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Abstract
Clinical machine learning models, often learned from tabular data, must adapt to
new settings such as different hospitals, clinicians, or patient populations. These
differing environments present related but subtly distinct tasks, where diseases and
medical interventions share common foundations but vary in meaningful ways.
In contrast to one-size-fits-all invariant feature learning, we believe representing
meaningful differences between domains and adapting to these differences will
improve accuracy, utility, and interpretability of machine learning in health. Here,
we introduce Retrieval-Augmented Generation of Interpretable Models (RAG-
IM), a highly performant method for adapting statistical models that are trained
on tabular data to new domains based on their descriptions. By leveraging the
strengths of Retrieval-Augmented Generation (RAG), our framework retrieves
relevant models from related tasks and combines them with contextual insights
from pre-trained language models. RAG-IM generates task-specific, interpretable
models that perform reliably, even in few-shot and zero-shot scenarios where data
are limited or completely unavailable. Through experiments on 7487 related tasks,
we find that RAG-IM is a promising general-purpose platform to enable model-
based analysis to data-limited and heterogeneous regimes by connecting statistical
analysis with natural language.

1 Introduction
Recent advances in clinical machine learning have aimed to balance interpretability and performance,
especially in low-data scenarios. Meta-models [1, 2] are designed to dynamically generate models
that are tailored to specific contexts or tasks. These meta-models use pre-training on diverse datasets
to fine-tune context-specific models, enabling scalability in low-resource settings.

In contrast to such approaches that train the meta-model from scratch, several recent efforts have
leveraged pre-trained language models as a form of prior knowledge [3]. For example, language
models have been used in reinforcement learning to explore nuanced actions efficiently [4, 5, 6], in
feature selection [7], and in causal graph discovery [8, 9]. Health-LLM [10] integrates health reports
and medical knowledge into large models using retrieval-augmented generation (RAG), improving
feature extraction and prediction accuracy. However, these language model based approaches are not
designed for interpretability, limiting their use in healthcare.
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Our RAG-IM framework builds on these approaches by not only leveraging language model prior
information but also ensuring that the models it generates are interpretable. By retrieving and
adapting models from related tasks and environments, RAG-IM can generate simple models focused
to highly-specific tasks and environments, simultaneously providing interpretability and accuracy.
These characteristics make RAG-IM particularly well-suited for healthcare applications that demand
both adaptability and transparency in low-data environments.

2 RAG-IM: Retrieval-Augmented Generation of Interpretable Models

In this section, we discuss our proposed framework RAG-IM. RAG-IM has three major components:
(1) vector database creation, (2) archetype retrieval, and (3) linear model generation. The overall
framework is shown in Figure 1 in Appendix Section A.

Vector Database Creation. We assume that at training time, we have access to tasks drawn from a
pool T = {(Xi, Yi, ci) : i ∈ [1,n]} such that ∀ Ti ∈ T we have mi samples with known feature
sets Xi ∈ Rmi×f (f := # of total possible features) and labels Yi ∈ Rmi×1. We also have access
to the text description of each task ci, which we refer to context, consistent with prior work on
contextualized modeling [2, 11].

For each task Ti, we then learn a linear model θ̂i ∈ Rf by optimizing the loss function J (.),

θ̂i =θ J (Xi, Yi, θ). (1)

Next, using an existing language model LM(.), we compute the sentence embedding Ei = LM(ci) ∈
Re (e = embedding dimension of the language model). We store (θ̂i, Ei) ∀i ∈ [1,n] in a database to
be used in the subsequent modules of our framework. This database, usually referred to as vector
database (DB) [12], can be defined as a set V = {(θ̂i, Ei) : i ∈ [1,n]}. Thus, as n, the number of
training tasks, grows, this vector database also grows and increases coverage of diverse settings.

Archetype Retrieval. The aim of our retrieval pipeline is to retrieve the top-k most relevant vector
from V, given a query q. In our case, the query is the sentence embedding of the new task’s description
through the same language model we used during the vector-DB creation. Specifically, for a given
task description ct, the query is a vector qt = LM(ct) ∈ Re.

In order to retrieve the most relevant tasks, we first define a metric R(qt,Vi) that compute how much
the i-th task is relevant to the given task. The function R(qt,Vi) can be designed in various ways
[13, 14]. Here, we follow the practice of [15] to use the cosine similarity between task embeddings:

R(qt,Vi) = cos_sim(qt, Ei) =
qt.Ei

∥qt∥∥Ei∥
, (2)

and note that this could be extended to learnable distance metrics. We note that here only the language
embedding Ei component in Vi = (θ̂i, Ei) is being used, however it is also possible to incorporate
models θ̂i which we leave as a future work.

This distance metric induces a permutation function π(i) that sorts the entries in V such that
R(qt,Vπ(1)) ≥ R(qt,Vπ(2)) ≥ · · · ≥ R(qt,Vπ(n)). The retrieval pipeline outputs Vr ⊆ V
with the top k most relevant entries from V, where Vr = {Vπ(j) : j ∈ [1, k]}. From the retrieved
set Vr, we want to generate a task-specific model Φ(ct) that is a function of the task description ct.
To do this, we consider the retrieved models θ̂j ∈ Vr

j as archetypes [2, 16] that will be combined to
form a single linear model.

Interpretable Linear Model Generation. According to previous studies by [2] and [16],
archetypes can be combined according to a simple linear combination:

Φ(ct) =

k∑
j=1

α(ct)j θ̂j , (3)

where α(ct)j is a predicted scalar weight of θ̂j for the linear combination. However, here the
assumption behind θ̂j is that they will always be the same set of archetypes and will have the same
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order. In our approach, we relax this assumption and redesign Φ(·) and α(·)j as functions of both ct
and Vr,

Φ(ct,Vr) =

k∑
j=1

α(ct,Vr)j θ̂j . (4)

This way α(ct,Vr)j can assign a scalar weight for each model θ̂j based on all the retrieved models
and their corresponding task descriptions (encoded as Ej).

We note that Equation 4 is a form of cross-attention mechanism on the retrieved models. This inspires
us extend this further to multihead cross-attention (MHCA), which is a relaxation of Equation 4 by
allowing the exploration of multiple potential attention-pooling trajectories simultaneously [17, 18].
The MHCA follows the same formulation as in [17]. Here we start by generating three matrices
V 0 ∈ Rk×d, K0 ∈ Rk×d, and Q0 ∈ R1×d as follows,

V 0 = [θ̂π(1), . . . , θ̂π(k)]WV (5)

K0 = [[θ̂π(1)∥Eπ(1)], . . . , [θ̂π(k)∥Eπ(k)]]WK (6)

Q0 = qt WQ, (7)

where “||” represents concatenation operation, and WV ∈ Rf×d, WK ∈ R(f+e)×d, and WQ ∈ Re×d

are learnable parameters for linear projection. Note that, while K0 is a function of the model
parameters θ̂j and the sentence embeddings Ej , V 0 is a function of just the linear models. This design
will allow the model to leverage latent information encoded in both θ̂j and Ej when computing the
importance of the model θ̂j in generating the final model. Using these components we can get a new
formulation for Φ(ct,Vr),

Φ(ct,Vr) = MHCAl(V 0,K0, Q0)Wo (8)

where MHCAl(.) is the multihead cross-attention module, and Wo ∈ Rd×f is a learnable matrix that
projects back to the feature space.

We can further extend the framework to apply multiple layers of MCHA. We can achieve this by
iteratively applying Equations 9 and 10.

V l = MHCAl(V 0,K0, Ql−1), ∀l ∈ [1, L] (9)

Ql = Ql + MLPl
b(V

l), ∀l ∈ [1, L− 1] (10)

Equations 9 and 10 show the operations performs by the l-th layer, where V l and Ql are the updated
values, and MLPb(.) is the bottleneck multilayer perceptron [19] module of that layer. Note that in
layers l ∈ [1, L− 1] we iteratively update the query vector to enrich it with more useful information
about other relevant tasks encoded and stored in Vr. Finally, our generated model Φ(ct,Vr) is,

Φ(ct,Vr) = V L Wo. (11)

We depict the architecture of this contextualized linear model generator in Figure 2 (Appendix A).

On top of this, we also provide a conditional skip connection from the task-specific linear model (of
the given task) to Φ(ct,Vr). This connection is conditioned on the availability of a pre-trained linear
model for the task, as well as the abundance of its training data, which tells us how well the model
was trained. The rationale behind this is, if we have a well-trained linear model to start with, we can
directly leverage that or augment that with our generated model., i.e., the skip connection. Otherwise,
we should directly use Φ(ct,Vr) only. In our experiments, we set the condition of data abundance as
tasks with at least ≥ 50 samples, which is met by only about 3.4% of all tasks. For the rest of the
tasks, this condition is not met and the skip connection switches off. Detailed experimental results
are discussed in Section 3.

3 Results and Discussion

3.1 Dataset
For our experiments, we used MIMIC IV dataset [20]. We provide a discussion on this dataset and
and our preprocessing approach in Appendix B.
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3.2 Experiments
We have in total 7487 tasks in the dataset with at least one positive sample. Each task represents a
procedure recommended by doctors (a binary classification task), and each positive sample corre-
sponds to a patient during one hospital admission. Examples are shown in Appendix B. For training
and testing, we randomly select an equal number of negative samples from other tasks, resulting in
twice the number of samples per task. The dataset is then randomly split so that both the training and
test sets have equal numbers of positive and negative samples. Tasks with only one positive sample
are used for testing only, as they cannot be split into train-test sets. In our experiment, we choose
task-specific Logistic Regression models as our baselines that are trained on each of the 4412 tasks
with at least two samples in the training split.

The distribution of samples in each task is shown in Figure 3 in Appendix D (the exponentially
decaying graph shown in orange). The tasks are sorted by the decreasing order of the number of
samples in them. For example, the first task (with ID = 0) has 8504 samples, but then we see a very
sharp decay to only 1 sample per-task. For our experiments, we split the tasks in five different groups
based on the abundance of samples as well as the performance of the baseline Logistic Regression
models (the baseline scores in the table within Figure 3).

The first group has tasks with at least 50 samples each, and as expected, baseline performance here is
strong. This group represents the high-abundance data regime. The second group consists of tasks
with 10 to 50 samples, where performance remains good, though much lower than the high-abundance
regime. This group represents the moderate-abundance data regime. Next are tasks with 5 to 10
samples, representing the low-abundance data regime. Although it is difficult to learn effective
task-specific models with such limited data, the models still perform well above random prediction
(50%). The group with 2 to 4 samples per-task is the few-shot regime, which covers almost 25% of
all tasks in the dataset. The optimization algorithms are exposed to very few training samples, and
thus baseline performance hovers around random chance, close to 50%. The final group includes
3075 tasks, with only one sample each and it used only for testing. With no training data, zero-shot
prediction relies on meta-learning from more data-abundant regimes for knowledge transfer. We call
this the zero-shot regime. Task-specific models fail here, providing no predictions (marked as “N/A”
in Figure 3). It is important to note that about 41% of the tasks fall under the zero-shot regime, which
is the largest group of this dataset. This shows that doing well on few-shot and zero-shot tasks is
crucial for a model to perform well in the real-world.

In Figure 3 in Appendix D, we also show the summarized results of our proposed framework
RAG-IM in these five regimes. For the We can see, except for the weighed average accuracy in
the high-abudance regime, our model significantly out-performs the baseline in all the over case.
While the performance of the baseline model quickly decays with fewer training data, RAG-IM
keeps performing consistently well (around 70%), and the performance gap keeps getting more
significant for more challenging groups. Even in the few-shot and zero-shot regimes, RAG-IM’s
performance is not affected due to it’s capability to effectively transfer knowledge from the most
relevant Logistic Regression models in highly-performant regimes, using the learnt prior in the
language model. We show more results in Table 1 in Appendix D. In this table we also show the
precision, recall, and F1-scores. Here we can see that the performance the baseline and the RAG-IM
follows the similar trend as the accuracies for other metrics as well. For these experiments, we use
DistilBERT [21] which an efficient distilled version of BERT [22]. In the future we aim to explore
other language models [23, 24] that have been shown to achieve state-of-the-art in different retrieval
tasks previously [25, 26].

4 Conclusion
In this work, we introduced Retrieval-Augmented Generation of Interpretable Models (RAG-IM), a
framework designed to enhance adaptability and interpretability while learning on clinical tabular data,
addressing the need for models to adapt across diverse clinical environments. By retrieving relevant
models from related tasks and integrating contextual insights from pre-trained language models,
RAG-IM offers task-specific, interpretable predictions, even in few-shot and zero-shot scenarios. Our
experiments on 7,487 clinical prediction tasks demonstrated that RAG-IM consistently outperforms
baseline models, particularly in data-limited and heterogeneous settings. This approach bridges
statistical analysis with natural language, enabling robust model adaptation across varied clinical
domains. Future work will explore the integration of larger language models and the optimization of
the retrieval process with learnable distance metrics.
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Figure 1: RAG-IM pipeline for adapting a family of regression tasks to few-shot or zero shot (see
details in Section 2).
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A RAG-IM Framework

In Figures 1 and 2, we show the overall pipeline of RAG-IM framework and the architecture of
contextualized model generator, respectively.

Figure 2: Architecture of our contextualized linear model generator. In this figure, we are showing
three layers of multihead cross-attention for example.
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B Details on Dataset Preprocessing

The pre-processed dataset mainly consists of two tables. The first table is laboratory events which
are grouped by (hadm_id, subject_id) pair. The second table consists of procedures which is again
grouped by (hadm_id, subject_id) pair. So with that, we have laboratory measurements which are our
input features and procedures applied to that patient in that particular hospital stay, which provides
our outputs or labels for the task. There comes a definition for each procedure or task that plays the
role of context in the proposed model. Note that we should drop the rows of the second table that
don’t have corresponding rows in the first table. For the measurements, we simply normalize the
values based on the upper range and lower range of that laboratory item using the Equation 12. For
example, blood pressure’s normal value is typically between 80 and 120 (mmHg), so the lower range
and upper range would be 80 and 120 respectively. Patients’ blood pressure may be higher than the
upper range or lower than the lower range. There were a total of 7487 procedures in the dataset, 4412
of them having at least two samples. We used a split ratio of 50% for the train and test set for each of
these 4412 procedures. For each procedure or task, there is an equal number of positive and negative
samples too. We use the rest of the 3075 tasks for few-shot performance evaluation.

normalized_feature =
raw_value− lower_range
upper_range− lower_range

(12)

In our experiments, we leverage the definitions of the procedures as the task descriptions. Some
examples include – “Respiratory Ventilation, 24-96 Consecutive Hours”; “Inspection of Upper
Intestinal Tract, Via Natural or Artificial Opening Endoscopic”; “Fluoroscopy of Multiple Coronary
Arteries using Other Contrast”; “Introduction of Other Antineoplastic into Central Vein, Percutaneous
Approach”, and etc.

C Background and More Prior Work

Contextualized Machine Learning (ML) is a paradigm for learning heterogeneous and context-
dependent effects. Some works that have contributed to this include but are not limited to [2, 11, 27,
28].

RAG architecture, which stands for "Retrieval-Augmented Generation," is an AI framework that
enhances the capabilities of a pretrained language model by incorporating an information retrieval
system, allowing it to access and leverage external data sources to generate more accurate and relevant
responses based on the specific context of a query or prompt [13, 29].

Meta-learning is a machine learning technique that enables AI models to learn how to learn, allowing
them to adapt to new tasks on their own. It’s also known as "learning to learn". There are some works
on that such as [1].

Combining pre-trained language models with interpretable models enables the use of powerful,
context-rich knowledge from language models (LM) while maintaining transparency in decision-
making through simpler, interpretable models. This fusion ensures high performance without
sacrificing the ability to explain the model’s reasoning, critical in fields like healthcare. Examples
of this are [30]. Some works have focused on using LM priors for downstream tasks, like [31, 4, 5]
for Reinforcement Learning, [7] for Feature Selection, and [8, 32] for Causal Graph Discovery. [33]
utilize these priors for all the three above tasks.

D Data Distribution and Results

In Figure 3, we demonstrate the data distribution and results on each of the data-groups for both
RAG-IM and the baseline Logistic Regression.

Our detailed experimental results are reported in Table 1. Here we report four different metrics
(precision, recall, F1-score, and accuracy) for comparison.
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Figure 3: Overview of dataset statistics and experimental results. Tasks are split into five groups
based on sample abundance. Below: The sample count follows a long tailed distribution (shown in
orange barplot). Top: A table with experimental results of RAG-IM and baseline Logistic Regression
models on each group (see Section 3).
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Table 1: Performance Comparison of RAG-IM and Baseline. The tasks are grouped into five different
groups based on the number of samples in them. The first columns shows the range of the number of
samples in the tasks within each group.

Range of sample counts Method Metric Weighted Average over tasks Average over tasks

[50, 8504]

RAG-IM

Precision 0.7876 0.7732
Recall 0.7585 0.7539

F1 Score 0.7701 0.7595
Accuracy 0.7775 0.7652

Baseline

Precision 0.7999 0.7639
Recall 0.7917 0.7641

F1 Score 0.7947 0.7610
Accuracy 0.7963 0.7615

[10,50)

RAG-IM

Precision 0.7079 0.7133
Recall 0.6747 0.6761

F1 Score 0.6766 0.6779
Accuracy 0.6978 0.7000

Baseline

Precision 0.6985 0.6953
Recall 0.6790 0.6689

F1 Score 0.6713 0.6597
Accuracy 0.6807 0.6715

[5, 10)

RAG-IM

Precision 0.7193 0.7183
Recall 0.6881 0.6882

F1 Score 0.6766 0.6760
Accuracy 0.7054 0.7047

Baseline

Precision 0.6001 0.5975
Recall 0.5755 0.5745

F1 Score 0.5456 0.5437
Accuracy 0.6023 0.6016

[2, 5)

RAG-IM

Precision 0.6546 0.6393
Recall 0.6887 0.6898

F1 Score 0.6470 0.6421
Accuracy 0.6986 0.7002

Baseline

Precision 0.4050 0.3860
Recall 0.5303 0.5285

F1 Score 0.4339 0.4240
Accuracy 0.5544 0.5500

{1}

RAG-IM

Precision 0.5831 0.5831
Recall 0.6758 0.6758

F1 Score 0.6140 0.6140
Accuracy 0.6954 0.6954

Baseline

Precision N/A N/A
Recall N/A N/A

F1 Score N/A N/A
Accuracy N/A N/A
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