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Abstract
The impact of quantization on the overall perfor-
mance of deep learning models is a well-studied
problem. However, understanding and mitigat-
ing its effects on a more fine-grained level is
still lacking, especially for harder tasks such as
object detection with both classification and re-
gression objectives. This work defines the per-
formance for a subset of task-critical categories
i.e. the critical-category performance, as a cru-
cial yet largely overlooked fine-grained objective
for detection tasks. We analyze the impact of
quantization at the category-level granularity, and
propose methods to improve performance for the
critical categories. Specifically, we find that cer-
tain critical categories have a higher sensitivity
to quantization, and are prone to overfitting af-
ter quantization-aware training (QAT). To explain
this, we provide theoretical and empirical links
between their performance gaps and the corre-
sponding loss landscapes with the Fisher infor-
mation framework. Using this evidence, we ap-
ply a Fisher-aware mixed-precision quantization
scheme, and a Fisher-trace regularization for the
QAT on the critical-category loss landscape. The
proposed methods improve critical-category met-
rics of the quantized transformer-based DETR
detectors. They are even more significant in case
of larger models and higher number of classes
where the overfitting becomes more severe. For
example, our methods lead to 10.4% and 14.5%
mAP gains for, correspondingly, 4-bit DETR-R50
and Deformable DETR on the most impacted crit-
ical classes in the COCO Panoptic dataset.
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1. Introduction
Object detection is a challenging core application in com-
puter vision, which is crucial for practical tasks such as au-
tonomous driving. Recent DEtection TRansformer (DETR)
model (Carion et al., 2020) and its variants achieve state-
of-the-art results on multiple detection benchmarks (Liu
et al., 2022). However, their performance comes at the cost
of large model sizes and slow inference. Then, quantiza-
tion (Choi et al., 2018; Dong et al., 2020; 2019; Polino et al.,
2018; Yang et al., 2021) is typically applied to reduce the
memory footprint and inference latency time on cloud and
edge devices (Horowitz, 2014). Inevitably, the perturbation
of weights and activations introduced by the quantization
process degrades the performance of floating-point models.
Previous research on quantization (Dong et al., 2019; Yang
et al., 2021; Xiao et al., 2023) mainly focuses on a trade-
off between the model size and the overall performance
(e.g., average accuracy for classification and mean average
precision (mAP) for detection).

However, a fine-grained performance objectives are often
more important than the overall performance in the real
world (Barocas et al., 2019; Tran et al., 2022). Suppose an
autonomous vehicle is processing a scene containing people,
vehicles, trees, light poles and buildings as illustrated in Fig-
ure 1 (left)1. Some non-critical objects (light poles, trees,
and buildings) only need to be localized to avoid collision,
yet misclassification within this group of categories is not
as critical if they are all considered as “other obstacles”. On
the other hand, critical classes such as a person or vehicle
require both accurate classification and localization for a
safe operation. The overall performance cannot distinguish
between an error within non-critical categories vs. a crit-
ical object error. In other words, it is missing granularity
to represent the true task-critical objectives of real-world
applications. Yet to the best of our knowledge, for both
post-training quantization (PTQ) and quantization-aware
training (QAT), the analysis of the impact on such task-
critical fine-grained objectives of object detection models is
largely overlooked.

1Street scene photo in Figure 1 credits to Google Street View.
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Figure 1: Overview. We investigate a practical setting with task-dependent critical-category objectives in Section 3.2. We
empirically observe disparate effects of quantization on the critical-category performance in Section 3.3, where post-training
quantization (PTQ) and quantization-aware training (QAT) lead to performance gaps for critical categories w.r.t. to a floating-
point (FP) model. We theoretically analyze such gaps using Fisher information framework and propose a Fisher-aware
mixed-precision quantization scheme with regularization in Section 4 to overcome these gaps for DETR models.

In this paper, we follow this practical yet neglected setting
to formulate a set of task-critical objectives for DETR-based
object detection models, accomplish a fine-grained quanti-
zation impact analysis, and propose techniques for improve-
ments of the corresponding objectives. Specifically, we dis-
entangle classification and localization objectives to define a
fine-grained critical-category performance with non-critical
label transformation, as shown in the updated bounding
boxes in Figure 1 (left). With this formulation, we provide
a comprehensive analysis of the impact of quantization on
the critical-category performance of DETR model. As illus-
trated in Figure 1 (right), we find that quantization has a dis-
parate effect on the category-wise performance, where some
groups of classes are more sensitive to quantization with up
to 1.7% additional mAP drop for the public DETR object
detector with ResNet-50 backbone. While QAT typically
improves the overall performance, it can further increase
performance gaps for the defined task-critical categories.
We provide both theoretical and empirical analysis of such
quantization effects using the loss surface landscape of the
critical objectives by applying the Fisher information frame-
work (Perronnin & Dance, 2007).

Based on this analysis, we propose two novel techniques:
Fisher-aware mixed-precision quantization scheme and
Fisher-trace regularization. Both techniques optimize the
landscape of critical objectives and, therefore, reduce over-
fitting and improve critical-category performance. Our ex-
periments show consistent critical-category performance
improvements for DETR object detectors with various back-
bones and architecture variants. The contributions of this

paper are summarized as follows:

• We formulate critical-category objectives for object
detection and observe disparate effects of quantization
on the performance of task-critical objectives.

• We provide analytical explanations of such quantiza-
tion effects for DETR-based models using a theoretical
link to the Fisher information matrix.

• Our Fisher-aware mixed-precision quantization
scheme incorporates the sensitivity of critical-category
objectives and increases their detection metrics.

• Our Fisher-trace regularization further improves the
loss landscape during quantization-aware training and
the corresponding critical-category results.

2. Related Work
Object detection. Object detection is a core task for visual
scene understanding. Conventional object detectors rely
on a bounding box proposals (Girshick, 2015), fixed-grid
anchors (Redmon et al., 2016) or window centers (Tian
et al., 2019). However, the performance of these meth-
ods is largely affected by bounding box priors and post-
processing steps (Carion et al., 2020). The transformer-
based DETR (Carion et al., 2020) provides a fully end-to-
end detection pipeline without surrogate tasks. Follow-up re-
search further enhances DETR by introducing a deformable
attention (Zhu et al., 2021), query denoising (Li et al., 2022),
and learnable dynamic anchors as queries (Liu et al., 2022).
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With the growing popularity of DETR-based architecture,
we believe that understanding of quantization impact on
DETR performance is an important topic, especially at the
fine-grained level. Common object detection benchmarks
evaluate fine-grained performance metrics that depend on
the object size (Lin et al., 2014) or occlusion status (Geiger
et al., 2012). However in practical applications, object type,
i.e. its category, is often more important than the object
size. This motivates us to further investigate detectors with
critical-category objectives.

Efficiency-performance tradeoff. Multiple methods have
been proposed to compress deep neural network (DNN)
models, including pruning (Han et al., 2015; Wen et al.,
2016; Yang et al., 2020b; 2023), quantization (Polino et al.,
2018; Dong et al., 2020; Yang et al., 2021; Guo et al., 2022),
factorization (Wen et al., 2017; Ding et al., 2019; Yang et al.,
2020a) and neural architecture search (Wu et al., 2019; Cai
et al., 2020). In this work, we explore the impact of quanti-
zation that is widely supported by the hardware (Horowitz,
2014) and can be almost universally applied to DNN model
compression in architecture-agnostic fashion.

In previous work, average post-compression performance
metrics are the key focus, but such overall performance
hides the important fine-grained metrics e.g., the results
for certain groups of categories. Recent works (Tran et al.,
2022; Good et al., 2022) analyze the disparate impact of
pruning on classification accuracy, which leads to the fair-
ness concerns (Barocas et al., 2019). Our work extends
this direction and investigates quantization effects of object
detection at the critical-category performance granularity.

Second-order information in deep learning. Unlike con-
ventional optimization with the first-order gradients, recent
research shows that the use of second-order information
increases generalization and robustness of DNN models.
Sharpness-aware minimization (Foret et al., 2021) links a
loss landscape sharpness with the model ability to gener-
alize. The latter can be improved using a regularized loss
with the Hessian eigenvalues (Yang et al., 2022) computed
w.r.t. parameter vector. Hessian eigenvalues are also used
as importance estimates to guide the precision selection in
mixed-precision quantization (Dong et al., 2019; 2020; Yao
et al., 2021). Given the difficulty of exact Hessian compu-
tation, Fisher information matrix is proposed as an approx-
imation of the importance in pruning (Kwon et al., 2022).
In this work, we link the quantization impact on the critical
objectives with the second-order Fisher information.

3. Quantization Effects on Critical-Category
Performance

In this section, we introduce conventional training objectives
for DETR in Section 3.1; formulate our critical-category ob-

jectives in Section 3.2; and empirically analyze quantization
effects on such critical-category performance in Section 3.3.

3.1. Conventional DETR Training

Let x be an input image from a dataset D. Then, the DETR-
type model fθ(·) with weights θ outputs a fixed-size set
of N = K|D| predictions ŷi = {(p̂i, b̂i)}i=1...N , where
K is the model-dependent number of detections in each
image, p̂i is the vector of classification logits and b̂i is the
vector of bounding box coordinates. The former p̂i ∈ RC+1

contains logits for C classes and an empty-box class (∅).
The predicted bounding box b̂i ∈ R4 consists of 4 scalars
that define the center coordinates as well as the height and
the width relative to the image size.

During the training, annotation is provided for each image in
D as a set of ground truth objects yi = {(ci, bi)}, where ci
is the one-hot vector with target class label and bi defines the
bounding box. A Hungarian matching process is performed
to find the closest one-to-one matching between ground
truths and predictions including those with “no object” ∅
predictions. The training loss is computed between each pair
of matched boxes, which is defined as a linear combination
of a classification loss Lcls(p̂i, ci) for all predictions, and a
box loss Lbox(b̂i, bi) for all non-empty boxes.

The introduced notation is applicable to both the original
DETR (Carion et al., 2020) and its more advanced vari-
ants such as DAB-DETR (Liu et al., 2022), Deformable
DETR (Zhu et al., 2021) as well as any other detector with
the end-to-end architecture.

3.2. Proposed Critical-Category Objectives

As discussed in Section 1, the overall performance metric
evaluated on the validation dataset is not the most effec-
tive objective in some real-world scenarios. Category-level
fine-grained performance for some specific task-critical cate-
gories can be more crucial than the average metrics. Here we
provide a practical definition of the critical-category objec-
tives for the detection task, and a corresponding evaluation
method when applied to DETR-type detectors.

In classification, class-level performance is often defined as
the loss of the model on a subset of the validation dataset
that contains objects from a certain group of classes (Tran
et al., 2022). However, such definition is not practical for
object detection task, as each input image in the dataset
contains multiple objects from different categories. Instead,
this work defines the critical objective based on the entire
validation dataset, but with a transformed model outputs and
annotations during the loss computation that focus detection
towards a certain group of critical object categories.

Formally, assume there are in total C categories in the
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dataset. Then, suppose the first M categories are the crit-
ical ones for a certain task that requires both an accurate
classification and localization. Hence, the rest of categories
from M + 1 to C are non-critical and a misclassification
between them is acceptable. This can be expressed by the
transformed prediction p̃ ∈ RM+2 as

p̃j =


p̂j j = 1 . . .M,

max p̂M+1...C j = M + 1,

p̂C+1 j = M + 2.

(1)

The (M+1)-th category in p̃ corresponds to “others” which
represents non-critical categories. The max function is
used to avoid a distinction when classifying non-critical
categories. The (M+2)-th category in p̃ is used for ∅ class
which is originally defined as the (C + 1)-th category in p̂.

The same Equation (1) transformation is also applied to the
ground truth box label c, where all classes cj∈{M+1,...,C}
are redefined as the (M + 1)-th label in the transformed c̃.
No change is applied to the ground truth bounding boxes
and the predicted boxes as we only define critical perfor-
mance at the classification granularity to have a simplified
yet practical and instructive setting.

The logit transformation can be applied directly to the out-
put of a trained end-to-end model without any change to
its architecture or weights θ. The Hungarian matching,
loss computation, and mAP computation can be performed
without modification as well. We define the loss computed
with the original p̂i and ci as “overall objective” and it is
expressed as

LA(θ) =
1

N

∑N

i=1

(
Lcls(p̂i, ci) + Lbox(b̂i, bi)

)
. (2)

Similarly, our “critical objective” is defined with the trans-
formed p̃i and c̃i as

LF (θ) =
1

N

∑N

i=1

(
Lcls(p̃i, c̃i) + Lbox(b̂i, bi)

)
. (3)

Each objective in Equations (2) and (3) corresponds to either
the “overall performance” or the “critical performance”
when evaluating the mAP detection metric with the original
or transformed outputs and labels, respectively.

3.3. Empirical Evidence of Performance Gaps after
Quantization

First, we empirically analyze how quantization affects the
critical performance of a DETR model. We apply a sym-
metric linear quantizer q(·) (Dong et al., 2019) to quantize
weights θ to Q bits of the pretrained DETR checkpoint with
ResNet-50 backbone2, which can be expressed using the

2https://dl.fbaipublicfiles.com/detr/
detr-r50-e632da11.pth

rounding operation ⌊·⌉ as

q(θ) =

⌊
(2Q−1 − 1)θ

max|θ|

⌉
max|θ|
2Q−1 − 1

. (4)

We quantize all trainable weights in the DETR model using
Equation (4) with an exception of the final feed-forward
(FFN) layers for the class and bounding box outputs. Quan-
tization of these FFN layers leads to a catastrophic perfor-
mance drop in the PTQ setting (Yuan et al., 2022). A 4-bit
quantization is applied uniformly to the weights of all layers
for all experiments in this empirical study.

Without loss of generality, we define critical categories
based on the “super category” labels in the COCO
dataset (Lin et al., 2014). In total, 12 super categories are
available in the COCO, where each contains from 1 to 10 cat-
egories of similar objects. For each selected super category,
we consider all the categories within it as critical categories,
while the rest of categories as non-critical and transform
their logits and labels accordingly. The mAP measured at
the transformed output is denoted as the critical mAP of this
super category. For example, when measuring the critical
performance of “indoor” super category, “book”, “clock”,
“vase”, “scissors”, “teddy bear”, “hair drier”, and “tooth-
brush” are considered as critical categories (the first M cate-
gories in the Equation (1) logit-label transformation), while
others are set as non-critical. We perform such evaluation
for all 12 super categories to understand the category-level
impact of DETR quantization.

As shown in Table 1, quantization has a disparate impact
on the critical performance of the DETR model. The mAP
drop after quantization has an up to 1.7% gap. We further
perform 50 epochs of QAT and report the critical perfor-
mance in Table 2. The performance increases differently for
each super category with a gap of up to 1.1% mAP.

4. Proposed Methods to Overcome
Quantization Gaps

In this section, we theoretically analyze the causes of empir-
ical performance gaps in Section 4.1. Then, we propose our
methods to improve such performance from the aspect of
quantization scheme design and quantization-aware training
objective in Section 4.2 and Section 4.3, respectively.

4.1. Causes of Performance Gaps after Quantization

We investigate how quantization affects the critical objective
LF (θ) for a pretrained DETR model with θ weights. We
obtain the following theoretical results.

Claim 1: Quantization-induced weight perturbation
causes a larger Fisher trace of critical objectives and,
therefore, inferior maximum likelihood estimates. The
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Table 1: Super-category mAPs before and after 4-bit uniform quantization, %.

Super category Person Vehicle Outdoor Animal Accessory Sports Kitchen Food Furniture Electronic Appliance Indoor Overall

Pretrained 39.4 43.9 44.4 42.5 44.6 44.2 44.8 44.7 44.7 43.8 43.9 44.9 41.9
PTQ 4-bit 20.1 23.3 23.9 22.3 23.9 23.7 24.2 23.9 23.7 23.4 23.5 24.0 20.9

mAP drop 19.3 20.6 20.5 20.2 20.7 20.5 20.6 20.8 21.0 20.4 20.4 20.9 21.0

Table 2: Super-category mAPs of 4-bit quantized model before and after QAT, %.

Super category Person Vehicle Outdoor Animal Accessory Sports Kitchen Food Furniture Electronic Appliance Indoor Overall

PTQ 4-bit 20.1 23.3 23.9 22.3 23.9 23.7 24.2 23.9 23.7 23.4 23.5 24.0 20.9
QAT 4-bit 34.6 38.6 39.2 37.2 39.4 38.9 39.5 39.3 39.2 38.6 38.6 39.6 36.7

mAP gain 14.5 15.3 15.3 14.9 15.5 15.2 15.3 15.4 15.5 15.2 15.1 15.6 15.8

quantization process replaces the floating-point weights θ of
the pretrained DETR model with the quantized values q(θ)
using Equation (4). Effectively, this perturbs the weights
away from their optimal values, which leads to an increase
in the critical objective value. With the second-order Tay-
lor expansion around θ, the quantization-perturbed loss
LF (q(θ)) can be approximated using the non-perturbed
objective LF (θ) as

LF (q(θ)) ≈ LF (θ) + gT∆+∆TH∆/2, (5)

where the gradient g = E [∂LF (θ)/∂θ], the Hessian H =
E
[
∂2LF (θ)/(∂θ∂θ

T )
]

and the weight perturbation or the
quantization error ∆ = q(θ)− θ.

Assuming the pretrained model converges to a local mini-
mum, the first-order term can be ignored because g → 0 (Le-
Cun et al., 1989) and Equation (5) can be rewritten as

LF (θ)− LF (q(θ)) ∝ −∆TH∆. (6)

For large models such as DETR, computation of the exact
Hessian matrix H is practically infeasible. Previous re-
search (Kwon et al., 2022) shows that the Hessian estimate
can be derived as the negative of Fisher information matrix
I by

H = −I = −E
[
∂LF (θ)

∂θ

∂LF (θ)

∂θT

]
. (7)

Alternatively, we can interpret Equation (7) for a discrim-
inative model fθ(x) from Section 3 that maximizes log-
likelihood of the p(y|x,θ) density function using the empir-
ical dataset D with the loss LF (θ) (Gudovskiy et al., 2021)
as

I = ED

[
∂LF (θ)

∂θ

∂LF (θ)

∂θT

]
=

1

N

∑N

i=1

(
∂ log p(yi|xi)

∂θ

∂ log p(yi|xi)

∂θT

)
.

(8)

In practice, we can assume I to be diagonal (Soen & Sun,
2024), which simplifies Equation (6) to

LF (θ)− LF (q(θ)) ∝ ∆TI∆

=
∑

i
∆2

i ∥∂LF (θ)/∂θi∥22 =
∑

i
∆2

i Iii,
(9)

where the latter result represents a sum of Fisher trace ele-
ments (tr(I) =

∑
i Iii) weighted by the squared quantiza-

tion error over each i-th element of θ.

Equation (9) provides a feasible yet effective sensitivity met-
ric to estimate the impact of quantization noise. It analyti-
cally connects the quantization-induced weight perturbation
with the maximum likelihood estimation in Equation (8) for
critical objectives using Fisher information framework (Ly
et al., 2017). Hence, an objective with larger sensitivity
leads to inferior maximum likelihood estimates, i.e. the
critical performance.

Claim 2: Sharp loss landscape leads to a poor test-time
generalization for critical categories after quantization-
aware training. During the conventional QAT process,
weights of the DETR model are trained to minimize the
overall objective LA(q(θ)). Nevertheless, a convergence
of LA does not guarantee good performance on all critical
objectives LF . When compared to the overall objective, the
critical objective with the focus on a subset of classes can be
quickly minimized by the model during the training process
which leads to a tendency of overfitting. The overfitting
phenomenon is more severe with a larger model or with
more classes in the overall training task.

To better analyze the issue of overfitting, we refer to the pre-
vious work on loss landscape sharpness (Foret et al., 2021),
which finds a positive correlation between the generaliza-
tion gap of the objective LF and the sharpness S of the loss
landscape around the local minima q(θ) of the QAT. The
minima sharpness S(q(θ)) of the quantized model can be
estimated as

S(q(θ)) = max
∥ϵ∥2≤ρ

LF (q(θ) + ϵ)− LF (q(θ)), (10)
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where ρ > 0 is a ℓ2 norm bound for the worst-case weight
perturbation ϵ.

Finding the exact solution to the maximization in Equa-
tion (10) can be computationally costly. With the details
in Appendix A, we can simplify it as

S ≈ max
||ϵ||2≤ρ

ϵT∂LF (q(θ))/∂θ ∝ tr(I). (11)

Hence, the trace of the diagonal Fisher information matrix
approximates the sharpness of the critical loss landscape for
the quantized model. Sharp loss landscape leads to inferior
test-time critical-category performance after QAT.

4.2. Fisher-aware Mixed-Precision Quantization Scheme

With the derived quantization impact on the loss in Equa-
tion (9), we propose a mixed-precision quantization scheme
that minimizes the quantization effects within a model-size
budget, which is defined as

min
Q1:L

∑L

i=1
∆2

i ∥∂ (αLA(θ) + LF (θ)) /∂θi∥22 ,

s.t.
∑L

i=1
Qi ∥θi∥0 ≤ B,

(12)

where θ is the weight vector of all L layers in the model,
θi is its i-th layer subset, and ∆i = q(θi) − θi is the i-th
layer’s quantization error when quantized to Qi bits. The
budget B is the model size allowance. The optimization
problem in Equation (12) can be efficiently solved as an
Integer Linear Programming (ILP) problem (Dong et al.,
2020; Yao et al., 2021) with the discrete integer values for
quantization precision Qi.

Note that in Equation (12) we employ the Fisher information
of both critical LF and overall LA objectives. This approach
achieves good overall performance and increases the critical
performance of interest. A hyperparameter α balances LF

and LA, which is selected using empirical cross-validation.

4.3. Fisher Trace Regularization for
Quantization-aware Training

Previous line of work on Sharpness-aware Minimization
(SAM) (Foret et al., 2021; Liu et al., 2021) directly opti-
mizes the sharpness estimate from Equation (10) by adding
the worst-case weight perturbation in the training. However,
we find that the complicated DETR architecture and its ob-
jective lead to a poor convergence for SAM-based methods.
Moreover, a case with several critical objectives would in-
volve multiple rounds of weight perturbation. Hence, this
approach with explicit weight perturbation leads to opti-
mization that is not scalable in our setup.

Instead, to minimize loss sharpness S(q(θ)) during the
DETR QAT optimization, we propose to follow the implicit

sharpness derivation in Equation (11). Specifically, for a
critical objective LF , we add the Fisher trace regularization
as

min
θ

LA(q(θ)) + λ tr(IF ), (13)

where λ ≥ 0 is the strength of the regularization, and IF de-
notes the Fisher information matrix of the critical objective
LF (q(θ)) w.r.t. weights θ.

In addition to the DETR training loss terms in Equations (2)
and (3), we further add a distillation loss (Hinton et al.,
2015) between the quantized (student) model and the pre-
trained full-precision (teacher) model to follow a common
QAT practice (Dong et al., 2020; Yang et al., 2021). The
distillation objective consists of a KL-divergence loss for
class logits of the student and teacher models, and a ℓ1 loss
for the corresponding bounding box coordinates. Since we
expect the student model to have the same behavior as the
teacher model, the distillation loss uses a fixed one-to-one
mapping between the predicted boxes of the two models
without performing the Hungarian matching.

5. Experiments
5.1. Experimental Setup

Datasets and metrics. We follow DETR (Carion et al.,
2020) setup and use two variants of the COCO 2017
dataset (Lin et al., 2014): COCO detection and COCO
panoptic segmentation. The detection dataset contains 118K
training images and labels with 80 categories combined into
12 super categories. The panoptic dataset consists of 133K
training examples and corresponding labels with 133 cate-
gories and 27 super categories. Both variants contain 5K
data points in the validation set, which we use to evaluate
both the overall and critical mAP in our experiments. Addi-
tional CityScapes (Cordts et al., 2016) dataset evaluations
are reported in Appendix B.

We follow Section 3.3 and define the critical mean average
precision (mAP) for each super category by considering all
classes within it as critical while the rest of classes are non-
critical. All mAPs reported in the tables are in percentage
points. In case of COCO panoptic dataset, we report the
box detection mAPbox.

Model architectures. We conduct the majority of our ex-
periments on the DETR model with ResNet-50 backbone
(DETR-R50). To show the scalability, we also experiment
with larger ResNet-101 backbone (DETR-R101) and more
advanced architectures such as DAB-DETR (Liu et al.,
2022) and Deformable DETR (Zhu et al., 2021).

Implementation details. We perform quantization of the
pretrained models using their public checkpoints. We ap-
ply symmetric layer-wise weight quantization using Equa-
tion (4), where weights are scaled by the max|θ| without
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clamping. We keep normalization and softmax operations
at full precision. We compute Fisher trace for our method
using all training set for sensitivity analysis. But for im-
plementation of HAWQ-V2 (Dong et al., 2020) baseline,
we randomly sample 1,000 training images due to high
computational cost of Hessian estimation. We solve mixed-
precision quantization problem in Equation (12) by the ILP
with 3- to 8-bit budget B for each layer. We perform QAT
with the straight-through gradient estimator (Bengio et al.,
2013) for 50 epochs with 1e-5 learning rate. Regularization
strength λ in Equation (13) grows linearly from 1e-3 to 5e-3
throughout the training when our Fisher regularization is ap-
plied. In all experiments we report the mean and, if shown,
± standard error of the final 5 epochs of training to mitigate
training variance.

5.2. Quantitative Results of Fisher-aware Quantization

We compare the proposed Fisher-aware mixed-precision
quantization scheme from Section 4.2 with the linear uni-
form quantization (Polino et al., 2018) and the mixed-
precision HAWQ-V2 (Dong et al., 2020) baselines. Tables 3
and 4 report the critical mAP of super category “person”,
“animal”, and “indoor” for the COCO detection and panoptic
segmentation datasets, respectively. We apply the baselines
and our Fisher-overall variant for ablation study with only
the overall objective LA, and evaluate quantized models on
the selected super categories. Similarly, we report results for
the proposed Fisher-critical scheme with the fine-grained
LF objective.

With the same mixed-precision quantization budget, our
Fisher-aware method consistently outperforms uniform
quantization and the mixed-precision scheme derived from
HAWQ-V2 on different models and datasets. We note that
the improvement of the HAWQ-V2 over the uniform quan-
tization is not consistent on DETR-based models. This is
caused by the instability of Hessian trace estimation for the
complex DETR architecture and the harder object detection
task. Fisher-aware approach, on the other hand, is stable. In
addition, we compare the time to estimate the Fisher and
the Hessian traces for a batch of images on P100 GPU and
find that the Fisher trace can be estimated with 200− 300×
less latency than the Hessian one. This allows us to estimate
Fisher trace with a large amount of training data, which
leads to a higher accuracy and stability.

Quantitatively, our Fisher-critical scheme on COCO detec-
tion dataset improves critical mAP by up to 0.2% for DETR-
R50, 0.5% for DETR-R101, 0.8% for DAB DETR-R50,
and 0.4% for Deformable DETR-R50, respectively. With
more categories in the panoptic dataset, the impact of quan-
tization on each individual category becomes even higher.
Fisher-aware quantization variant with the overall objec-
tive only (LA) improves critical mAP by about 2× over

the uniform quantization baseline. Further improvement
on critical mAP is consistently achieved with the proposed
Fisher-critical quantization scheme that incorporates the
fine-grained objective LF . These results shows the impor-
tance of the proposed scheme with critical objectives when
applying object detection models to real-world applications.
Moreover, the common overall mAP metric is not signifi-
cantly affected when using the conventional LA objective
or the proposed scheme with LF as additionally evaluated
in the Appendix B.

5.3. Quantitative Results for QAT with Fisher-trace
Regularization

Table 5 compares the post-QAT results when using the con-
ventional overall loss LA only vs. our approach with Fisher-
trace regularization from Section 4.3 on the COCO detec-
tion and panoptic datasets. The experimental results show
that the proposed regularization further improves critical-
category metrics.

When combined with the mixed-precision quantization
scheme from Section 4.2, our method on COCO detection
dataset (Table 5 (top)) leads to a 1.15% and 0.48% critical
("person" class) performance improvement for DETR-R50
model over the uniform quantization in Table 3 for 4-bit
(34.6% → 35.75%) and 6-bit (37.3% → 37.78%) precision,
respectively. Note that our regularization scheme has a neg-
ligible impact on the overall mAP: 37.07% → 36.97% for
4-bit and 39.67% → 39.70% for 6-bit precision, respec-
tively.

The proposed regularization further increases critical per-
formance on COCO panoptic dataset (Table 5 (bottom))
by 0.11% and 0.34% mAP for, correspondingly, 4-bit and
5-bit precision settings when compared to our PTQ results
in Table 4. The uniform PTQ quantization significantly
underperforms in this setting.

Ablation study in Appendix C analyzes the impact of reg-
ularization strength. In addition, we show that our Fisher-
trace regularization scheme that minimizes sharpness of the
loss landscape improves model’s test-time generalization.
Particularly, it outperforms a common heuristic approach
when the critical objective LF is simply added to the overall
objective LA during quantization-aware training.

5.4. Qualitative Results of Fisher-trace Regularization

To further show the effectiveness of the Fisher-trace regular-
ization, we compute the Fisher trace of the critical objective
on the quantized DETR model after QAT for the person
category. We compare the Fisher trace of models with dif-
ferent quantization and training schemes in Table 6 that is
estimated using 10,000 data points randomly sampled from
the COCO detection dataset.
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Table 3: Critical-category mAP after PTQ on COCO detection dataset, %. Our Fisher-critical scheme with the fine-grained
objective surpasses others.

Model
Quant.
scheme

4-bit 6-bit
Person Animal Indoor Person Animal Indoor

DETR-R50
Uniform 34.6 37.2 39.6 37.3 40.0 42.4

HAWQ-V2 35.31±0.1 37.90±0.2 40.20±0.2 37.29±0.0 40.20±0.1 42.60±0.1

Fisher-overall 35.35±0.0 37.96±0.2 40.20±0.2 37.58±0.1 40.74±0.1 43.10±0.1

Fisher-critical 35.56±0.1 38.10±0.1 40.33±0.0 37.73±0.0 40.86±0.1 43.26±0.1

DETR-R101 Fisher-overall 36.36 39.30 41.70 39.1 42.0 44.4
Fisher-critical 36.42 39.23 41.80 39.2 42.5 44.9

DAB
DETR-R50

Uniform 22.32 25.68 27.60 26.24 29.76 31.88
HAWQ-V2 8.26 11.66 12.80 19.10 19.90 21.60

Fisher-overall 22.82 27.02 28.96 26.06 29.20 31.32
Fisher-critical 23.18 27.86 27.98 26.38 29.28 31.88

Deformable
DETR-R50

Uniform 28.9 32.8 34.3 46.0 49.1 51.4
Fisher-overall 42.7 46.2 48.4 46.3 49.5 51.8
Fisher-critical 43.1 46.3 48.8 46.6 49.5 52.0

Table 4: Critical-category mAPbox for various post-training quantization (PTQ) schemes on COCO panoptic dataset, %. Our
Fisher-critical scheme exceeds others.

Model
Quant.
scheme

4-bit 5-bit
Person Animal Indoor Person Animal Indoor

DETR-R50
Uniform 8.5 11.4 12.4 8.9 13.7 16.0

Fisher-overall 16.64 21.60 23.80 18.79 24.00 26.70
Fisher-critical 16.68 21.69 23.85 19.05 24.15 26.87

Table 5: Quantization-aware training (QAT) results of the
overall performance and for the "person" critical category
using the DETR-R50 model on COCO detection (mAP) and
panoptic (mAPbox) datasets, %. Fisher-critical quantization
is applied before QAT.

Model
QAT

objective
4-bit 6-bit det. / 5-bit panoptic

Overall Person Overall Person

DETR-R50
(detection)

Overall 37.07±0.07 35.56±0.08 39.67±0.10 37.73±0.02

Fisher reg. 36.97±0.06 35.75±0.04 39.70±0.08 37.78±0.01

DETR-R50
(panoptic)

Overall 33.24±0.10 16.68±0.01 36.08±0.07 19.05±0.09

Fisher reg. 33.29±0.05 16.79±0.03 36.12±0.06 19.39±0.11

Both the 4-bit and 6-bit uniform quantization settings lead
to the largest Fisher trace on the critical objective, while our
Fisher-aware quantization scheme helps to reduce the trace
after QAT. Furthermore, the proposed regularization results
in the lowest value. This observation confirms our analytical
result in Section 4.1, where large Fisher trace indicates the
least sharp local minima and, therefore, leads to inferior
test-time generalization for critical categories.

6. Conclusions
This work investigated the impact of quantization on the
fine-grained performance of DETR-based object detectors.
Motivated by safety concerns in practical applications, we
formulated the critical-category objectives via the logit-label

Table 6: Fisher trace of the critical objective when applied
to DETR-R50 on COCO detection dataset. In this setting,
the person category is considered as critical.

Precision Quant. scheme Regularization Fisher trace

4-bit
Uniform No 37.3K

Fisher-critical No 30.4K
Fisher-critical Yes 14.9K

6-bit
Uniform No 88.9K

Fisher-critical No 18.2K
Fisher-critical Yes 15.5K

transformation of the corresponding categories. We empiri-
cally found that both the conventional PTQ and QAT cause
disparate quantization effects.

We theoretically linked the disparate quantization effects
with the sensitivity to the quantization weight perturbation
and the sharpness of the loss landscape in the QAT. We
characterized both derivations using the trace of the Fisher
information matrix w.r.t. model weights. We proposed
the Fisher-aware mixed-precision quantization scheme and
Fisher-trace regularization to improve the critical-category
performance of interest. We hope this work motivates future
explorations on the fine-grained impacts of other compres-
sion methods in the computer vision area and a general
machine learning research.

8



Fisher-aware Quantization for DETR Detectors with Critical-category Objectives

Acknowledgement
We thank Panasonic and Berkeley Deep Drive for supporting
this research.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning, specifically improving the fine-
grained performance of the critical categories of interest
of the DETR model. In practical applications, the model’s
capability of correctly detecting each object category is not
equally valuable. Some critical category appears to be more
impactful to the general utility of the model, or leads to a
more significant impact on the safety and trustworthiness
of the application. We hope this work motivates future ex-
plorations on the fine-grained impacts of other compression
methods in the computer vision area and a general machine
learning research.

References
Barocas, S., Hardt, M., and Narayanan, A. Fairness and Ma-

chine Learning: Limitations and Opportunities. fairml-
book.org, 2019. http://www.fairmlbook.org. 1,
3

Bengio, Y., Léonard, N., and Courville, A. Estimating
or propagating gradients through stochastic neurons for
conditional computation. arXiv:1308.3432, 2013. 7

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-All: Train one network and specialize it for efficient
deployment. In International Conference on Learning
Representations (ICLR), 2020. 3

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In Proceedings of the European Conference
on Computer Vision (ECCV), 2020. 1, 2, 3, 6, 13

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J.,
Srinivasan, V., and Gopalakrishnan, K. PACT: Parame-
terized clipping activation for quantized neural networks.
arXiv:1805.06085, 2018. 1

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The Cityscapes dataset for semantic urban scene under-
standing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.
6

Ding, X., Ding, G., Guo, Y., and Han, J. Centripetal
SGD for pruning very deep convolutional networks with
complicated structure. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 3

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. HAWQ: Hessian aware quantization of neu-
ral networks with mixed-precision. In Proceedings of
the IEEE International Conference on Computer Vision
(ICCV), 2019. 1, 3, 4

Dong, Z., Yao, Z., Arfeen, D., Gholami, A., Mahoney,
M. W., and Keutzer, K. HAWQ-V2: Hessian aware trace-
weighted quantization of neural networks. Advances in
neural information processing systems, 2020. 1, 3, 6, 7

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations (ICLR), 2021. 3, 5, 6

Geiger, A., Lenz, P., and Urtasun, R. Are we ready for au-
tonomous driving? The KITTI vision benchmark suite. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2012. 3

Girshick, R. Fast R-CNN. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
2015. 2

Good, A., Lin, J., Yu, X., Sieg, H., Fergurson, M., Zhe, S.,
Wieczorek, J., and Serra, T. Recall distortion in neural
network pruning and the undecayed pruning algorithm.
In Advances in Neural Information Processing Systems,
2022. 3

Gudovskiy, D., Rigazio, L., Ishizaka, S., Kozuka, K., and
Tsukizawa, S. AutoDO: Robust autoaugment for biased
data with label noise via scalable probabilistic implicit dif-
ferentiation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2021. 5

Guo, C., Qiu, Y., Leng, J., Gao, X., Zhang, C., Liu, Y.,
Yang, F., Zhu, Y., and Guo, M. SQuant: On-the-fly data-
free quantization via diagonal Hessian approximation. In
International Conference on Learning Representations
(ICLR), 2022. 3

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv:1510.00149,
2015. 3

Hinton, G., Vinyals, O., Dean, J., et al. Distilling the knowl-
edge in a neural network. arXiv:1503.02531, 2015. 6

Horowitz, M. 1.1 computing’s energy problem (and what
we can do about it). In Proceedings of the IEEE Interna-
tional Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014. 1, 3

9

http://www.fairmlbook.org


Fisher-aware Quantization for DETR Detectors with Critical-category Objectives

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. In Advances in Neural Information
Processing Systems, 2022. 3, 5

LeCun, Y., Denker, J., and Solla, S. Optimal brain dam-
age. Advances in Neural Information Processing Systems,
1989. 5

Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., and Zhang,
L. DN-DETR: Accelerate DETR training by introduc-
ing query denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 2

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollar, P., and Zitnick, L. Microsoft COCO:
Common objects in context. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2014. 3,
4, 6

Liu, J., Cai, J., and Zhuang, B. Sharpness-aware quan-
tization for deep neural networks. arXiv preprint
arXiv:2111.12273, 2021. 6

Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu, J.,
and Zhang, L. DAB-DETR: Dynamic anchor boxes are
better queries for DETR. In International Conference on
Learning Representations (ICLR), 2022. 1, 2, 3, 6

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P., and
Wagenmakers, E.-J. A tutorial on Fisher information.
Journal of Mathematical Psychology, 80:40–55, 2017. 5

Perronnin, F. and Dance, C. Fisher kernels on visual vo-
cabularies for image categorization. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007. 2

Polino, A., Pascanu, R., and Alistarh, D. Model compres-
sion via distillation and quantization. In International
Conference on Learning Representations (ICLR), 2018.
1, 3, 7

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2

Soen, A. and Sun, K. Tradeoffs of diagonal fisher informa-
tion matrix estimators. arXiv:2402.05379, 2024. 5

Tian, Z., Shen, C., Chen, H., and He, T. FCOS: Fully
convolutional one-stage object detection. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019. 2

Tran, C., Fioretto, F., Kim, J.-E., and Naidu, R. Pruning has
a disparate impact on model accuracy. In Advances in
Neural Information Processing Systems, 2022. 1, 3

Wang, W., Zhang, J., Cao, Y., Shen, Y., and Tao, D. Towards
data-efficient detection transformers. In Proceedings of
the European Conference on Computer Vision (ECCV),
2022. 13

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, 2016. 3

Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., and Li, H.
Coordinating filters for faster deep neural networks. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2017. 3

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P., Jia, Y., and Keutzer, K. FBNet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 3

Xiao, L., Yang, H., Dong, Z., Keutzer, K., Du, L., and Zhang,
S. CSQ: Growing mixed-precision quantization scheme
with bi-level continuous sparsification. In Proceedings
of the ACM/IEEE Design Automation Conference (DAC),
2023. 1

Yang, H., Tang, M., Wen, W., Yan, F., Hu, D., Li, A., Li, H.,
and Chen, Y. Learning low-rank deep neural networks via
singular vector orthogonality regularization and singular
value sparsification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 678–679, 2020a. 3

Yang, H., Wen, W., and Li, H. DeepHoyer: Learning sparser
neural network with differentiable scale-invariant spar-
sity measures. In International Conference on Learning
Representations (ICLR), 2020b. 3

Yang, H., Duan, L., Chen, Y., and Li, H. BSQ: Explor-
ing bit-level sparsity for mixed-precision neural network
quantization. In International Conference on Learning
Representations (ICLR), 2021. 1, 3, 6

Yang, H., Yang, X., Gong, N. Z., and Chen, Y. HERO:
Hessian-enhanced robust optimization for unifying and
improving generalization and quantization performance.
In Proceedings of the ACM/IEEE Design Automation
Conference (DAC), 2022. 3, 13

Yang, H., Yin, H., Shen, M., Molchanov, P., Li, H., and
Kautz, J. Global vision transformer pruning with Hessian-
aware saliency. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2023. 3

10



Fisher-aware Quantization for DETR Detectors with Critical-category Objectives

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan,
E., Wang, L., Huang, Q., Wang, Y., Mahoney, M., et al.
HAWQ-V3: Dyadic neural network quantization. In
International Conference on Machine Learning (ICML),
2021. 3, 6

Yuan, Z., Xue, C., Chen, Y., Wu, Q., and Sun, G. PTQ4ViT:
Post-training quantization for vision transformers with
twin uniform quantization. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 191–
207, 2022. 4

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. De-
formable DETR: Deformable transformers for end-to-end
object detection. In International Conference on Learn-
ing Representations (ICLR), 2021. 2, 3, 6

11



Fisher-aware Quantization for DETR Detectors with Critical-category Objectives

We provide supplementary materials in the following appendices. Specifically, Appendix A provides detailed derivation
of Equation (11). Appendix B further analyzes how the overall and critical-category objectives from Equation (12) impact
the overall performance metric, and contains additional CityScapes experimental results. Appendix C conducts an ablation
study on the impact of regularization strength λ for our Fisher-trace regularization and verifies the design choice of using our
regularizer instead of a simple summation of overall and critical-category objectives for the QAT optimization. Appendix D
provides additional qualitative visualizations of the layer-wise Fisher-aware sensitivity and the corresponding quantization
assignments derived using the proposed method.

A. Detailed Derivation of Equation (11)
The first-order Taylor expansion of the perturbed loss LF (q(θ) + ϵ) in Equation (10) is

LF (q(θ) + ϵ) ≈ LF (q(θ)) + ϵT∂LF (q(θ))/∂θ. (14)

By substituting Equation (14) into Equation (10), the maximization can be simplified as

S(q(θ)) = max
∥ϵ∥2≤ρ

LF (q(θ) + ϵ)− LF (q(θ)) ≈ max
||ϵ||2≤ρ

ϵT∂LF (q(θ))/∂θ. (15)

Note that both the ϵ and ∂LF (q(θ))/∂θ are vectors with the same dimensions as weight vector θ. Then, their inner product
achieves the maximum when they are parallel. Therefore, we can solve the maximization in Equation (15) as

S(q(θ)) ≈ max
||ϵ||2≤ρ

ϵT∂LF (q(θ))/∂θ

=
ρ

∥∂LF (q(θ))/∂θ∥2
∂LF (q(θ))

∂θT

∂LF (q(θ))

∂θ

∝ ∂LF (q(θ))

∂θT

∂LF (q(θ))

∂θ
= tr(I),

(16)

which is the final approximation of the loss landscape sharpness in Equation (11).

B. Ablation Study on Fisher-aware Quantization
Table 3 contains only the critical-category metrics. Here we report the overall mAPs in Tables 7 and 8 to show the impact
on the overall performance. In general, Fisher-critical quantization scheme leads to comparable overall metrics with the
Fisher-overall scheme, and they both are significantly higher than the conventional uniform and HAWQ-V2 quantization
schemes. In some cases, the improvement of critical-category metrics with the proposed scheme also improves the overall
performance. This indicates that the addition of such critical-category objective in the sensitivity analysis can be useful for
increasing the overall performance as well. This is an interesting direction for future work.

Table 7: Overall mAP on COCO detection dataset for 4-bit precision budget, %.

Model Uniform Fisher-overall Fisher-person Fisher-animal Fisher-indoor

DETR-R50 36.7 37.12±0.1 37.1±0.1 37.0±0.1 36.99±0.1

DETR-R101 37.4 38.26 38.22 37.97 38.24
DAB DETR-R50 22.7 24.42 25.28 25.84 24.08

Deformable DETR-R50 28.8 44.1 44.5 44.1 44.5

Table 8: Overall mAP on COCO detection dataset for 6-bit precision budget, %.

Model Uniform Fisher-overall Fisher-person Fisher-animal Fisher-indoor

DETR-R50 39.4 39.57±0.1 39.67±0.1 39.60±0.0 39.61±0.1

DETR-R101 39.2 41.8 41.8 42.1 42.1
DAB DETR-R50 28.00 27.20 28.42 27.30 27.94

Deformable DETR-R50 47.8 48.1 48.5 48.1 48.5
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Finally, we provide additional results of the Fisher-aware quantization scheme with the CityScapes dataset in Table 9. We
perform object detection task with DETR model on the CityScapes dataset following the settings of (Wang et al., 2022)3.
We can observe the same trend that the proposed Fisher-overall scheme significantly outperforms uniform quantization,
whereas Fisher-critical scheme further improves the performance of the corresponding critical categories.

Table 9: Critical-category mAP on CityScapes for DETR-R50, %.

Precision
Quant.
scheme Overall Critical category

Construct Object Human Vehicle

FP - 11.7 8.7 17.8 18.0 19.0

4-bit
Uniform 5.2 3.6 8.7 8.8 9.2

Fisher-overall 8.8 5.5 12.6 13.8 14.6
Fisher-critical 9.0 6.5 13.7 14.0 14.7

C. Ablation Study on Fisher-trace Regularization
We start with the discussion about the impact of regularization strength λ on the overall and the critical performance in
the QAT. Similarly to previous work on the regularized training (Yang et al., 2022), λ controls the tradeoff between the
overall performance and the generalization gap for the critical objective. Table 10 shows the overall and critical mAP
during training if we set λ to a smaller value e.g., 1e-3. It can be seen that the Fisher trace regularization significantly
improves critical mAP during epoch range from 20 to 30 (up to 0.5%). As the training progresses towards convergence, the
critical-category performance drops while the overall performance increases which indicating the occurrence of overfitting.

However, setting the λ too large (e.g., 5e-3) during the initial epochs of the QAT process significantly affects the convergence
of the overall training objective. These observations indicate that during the QAT process, a smaller regularization is needed
initially to facilitate convergence, while a larger regularization is needed towards the end to prevent the overfitting. To
address this in our work we utilize a linear scheduling of the regularization strength as discussed in Section 5.1, which can
be formulated as λ = max [λ0, λT t/T ], where t is the current epoch, T is the total number of epochs, and λ0, λT are the
initial and final regularization strengths, respectively. This scheme leads to higher results in Tables 4 and 5.

Finally, we verify the necessity of applying Fisher-trace regularization during QAT. Specifically, we compare to a common
heuristic approach when the critical objective LF is simply added to the overall objective LA. For the Fisher-trace
regularization, the motivation comes from our Claim 2 in Section 4.1, where the QAT gap is caused by the sharp loss
landscape, which leads to a poor generalization. Table 11 results confirm that the test-time generalization cannot be
improved by the addition of critical objectives to the training loss.

D. Qualitative Results of Fisher-aware Quantization
D.1. Fisher-aware Sensitivity vs. Quantization Assignments

We illustrate the Fisher-aware sensitivity and the corresponding quantization assignments for a Fisher-overall scheme
from Table 4 when applied to the DETR-R50 model on the COCO panoptic dataset in Figure 2. As shown in the
visualization, the backbone layers demonstrate a relatively stable sensitivity distribution, while the transformer encoder
and decoder layers show sensitivity distribution with high variance. This is expected given the different functionalities
of transformer layers within an attention block (Carion et al., 2020). Then, the quantization assignments are performed
with the clear correlation between the sensitivity magnitude for each layer and the budget constraints when solving the ILP
from Equation (12). Additionally, we visualize DETR-R50, DETR-R101, DAB DETR-R50, and Deformable DETR-R50
models on the COCO detection dataset in Figure 3, and, additionally, draw DETR-R101 on the COCO panoptic dataset
in Figure 4.

3https://github.com/encounter1997/DE-DETRs
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Table 10: QAT performance of DETR-R50 on COCO detection dataset. The person category is considered as critical and
4-bit Fisher-critical quantization scheme is applied. The mAP metrics at each epoch are reported using overall/critical
format, %.

λ Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

0 36.8/34.8 36.7/34.7 36.9/34.9 37.3/35.1 37.2/35.2
1e-3 36.5/34.5 36.9/35.2 36.8/35.3 37.1/35.0 37.2/35.1

Table 11: QAT performance of DETR-R50 model on COCO detection (left) and panoptic (right) datasets. All models are
quantized using the Fisher-critical scheme with 4-bit budget for detection and 5-bit budget for panoptic dataset, respectively.

QAT
objective Overall Person

QAT
objective Overall Person

overall 37.07±0.07 35.56±0.08 overall 36.08±0.07 19.05±0.09

overall+critical 37.11±0.04 35.39±0.06 overall+critical 36.07±0.05 19.19±0.10

Fisher reg. 36.97±0.06 35.75±0.04 Fisher reg. 36.12±0.06 19.39±0.11

Figure 2: Bit precision vs. layer-wise sensitivity for DETR-R50 on COCO panoptic dataset. There is a clear correlation
between the number of bits and our sensitivity metric.

D.2. Overall vs. Critical-category Objectives for Quantization

Next, we visually compare mixed-precision quantization assignments in our Fisher-aware scheme when the conventional
"overall" objective or the proposed "critical-category" objective are employed. Figure 5 compares the assignments for the
DETR-R50 model on COCO detection dataset when applied to the person category that corresponds to the quantitative
result in Table 3 (top). As shown in the figure, the inclusion of critical objective into the ILP leads to a significant change
in the precision assigned to certain layers. In particular, our Fisher-critical scheme has more peaks and lows than a more
smooth conventional scheme. This illustrates high sensitivity of layers to the critical-category objective. By adding the
objectives of interest, it is possible to improve model’s quantization at the fine-grained level. Additionally, Figures 6 to 8
compare the assignments for different models and critical categories reported in Tables 3 and 4.
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Figure 3: Bit precision vs. layer-wise sensitivity for DETR-R50, DETR-R101, DAB DETR-R50 and Deformable DETR-R50
on COCO detection dataset, respectively.
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Figure 4: Bit precision vs. layer-wise sensitivity for DETR-R101 on COCO panoptic dataset.

Figure 5: Comparison of Fisher-critical and Fisher-overall assignments for DETR-R50 on COCO detection dataset when
applied to the person category. Our critical objective leads to a significant change in the precision assigned to detector’s
layers.

Figure 6: Comparison of Fisher-critical and Fisher-overall assignments for Deformable DETR-R50 on COCO detection
dataset when applied to person category.
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Figure 7: Comparison of Fisher-critical and Fisher-overall assignments for DETR-R101 and DAB DETR-R50 on COCO
detection dataset when applied to indoor and animal categories, respectively.

Figure 8: Comparison of Fisher-critical and Fisher-overall assignments for DETR-R50 and DETR-R101 on COCO panoptic
dataset when applied to animal and person categories, respectively.
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