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Abstract
Out-of-distribution (OOD) detection task is sig-
nificant in reliable and safety-critical applications.
Existing approaches primarily focus on develop-
ing the powerful score function, but overlook the
design of decision-making rules based on these
score function. In contrast to prior studies, we re-
think the OOD detection task from an perspective
of online multiple hypothesis testing. We then
propose a novel generalized LOND (g-LOND)
algorithm to solve the above problem. Theoret-
ically, the g-LOND algorithm controls false dis-
covery rate (FDR) at pre-specified level without
the consideration for the dependence between the
p-values. Furthermore, we prove that the false
positive rate (FPR) of the g-LOND algorithm con-
verges to zero in probability based on the general-
ized Gaussian-like distribution family. Finally, the
extensive experimental results verify the effective-
ness of g-LOND algorithm for OOD detection.

1. Introduction
The ability to detect Out-of-Distribution (OOD) inputs is
a fundamental requirement for deploying deep learning
models in safety-critical applications (Liang et al., 2018;
Sastry & Oore, 2020; Ma et al., 2022). Although DNNs
have demonstrated impressive capabilities across a range
of complex tasks, such as speech recognition and machine
translation (He et al., 2016; Amodei et al., 2016; Dankers
et al., 2022), they are inherently vulnerable to OOD exam-
ples that deviate from the distribution of training data ( i.e.,
in-distribution (ID) data ). This vulnerability can lead to
overconfident yet incorrect predictions, which is particularly
problematic in domains such as computer vision (Sun et al.,
2022; Wei et al., 2022).

1School of Computer Science, National Engineering Research
Center for Multimedia Software, Institute of Artificial Intelligence
and Hubei Key Laboratory of Multimedia and Network Communi-
cation Engineering, Wuhan University, Wuhan, China. Correspon-
dence to: Weiwei Liu <liuweiwei863@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

OOD detection has garnered considerable attention recently
and an extensive collection of literature has been developed
to tackle this issue (Liu et al., 2020; Yang et al., 2021; Wang
et al., 2022; Liu et al., 2023), which mainly devote to ob-
taining a powerful score function. However, these methods
neglect to design a decision rule based on their score func-
tion, and directly use traditional threshold-based decision
rule, where the threshold is determined such that the true
positive rate (TPR) on ID validation set is 95% before test-
ing (Sun et al., 2022; Wei et al., 2022). But the traditional
decision rule is empirical and thus its outputs lack rigorous
statistical guarantee. Consequently, a natural question arise:
How to design an OOD detection method with rigorous the-
oretical guarantee and well empirical performance? This
paper aims to systematically study this question.

Different from previous OOD detection literature, we in-
vestigate the OOD detection problem from statistical per-
spective. Note that in some sensitive applications such
as financial transactions (Özbayoglu et al., 2020) and self-
driving (Huang et al., 2020), the testing examples arrive
sequentially in a stream, and the machine learning model
must make decisions in time. Hence, we frame the OOD
detection task as an online multiple hypothesis testing prob-
lem. (Javanmard & Montanari, 2015) proposes the LOND
algorithm to address this testing problem, which has been
heavily studied in various applications (Javanmard & Mon-
tanari, 2015; Robertson & Wason, 2018; Robertson et al.,
2022; Liou et al., 2023). Theoretically, to control the false
discovery rate (FDR) 2, the LOND algorithm demands that
the p-values corresponding to different null hypotheses are
mutually independent, which easily leads to a contradic-
tion to real-world applications. We then propose a novel
generalized LOND (g-LOND) algorithm to eliminate these
restrictions on p-values for FDR control. Moreover, we de-
rive the asymptotic false positive rate (FPR) of the g-LOND
algorithm based on the generalized Gaussian-like distribu-
tion family. Finally, extensive experiments demonstrate the
promising performance of the g-LOND algorithm on OOD
detection. We summarize our contributions below:

(1) We frame the OOD detection task as an online multi-
2FDR is related to the concept of Precision, and can be con-

sidered as the generalization of type-I error for single hypothesis
testing. See the motivation of controlling FDR in Section 3.2.
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ple hypothesis testing problem and propose a novel g-
LOND algorithm to solve it. Our method is distribution-
free, and does not rely on the extra information of OOD
data.

(2) Theoretically, the g-LOND algorithm enables to control
the FDR at a pre-specified level. Besides, we demon-
strate that the FPR for the g-LOND algorithm converges
to zero in probability based on the generalized Gaussian-
like distribution family.

(3) Finally, we conduct extensive experiments to demon-
strate the effectiveness of the g-LOND algorithm for
OOD detection. The results show that our method en-
ables to achieve a better tradeoff between TPR and FPR
compared with previous methods.

2. Related Work
OOD Detection. Existing efforts on OOD detection mainly
focus on classification-based methods, density-based meth-
ods and distance-based methods. The classification-based
methods directly obtain confidence from the classifier which
integrates some specific modifications for loss functions or
classifier architectures (Lee et al., 2018; Liu et al., 2020;
Huang et al., 2021; Liu et al., 2023; Djurisic et al., 2023)
with some beneficial design to OOD detection. These de-
signs mainly focus on the loss function (Liu et al., 2020;
Huang et al., 2021; Liu et al., 2023), classifier architecture
(Lee et al., 2018; Djurisic et al., 2023), and some post-hoc
processing techniques (Hendrycks & Gimpel, 2017; Liang
et al., 2018). The density-based methods characterize the
in-distribution distribution using probabilistic models (Abati
et al., 2019; Ren et al., 2019). The distance-based methods
usually compute distance in the high-dimension space such
as feature space and gradient space to distinguish ID and
OOD example (Hendrycks et al., 2022; Sun et al., 2022). Ad-
ditionally, minor methods involve introducing some OOD
samples to train the new networks (Yang et al., 2021; Ming
et al., 2022). The above methods focus on designing or
training a powerful score function and then apply empirical
decision rule to identify the OOD examples directly. How-
ever, this decision rule is empirical, thus the outputs of it
lack rigorous theoretical guarantee. This paper aims to solve
this problem.

FDR Control how to control FDR is the core problem
for multiple hypothesis testing algorithms (Benjamini &
Hochberg, 1995; Blanchard & Roquain, 2008; Yu et al.,
2023; Ma et al., 2024; 2025). Online multiple hypothesis
testing is first introduced by (Foster & Stine, 2008), who
propose a alpha investing method to control mFDR for the
streamed variable selection problem in high dimensional
space. Many following researches (Aharoni & Rosset, 2014;
Javanmard & Montanari, 2018) develop this work and make

this type of methods more powerful. (Javanmard & Mon-
tanari, 2015) propose the LOND and LORD algorithms to
control FDR and mFDR. The LOND algorithm has been
heavily studied in various applications (Javanmard & Mon-
tanari, 2015; Robertson & Wason, 2018; Robertson et al.,
2022; Liou et al., 2023). Note that these works mainly focus
on the situation where p-values are mutually independent or
satisfy the special dependence such as conditional superuni-
formity. Unlike these literature, this paper aims to propose
a novel algorithm to control FDR without the consideration
of dependence between p-values.

3. Preliminaries
3.1. Out-of-Distribution Detection

We donote by X ⊆ Rd the feature space and Y =
{1, 2, 3, . . . ,K} the label space with the joint distribution
D on Z = X × Y . Besides, X has marginal distribution
Din. Let (x, y) be the feature-label pair, where instance
x ∈ X and label y ∈ Y . We denote the transpose of vec-
tor/matrix by the superscript ′. Denote by fθ : X → Y the
classifier (or hypothesis) which is parameterized by θ ∈ Θ,
where Θ is the parameter space and maps x to a certain label
y. In addition, we denote by L(fθ(x), y) the certain loss
function.

In the canonical classification setting, the primary goal is to
maximize the standard accuracy of models on the unseen
examples from the underlying distribution Dx. Concretely,
we hope to find the classifier f̂(·) with the smallest risk:

R(f̂) = min
θ∈Θ

E(x,y)∼DL(fθ(x), y).

During the prediction phase, the test examples are usually
assumed to come from the same distribution Din as the
training set. Nevertheless, practical situations may introduce
some inputs from unfamiliar distributions, with label space
potentially lacking any intersection with Y . These inputs
are referred to as the OOD data and should not be predicted.

The goal of OOD detection is to identify the OOD examples
in testing set. In the previous literature, the OOD detection
task is formulated as the following binary decision problem:

ϕ(x) =

{
ID, if s(x) ≥ s∗

OOD, if s(x) < s∗
(1)

where s(·) denotes the score function and the threshold s∗

is empirically selected so that the ture positive rate (TPR)
on ID validation set is 95% before testing (Sun et al., 2022;
Wei et al., 2022).

The previous studies about OOD detection mainly devote
to obtaining a powerful score function which captures the
discriminative information in ID data (Hendrycks & Gimpel,
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2017; Liu et al., 2020; Djurisic et al., 2023; Liu et al., 2023).
However, the question of how to make decisions based the
score functions is under-explored for online OOD detection.
In contrast to the previous literature, we investigate the OOD
detection problem starting from the decision rule.

3.2. A Statistical Framework for OOD detection

Unlike the existing literature, we provide a new insight
for the OOD detection problem from an online hypothesis
testing perspective . Specifically, for a testing set T test =
{Xtest

1 , Xtest
2 , · · · }, OOD detection task is formulated as

the following hypothesis testing problem:

H1;0 : Xtest
1 ∼ Din, H1;1 : Xtest

1 ≁ Din

H2;0 : Xtest
2 ∼ Din, H2;1 : Xtest

2 ≁ Din

...

Hn;0 : Xtest
n ∼ Din Hn;1 : Xtest

n ≁ Din

...

(2)

where Hi;0 and Hi;1 are called null hypothesis and
alternative/non-null hypothesis, respectively. If Hi,0 is re-
jected, we declare that Xtest

i is OOD.

To support or reject the claim in null hypothesis, commonly
we use the concept of p-value as the measure of statistical
significance. Its definition is as follows.

Definition 3.1. [p-value (Casella & Berger, 2001)] Given a
sample X̃ 3. A statistic p(X̃) is called p-value correspond-
ing to the null hypothesis H0, if p(X̃) satisfies

P[p(X̃) ≤ t|H0] ≤ t (3)

for every 0 ≤ t ≤ 1.

Obviously, if p(X̃) follows the uniform distribution on
(0, 1) under the null hypothesis, then p(X̃) is a valid p-
value. A small p-value usually provides strong evidence
against the null hypothesis. It is noteworthy that the p-value
has clear statistical interpretation. For example, suppose
the p-value of a OOD testing example Xtest

i is 0.01. This
means that for any coming testing example Xtest

j , the prob-
ability that Xtest

j is more similar to OOD data than Xtest
i

is 0.01. In other words, it is extremely difficult to find a
example that is less like OOD data than Xtest

i . Hence, we
are highly confident that Xtest

i is OOD.
Remark 3.2. In statistics, the following terminology char-
acterizes the distribution of null p-values: if P[p(X̃) ≤
t|H0] = t, the p-value p(X̃) is called exact or uniform; if
P[p(X̃) ≤ t|H0] < t, p(X̃) is called conservative. Com-
pared to an exact p-value, a conservative one tends to under-
state the evidence against the null Hypothesis.

3A sample means a sequence of examples.

In single hypothesis testing, if the p-value is below a pre-
scribed significance level α, then the null hypothesis is
rejected. While this ritual enables to control the probability
of type-I error, in the case of multiple hypotheses testing
we need to adjust the significance levels to control other
metrics, in which false discovery rate (FDR) proposed by
(Benjamini & Hochberg, 1995) is widely used. The sta-
tistical advantages of FDR have been detailedly discussed
in (Benjamini & Hochberg, 1995; Benjamini & Yekutieli,
2001).

Given a sequence of the null hypotheses {Hi;0}i≥1, we
let R(n) be the set of indices of the rejected hypothe-
ses for the first n null hypotheses {H1;0, H2;0, · · · , Hn;0}.
Similarly, denote by H0(n) and H1(n) the set of indices
for the true null hypotheses and false null hypothesis for
{H1;0, H2;0, · · · , Hn;0}, respectively. Let n0 = |H0(n)|
be the number of true null hypotheses. In statistics, if one
null hypothesis is rejected, it is said to make a discovery.
FDR is the expected proportion of false discoveries among
the rejected hypotheses.

Definition 3.3 (FDR(Benjamini & Hochberg, 1995)). Let
V denote the number of true null hypotheses rejected; more-
over, let R be the number of rejected hypotheses, the false
discovery proportion (FDP) for the first n null hypotheses
is defined as:

FDP(n) =

{
V/R, if R > 0,

0, otherwise.

The expectation of FDP(n) is called the FDR, namely
FDR(n) = E(FDP(n)) = E

[
|R(n)∩H0(n)|
max{1,|R(n)|}

]
.

The FDR can be considered as the generalization of the
probability of type-I error for multiple hypothesis testing.
The FDP is closely related with the concept of Precision.
Denote by Rc(n) the complement of set R(n). Using
the confusion matrix notations 4, the FDP can be also ex-
pressed as FDP = FN

FN+TN , The Precision is defined as

Precision = |Rc∩H0|
max{|Rc|,1} . Thus, the FDP is the “dual” con-

cept of the Precision.

Motivation of Controlling FDR We deeply analyze the
FDR and provide a new insight for controlling FDR. In this
paper, the ID data is set to be positive. Using the notations
of confusion matrixm, the FDP is expressed as

FDP =
FN

FN + TN
=

1

1 + TN
FN

=
1

1 + N−FP
P−TP

=
1

1 + P
N · 1−FPR

1−TPR

. (4)

4Based on the notations of R(n), H0(n) and H1(n), we have
the following relations: TP = |Rc(n)∩H0(n)|, FN = |R(n)∩
H0(n)|, FP = |Rc(n) ∩H1(n)| and TN = |R(n) ∩H1(n)|.
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Note that P = |H0| and N = |H1|. For a given testing
set, P and N are fixed. It is well-known that there is a
tradeoff between the detection performance of ID and OOD
examples for a trained score functions. Therefore, we cannot
only consider the true positive rate (TPR) or false positive
rate (TPR) when designing the OOD detection algorithm.
Factually, an ideal OOD detection algorithm should achieve
low FPR while maintaining a high TPR, which leads to a
small FDP based on Eq. (4). Thus, controlling FDR tends to
achieve a well tradeoff between the detection performance
of both ID and OOD examples.

3.3. LOND Algorithm

To control FDR for the testing problem in (2), a direct idea
is to apply the LOND algorithm, which has been heavily
studied in various applications (Javanmard & Montanari,
2015; Robertson & Wason, 2018; Robertson et al., 2022;
Liou et al., 2023).

Definition 3.4 (LOND (Javanmard & Montanari, 2015)).
Given a sequence of null hypotheses H1,0, H2,0, · · · which
arrive sequentially in a stream, with corresponding p-values
p1, p2, · · · . For a prescribed level α , choose any sequence
of positive numbers γ = {γi}∞i=1 such that

∑∞
i=1 γi = 1

and define

αi = αγi(D(i− 1) + 1),

where D(0) = 0 and D(i) =
∑i

k=1 1(pk ≤ αk). Then, the
null hypothesis Hi,0 is rejected if its corresponding p-value
pi satisfies pi ≤ αi.

In statistics, α is commonly specified as 0.05. Similar to
the type-I error, in multiple hypothesis testing, a testing
algorithm for problem 2 should make as many discoveries
as possible (low FPR) while maintaining the FDR at a
prescribed level. Javanmard & Montanari (2015) prove that
if p-values corresponding to all null hypotheses are available
and mutually independent, then LOND algorithm controls
FDR at pre-specified level.

In most multiple hypothesis testing literature (Benjamini &
Hochberg, 1995; Benjamini & Yekutieli, 2001; Blanchard &
Roquain, 2008; Delattre & Roquain, 2015; Cao et al., 2022),
the p-values or the distribution of the testing statistic are
assumed to be known. Denote by F (·) the cumulative dis-
tribution function of s(X) where s(·) is the score function
and X ∼ Dx. Then, for a given example Xtest, its p-value
can be expressed as

p(Xtest) = PX∼Dx(s(X) ≤ s(Xtest))

= F (s(Xtest)). (5)

According to the Definition 2, under the H0 (Xtest is the

ID data), we have

P
(
F (s(Xtest)) ≤ x

)
= P

(
s(Xtest) ≤ F−1(x)

)
= F (F−1(x)) = x,

where F−1(·) is the inverse function of F (·). Therefore, the
random variable F (s(Xtest)) follows the uniform distribu-
tion on (0, 1), namely, p(Xtest) is a valid p-value and is
exact. Obviously, small score s(Xtest) leads to a small p-
value, consistent with the classical setting of OOD detection
in Eq.(1) and the meaning of the p-value.

However, in the context of the OOD detection, often we have
litle prior information about underlying distribution F (·).
Hence, the empirical p-value is often used in real-world
applications, which is a nonparametric estimation method
for the p-value p(Xtest). In statistics, let X1, X2, · · · , Xm

be a sample of observations (i.e., random variable). For
testing example X , the empirical p-value of X is defined as

p̂(X) =

∑m
j=1 1(Xj ≤ X) + 1

k + 1
.

Note that X is one-dimensional random variable. Never-
theless, in OOD detection, the inputs are high-dimensional
images. Therefore, utilizing the score function designed
for OOD detection, we reduce each high-dimensional im-
ages to the univariate score, and then compute the empir-
ical p-values. Specifically, given a calibrated set T cal =
{Xcal

1 , Xcal
2 , . . . , Xcal

m } consisting of ID data, for a testing
example Xtest

i , the empirical p-value pi corresponding to
null hypothesis Hi;0 is expressed as

pi = p(Xtest
i ) =

|{j ∈ [m] : ŝ(Xcal
j ) ≤ ŝ(Xtest

i )}|+ 1

m+ 1
,

(6)
where ŝ(·) is a certain score function. According to (Arlot
et al., 2010), we can easily verify that empirical p-value
in Eq. (6) satisfies Definition 3.1. Note that the empirical
p-values for different testing examples are not independent
since they rely on a common calibrated set T cal. Hence,
we cannot directly apply LOND algorithm with empirical
p-values to control FDR.

3.4. Generalized LOND Algorithm

To control FDR, we modify the LOND algorithm and then
propose a novel generalized LOND (g-LOND) algorithm to
remove the constraints on the dependence between p-values.
We denote f+(0) = limx→0+ f(x), and define two function
classes:

F1 = {f(x) : f+(0) = 0, f ′(x) ≥ 1},

F2 = {f(x) : f+(0) = 0, f ′(x) > 0,

∫ 1

0

1

f(x)
dx ≤ 1}

for x ∈ (0, 1). The g-LOND algorithm is defined as follows.
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Algorithm 1 Practical g-LOND Algorithm
1: Input: Training set T , calibrated set

T cal = {Xcal
1 , Xcal

2 , . . . , Xcal
m } testing set

T test = {Xtest
1 , Xtest

2 , . . . , Xtest
n , · · · }, prescribed

level α ∈ (0, 1) and sequence {γi}∞i=1.
2: Train the score function on T : ŝ(x) = maxi∈[K]

gi
∥g∥ .

3: Calculate the p-value corresponding to Xtest
i :

pi = p(Xtest
i ) =

|{j ∈ [m] : ŝ(Xcal
j ) ≤ ŝ(Xtest

i )}|+ 1

m+ 1
.

4: Compute the significance level corresponding to Xtest
i :

αi = αγi(D(i− 1) + 1),

5: Output: Declare that Xtest
i is OOD if f(pi) ≤ αi.

Definition 3.5 (g-LOND). Given a sequence of null hy-
potheses H1,0, H2,0, · · · which arrive sequentially in a
stream, with corresponding p-values p1, p2, · · · . For a pre-
scribed level α , choose a function f(·) ∈ F1 ∪ F2 and
a sequence of positive numbers γ = {γi}∞i=1 such that∑∞

i=1 γi = 1, define

αi = αγi(D(i− 1) + 1),

where D(0) = 0 and D(i) =
∑i

k=1 1(f(pk) ≤ αk). Then,
the null hypothesis Hi,0 is rejected if its corresponding p-
value pi satisfies f(pi) ≤ αi.

The practical g-LOND algorithm with empirical p-values
is presented in Algorithm 3.4. Inspired by (Hendrycks
et al., 2022), we use maximum normalied logit ŝ(x) =
maxi∈[K]

gi
∥g∥ as our score function.

4. FDR Control of g-LOND Algorithm
We first investigate the theoretical properties of the g-
LOND algorithm about FDR. It is well known that if p-
values p1, p2, . . . , pn are mutually independent or PRDS,
the BH procedure can control FDR at level α (Benjamini &
Hochberg, 1995; Benjamini & Yekutieli, 2001). Factually,
the g-LOND algorithm also enjoys this theoretical result.
We begin with the following definitions.

Definition 4.1 (Increasing Set). A subset A ⊂ Rn is said
to be increasing if for all x ∈ A, x ≤ y implies y ∈ A,
where the comparison of x and y is component-wise.

Then, PRDS property is defined as follows.

Definition 4.2 (PRDS(Benjamini & Yekutieli, 2001)). A
family of random variables {X1, X2, . . . , Xn} is said to
be PRDS on a subset I0 ⊂ {1, 2, . . . , n} if for all i ∈
I0, the function P((X1, X2, . . . , Xn) ∈ D|Xi = x) is an
increasing function in x for any increasing subset A.

To derive our theoretical results, we first introduce the fol-
lowing lemma.
Lemma 4.3. ((Ma et al., 2024)) Suppose that the p-values
p1, p2, . . . , pn are PRDS on H0(n).

1. Denote p∗i := f(pi) for all i ∈ {1, 2, . . . , n}
where f(·) is strictly increasing or decreasing. Then
{p∗1, p∗2, . . . , p∗n} is PRDS on H0(n) as well.

2. For any i ∈ H0(n), the function

P((p1, p2, . . . , pn) ∈ A | pi ≤ x)

is increasing in x for any increasing set A.

Lemme 4.3 indicates that the PRDS is invariant for mono-
tonic transformation. Then, our core theorem is presented
as follows.
Theorem 4.4. Given a prescribed level α ∈ (0, 1),
a sequence of p-values p1, p2, · · · corresponding to
H1,0, H2,0, · · · and f(·) ∈ F1. If p1, p2, . . . , pn are mu-
tually independent or PRDS, then the FDR of g-LOND al-
gorithm satisfies FDRg−LOND ≤ α.

The proof of Theorem 4.4 is presented in Appendix A.1. Ob-
viously, the empirical p-values are not independent, since
they depend on the same trained socre function and cali-
brated set. (Yu et al., 2023) demonstrates that the empirical
p-values are conditionally PRDS under some assumptions.
This paper aims to conduct an in-depth study of the g-LOND
algorithm under weaker conditions for FDR control. Then,
we have following theoretical result.
Theorem 4.5. Given a prescribed level α ∈ (0, 1), a se-
quence of empirical p-values p1, p2, · · · corresponding to
H1,0, H2,0, · · · and f(·) ∈ F2. Then the FDR of g-LOND
algorithm satisfies

FDRg−LOND ≤ α.

The proof of Theorem 4.5 is presented at Appendix A.2.
Theorem 4.5 indicates that the g-LOND algorithm controls
FDR at a prescribed level regardless of the dependence be-
tween the empirical p-values. Obviously, such a argument is
invalid for many popular methods such as LOND algorithm
and LORD algorithm. which broadens the applicability
scope of the g-LOND algorithm.
Remark 4.6. Motivated by (Benjamini & Yekutieli, 2001),
(Javanmard & Montanari, 2015) show that the LOND al-
gorithm can also control FDR for dependent p-values by
choosing special sequence γ̂ where γ̂i = γi∑i

k=1
1
k

. Ob-
viously, such a algorithm is too conservative and almost
accepts all null hypotheses for large i 5, resulting in a high
FPR.

5Note that
∑i

k=1
1
k

is monotonically increasing w.r.t. i and
tends to ∞ as i → ∞. Therefore, for large i, we have α̂i =
αγ̂i(D(i− 1) + 1) → 0.
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5. Asymptotic FPR of g-LOND Algorithm
False positive rate (FPR) is a significant evaluation criterion
for OOD detection. Using the notations R and H1, the FPR
can be expressed as

FPR =
FP

FP + TN
=

|Rc(n) ∩H1(n)|
|H1(n)|

.

Although FDR control has been widely studied, relatively
little is known about the theoretical properties of FPR. In
this section, we investigate the asymptotic behavior of FPR
for the g-LOND algorithm. Our analytical framework is
similar to that of (Donoho & Jin, 2004; Neuvial & Roquain,
2012).

5.1. Analytical Framework

In the field of multiple hypothesis testing, many theoreti-
cal studies (Javanmard & Montanari, 2015; 2018) assume
that p-values are available, equivalently, the distribution of
test statistic for each hypothesis is known. In this case, p-
values can be expressed as pi = Ψ(Ti), where Ψ(·) is the
survival function of test statistic and Ti is the observation
of test statistic corresponding to Hi. For mathematical con-
venience, we impose that T1, T2, . . . , Tn are independent
continuous random variables. Reasonably, working with
p-values p1, p2, . . . , pn is equivalent to working with obser-
vations T1, T2, . . . , Tn. We first define a function class as
follows.

F =

{
Ψ(t) : lim

t→∞

− logΨ(t)

tλ
=

1

λ
, λ > 1

}
.

In this section, we describe the distribution of the obser-
vation Ti in terms of the generalized Gaussian-like family,
which is a variant of the generalized Gaussian distribution.

Definition 5.1 (Generalized Gaussian-like Distribution Fam-
ily). A random variable X is said to follow the generalized
Gaussian-like distribution family with the location µ and
the degree λ, denote X ∼ G(µ, λ), if the survival function
Ψ(·) of X satisfies Ψ(t− µ) ∈ F .

It is easy to verify that the popular Gaussian distribution and
Laplace distribution belong to the generalized Gaussian-like
distribution family, which are often used in the theoretical
analysis.

Our inspiration for considering the tail generalized Gaussian
distribution comes from the previous works (Donoho & Jin,
2004; Ingster & Suslina, 2012) on global testing. In terms
of the notation G(µ, λ), we assume that the observation Ti

is distributed as

Ti ∼

{
G(0, λ) if i ∈ H0(n)

G(µ, λ) if i ∈ H1(n),
(7)

where µ > 0 is allowed to vary with the number of hy-
potheses n. Eq. (7) shows that the non-null hypothesis is
distinguished frome null hypothesis by a positive mean shift
µ. In (Donoho & Jin, 2004), µ is set to

√
2r log(n). In this

section, µ is parameterized as

µ =
(
λr log n

)1/λ
(8)

where r > 0. Following (Donoho & Jin, 2004; 2006; Jin
& Ke, 2016), we focus on the sparse region in which the
number of true null hypothesis is larger than that of the true
alternative hypothesis. In this case, n1 = |H1(n)| = n1−β

where β < r < 1. Besides, we denote ϵ = n1

n = n−β .

5.2. Asymptotic Property of FPR for g-LOND
Algorithm

For simplicity, let γi = C
iv for v > 1, where

1

C
=

∞∑
i=1

1

iv
.

Denote τk as the time of k-th rejection (with τ0 = 0). Based
on the analytical framework in Section 5.1, we first establish
the upper bound of τk expectation 6.

Theorem 5.2. Given the first n hypotheses
H1, H2, · · · , Hn, and suppose that the correspond-
ing observations T1, T2, . . . , Tn satisfy the condition (7).
Then, the expectation of τk ∧ n1 satisfies

E(τk ∧ n1) ≤ 3k · nβ
1 for all 0 < k < n,

where n1 = |H1|.

The proof of Theorem 5.2 is presented at Appendix A.3.
Theorem 5.2 shows that the number of rejections is impacted
by the sequence {γi}∞i=1 and the parameter β. For example,
small β leads to small E(τk∧n1), meaning that the g-LOND
algorithm tends to make more rejections. Based on Theorem
5.2, we obtain the following core result.

Theorem 5.3. Given the first n hypotheses
H1, H2, · · · , Hn, and suppose that the correspond-
ing observations T1, T2, . . . , Tn satisfy the condition (7)
with Ψ(0) = 1

2 . If β < 1
2 and r > β + +v − 1, then the

FPR of g-LOND algorithm satisfies

FP

FP + TN
→ 0 in probability.

The proof of Theorem 5.3 is presented at Appendix A.4.
Theorems 4.5 and 5.3 show that the FPR of g-LOND algo-
rithm tends to zero in probability while maintaining its FDR
at the prescribed level.

6a ∧ b means min{a, b}.
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Table 1. The experimental results on CIFAR-100 as ID data. We use ResNet18 as the backbone for each method. The best results are
highlighted in bold.

Data CIFAR-10 TinyImageNet SVHN Texture Place365

Practical TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1

ASH 94.46 78.38 67.10 94.46 73.92 76.16 94.46 63.47 50.07 94.46 72.40 78.78 94.46 77.58 38.91
Cider 93.27 86.80 64.39 93.27 74.16 75.51 93.27 42.80 61.00 93.27 70.30 78.60 93.27 76.63 38.79

Energy 94.52 78.83 67.01 94.52 72.15 76.58 94.52 74.79 46.06 94.52 78.85 77.50 94.52 78.83 38.56
KLM 80.56 56.06 65.53 80.56 57.54 71.55 80.56 43.77 52.53 80.56 53.57 77.51 80.56 45.63 42.85
MSP 94.68 79.28 66.96 94.68 73.58 76.34 94.68 78.69 44.84 94.68 80.24 77.30 94.68 78.69 38.65

RankFeat 95.15 95.26 63.23 95.15 91.77 72.72 95.15 92.94 41.02 95.15 89.87 75.68 95.15 94.00 34.73
SHE 94.38 78.23 67.10 94.38 76.37 75.58 94.38 69.00 48.07 94.38 80.04 77.19 94.38 80.40 38.05
VIM 94.15 85.82 65.04 94.15 81.77 74.30 94.15 71.29 47.26 94.15 57.50 81.80 94.15 81.84 37.57
DICE 93.95 77.78 67.02 93.95 75.55 75.54 93.95 64.88 49.33 93.95 76.43 77.70 93.95 78.92 38.35
PALM 94.55 78.29 67.17 94.55 72.23 76.58 94.55 75.10 45.94 94.55 79.20 77.44 94.55 77.52 38.96
Gram 94.61 96.67 62.65 94.61 93.23 72.16 94.61 35.54 63.71 94.61 70.47 79.25 94.61 96.32 34.03
KNN 94.61 79.32 66.92 94.61 71.67 76.74 94.61 63.47 50.05 94.61 64.64 77.48 94.61 76.02 39.43
ODIN 94.65 80.20 66.71 94.65 74.17 76.20 94.65 86.16 42.65 94.65 74.37 78.46 94.65 77.79 38.91

g-LOND 92.4 44.19 68.08 91.95 53.77 78.36 92.08 29.76 69.94 91.69 44.82 81.8 92.83 30.62 52.87

Classical FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR

ASH 80.06 76.48 75.66 75.80 79.92 84.69 65.89 85.60 75.89 74.36 80.72 87.10 79.42 78.76 56.57
Cider 90.49 65.68 63.26 80.32 77.26 83.43 65.52 72.91 64.34 74.70 78.23 86.45 81.84 73.37 49.24

Energy 80.40 79.05 79.75 74.09 82.76 87.96 76.66 82.03 69.84 80.14 78.35 85.79 80.46 79.52 60.62
KLM 84.26 73.91 68.97 77.80 79.22 83.02 78.43 79.34 66.69 76.28 75.77 81.21 77.35 75.70 42.46
MSP 80.36 78.47 79.60 74.63 82.07 87.81 79.66 78.42 64.92 81.26 77.32 85.42 79.64 79.22 61.13

RankFeat 95.01 58.04 60.17 91.37 65.72 74.57 92.50 72.14 62.89 89.64 69.40 81.18 93.76 63.82 40.54
SHE 80.60 78.15 78.98 78.97 79.74 85.71 71.54 80.97 65.99 82.00 73.64 81.42 82.63 76.30 54.20
VIM 87.70 72.21 72.88 83.85 77.76 85.21 74.28 83.14 74.22 60.00 85.91 91.22 83.89 75.85 56.35
DICE 81.36 78.04 78.74 79.69 80.72 86.65 69.35 84.22 72.94 79.44 77.63 85.07 82.52 78.33 59.08
PALM 79.97 79.38 80.09 74.18 83.25 88.47 76.98 81.41 68.64 80.74 78.74 86.25 79.15 80.28 62.10
Gram 96.99 49.41 49.19 93.71 53.91 62.23 22.92 95.55 90.06 71.16 70.79 74.62 96.60 46.38 20.21
KNN 80.68 77.02 74.63 73.23 82.54 88.39 64.91 84.15 72.22 66.02 83.66 89.46 77.27 79.43 58.57
ODIN 81.31 78.18 78.88 75.61 81.63 86.89 87.16 74.54 58.41 75.59 79.33 86.23 79.05 79.45 59.24

g-LOND 72.1 78.92 80.18 66.61 83.29 88.86 54.74 84.12 76.77 56.29 84.29 89.7 68.21 81.59 65.67

6. Experiment
In this section, we aim to validate the effectiveness of our
proposed g-LOND algorithm. The evaluation criteria in-
clude the practical metrics TPR, FPR and F1-score, and
the classical metrics FPR95, AUROC and AUPR. Exten-
sive experimental results demonstrate the superiority of our
method.

6.1. Experimental Settings

We mainly follow the experimental settings in (Yang et al.,
2022; Zhang et al., 2023b), and our codes are based on
(Zhang et al., 2023b). We next introduce some necessary
settings in our experiments.

Baselines. We choose some popular OOD detection meth-
ods as our baselines, including MSP (Hendrycks & Gimpel,
2017), ODIN (Liang et al., 2018), Gram (Sastry & Oore,
2020), Energy (Liu et al., 2020), VIM (Wang et al., 2022),
KNN (Sun et al., 2022), KLM (Hendrycks et al., 2022),
RankFeat (Song et al., 2022), DICE (Sun & Li, 2022),
ASH (Djurisic et al., 2023), Cider (Ming et al., 2023), SHE
(Zhang et al., 2023a) and PALM (Lu et al., 2024).

Benchmarks. We use CIFAR-100 (Krizhevsky, 2009)
and ImageNet-200 (Deng et al., 2009) as ID data. For
CIFAR-100, we use CIFAR-10, TinyImageNet (Krizhevsky
et al., 2017), SVHN (Netzer et al., 2011), Texture (Kylberg,

2011), and Places365 (Zhou et al., 2018) as OOD data. For
ImageNet-200, we use SSB-hard (Vaze et al., 2022; Zhang
et al., 2023b), NINCO (Bitterwolf et al., 2023), iNatural-
ist (Horn et al., 2018), Textures (Cimpoi et al., 2014), and
OpenImage-O (Wang et al., 2022) as OOD data.

Metrics. In this paper, we report the practical and classical
metrics. The practical metrics include TPR, FPR and F1-
score. The classical metrics include FPR95, AUROC and
AUPR. In this paper, we regard ID as positive 7.

Model. When the CIFAR-100 is used as the ID data, we
use the ResNet10 as the backbone for each method. When
ImageNet200 is used as ID data, we use the ResNet50 as
the backbone for each method. We follow the experimental
implementation in Yang et al. (2022); Zhang et al. (2023b).
More details can be found in Yang et al. (2022); Zhang et al.
(2023b).

6.2. Experimental Results

The experimental results on CIFAR-100 as ID data are pre-
sented in Tables 1 and the Results on ImageNet200 ad the
ID data are presented in Table 2. We first analyze the ex-
perimental Results of the g-LOND algorithm in terms of
the practical metrics. As the Table 1 shown, the g-LOND
dramatically improves the detection performance in terms

7In the code of (Zhang et al., 2023b), OOD is set to be positive.
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Table 2. The experimental results on ImageNet200 as ID data. We use ResNet50 as the backbone for each method. The best results are
highlighted in bold.

Data SSB hard NINCO iNaturalist OpenImage O Texture

Practical TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1

ASH 95.53 86.71 28.62 95.53 83.21 76.46 95.53 58.04 73.53 95.53 49.53 85.33 95.53 68.36 60.48
Cider 95.06 78.43 30.56 95.06 62.92 80.50 95.06 26.16 84.82 95.06 22.58 90.40 95.06 43.81 69.81

Energy 95.54 72.07 32.50 95.54 59.36 77.43 95.54 45.69 77.58 95.54 41.83 80.04 95.54 54.43 65.55
KLM 93.28 67.06 37.87 93.28 53.44 75.94 93.28 41.49 78.13 93.28 39.86 86.73 93.28 49.53 67.63
MSP 95.36 70.78 32.84 95.36 62.35 80.78 95.36 40.85 79.22 95.36 47.69 85.64 95.36 53.66 65.77

RankFeat 94.68 71.07 27.42 94.68 70.54 74.60 94.68 50.85 64.06 94.68 55.59 75.91 94.68 56.70 54.50
SHE 95.44 70.71 32.89 95.44 65.94 80.03 95.44 45.46 77.62 95.44 41.57 87.05 95.44 55.60 65.04
VIM 94.75 80.27 29.99 94.75 66.44 79.57 94.75 33.47 81.71 94.75 32.15 83.94 94.75 47.30 68.13
DICE 94.80 72.11 32.28 94.80 64.34 80.06 94.80 45.36 77.35 94.80 35.21 88.19 94.80 53.80 65.46
PALM 95.69 71.90 32.60 95.69 63.13 80.77 95.69 38.36 80.31 95.69 45.50 86.29 95.69 53.83 65.86
Gram 94.11 87.20 28.14 94.11 76.93 77.03 94.11 87.76 64.55 94.11 53.69 83.70 94.11 79.58 56.28
KNN 94.79 70.14 32.88 94.79 57.09 81.69 94.79 25.59 84.93 94.79 24.73 90.19 94.79 42.82 70.14
ODIN 95.00 76.77 31.00 95.00 63.91 80.25 95.00 33.19 81.94 95.00 30.56 87.11 95.00 50.18 67.02

g-LOND(ours) 92.48 53.72 49.31 92.89 45.28 85.56 93.07 20.38 86.73 93.29 17.38 91.26 93.76 39.16 74.86

Classical FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR FPR95 AUC AUPR

ASH 68.86 79.52 42.16 67.52 85.24 89.10 29.53 95.10 94.79 34.74 91.77 95.61 40.95 91.02 87.79
Cider 79.52 77.94 39.06 68.48 86.10 91.32 45.99 92.87 93.81 35.20 92.36 95.21 56.57 90.22 87.9

Energy 73.01 79.83 43.78 65.70 85.17 90.08 44.31 92.55 93.28 41.06 90.79 93.78 56.64 89.23 85.91
KLM 74.61 77.56 37.28 71.11 83.96 88.70 46.65 91.80 91.90 67.66 86.13 90.46 64.37 87.66 82.42
MSP 72.88 80.38 46.66 64.48 86.29 91.26 41.94 92.8 93.44 49.94 88.36 92.36 56.98 89.24 86.19

RankFeat 91.50 58.74 20.52 92.07 55.10 64.34 98.26 33.08 37.49 97.67 29.10 50.19 92.44 52.48 37.26
SHE 71.07 78.30 41.10 67.47 82.07 87.40 42.95 91.43 91.51 38.20 90.51 93.41 55.58 87.49 82.39
VIM 85.44 74.04 39.39 75.67 83.32 89.81 56.03 90.96 92.49 38.85 92.61 96.94 64.64 88.20 86.32
DICE 72.89 79.06 42.6 65.29 84.49 89.53 46.53 91.81 92.42 35.89 91.53 94.11 54.75 89.06 85.32
PALM 72.57 80.75 44.19 64.25 86.38 91.03 39.21 93.7 94.38 43.18 90.25 93.41 55.34 90.13 87.38
Gram 89.25 65.95 26.50 79.45 69.40 74.67 89.88 65.30 62.30 57.01 80.54 83.35 81.78 67.72 51.52
KNN 77.09 77.03 38.57 63.83 86.10 91.07 34.01 93.99 94.45 39.44 91.29 92.19 52.35 90.19 87.54
ODIN 76.84 77.19 39.81 63.90 83.34 88.02 33.33 94.37 94.7 40.35 90.65 93.78 50.33 90.11 86.18

g-LOND(ours) 63.49 80.61 43.27 54.43 86.59 91.59 20.88 96.72 95.44 33.97 92.83 94.89 37.98 91.88 88.69

of FPR and F1-score for all OOD data, despite a slight
decrease in TPR. For example, using CIFAR-100 as ID
data and Place365 as OOD data, our proposed method re-
duces the FPR from 45.63% to 30.62%, and improves the
F1-score from 42.85% to 52.87% compared with the best
baseline, a direct improvement of 15.01%and 10.02% at
the cost of less than 3% decrease in TPR. Moreover, this
improvement still exists in Table 2 in terms of the FPR and
F1-score. For instance, using ImageNet200 as ID data and
SSB hard as OOD data, our proposed method reduces the
FPR from 67.06% to 53.72%, and improves the F1-score
from 37.87% to 49.31% compared with the best baseline,
a direct improvement of 13.34%and 11.44% at the cost of
3.21% decrease in TPR. These experimental results indicate
that the g-LOND tends to classify more testing example
as OOD while controlling the number of falsely classify-
ing the ID as the OOD. Hence, our method achieves the
smaller FPR and the larger F1-score than baselines. The
above analysis indicates that our method achieves a better
tradeoff between TPR and FPR, which is consistent with
our motivation of controlling FDR.

Then, we analyze the results of our method in terms of the
classical metrics. From the Tables 2, we find that compared
to the baselines, the AUROC and AUPR of the g-LOND
algorithm achieve a certain degree of improvement. What’s
even more exciting, the FPR95 of g-LOND is reduced obvi-
ously. For example, using the ImageNet200 as the ID data

and the NINCO as the OOD data, our proposed g-LOND
outperforms the best baseline by 9.4% in terms of FPR95
and by 0.21% in terms of AUROC. This conclusion still
holds for the different OOD data in Table 1. Overall, our
proposed g-LOND algorithm achieves promising OOD de-
tection performance.

7. Conclusion
In this paper, we systematically investigate OOD detection
problem from statistical perspective. Concretely, we formu-
late the OOD detection task as a online multiple hypothesis
testing problem and propose a novel g-LOND algorithm
to solve it. Theoretically, the g-LOND algorithm controls
FDR for dependent p-values. Besides, we derive the asymp-
totic FPR of the g-LOND algorithm under the generalized
Gaussian-like distribution family, indicating that the FPR
of g-LOND tends to 0 in probability. Finally, the exten-
sive experiments demonstrate the effectiveness of g-LOND
algorithm.
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A. Proofs
A.1. Proof of Theorems 4.4

Proof. We will prove these two theorems in three cases.

Case 1: p-values are mutually independent. Note that

FDR(n) =E
[
|R(n) ∩H0(n)|
max{1, |R(n)|}

]
= E

[
n∑

i=1

1(f(pi) ≤ αi, i ∈ H0)

max{D(n), 1}

]

=

n∑
i=1

E
[
1(f(pi) ≤ αi, i ∈ H0)

αi
· αi

max{D(n), 1}
.

]

According to the definition of D(n), max{D(n), 1} ≥ D(i) for i ∈ [n]. Then, we obtain

α

max{D(n), 1}
≤ αi

D(i− 1) + 1

=
αγi(D(i− 1) + 1)

D(i− 1) + 1
= αγi.

If f(·) ∈ F1, then for any p-value pi ≤ f(pi). Hence, we have

E(1(f(pi) ≤ αi, i ∈ H0)|D(i− 1)) ≤ E(1(pi ≤ αi, i ∈ H0)|D(i− 1))

≤ E(αi|D(i− 1)) = αi.

It follows that

E
[
1(f(pi) ≤ αi, i ∈ H0)

αi

]
= E

[
E
(
1(pi ≤ αi, i ∈ H0)

αi
|D(i− 1)

)]
≤ E(1|D(i− 1)) = 1.

The above analysis demonstrates that

FDR(n) ≤
n∑

i=1

E(1 · αγi) ≤ α ·
∞∑
i=1

γi = α.

Case 2: p-values are PRDS.

Recall that f(·) is strictly increasing. By Lemma 4.3, we know that f(p1), f(p2), · · · , f(pn) are PRDS. The proof in case 1
shows that

FDR(n) ≤
∑

i∈H0(n)

αγi · E
[
1(f(pi) ≤ αi)

αi

]
.

Without loss of generality, we assume αi ∈ (0, 1). For a positive number ϵ ∈ (0, 1), we choose a positive integer m such
that αi > ϵm. Denote sj = ϵm+1−j for j ∈ [m+ 1]. Note that

P (f(pi) ≤ αi) = P
(
f(pi) ≤ αi, αi ∈ ∪m

j=1(sj , sj+1]
)
.
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Then, for i ∈ H0, the following chain of inequities hold:

E
[
1(f(pi) ≤ αi)

αi

]
≤

m∑
j=1

P(f(pi) ≤ sj+1, αi ∈ (sj , sj+1])

sj

=

m∑
j=1

P(f(pi) ≤ sj+1) · P(αi ∈ (sj , sj+1]|f(pi) ≤ sj+1)

P(f(pi) ≤ sj+1)
· P(f(pi) ≤ sj+1)

sj

≤
m∑
j=1

P (αi ∈ (sj , sj+1]|f(pi) ≤ sj+1) ·
sj+1

sj

≤ ϵ−1
m∑
j=1

(P(αi ≤ sj+1|f(pi) ≤ sj+1)− P(αi ≤ sj |f(pi) ≤ sj+1))

= ϵ−1
m−1∑
j=1

(P(αi ≤ sj+1|f(pi) ≤ sj+1)− P(αi ≤ sj+1|f(pi) ≤ sj+2))

+ ϵ−1 (P(αi ≤ sm+1|f(pi) ≤ sm+1)− P(αi ≤ s1|f(pi) ≤ s2))

≤ ϵ−1 · P(αi ≤ sm+1|f(pi) ≤ sm+1) (by Lemma 4.3)

≤ ϵ−1.

Letting ϵ → 1 and applying the monotone convergence theorem, we have

E
[
1(f(pi) ≤ αi)

αi

]
≤ 1.

It follows that
FDR(n) ≤

∑
i∈H0(n)

αγi · 1 ≤ α.

A.2. Prrof of Theore 4.5

Proof. Note that D(n) ≥ D(i− 1) + 1(f(pi) ≤ αi) and

1(f(pi) ≤ αi) = 1

(
1 ≤ αi

f(pi)

)
≤ αi

f(pi)
.

Then, we have

FDR(n) ≤
∑

i≤n,i∈H0

E
[
1(f(pi) ≤ αi)

max{D(n), 1}

]

=
∑

i≤n,i∈H0

E
[
1(f(pi) ≤ αi)

max{D(n), 1}
· 1(f(pi) ≤ αi)

]

≤
∑

i≤n,i∈H0

E
[

αi/f(pi)

max{D(n), 1}
· 1(D(n) ≥ D(i− 1) + 1)

]

≤
∑

i≤n,i∈H0

E
[

αi/f(pi)

D(i− 1) + 1
· 1(D(n) ≥ D(i− 1) + 1)

]

=
∑

i≤n,i∈H0

E
[

αγi(D(i− 1) + 1)

(D(i− 1) + 1)f(pi)
· 1(D(n) ≥ D(i− 1) + 1)

]

≤
∑

i≤n,i∈H0

E
[

αγi
f(pi)

]
.
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Let random variable U be uniformly distributed on (0, 1). For any t ∈ (0, 1), we have

P(pi ≤ t) ≤ t = P(U ≤ t).

If t ≥ 1, then P(pi ≤ t) = P(U ≤ t) = 1. Hence, P(pi ≤ t) ≤ P(U ≤ t) for any t ≥ 0. Since f(·) is positive and strictly
increasing, it follows that

P(
1

f(pi)
≥ x) = P(pi ≤ f−1(

1

x
)) ≤ P(U ≤ f−1(

1

x
)) = P(

1

f(U)
≥ x)

for any x ≥ 0. According to the following property of expectation:

E(X) =

∫ ∞

0

xf(x) dx =

∫ ∞

0

P(X ≥ x) dx (9)

for any non-negative random variable X , then we obtain

E(
1

f(pi)
) =

∫ ∞

0

P(
1

f(pi)
≥ t) dt ≤

∫ ∞

0

P(
1

f(U)
≥ t) dt

= E(
1

f(U)
) =

∫ 1

0

1

f(u)
· 1 du ≤ 1.

Therefore, we obtain

FDR(n) ≤
∑

i≤n,i∈H0

E
[

αγi
f(pi)

]
≤

∑
i≤n,i∈H0

αγi · E(
1

f(pi)
)

≤
∑

i≤n,i∈H0

αγi ≤ α.

A.3. Proof of Theorem 5.2

Proof. For notational convenience, we denote by Xtest
1 , Xtest

2 , · · · , Xtest
n1

the OOD examples in testing set. For f in the
g-LOND algorithm, we have f(x) ≥ x and f−1(x) ≤ x. Besides, denote by Φ = 1−Ψ the cumulative distribution function
(CDF) of testing statistic T under the null hypothesis. For simplicity, we assume Φ(0) = 1/2. Denote by F1(t) the CDF of
the p-values under alternative hypothesis. Then, F (t) can be expressed as

F1(t) = Ψ(µ− Φ−1(1− t))

where Φ−1 is the inverse function of Φ. Under the null hypothesis, the CDF of the p-value F0(t) = t. Then the CDF of the
p-values can be expressed as

F (t) = (1− ε)F0 + εF1(t) = (1− ε)t+ εΨ(µ− Φ−1(1− t)).

Denote Ψ̄ = 1− F1 and κ := Φ−1(1− t). Because Ψ ∈ F , we have

κ = Φ−1(1− t) ∼ (λ log(1/t))1/λ.

According to the definition of g-LOND algorithm, for k ≥ 0, and m ≥ τk + 1, we have

P(τk+1 > m | τk) =
m∏

i=τk+1

P (f(pi) > (k + 1)γi) =

m∏
i=τk+1

(1− F (f−1((k + 1)γi)))

≤ exp{−
m∑

i=τk+1

F (f−1((k + 1)γi))}.
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Denote τ̃k = τk ∧ n1. For τk < n1, we have

E(τ̃k+1 | τ̃k) = τk + 1 +

n1∑
m=τk+1

P(τk+1 > m | τk)

≤ τk + 1 +

n1∑
m=τk+1

exp{−
m∑

i=τk+1

F (f−1((k + 1)γi))}

= τ̃k + 1 +

n1∑
m=τ̃k+1

exp{−
m∑

i=τ̃k+1

F (f−1((k + 1)γi))}.

(10)

Define t∗ satisfying Φ−1(1− f−1(t∗)) = µ. Note that Ψ ∈ F . Then, for t ≥ t∗, we have

F1(t) = Ψ(µ− Φ−1(1− f−1(t))) ≥ Ψ(µ− Φ−1(1− f−1(t∗))) = 1/2.

Define M1 := ⌊((k + 1)C/t∗)1/v⌋. If i ≤ M1, we have F1(f
−1((k + 1)γi)) ≥ 1/2.

Without loss of generality, we assume M1 ≥ n. Since τ̃k < n1 ≤ M1, we have that

n1∑
m=τ̃k+1

exp{−
m∑

i=τ̃k+1

F (f−1((k + 1)γi))} ≤
n1∑

m=τ̃k+1

exp{−(m− τ̃k)ε/2}

≤
n1−τ̃k∑
m=1

exp{−mε/2} <
2

ε
= 2nβ

1 .

It follows that

E(τ̃k+1 | τ̃k) ≤ τ̃k + 1 + 2nβ
1 ,

Therefore, we have
E(τk ∧ n1) ≤ 3knβ

1 , (11)

which completes the proof of Theorem 5.2

A.4. Proof of Theorem 5.3

Proof. For any δ > 0, define M2 := ⌈nβ/δ⌉. Since 0 < β < 1
2 , for large n, we have M2

n1
< δ where n1 = |H1(n)| = n1−β .

For M2 ≤ i ≤ n1, define θi := i δ n−β
1 , we get

P(D(i) < θi) = P(τ⌈θi⌉ > i) ≤ P(τ⌈θi⌉ ∧ n1 ≥ i)

≤ 3 · ⌈θi⌉n
β
1

i
< 3 · (θi + 1)nβ

1

i

= 3δ + 3
nβ
1

i
< 6δ.

According to the definition of g-LOND algorithm, we have

E[Ψ̄(f−1(αi))] = E[Ψ̄(f−1(γi(D(i− 1) + 1)))] ≤ E[Ψ̄(f−1(γiD(i)))],

Hence, the expectation of FPR for g-LOND satisfies

E(FPR) =
1

n1

∑
i∈H1(n)

E[Ψ̄(f−1(αi))] ≤
1

n1

∑
i∈H1(n)

E[Ψ̄(f−1(γiD(i)))]. (12)

For 1 ≤ i ≤ M2,

1

n1

∑
i≤N2,i∈H1(n)

E[Ψ̄(f−1(γiD(i)))] ≤ M2

n1
.
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For M2 + 1 ≤ i ≤ n1 < n,

E[Ψ̄(f−1(γiD(i)))] = E[Ψ̄f−1((γiD(i))) · 1(D(i) < θi)] + E[Ψ̄f−1((γiD(i))) · 1(D(i) ≥ θi)]

≤ 6δ + Ψ̄(f−1(γiθi)) ≤ 6δ + Ψ̄(f−1(γnθn)).

It follows that

1

n1

∑
i∈H1(n)

E[Ψ̄f−1((γiD(i)))] ≤ M2

n1
+

n1 −M2

n1
(6δ + Ψ̄(f−1(γnθn)))

≤ 7δ + Ψ̄(f−1(γnθn)) = 7δ +Ψ(µ− κn),

where κn = Φ−1(1− f−1(γnθn)). Since ν + β − 1 < r and f−1(γnθn) ≤ γnθn, as n → ∞, then we have

µ− κn ≥ (r1/λ − (ν + β − 1)1/λ)(λ log n)1/λ → ∞

and further Ψ(µ− κn) → 0 as n → ∞. Then, we have

lim sup
n→∞

E(FPR) ≤ 7δ. (13)

Note that Eq. (13) holds for any δ > 0, thus E(FPR) → 0 as n → ∞. By Markov’s inequality, for any t > 0, we have

P(FPRg−LOND ≥ t) ≤ E(FPRg−LOND)

t
→ 0

Hence, we conclude that

FPRg−LOND → 0 in probability,
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