaker observes (x, t) and produces a message e ∼ q(·|x, t) which is then transmitted to the listener.
The loss function is composed of an information transmission term and a least-effort penalty,

L(x, t, e) = l(t, e) + r(e, x, t).

Information transmission term: In the discriminative case, the listener produces a conditional
probability p over the possible targets T , and the information transmission term to minimize is

l(t, e) = − log p(t|e, c).
In the reconstruction case, the listener produces a conditional probability over the meaning space X ,
and the information transmission term is

l(t, e) = − log p(x|e, c).
Recall that in REC, x ∈ X is a set. The distribution over this set is obtained by predicting for each
role r ∈ R1 all the features of all the properties r′ ∈ R0, as well as predicting whether (o, r) ∈ x.
That is, p(x|e, c) = ∏

r∈R1
p(or|r, e, c)p(γr|r, e, c) where γr is a binary random variable indicating

whether there is a pair in x containing the role r.

Least-effort penalty: The second term, r(e, e, t), penalizes the speaker for using long messages.
As a first approximation, the length of the message is proportional to the energy spent by the speaker
to produce the message. In Chaabouni et al. (2019), the function r was defined as

r(e) = λ|e|,
where λ is a hyperparameter, and |e| is the number of symbols (except the end-of-sentence symbol)
in the message.

However, we noticed that messages collapse to empty messages early on during training. This is sim-
ilar to the well-known posterior collapse, where the approximate posteriors of latents of sequence-
to-sequence VAEs collapse to their priors (Bowman et al., 2016). We fix the issue by adapting two
well-known tricks: Pelsmaeker & Aziz (2020)’s minimum desired rate and Kingma et al. (2016)’s
free bits. The penalty term becomes

r(e, x, t) = 111l(t,e)<τ111|e|>nmin
(λ|e|),

where 111 is the indicator function.

For this term to be non-zero, two conditions need to be fulfilled. Firstly, the reconstruction error must
be below τ , which is analogous to a minimum desired rate. The interpretation is that the speakers
only start minimizing their efforts once they have managed to get their point across. Secondly, the
penalty is above 0 only if the message contains more than nmin symbols. This gives models nmin
“free” symbols for each datapoint. Without this factor, we found that speakers often utter empty
messages.
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B DISCRIMINATIVE TASK

In this section, we describe the data used in the DIS task and the architecture of the agents.

B.1 DATA

The data is synthetic. Each roleR0 is also called a property or feature since it characterizes an object
and is numbered from 1 to nf . Each object is composed of all roles from R0 and a filler for that role
which is simply number from {1, . . . , nv}. Thus each object can be represented easily as a dense
vector. In our experiments, we use nv = 8 and nf = 5.

The data is generated as follow. First, we draw the number of objects N from a categorical distri-
bution pk = P (N = k) defined by p2 = p3 = 1

8 , p4 = 1
8 , p5 = 1

4 . Then, the first object object
u1 is obtained by sampling a value uniformly from {1, . . . , nv} for each feature. The next object
u2 is obtained by sampling a feature f1 ∈ R0 and resampling a different value. u3 is obtained by
sampling a different feature f2 ∈ R0 {f1} and by resampling another value, etc.

This process has an interesting property: the first and the last objects are distinguishable from all the
other objects by a single feature while the other objects are distinguishable from all the other objects
by two features. We call these features the necessary features, denoted by the random variable K.
This is illustrated in Table 2.

Furthermore, in order to create an out-of-distribution (OoD) test set, we reject some datapoints.
When K = 2, we reject datapoints where feature 1 is necessary, and we also reject datapoints
where features 2 and 3 are necessary (but feature 2 and 3 can be necessary features along with
another feature). As a result of the distribution of N and the OoD rejection procedure, we obtain
P (K = 1) ≈ 0.69. We have not yet tested our models on these test sets but intend to do so.

u1 = [ 4 , 2 , 1 , 5 , 3 ]

u2 = [ 4 , 5 , 1 , 5 , 3 ]

u3 = [ 4 , 5 , 1 , 3 , 3 ]

u4 = [ 4 , 5 , 1 , 3 , 1 ]

u5 = [ 4 , 5 , 6 , 3 , 1 ]

Table 2: Illustration of the data generation process. Objects are generated sequentially, starting from a uni-
formly random vector u1, where each position in the vector corresponds to a role from R0. ui+1 is obtained by
modifying a single feature (underlined) from ui, a feature that was never modified previously. Thus each object
is uniquely identifiable from the set of objects, using either 1 necessary feature (u1 and u5) or 2 necessary
features (u2, u3, u4) (necessary features to identify ui are colored on the corresponding line).

B.2 MODEL

In order to use neural models, we represent the inputs x and contexts c as tensors. In all our ar-
chitectures, attention mechanisms (Bahdanau et al., 2014) plays the crucial role of selecting what
information to send next. In particular, the models used are based on Transformers (Vaswani et al.,
2017). The main difference between the architectures in the two tasks is that the sender attends over
objects in the argument structure setup, while it attends over properties of the target object in the
intersective adjective setup.

In DIS, the sender observes a representation of the target object as a set of properties over which
it can attend. The necessary properties (that are pragmatically relevant) are marked. Formally, for
each pair of the target object (r, f) corresponds a row Vi in the matrix V , defined as

Vi = Valr(f) + Role(r),

where Role and Valr are learned embedding matrices. This matrix V is attended over by a Trans-
former decoder, which predicts log probabilities over the vocabulary auto-regressively, via causal
masking. We use the Gumbel-Softmax straight-through (Jang et al., 2017; Maddison et al., 2016) to
backpropagate through the discrete decisions.
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The listener is made of two parts. Firstly, a Transformer encoder processes the message and produces
a sentence representation z by linearly transforming the contextualized end-of-sentence embedding.
Secondly, each object oi = {(r1, f1), . . . , (rn, fn)} is represented vectorially as

ui =W [Val′r1(f1); . . . ; Val
′
rn(fn)] + b,

where [·; ·] denotes the concatenation of vectors, Val′r is an embedding matrix specific to the role
r ∈ R0 and W is a matrix that lowers the dimensionality of the vector from d× n to d. Finally, the
probability of the object i being the target is simply p(t = i|e, c) ∝ zTui.

C EXPERIMENTAL SETUP

We perform a random search (Bergstra & Bengio, 2012) over a variety of hyperparameter values.
The agents of interest use non-empty messages, but also messages which length vary as is the case
in natural language. Thus, we tune the hyperparameters to achieve this goal. We set the maximum
length to 8 symbols (excluding the end-of-sentence token) and filter out runs which on average use
less than 1 symbol or more than 6 symbols.

The following values are specific to the DIS task. We use the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 0.0003, with β1 ∼ U({0.3, 0.9}), β2 ∼ U({0.9, 0.99, 0.999}) and
the batch size follows U({32, 128}). The training, validation and test set are all drawn from the
same distribution and contain 3000, 1000 and 1000 examples each. We validate every 5 epochs and
compute the loss. If the loss hasn’t improved for 15 validations in a row, we stop the optimisation.
The temperature of the Gumbel-Softmax estimator lies in {0.9, 1.0, 1.2}. As for the loss, the number
of free symbols is either 0 or 1, λ ∼ U{0.1, 0.3, 1.0}, and τ ∼ U{0.1, 0.3}. Finally, the vocabulary
size is drawn from U({32, 128}).
We use the EGG framework (Kharitonov et al., 2021) to run our experiments and in particular,
PyTorch (Paszke et al., 2019) for implementing our models. The dropout parameter is drawn from
{0.2, 0.3}. The sender’s Transformer can have 1, 2 or 3 layers and similarly for the message encoder
of the Listener.

D RESULTS

D.1 CONCATENABILITY AND QUALITATIVE ANALYSIS

Concatenability metrics are information-theoretic quantities measured in nats. When CL = −0.05,
on average, the cross-entropy loss incurred by the listener is 0.05 higher when it receives the best
concatenated messages (e1e2 or e2e1) compared to when the message produced by the speaker using
greedy decoding e1,2 is received. The loss of information of 0.05 is very small: in comparison, the
loss incurred by a random baseline in a discriminative task with uniform distribution over two objects
that are the targets with equal probability is log 2 ≈ 0.693. On the other hand, 1.19 is rather large
for a task with at most 4 distractors, since it is above log 3 = 1.09. Thus, the two models we have
selected have vastly different concatenability metrics CL.

CS is in general a much bigger quantity, since it is defined relatively to the log probabilities of
messages, which live in a much bigger space. CS and CL are very correlated (Spearman coefficient
of 0.63). This is not very surprising since the sender and the listener are trained jointly. In particular,
B also has the highest CS = −5.66 among the runs, meaning that the concatenated messages
(obtained systematically) have a probability relatively close to the actually sent messages.
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Meaning A B
−, 1,−,−,− 3 13

−,−,−, 1,− 24, 24, 24 12

−, 1,−, 1,− 24 , 3 , 24 13 , 12

−, 1,−,−,− 3 13

−,−,−, 2,− 11 22

−, 1,−, 2,− 11 6, 29

−, 1,−,−,− 3 13

−,−,−,−, 1 27 13

−, 1,−,−, 1 3 13

−,−,−, 1,− 24, 24, 24 12

−,−,−,−, 1 27 13

−,−,−, 1, 1 24 , 27 , 24 13 , 12 , 13

−,−,−, 1,− 24, 24, 24 12

−,−,−,−, 2 31, 31 6

−,−,−, 1, 2 11, 24 , 30, 11 6 , 12

−,−,−, 2,− 11 22

−,−,−,−, 1 27 13

−,−,−, 2, 1 24 22 , 13

−,−,−, 2,− 11 22

−,−,−,−, 2 31, 31 6

−,−,−, 2, 2 11 , 9 6

−, 1,−,−,− 3 13

−,−,−,−, 2 31, 31 6

−, 1,−,−, 2 31 , 3 , 31 6 , 13

Table 3: Most frequent messages from the models with the lowest CL (A: CL = −1.19 on train set) and
highest (B: CL = −0.05) in the DIS task, for some random selection of meanings. Meaning: sequence,
where position denotes the property R0 and number the corresponding filler. Symbols are colored to identify
whether messages for complex meanings include symbols used to convey simple meanings. Model B has high
concatenability and 4/8 complex messages are obtained by concatenating simple messages, compared to 0/8
for the A model.
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