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ABSTRACT

We propose a probabilistic shape completion method extended to the continuous
geometry of large-scale 3D scenes. Real-world scans of 3D scenes suffer from
a considerable amount of missing data cluttered with unsegmented objects. The
problem of shape completion is inherently ill-posed, and high-quality result re-
quires scalable solutions that consider multiple possible outcomes. We employ
the Generative Cellular Automata that learns the multi-modal distribution and
transform the formulation to process large-scale continuous geometry. The local
continuous shape is incrementally generated as a sparse voxel embedding, which
contains the latent code for each occupied cell. We formally derive that our training
objective for the sparse voxel embedding maximizes the variational lower bound of
the complete shape distribution and therefore our progressive generation constitutes
a valid generative model. Experiments show that our model successfully generates
diverse plausible scenes faithful to the input, especially when the input suffers from
a significant amount of missing data. We also demonstrate that our approach outper-
forms deterministic models even in less ambiguous cases with a small amount of
missing data, which infers that probabilistic formulation is crucial for high-quality
geometry completion on input scans exhibiting any levels of completeness.

1 INTRODUCTION

High-quality 3D data can create realistic virtual 3D environments or provide crucial information to
interact with the environment for robots or human users (Varley et al. (2017)). However, 3D data
acquired from a real-world scan is often noisy and incomplete with irregular samples. The task of
3D shape completion aims to recover the complete surface geometry from the raw 3D scans. Shape
completion is often formulated in a data-driven way using the prior distribution of 3D geometry,
which often results in multiple plausible outcomes given incomplete and noisy observation. If one
learns to regress a single shape out of multi-modal shape distribution, one is bound to lose fine details
of the geometry and produce blurry outputs as noticed with general generative models (Goodfellow
(2017)). If we extend the range of completion to the scale of scenes with multiple objects, the task
becomes even more challenging with the memory and computation requirements for representing
large-scale high resolution 3D shapes.

In this work, we present continuous Generative Cellular Automata (cGCA), which generates multiple
continuous surfaces for 3D reconstruction. Our work builds on Generative Cellular Automata
(GCA) (Zhang et al. (2021)), which produces diverse shapes by progressively growing the object
surface from the immediate neighbors of the input shape. cGCA inherits the multi-modal and scalable
generation of GCA, but overcomes the limitation of discrete voxel resolution producing high-quality
continuous surfaces. Specifically, our model learns to generate diverse sparse voxels associated with
their local latent codes, namely sparse voxel embedding, where each latent code encodes the deep
implicit fields of continuous geometry near each of the occupied voxels (Chabra et al. (2020); Jiang
et al. (2020)). Our training objective maximizes the variational lower bound for the log-likelihood
of the surface distribution represented with sparse voxel embedding. The stochastic formulation is
modified from the original GCA, and theoretically justified as a sound generative model.

We demonstrate that cGCA can faithfully generate multiple plausible solutions of shape completion
even for large-scale scenes with a significant amount of missing data as shown in Figure 1. To the best
of our knowledge, we are the first to tackle the challenging task of probabilistic scene completion,
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Figure 1: Three examples of complete shapes using cGCA given noisy partial input observation.
Even when the raw input is severely damaged (left), cGCA can generate plausible yet diverse complete
continuous shapes.

which requires not only the model to generate multiple plausible outcomes but also be scalable
enough to capture the wide-range context of multiple objects.

We summarize the key contributions as follows: (1) We are the first to tackle the problem of
probabilistic scene completion with partial scans, and provide a scalable model that can capture large-
scale context of scenes. (2) We present continuous Generative Cellular Automata, a generative model
that produces diverse continuous surfaces from a partial observation. (3) We modify infusion training
(Bordes et al. (2017)) and prove that the formulation indeed increases the variational lower bound of
data distribution, which verifies that the proposed progressive generation is a valid generative model.

2 PRELIMINARIES: GENERATIVE CELLULAR AUTOMATA

Continuous Generative Cellular Automata (cGCA) extends the idea of Generative Cellular Automata
(GCA) by Zhang et al. (2021) but generates continuous surface with implicit representation instead
of discrete voxel grid. For the completeness of discussion, we briefly review the formulation of GCA.

Starting from an incomplete voxelized shape, GCA progressively updates the local neighborhood of
current occupied voxels to eventually generate a complete shape. In GCA, a shape is represented as a
state s = {(c, oc)|c ∈ Z3, oc ∈ {0, 1}}, a set of binary occupancy oc for every cell c ∈ Z3, where
the occupancy grid stores only the sparse cells on the surface. Given a state of an incomplete shape
s0, GCA evolves to the state of a complete shape sT by sampling s1:T from the Markov chain

st+1 ∼ pθ(· | st), (1)

where T is a fixed number of transitions and pθ is a homogeneous transition kernel parameterized by
neural network parameters θ. The transition kernel pθ is implemented with sparse CNN (Graham et al.
(2018); Choy et al. (2019)), which is a highly efficient neural network architecture that computes the
convolution operation only on the occupied voxels.

The progressive generation of GCA confines the search space of each transition kernel at the im-
mediate neighborhood of the current state. The occupancy probability within the neighborhood is
regressed following Bernoulli distribution, and then the subsequent state is independently sampled
for individual cells. With the restricted domain for probability estimation, the model is scalable to
high resolution 3D voxel space. GCA shows that the series of local growth near sparse occupied
cells can eventually complete the shape as a unified structure since the shapes are connected. While
GCA is a scalable solution for generating diverse shapes, the grid representation for the 3D geometry
inherently limits the resolution of the final shape.

3 CONTINUOUS GENERATIVE CELLULAR AUTOMATA
In Sec. 3.1, we formally introduce an extension of sparse occupancy voxels to represent continuous
geometry named sparse voxel embedding, where each occupied voxel contains latent code repre-
senting local implicit fields. We train an autoencoder that can compress the implicit fields into the
embeddings and vice versa. Then we present the sampling procedure of cGCA that generates 3D
shape in Sec. 3.2, which is the inference step for shape completion. Sec. 3.3 shows the training
objective of cGCA, which approximately maximizes the variational lower bound for the distribution
of the complete continuous geometry.
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Figure 2: Overview of our method. The implicit function of continuous shape can be encoded
as sparse voxel embedding s and decoded back (left). The colors in the sparse voxel embedding
represent the clustered labels of latent code zc for each cell c. The sampling procedure of cGCA
(right) involves T steps of sampling the stochastic transition kernel pθ, followed by T ′ mode seeking
steps which remove cells with low probability. From the final sparse voxel embedding sT+T ′ , the
decoder can recover the implicit representation for the complete continuous shape.

3.1 SPARSE VOXEL EMBEDDING

In addition to the sparse occupied voxels of GCA, the state of cGCA, named sparse voxel embedding,
contains the associated latent code, which can be decoded into continuous surface. Formally, the state
s of cGCA is defined as a set of pair of binary occupancy oc and the latent code zc, for the cells c in a
three-dimensional grid Z3

s = {(c, oc, zc)|c ∈ Z3, oc ∈ {0, 1}, zc ∈ RK}. (2)

Similar to GCA, cGCA maintains the representation sparse by storing only the set of occupied voxels
and their latent codes, and sets zc = 0 if oc = 0.

The sparse voxel embedding s can be converted to and from the implicit representation of local
geometry with neural networks, inspired by the work of Peng et al. (2020), Chabra et al. (2020), and
Chibane et al. (2020a). We utilize the (signed) distance to the surface as the implicit representation,
and use autoencoder for the conversion. The encoder gφ produces the sparse voxel embedding s
from the coordinate-distance pairs P = {(p, dp)|p ∈ R3, dp ∈ R}, where p is a 3D coordinate and
dp is the distance to the surface, s = gφ(P ). The decoder fω, on the other hand, regresses the local
implicit field value dq at the 3D position q ∈ R3 given the sparse voxel embedding s, d̂q = fω(s, q)
for given coordinate-distance pairs Q = {(q, dq)|q ∈ R3, dq ∈ R}. The detailed architecture of
the autoencoder is described in Appendix A, where the decoder fω generates continuous geometry
by interpolating hierarchical features extracted from sparse voxel embedding. An example of the
conversion is presented on the left side of Fig. 2, where the color of the sparse voxel embedding
represents clustered labels of the latent codes with k-means clustering (Hartigan & Wong (1979)).
Note that the embedding of a similar local geometry, such as the seat of the chair, exhibits similar
values of latent codes.

The parameters φ, ω of the autoencoder are jointly optimized by minimizing the following loss
function:

L(φ, ω) =
1

|Q|
∑

(q,dq)∈Q

|fω(s, q)−max

(
min

(
dq
ε
, 1

)
,−1

)
|+ β

1

|s|
∑
c∈s
‖zc‖, (3)

where s = gφ(P ) and ε is the size of a single voxel. The first term in Eq. (3) corresponds to
minimizing the normalized distance and the second is the regularization term for the latent code
weighted by hyperparameter β. Clamping the maximum distance makes the network focus on
predicting accurate values at the vicinity of the surface (Park et al. (2019); Chibane et al. (2020b)).

3.2 SAMPLING FROM CONTINUOUS GENERATIVE CELLULAR AUTOMATA

The generation process of cGCA echos the formulation of GCA (Zhang et al. (2021)), and repeats T
steps of sampling from the transition kernel to progressively grow the shape. Each transition kernel
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p(st+1|st) is factorized into cells within the local neighborhood of the occupied cells of the current
state, N (st) = {c′ ∈ Z3 | d(c, c′) ≤ r, c ∈ st} 1 given a distance metric d and the radius r:

p(st+1|st) =
∏

c∈N (st)

pθ(oc, zc|st) =
∏

c∈N (st)

pθ(oc|st)pθ(zc|st, oc). (4)

Note that the distribution is further decomposed into the occupancy oc and the latent code zc, where
we denote oc and zc as the random variable of occupancy and latent code for cell c in state st+1.
Therefore the shape is generated by progressively sampling the occupancy and the latent codes for
the occupied voxels which are decoded and fused into a continuous geometry. The binary occupancy
is represented with the Bernoulli distribution

pθ(oc|st) = Ber(λθ,c), (5)

where λθ,c ∈ [0, 1] is the estimated occupancy probability at the corresponding cell c. With our
sparse representation, the distribution of the latent codes is

pθ(zc|st, oc) =

{
δ0 if oc = 0

N(µθ,c, σ
tI) if oc = 1.

(6)

δ0 is a Dirac delta distribution at 0 indicating that zc = 0 when oc = 0. For the occupied voxels
(oc = 1), zc follows the normal distribution with the estimated mean of the latent code µθ,c ∈ RK
and the predefined standard deviation σtI , where σt decreases with respect to t.

Initial State. Given an incomplete point cloud, we set the initial state s0 of the sampling chain by
setting the occupancy oc to be 1 for the cells that contain point cloud and associating the occupied
cells with a latent code sampled from the isotropic normal distribution. However, the input can better
describe the provided partial geometry if we encode the latent code zc of the occupied cells with the
encoder gφ. The final completion is more precise when all the transitions pθ are conditioned with the
initial state containing the encoded latent code. Further details are described in Appendix A.

Mode Seeking. While we effectively model the probabilistic distribution of multi-modal shapes,
the final reconstruction needs to converge to a single coherent shape. Naïve sampling of the stochastic
transition kernel in Eq. (4) can include noisy voxels with low-occupancy probability. As a simple
trick, we augment mode seeking steps that determine the most probable mode of the current result
instead of probabilistic sampling. Specifically, we run additional T ′ steps of the transition kernel
but we select the cells with probability higher than 0.5 and set the latent code as the mean of the
distribution µθ,c. The mode seeking steps ensure that the final shape discovers the dominant mode
that is closest to sT as depicted in Fig. 2, where it can be transformed into implicit function with the
pretrained decoder fw.

3.3 TRAINING CONTINUOUS GENERATIVE CELLULAR AUTOMATA

We train a homogeneous transition kernel pθ(st+1|st), whose repetitive applications eventually yield
the samples that follow the learned distribution. However, the data contains only the initial s0 and the
ground truth state x, and we need to emulate the sequence for training. We adapt infusion training
(Bordes et al. (2017)), which induces the intermediate transitions to converge to the desired complete
state. To this end, we define a function Gx(s) that finds the valid cells that are closest to the complete
shape x within the neighborhood of the current state N (s):

Gx(s) = {argminc∈N (s)d(c, c′) | c′ ∈ x}. (7)

Then, we define the infusion kernel qt factorized similarly as the sampling kernel in Eq. (4):

qtθ(s
t+1|st, x) =

∏
c∈N (st)

qtθ(oc, zc|st, x) =
∏

c∈N (st)

qtθ(oc|st, x)qtθ(zc|st, oc, x). (8)

The distributions for both oc and zc are gradually biased towards the ground truth final shape x with
the infusion rate αt, which increases linearly with respect to time step, i.e., αt = max(α1t+ α0, 1),
with α1 > 0:

qtθ(oc|st, x) = Ber((1− αt)λθ,c + αt1[c ∈ Gx(st)]), (9)

1We use the notation c ∈ s if oc = 1 for c ∈ Z3 to denote occupied cells.
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qtθ(zc|st, oc, x) =

{
δ0 if oc = 0

N((1− αt)µθ,c + αtzxc , σ
tI) if oc = 1.

(10)

Here 1 is an indicator function, and we will denote oxc , z
x
c as the occupancy and latent code of the

ground truth complete shape x at coordinate c.

cGCA aims to optimize the log-likelihood of the ground truth sparse voxel embedding log pθ(x).
However, since the direct optimization of the exact log-likelihood is intractable, we modify the
variational lower bound using the derivation of diffusion-based models (Sohl-Dickstein et al. (2015)):

log pθ(x) ≥
∑
s0:T−1

qθ(s
0:T−1|x) log

pθ(s
0:T−1, x)

qθ(s0:T−1|x)
(11)

= log
p(s0)

q(s0)︸ ︷︷ ︸
Linit

+
∑

0≤t<T−1

−DKL(qθ(s
t+1|st, x)‖pθ(st+1|st))︸ ︷︷ ︸

Lt

+Eqθ [log pθ(x|sT−1)]︸ ︷︷ ︸
Lfinal

,

where the full derivation is in Appendix B.1. We now analyze Linit,Lt,Lfinal separately. We ignore
the term Linit during optimization since it contains no trainable parameters. Lt for 0 ≤ t < T − 1
can be decomposed as the following :

Lt = −
∑

c∈N (st)

DKL(qθ(oc|st, x)‖pθ(oc|st))︸ ︷︷ ︸
Lo

+qθ(oc = 1|st, x)DKL(qθ(zc|st, x, oc = 1)‖pθ(zc|st, oc = 1))︸ ︷︷ ︸
Lz

,
(12)

where the full derivation is in Appendix B.2. Since Lo and Lz are the KL divergence between
Bernoulli and normal distributions, respectively, Lt can be written in a closed-form. In practice, the
scale of Lz can be much larger than that of Lo. This results in local minima in the gradient-based
optimization and reduces the occupancy probability qθ(oc = 1|st, x) for every cell. So we balance the
two losses by multiplying a hyperparameter γ at Lz , which is fixed as γ = 0.01 for all experiments.

The last term Lfinal can be written as following:

Lfinal =
∑

c∈N (sT−1)

log{(1− λθ,c)1[oxc = 0]δ0(zxc ) + λθ,c1[oxc = 1]N(zxc ; µθ,c, σ
T−1I)}. (13)

A problem rises when computing Lfinal, since the usage of Dirac distribution makes Lfinal →∞ if
oxc = 0, which does not produce a valid gradient for optimization. However, we can replace the loss
Lfinal with a well-behaved loss Lt for t = T − 1 , by using the following proposition:
Proposition 1. By replacing δ0(zxc ) with the indicator function 1[zxc = 0] when computing Lfinal,
∇LT−1 = ∇Lfinal, for T � 1

Proof. The proof is found in Appendix B.3.

The proposition above serves as a justification for approximating∇Lfinal as∇LT−1, with the benefits
of having a simpler training procedure and easier implementation. Replacing δ0(zTc ) with 1[zxc = 0]
can be regarded as a reweighting technique that naturally avoids divergence in the lower bound, since
both functions output a non-zero value only at 0. Further discussions about the replacement are in
Appendix B.3.

In conclusion, the training procedure is outlined as follows:

1. Sample s0:T by s0 ∼ q0, st+1 ∼ qtθ(·|st, x).
2. For t < T , update θ with θ ← θ + η∇θLt, where η is the learning rate.

Note that the original infusion training (Bordes et al. (2017)) also attempts to minimize the variational
lower bound, employing the Monte Carlo approximation with reparameterization trick (Kingma &
Welling (2014)) to compute the gradients. However, our objective avoids the approximations and can
compute the exact lower bound for a single training step. The proposed simplification can be applied
to infusion training with any data structure including images. We also summarize the difference of
our formulation compared to GCA in Appendix C.
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Table 1: Quantitative comparison of probabilistic scene completion in ShapeNet scene dataset with
different levels of completeness. The best results are marked as bold. Both CD (quality, ↓) and TMD
(diversity, ↑) in tables are multiplied by 104.

min. rate 0.2 min. rate 0.5 min. rate 0.8
Method min. CD avg. CD TMD min. CD avg. CD TMD min. CD avg. CD TMD

ConvOcc 3.60 - - 1.33 - - 0.74 - -
IFNet 12.94 - - 8.55 - - 7.49 - -
GCA 4.97 6.32 11.56 3.02 3.54 4.92 2.50 2.64 2.76

cGCA 2.80 3.88 10.07 1.16 1.49 3.91 0.69 0.87 3.05
cGCA (w/ cond.) 1.75 2.33 5.38 0.87 1.08 2.96 0.57 0.64 2.34
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Figure 3: Qualitative comparison on ShapeNet scene dataset. Best viewed on screen. Minimum
rate indicates the guaranteed rate of surface points for each object in the scene. While deterministic
methods (ConvOcc, IFNet) produce blurry surfaces since they cannot model multi-modal distribution,
probabilistic methods (GCA, cGCA) generate multiple plausible scenes. cGCA is the only method
that can generate multiple plausible scenes without losing the details for each object.

4 EXPERIMENTS

We test the probabilistic shape completion of cGCA for scenes (Section 4.1) and single object (Sec-
tion 4.2). For all the experiments, we use latent code dimension K = 32, trained with regularization
parameter β = 0.001. All the results reported are re-trained for each dataset. Further implementation
details are in the Appendix A.2 and effects of mode seeking steps are discussed in Appendix E.

4.1 SCENE COMPLETION

In this section, we evaluate our method on two datasets: ShapeNet scene (Peng et al. (2020)) and
3DFront (Fu et al. (2021)) dataset. The input point cloud are created by iteratively removing points
within a fixed distance from a random surface point. We control the minimum preserved ratio of the
original complete surface points for each object in the scene to test varying levels of completeness.
The levels of completeness tested are 0.2, 0.5, and 0.8 with each dataset trained/tested separately. We
evaluate the quality and diversity of the completion results by measuring the Chamfer-L1 distance
(CD), total mutual distance (TMD), respectively, as in the previous methods (Peng et al. (2020);
Zhang et al. (2021)). For probabilistic methods, five completion results are generated and we report
the minimum and average of Chamfer-L1 distance (min. CD, avg. CD). Note that if the input is
severely incomplete, there exist various modes of completion that might be feasible but deviate from
its ground truth geometry. Nonetheless, we still compare CD assuming that plausible reconstructions
are likely to be similar to the ground truth.

ShapeNet Scene. ShapeNet scene contains synthetic rooms that contain multiple ShapeNet (Chang
et al. (2015)) objects, which have been randomly scaled with randomly scaled floor and random
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Table 2: Quantitative comparison of probabilistic scene completion in 3DFront. The best results are
marked as bold. Note that CD (quality, ↓) and TMD (diversity, ↑) in tables are multiplied by 103.

min. rate 0.2 min. rate 0.5 min. rate 0.8
Method min. CD avg. CD TMD min. CD avg. CD TMD min. CD avg. CD TMD

GCA 4.89 6.59 16.90 3.11 3.53 8.95 2.53 2.82 7.98
cGCA 4.07 5.42 16.20 2.12 2.57 7.82 1.64 2.19 5.97
cGCA (w/ cond.) 3.53 4.26 9.23 2.19 2.54 6.89 1.47 1.69 5.35

In
pu
t

G
C
A

cG
C
A

Figure 4: Qualitative comparison on 3DFront dataset with 0.5 object minimum rate. Best viewed
on screen. Since the raw inputs of furniture are highly incomplete, there exist multiple plausible
reconstructions. Probabilistic approaches produce diverse yet detailed scene geometry. GCA suffers
from artifacts due to the discrete voxel resolution.

walls. We compare the performance of cGCA with two deterministic scene completion models that
utilize occupancy as the implicit representation: ConvOcc (Peng et al. (2020)) and IFNet (Chibane
et al. (2020a)). We additionally test the quality of our completion against a probabilistic method of
GCA (Zhang et al. (2021)). Both GCA and cGCA use 643 voxel resolution with T = 15 transitions.
cGCA (w/ cond.) indicates a variant of our model, where each transition is conditioned on the initial
state s0 obtained by the encoder gφ as discussed in Sec. 3.2.

Table 1 contains the quantitative comparison on ShapeNet scene. Both versions of cGCA outperform
all other methods on min. CD for all level of completeness. The performance gap is especially
prominent for highly incomplete input, which can be visually verified from Fig. 3. The deterministic
models generate blurry objects given high uncertainty, while our method consistently generates
detailed reconstructions for inputs with different levels of completeness. Our result coincides with
the well-known phenomena of generative models, where the deterministic models fail to generate
crisp outputs of multi-modal distribution (Goodfellow (2017)). Considering practical scenarios with
irregular real-world scans, our probabilistic formulation is crucial for accurate 3D scene completion.
When conditioned with the initial state, the completion results of cGCA stay faithful to the input data,
achieving lower CDs. Further analysis on varying completeness of input is discussed in Appendix F.

3DFront. 3DFront is a large-scale indoor synthetic scene dataset with professionally designed layouts
and contains high-quality 3D objects, in contrast to random object placement for ShapeNet scene.
3DFront dataset represents the realistic scenario where the objects are composed of multiple meshes
without clear boundaries for inside or outside. Unless the input is carefully processed to be converted
into a watertight mesh, the set-up excludes many of the common choices for implicit representation,

7



Published as a conference paper at ICLR 2022

Table 3: Quantitative comparison of single object probabilistic shape completion results on ShapeNet.
The best results trained in a single class are marked as bold. Note that MMD (quality, ↓), UHD
(fidelity, ↓) and TMD (diversity, ↑) in tables are multiplied by 103, 103, and 102 respectively.

MMD (quality) UHD (fidelity) TMD (diversity)
Method Sofa Chair Table Avg. Sofa Chair Table Avg. Sofa Chair Table Avg.

cGAN 5.70 6.53 6.10 6.11 11.40 12.10 11.20 11.57 7.44 8.21 6.88 7.51
GCA (643) 4.70 6.23 6.22 5.72 8.88 7.95 7.63 8.15 22.39 12.41 18.83 17.88

cGCA (323) 4.59 6.11 6.08 5.59 10.43 9.99 9.29 9.90 9.72 13.65 26.04 16.47
cGCA (643) 4.51 6.30 5.89 5.57 8.99 8.43 7.22 8.21 11.18 16.70 31.94 19.94
cGCA (643, w/ cond.) 4.64 6.15 5.90 5.56 8.00 6.75 6.45 7.07 14.01 11.49 31.01 18.84

Input cGAN GCA cGCA

Figure 5: Qualitative comparison on probabilistic shape completion of a single object. cGCA is the
only method that can produce a continuous surface.

such as occupancy or signed distance fields. However, the formulation of cGCA can be easily adapted
for different implicit representation, and we employ unsigned distance fields (Chibane et al. (2020b))
to create the sparse voxel embedding for 3DFront dataset. We compare the performance of cGCA
against GCA, both with voxel resolution of 5cm and T = 20 transitions.

Table 2 shows that cGCA outperforms GCA by a large margin in CD, generating high-fidelity
completions with unsigned distance fields. While both GCA and cGCA are capable of generating
multiple plausible results, GCA suffers from discretization artifacts due to voxelized representation,
as shown in Fig. 4. cGCA not only overcomes the limitation of the resolution, but also is scalable to
process the entire rooms at once during both training and test time. In contrast, previous methods
for scene completion (Siddiqui et al.; Peng et al. (2020)) divide the scene into small sections and
separately complete them. We analyze the scalability in terms of the network parameters and the
GPU usage in Appendix D. In Appendix G, we also provide results on ScanNet (Dai et al. (2017a))
dataset, which is one of the widely used datasets for real-world indoor environments.

4.2 SINGLE OBJECT COMPLETION

We analyze various performance metrics of cGCA for a single object completion with chair/sofa/table
classes of ShapeNet (Chang et al. (2015)) dataset. Given densely sampled points of a normalized
object in [−1, 1]3, the incomplete observation is generated by selecting points within the sphere of
radius 0.5 centered at one of the surface points. From the partial observation, we sample 1,024 points
which serve as a sparse input, and sample 2,048 points from completion results for testing. Following
the previous method (Wu et al. (2020)), we generate ten completions and compare MMD (quality),
UHD (fidelity), and TMD (diversity). Our method is compared against other probabilistic shape
completion methods: cGAN (Wu et al. (2020)) which is based on point cloud, and GCA (Zhang et al.
(2021)) which uses voxel representation. We use T = 30 transitions.

Quantitative and qualitative results are shown in Table 3 and Fig. 5. Our approach exceeds other
baselines in all metrics, indicating that cGCA can generate high-quality completions (MMD) that are
faithful to input (UHD) while being diverse (TMD). By using latent codes, the completed continuous
surface of cGCA can capture geometry beyond its voxel resolution. The quality of completed shape
in 323 voxel resolution therefore even outperforms in MMD for discrete GCA in higher 643 voxel
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resolution. Also, the UHD score of cGCA (w/ cond.) exceeds that of GCA and vanilla cGCA
indicating that conditioning latent codes from the input indeed preserves the input partial geometry.

5 RELATED WORKS

3D Shape Completion. The data-driven completion of 3D shapes demands a large amount of
memory and computation. The memory requirement for voxel-based methods increases cubically to
the resolution (Dai et al. (2017b)) while the counterpart of point cloud based representations (Yuan
et al. (2018)) roughly increases linearly with the number of points. Extensions of scene completion
in voxel space utilize hierarchical representation (Dai et al. (2018)) or subdivided scenes (Dai et al.
(2018; 2020)) with sparse voxel representations. Recently, deep implicit representations (Park et al.
(2019); Chen & Zhang (2019); Mescheder et al. (2019)) suggest a way to overcome the limitation
of resolution. Subsequent works (Chabra et al. (2020); Chibane et al. (2020a); Jiang et al. (2020);
Peng et al. (2020)) demonstrate methods to extend the representation to large-scale scenes. However,
most works are limited to regressing a single surface from a given observation. Only a few recent
works (Wu et al. (2020); Zhang et al. (2021); Smith & Meger (2017)) generate multiple plausible
outcomes by modeling the distribution of surface conditioned on the observation. cGCA suggests a
scalable solution for multi-modal continuous shape completion by employing progressive generation
with continuous shape representations.

Diffusion Probabilistic Models. One way to capture the complex data distribution by the genera-
tive model is to use a diffusion process inspired by nonequilibrium thermodynamics such as Sohl-
Dickstein et al. (2015); Ho et al. (2020); Luo & Hu (2021). The diffusion process incrementally
destroys the data distribution by adding noise, whereas the transition kernel learns to revert the process
that restores the data structure. The learned distribution is flexible and easy to sample from, but it is
designed to evolve from a random distribution. On the other hand, the infusion training by Bordes
et al. (2017) applies a similar technique but creates a forward chain instead of reverting the diffusion
process. Since the infusion training can start from a structured input distribution, it is more suitable to
a shape completion that starts from a partial data input. However, the infusion training approximates
the lower bound of variational distribution with Monte Carlo estimates using the reprameterization
trick (Kingma & Welling (2014)). We modify the training objective and introduce a simple variant
of infusion training that can maximize the variational lower bound of the log-likelihood of the data
distribution without using Monte Carlo approximation.

6 CONCLUSION

We are the first to tackle the challenging task of probabilistic scene completion, which requires not
only the model to generate multiple plausible outcomes but also be scalable to capture the wide-range
context of multiple objects. To this end, we propose continuous Generative Cellular Automata, a
scalable generative model for completing multiple plausible continuous surfaces from an incomplete
point cloud. cGCA compresses the implicit field into sparse voxels associated with their latent
code named sparse voxel embedding, and incrementally generates diverse implicit surfaces. The
training objective is proven to maximize the variational lower bound of the likelihood of sparse voxel
embeddings, indicating that cGCA is a theoretically valid generative model. Extensive experiments
show that our model is able to faithfully generate multiple plausible surfaces from partial observation.

There are a few interesting future directions. Our results are trained with synthetic scene datasets
where the ground truth data is available. It would be interesting to see how well the data performs in
real data with self-supervised learning. For example, we can extend our method to real scenes such as
ScanNet Dai et al. (2017a) or Matterport 3D (Chang et al. (2017)) by training the infusion chain with
data altered to have different levels of completeness as suggested by Dai et al. (2020). Also, our work
requires two-stage training, where the transition kernel is trained with the ground truth latent codes
generated from the pre-trained autoencoder. It would be less cumbersome if the training could be
done in an end-to-end fashion. Lastly, our work takes a longer inference time compared to previous
methods (Peng et al. (2020)) since a single completion requires multiple transitions. Reducing the
number of transitions by using a technique similar to Salimans & Ho (2022) can accelerate the
runtime.
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7 ETHICS STATEMENT

The goal of our model is to generate diverse plausible scenes given an observation obtained by sensors.
While recovering the detailed geometry of real scenes is crucial for many VR/AR and robotics
applications, it might violate proprietary or individual privacy rights when abused. Generating the
unseen part can also be regarded as creating fake information that can deceive people as real.

8 REPRODUCIBILITY

Code to run the experiments is available at https://github.com/96lives/gca. Appendix A contains
the implementation details including the network architecture, hyperparameter settings, and dataset
processing. Proofs and derivations are described in Appendix B.
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Figure 6: Neural network architecture for the decoder fω . The left side shows the overall architecture
for the decoder fω and the right side shows the architecture for sparse convolution layers fω1

. The
parenthesis denotes the stride of the sparse convolution and every convolution except the feature
extracting layer is followed by batch normalization and ReLU activation.

A IMPLEMENTATION DETAILS

We use Pytorch (Paszke et al. (2019)) and the sparse convolution library MinkowskiEngine (Choy
et al. (2019)) for all implementations.

A.1 AUTOENCODER

Network Architecture. The autoencoder is composed of two modules, encoder gφ and decoder
fω to convert between the sparse voxel embedding and implicit fields, which is depicted in Fig. 2.
The encoder gφ generates the sparse voxel embedding s from the coordinate-distance pairs P =
{(p, dp)|p ∈ R3, dp ∈ R}, where p is a 3D coordinate and dp is the (signed) distance to the surface,
s = gφ(P ). The decoder fω regresses the implicit field value dq at the 3D position q ∈ R3 given the
sparse voxel embedding s, dq = fω(q, s).

The encoder gφ is a a local PointNet (Qi et al. (2016)) implemented with MLP of 4 blocks with hidden
dimension 128, as in ConvOcc (Peng et al. (2020)). Given a set of coordinate-distance pair P , we find
the nearest cell cp for each coordinate-distance pair (p, dp). Then we make the representation sparse
by removing the coordinate-distance pair if the nearest cell cp do not contain the surface. For the
remaining pairs, we normalize the coordinate p to the local coordinate p′ ∈ [−1, 1]3 centered at the
nearest voxel. Then we use the local coordinate to build a vector in R4 for coordinate-distance pair
(p′, dp) which serves as the input to the PointNet for the encoder gφ. The local PointNet architecture
employs average pooling to the point-coordinate pairs that belong to the same cell.

The architecture of decoder fω, inspired by IFNet (Chibane et al. (2020a)) is depicted in Fig. 6. As
shown on the left, the decoder fω can be decomposed into the sparse convolution fω1

that extracts
hierarchical feature, followed by trilinear interpolation of the extracted feature Ψ, and final MLP
layers fω2

. The sparse convolution layer fω1
aggregates the information into multi-level grids in

n different resolutions, i.e., fω1
(s) = F1, F2, ..., Fn, Starting from the original resolution F1, Fk

contains a grid that is downsampled k times. However, in contrast to the original IFNet, our grid
features are sparse, since they only store the downsampled occupied cells of sparse voxel embedding
s. The sparse representation Fk = {(c, oc, ec)|c ∈ Z3, oc ∈ {0, 1}, ec ∈ RL} is composed of
occupancy oc and L-dimensional feature ec for each cell, like sparse voxel embedding. The grid
points c that are not occupied are considered as having zero features. We use n = 3 levels, with
feature dimension L = 32 for all experiments.

The multi-scale features are then aggregated to define the feature for a query point q: Ψ(fω1(s), q) =∑
k ψk(Fk, q). Here ψk(Fk, q) ∈ RL is the trilinear interpolation of features in discrete grid Fk to

define the feature at a particular position q, similar to IFNet. We apply trilinear interpolation at each
resolution k then combine the features.

Lastly, the MLP layer maps the feature at the query point q to the implicit function value d̂q,
fω2

: RL → R. The MLP is composed of 4 ResNet blocks with hidden dimension 128 with tanh as
the final activation function. The final value d̂q is the truncated signed distance within the range of
[−1, 1] except for 3DFront (Fu et al. (2021)) which does not have a watertight mesh. We use unsigned
distance function for 3DFront as in NDF (Chibane et al. (2020b)) by changing the codomain of the
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Ground Truth Reconstruction Ground Truth Reconstruction

Figure 7: Visualizations of reconstructions by autoencoder. We visualize a reconstruction of a chair
using signed distance fields (left) and a scene in 3DFront using unsigned distance fields (right). Both
reconstructions show that sparse voxel embedding is able to reconstruct a continuous surface.
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Figure 8: Neural network architecture for the transition model pθ. We employ the architecture of
U-Net. The paranthesis indicates the stride of convolutions and each convolution is followed by batch
normalization.

decoder to [0, 1] with sigmoid as the final activation function. Thus, the decoder can be summarized
as fω(s, q) = fω2

(Ψ(fω1
(s), q)).

We would like to emphasize that the autoencoder does not use any dense 3D convolutions, and thus
the implementation is efficient, especially when reconstructing the sparse voxel embedding. Since
the decoding architecture only consists of sparse convolutions and MLPs, the memory requirement
increases linearly with respect to the number of occupied voxels. In contrast, the requirement for
dense 3D convolution increases cubic with respect to the maximum size of the scene.

Reconstruction Results. Fig. 7 shows a reconstruction of a chair (left) using signed distance fields
and a scene in 3DFront (right) using unsigned distance fields. The figure shows that our autoencoder
can faithfully reconstruct a continuous surface using the sparse voxel embedding. However, the usage
of unsigned distance fields (Chibane et al. (2020b)) representation tends to generate relatively thicker
reconstructions compared to that of signed distance fields. Without a clear distinction between the
interior/exterior, the unsigned representation makes it difficult to scrutinize the zero-level isosurface
and thus results in comparably thick reconstruction. Thus, the flexibility of being able to represent
any mesh with various topology comes at a cost of expressive power, in contrast to signed distance
fields which can only represent closed surfaces. Our work can be further improved by utilizing more
powerful implicit representation techniques, such as SIREN (Sitzmann et al. (2020)), but we leave it
as future work.

Hyperparameters and Implementation Details. We train the autoencoder with Adam (Kingma &
Ba (2015)) optimizer with learning rate 5e-4 and use batch size of 3, 1, and 4 for ShapeNet scene (Peng
et al. (2020)), 3DFront (Fu et al. (2021)), and ShapeNet (Chang et al. (2015)) dataset, respectively.
The autoencoder for scene completion is pretrained with all classes of ShapeNet assuming that the
local geometric details for scenes are represented with the patches from individual objects.

A.2 TRANSITION MODEL

Network Architecture. Following GCA (Zhang et al. (2021)), we implement the transition model
by using a variant of U-Net (Ronneberger et al. (2015)). The input to the sparse convolution network
is the sparse voxel embedding st, and the output feature size of the last convolution is K + 1, where
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we use generalized sparse convolution for the last layer to obtain the occupancy (with dimension 1)
and the latent code (with dimension K) of the neighborhood. Unlike GCA, our implementation does
not need an additional cell-wise aggregation step.

s0 Conditioned Model. The s0 conditioned model is a variant of our model, where we employ the
use of encoder gφ to estimate the initial latent codes of initial state s0 and condition every transition
kernel on s0. Given incomplete point cloud R = {c1, c2, ..., cM} with ci ∈ R3, the variant constructs
the initial s0 by encoding a set of coordinated-distance pair PR = {(c, 0)|c ∈ R}, where the distance
is set to 0 for every coordinate in R. Since the point cloud is sampled from the surface of the original
geometry, this is a reasonable estimate of the latent code.

The transition kernel pθ is conditioned on s0 by taking a sparse voxel embedding ŝt of latent code
dimension 2K that concatenates the current state st and s0 as the input. Specifically, we define ŝt

to be ŝt = {(c, oc, zc)|oc = os
t

c ∨ os
0

c , zc = [zs
0

c , z
st

c ] ∈ R2K , c ∈ Z3}, where the os
t

c , o
s0

c , z
st

c , z
s0

c
are the occupancies and latent codes of st and s0. The occupancy is set to one if either st or s0 is
occupied and the latent code is set to be the concatenation of latent codes of s0 and st. Thus, the only
modification to the neural network pθ is the size of input feature dimension, which is increased from
K to 2K.

Hyperparameters and Implementation Details We train our model with Adam (Kingma & Ba
(2015)) optimizer with learning rate 5e-4. The transition kernel is trained using infusion schedule
αt = 0.1 + 0.005t and standard deviation schedule σt = 10−1−0.01t. We use the accelerated training
scheme introduced in GCA (Zhang et al. (2021)) by managing the time steps based on the current step.
We use neighborhood size r = 2, with metric d induced by L1 norm, except for the ShapeNet (Chang
et al. (2015)) experiment on 643 voxel resolution which uses r = 3. For transition model training,
we utilize maximum batch size of 32, 16 and 6, for ShapeNet scene, 3DFront, ShapeNet dataset,
respectively. We use adaptive batch size for the transition model, which is determined by the total
number of cells in the minibatch for efficient GPU memory usage. Lastly, we use mode seeking steps
T ′ = 5 for all experiments.

Visualizations and Testing. All surface visualizations are made by upsampling the original voxel
resolution 4 times, where we efficiently query from the upsampled grid only near the occupied cells
of the final state sT+T ′ . Then, the mesh is extracted with marching cubes (Lorensen & Cline (1987))
with no other postprocessing applied. From the 4× upsampled high resolution grid, we extract cells
with the distance value below 0.5 which serve as the point cloud to compute the metrics for testing.

A.3 BASELINES

We use the official implementation or the code provided by the authors by contact with default
hyperparameters unless stated otherwise. All results are obtained by training on our dataset. The
output point cloud used for testing, is obtained by sampling from mesh with the same resolution if
possible, unless stated otherwise. For GCA (Zhang et al. (2021)) we use the same hyperparameters
as ours for fair comparison. The mesh is created by using marching cubes (Lorensen & Cline
(1987)) with the voxel resolution. We use the volume 643 encoder for ConvOcc (Peng et al. (2020))
which achieves the best results in the original ShapeNet scene dataset (Peng et al. (2020)). For
IFNet (Chibane et al. (2020a)), we use the ShapeNet128Vox model as used in the work of Siddiqui
et al. with occupancy implicit representation. cGAN (Wu et al. (2020)) is tested by 2,048 generated
point cloud.

A.4 DATASETS

ShapeNet Scene. ShapeNet scene (Peng et al. (2020)) contains synthetic rooms that contain mul-
tiple ShapeNet (Chang et al. (2015)) objects, which has randomly scaled floor and random walls,
normalized so that the longest length of the bounding box has length of 1. The number of rooms for
train/val/test split are 3750/250/995. We sample SDF points for training our model. The input is
created by iteratively sampling points from the surface and removing points within distance 0.1 for
each instance. We run 20 iterations and each removal is revoked if the aggregated removal exceeds
that of the guaranteed rate. Since we are more interested in the reconstruction of objects, the walls and
floors are guaranteed to have minimum rate of 0.8, regardless of the defined minimum rate. Lastly,
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we sample 10,000 points and add normal noise with standard deviation 0.005. For computing the
metrics at test time, we sample 100,000 points.

3DFront. 3DFront (Fu et al. (2021)) is a large-scale indoor synthetic scene dataset with professionally
designed layouts and contains high quality 3D objects. We collect rooms that contain multiple objects,
where 10% of the biggest rooms are removed from the data to discard rooms with immense size for
stable training. Thus, 7044/904/887 rooms are collected as train/val/test rooms. The incomplete point
cloud is obtained by randomly sampling with density 219 points/m2 and then removed and noised
as in ShapeNet scene, but with removal sphere distance proportional to the object size and noise of
standard deviation of 1cm. During evaluation, we sample points proportionally to the area for each
ground truth surface with density of 875 points/m2 to compute the metrics.

ShapeNet. We use chair, sofa, table classes of ShapeNet (Chang et al. (2015)), where the signed
distance values of the query points are obtained by using the code of DeepSDF (Park et al. (2019)).
The shapes are normalized to fit in a bounding box of [−1, 1]3. The partial observation is generated
by extracting points within a sphere of radius 0.5, centered at one of the surface points. Then we
sample 1,024 points to create a sparse input and compare the metrics by sampling 2,048 points for a
fair comparison against cGAN (Wu et al. (2020)).
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B PROOFS AND DETAILED DERIVATIONS

B.1 VARIATIONAL BOUND DERIVATION

We derive the variational lower bound for cGCA (Eq. (11)) below. The lower bound is derived by the
work of Sohl-Dickstein et al. (2015) and we include it for completeness.

log pθ(x) = log
∑
s0:T−1

pθ(s
0:T−1, x)

= log
∑
s0:T−1

qθ(s
0:T−1|x)

pθ(s
0:T−1, x)

qθ(s0:T−1|x)

≥
∑
s0:T−1

qθ(s
0:T−1|x) log

pθ(s
0:T−1, x)

qθ(s0:T−1|x)
(∵ Jensen’s inequality)

=
∑
s0:T−1

qθ(s
0:T−1|x)(log

p(s0)

q(s0)
+

∑
0≤t<T−1

log
pθ(s

t+1|st)
qθ(st+1|st, x)

+ log p(x|sT−1))

= log
p(s0)

q(s0)
+
∑
s0:T−1

qθ(s
0:T−1|x)

∑
0≤t<T−1

log
pθ(s

t+1|st)
qθ(st+1|st, x)

+ Eqθ [log pθ(x|sT−1)]

The second term of the right hand side can be converted into KL divergence as following:

∑
s0:T−1

qθ(s
0:T−1|x)

∑
0≤t<T−1

log
pθ(s

t+1|st)
qθ(st+1|st, x)

=
∑
s0:T−1

∏
0≤i<T−1

qθ(s
i+1|si, x)

∑
0≤t<T−1

log
pθ(s

t+1|st)
qθ(st+1|st, x)

=
∑
s0:T−1

∑
0≤t<T−1

∏
0≤i<T−1

i 6=t

qθ(s
i+1|si, x)qθ(s

t+1|st, sT ) log
pθ(s

t+1|st)
qθ(st+1|st, x)

=
∑

0≤t<T−1

∑
st+1

(
∑

s−(t+1)

∏
0≤i<T−1

i 6=t

qθ(s
i+1|si, x))qθ(s

t+1|st, x) log
pθ(s

t+1|st)
qθ(st+1|st, x)

(s−(t+1) denotes variables s0:T−1 except st+1)

=
∑

0≤t<T−1

∑
st+1

qθ(s
t+1|st, x) log

pθ(s
t+1|st)

qθ(st+1|st, x)

=
∑

0≤t<T−1

−
∑
st+1

qθ(s
t+1|st, x) log

qθ(s
t+1|st, x)

pθ(st+1|st)

=
∑

0≤t<T−1

−DKL(qθ(s
t+1|st, x)‖pθ(st+1|st))

Thus,

log pθ(x) ≥ log
p(s0)

q(s0)
+

∑
0≤t<T−1

−DKL(qθ(s
t+1|st, x)‖pθ(st+1|st))) + Eqθ [log pθ(x|sT−1)]

is derived.
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B.2 KL DIVERGENCE DECOMPOSITION

We derive the decomposition of KL divergence (Eq. (12) ) below.

Lt = DKL(qθ(s
t+1|st, x)‖pθ(st+1|st))

=
∑

c∈N (st)

DKL(qθ(oc, zc|st, x)‖pθ(oc, zc|st)) (∵ Eq. (4), Eq.( 8))

=
∑

c∈N (st)

DKL(qθ(oc|st, x)‖pθ(oc|st))

+
∑

oc∈{0,1}

qθ(oc|st, x)DKL(qθ(zc|st, x, oc)‖pθ(zc|st, oc))

(∵ Eq. (4), Eq. (8) and chain rule for conditional KL divergence)

=
∑

c∈N (st)

DKL(qθ(oc|st, x)‖pθ(oc|st))

+ qθ(oc = 1|st, x)DKL(qθ(zc|st, x, oc = 1)‖pθ(zc|st, oc = 1))

(∵ pθ(zc|st, oc = 0) = qθ(zc|st, x, oc = 0) = δ0(zc))

Thus, Eq. (12) is derived.

B.3 APPROXIMATING Lfinal BY LT−1

In this section, we claim that Lfinal can be replaced by LT−1, which allows us to train using a
simplified objective. First, we show that Lfinal = Eqθ [log pθ(x|sT−1)] = ∞ due to the usage of
Dirac distribution and introduce a non-diverging likelihood by replacing the Dirac function δ0(zc)
with indicator function 1[zc = 0]. Recall,

Lfinal = Eqθ [log pθ(x|sT−1)]

=
∑

c∈N (sT−1)

log{(1− λθ,c)1[oxc = 0]δ0(zxc ) + λθ,c1[oxc = 1]N(zxc ; µθ,c, σ
T−1I)}

Thus, if any cell c ∈ N (sT−1) is unoccupied, the likelihood diverges to ∞ since zxc = 0. This
disables us to use negative log-likelihood as a loss function, since all the gradients will diverge.

This problem can be easily resolved by substituting δ0(zxc ) with indicator function 1[zxc = 0]. Both
functions have non-zero value only at zc 6= 0, but the former has value of∞ while the latter has
value 1. While 1[zxc = 0] is not a probability measure, i.e.

∫
zxc
1[zxc = 0] 6= 1, replacing δ0(zxc ) will

have the effect of reweighting the likelihood at zxc = 0 from∞ to 1, with the likelihood at other
values zxc 6= 0 unchanged. Thus, 1[zxc = 0] is a natural replacement of δ0(zxc ) for computing a valid
likelihood.

Proposition 1. By replacing δ0(zxc ) with the indicator function 1[zxc = 0] when computing Lfinal,
∇LT−1 = ∇Lfinal, for T � 1

Proof. For brevity of notations, we define

σ = σt,

λq,c = (1− αt)λθ,c + αt1[c ∈ Gx(st)],

µq,c = (1− αt)µθ,c + αtzxc ,

where λq,c, µq,c is the occupancy probability, and mean of the infusion kernel q at cell c. With
T � 1, there exists T1 < T , such that αT1 = 1, since αt = max(α1t+ α0, 1). Since d(c, c′) = 0 if
and only if c = c′, Gx(st) = {argminc∈N (st)d(c, c′) | c′ ∈ x} must converge to a set of occupied
coordinates of x since the distance decreases for each cell c ∈ x at every step. This indicates that
λq,c = 1[c ∈ Gx(sT−1)] = oxc . Also, µq,c = zxc holds for all t > T1.
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Then, LT−1 and Lfinal can be expressed as the following:

LT−1 = −DKL(qθ(s
T |sT−1, x)‖pθ(sT |sT−1)

= −
∑

c∈N (sT−1)

DKL(qθ(o
T
c |sT−1, x)‖pθ(oTc |sT−1))

+ qθ(o
T
c = 1|sT−1, x)DKL(qθ(zc|sT−1, x, oTc = 1)‖pθ(zc|sT−1, oTc = 1)) (∵ Eq. (12))

= −
∑

c∈N (sT−1)

λq,c log
λq,c
λθ,c

+ (1− λq,c) log
1− λq,c
1− λθ,c

+ λq,c
1

2σ2
‖µθ,c − µq,c‖2

= −
∑

c∈N (sT−1)

oxc log
oxc
λθ,c

+ (1− oxc ) log
1− oxc

1− λθ,c
+ oxc

1

2σ2
‖zxc − µq,c‖2

(∵ λθ,c = oxc , µq,c = zxc )

Lfinal = Eqθ [log pθ(x|sT−1)]

=
∑

c∈N (sT−1)

log{(1− λθ,c)1[oxc = 0]δ0(zxc ) + λθ,c1[oxc = 1]N(zxc ; µθ,c, σ
T−1I)}

=
∑

c∈N (sT−1)

log{(1− λθ,c)1[oxc = 0]1[zxc = 0]

+ λθ,c1[oxc = 1] exp(− 1

2σ2
‖zxc − µθ,c‖22)(2πσ)−

K
2 }

We divide cases for oxc = 0 and oxc = 1. When oxc = 0,

LT−1 = Lfinal =
∑

c∈N (sT−1)

log(1− λθ,c),

where we set y log y = 0 for y = 0, since limy→0 y log y = 0. Analogously, when oxc = 1,

LT−1 =
∑

c∈N (sT−1)

log λθ,c −
1

2σ2
‖zxc − µθ,c‖2

Lfinal =
∑

c∈N (sT−1)

log λθ,c −
1

2σ2
‖zxc − µθ,c‖2 −

K

2
log(2πσ).

Thus, if oxc = 1, LT−1 = Lfinal − K
2 log(2πσ), where −K2 log(2πσ) is a constant. We can conclude

that∇θLT−1 = ∇θLfinal for all oxc .
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Table 4: Number of neural network parameters and GPU memory usage comparison for different
grid size with 3DFront dataset. The grid size indicates the largest length of the scene with voxel
resolution 5cm and the unit of GPU memory is GB.

grid size
Method # of parameters (x107) 55 77 93 124 235

ConvOcc 0.42 1.32 1.81 2.38 4.13 21.68
cGCA 4.12 2.40 2.81 2.88 2.84 3.24

C DIFFERENCE OF FORMULATION COMPARED TO GCA

We elaborate the difference of formulations compared to GCA (Zhang et al. (2021)).

Usage of Latent Code. The biggest difference between GCA and our model is the usage of local
latent codes (Jiang et al. (2020); Chabra et al. (2020)) to generate continuous surface. Although the
formulation of GCA allows scalable sampling of high resolution voxel, it cannot produce continuous
surface due to predefined voxel resolution. However, we define a new state named sparse voxel
embedding by appending local latent codes to the voxel occupancy. Sparse voxel embedding can
be decoded to produce continuous geometry, outperforming GCA in accuracy in all the evaluated
datasets in Sec. 4.

Training Disconnected Objects. During training, GCA assumes a property named partial connectiv-
ity between an intermediate state st and ground truth state x to guarantee the convergence of infusion
sequences to ground truth x (Property 1 and Proposition 1 of Zhang et al. (2021)). The connectivity
means that any cell in st can reach any cell in x following the path of cells in x with local transitions
bounded by neighborhood size r. The assumption is required since the infusion kernel of single cell
qt(oc|st) for GCA, defined as

qt(oc|st) = Ber((1− αt)λθ,c + αt1[c ∈ x]), (14)

inserts the ground truth cell c ∈ x if the cell is within the neighborhood of current state N (st), i.e.
c ∈ N (st) ∩ x. However, we eliminate the assumption by defining an auxiliary function

Gx(s) = {arg min
c∈N (s)

d(c, c′)|c′ ∈ x}, (15)

and modifying the formulation as

qt(oc|st) = Ber((1− αt)λθ,c + αt1[c ∈ Gx(st)]), (16)

by switching x in the infusion term to Gx(st) from the original infusion kernel. The usage of Gx(st)
guarantees infusing a temporary ground truth cell c that assures reaching all cells in x regardless
of the connectivity. The assumption is no longer required and therefore our training procedure is a
general version of GCA.

Training Procedure for Maximizing Log-likelihood. Both GCA and our model utilizes the infusion
training (Bordes et al. (2017)), by emulating the sequence of states that we aim to learn. The objective
of GCA does not explicitly show the relationship between the training objective and maximizing
the log-likelihood, which is what we aim to achieve. In Sec. 3.3, we give a detailed explanation
of how our training objective approximates maximizing the lower bound of log-likelihood of data
distribution. Thus, our training procedure completes the heuristics used in original work of GCA.

D ANALYSIS ON SCALABILITY

In this section, we investigate the scalability of our approach. Scene completion needs to process
the 3D geometry of large-scale scenes with multiple plausible outputs, and sparse representation is
crucial to find the diverse yet detailed solutions.

As the scale of the 3D geometry increases, the approaches utilizing the dense convolutional network
cannot observe the entire scene at the same time. As a simple remedy, previous methods employ
sliding window techniques for 3D scene completion (Siddiqui et al.; Peng et al. (2020)). Basically
they divide the input scene into small segments, complete each segment, and then fuse them. The
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formulation can only observe the information that is within the same segment for completion, and
assumes that the divisions contain all the information necessary to complete the geometry. The size
of the maximum 3D volume that recent works utilize amounts to a 3D box whose longest length is
3.2m for 643 resolution voxel, where individual cells are about 5 cm in each dimension. Note that the
size is comparable to ordinary furniture, such as sofa or dining table, whose spatial context might not
be contained within the same segment. The relative positions between relevant objects can be ignored,
and the missing portion of the same object can accidentally be separated into different segments.
With our sparse representation, the receptive field is large enough to observe the entire room, and we
can stably complete the challenging 3D scenes with multiple objects capturing the mutual context.

We further provide the numerical comparison of our sparse representation against the dense convolu-
tion of ConvOcc (Peng et al. (2020)). Table 4 shows the number of neural network parameters and
the GPU usage for processing single rooms of different sizes in 3DFront (Fu et al. (2021)). We used
5 cm voxel resolution and the grid size indicates the number of cells required to cover the longest
length of the bounding box for the room. The maximum GPU usage during 25 transitions of cGCA is
provided. We did not include the memory used for the final reconstruction which regresses the actual
distance values at dense query points, since the memory usage differs depending on the number of
query points.

Our neural network is powerful, employing about 10 times more parameters than ConvOcc. With
the efficient sparse representation, we can design the network to capture larger receptive fields with
deeper network, enjoying more expressive power. This is reflected in the detailed reconstruction
results of our approach. The memory usage is similar for smaller rooms for both approaches, but
cGCA becomes much more efficient for larger rooms. When the grid size for room reaches 235, our
method consumes 7 times less GPU memory compared to ConvOcc. As widely known, the memory
and computation for 3D convolution increases cubic to the grid resolution with dense representation,
while those for sparse representations increase with respect to the number of occupied voxels, which is
much more efficient. Therefore our sparse representation is scalable and crucial for scene completion.

E EFFECTS OF MODE SEEKING STEPS
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Figure 9: Ablation study on the effects of mode seeking step T ′. The left shows an example of
chair generation, where the bottom row are sparse voxel embeddings and the top row is the mesh
reconstruction of each state. The right is the result on the effects of mode seeking step T ′ tested with
probabilistic shape completion on sofa dataset.

We perform an ablation study on the effects of mode seeking steps, which removes the noisy voxels
with low-occupancy probability as discussed in Sec. 3.2. We test with ShapeNet dataset (Chang et al.
(2015)) with voxel size 643 and neighborhood radius r = 3, which tends to show the most intense
effect of mode seeking phase due to large neighborhood size.

The right side of Fig. 9 shows the graph of metrics on quality (MMD), fidelity (UHD), and diversity
(TMD) with respect to mode seeking steps. There is a dramatic decrease in all metrics on the first
step of mode seeking step. The effect is visualized in the left side of Fig. 9, where the unlikely voxels
are removed in a single mode seeking step. After the first mode seeking step, UHD and TMD metrics
increase slightly, but overall, the metrics remain stable. We choose T ′ = 5 for all the conducted
experiments to ensure that shape reaches a stable mode.
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Table 5: Quantitative comparison of probabilistic scene completion in ShapeNet scene dataset with
different levels of sparsity. The best results are marked as bold. Both CD (quality, ↓) and TMD
(diversity, ↑) in tables are multiplied by 104.

500 points 1,000 points 5,000 points 10,000 points
Method min. CD avg. CD TMD min. CD avg. CD TMD min. CD avg. CD TMD min. CD avg. CD TMD

ConvOcc 36.58 - - 5.92 - - 1.65 - - 1.33 - -
IFNet 15.27 - - 12.33 - - 9.64 - - 8.55 - -
GCA 6.41 9.77 31.83 4.08 5.90 16.58 3.08 3.68 5.64 3.02 3.54 4.92
cGCA 11.30 17.61 50.58 3.64 5.53 16.18 1.32 1.73 4.64 1.16 1.49 3.91
cGCA (w/ cond.) 4.62 5.93 10.71 2.11 2.76 5.75 0.97 1.27 3.41 0.87 1.08 2.96

F ANALYSIS ON VARYING COMPLETENESS OF INPUT

In this section, we further investigate the effects on the level of completeness of input. Sec. F.1 shows
results of completion models on sparse inputs and Sec. F.2 provides how our model behaves when a
non-ambiguous input is given.

F.1 RESULTS ON SPARSE INPUT

For the experiments of ShapeNet scene dataset, the models are trained and evaluated on the input
where the ambiguity lies on the missing parts, but the remaining parts of input pointcloud are relatively
clear by sampling 10,000 points, following the experiment setting of ConvOcc (Peng et al. (2020)).
In this section, we further provide ambiguity to the remaining parts by sampling less points. For the
models trained on 10,000 point samples with 0.5 completeness, we evaluate the results on sparse
input by sampling 500, 1,000, 5,000 and 10,000 points after applying the same iterative removal
process as done in training. As in Sec. 4.1, we measure the accuracy (CD) and diversity (TMD)
metrics compared with ConvOcc (Peng et al. (2020)), IFNet (Chibane et al. (2020a)), and GCA
(Zhang et al. (2021)).

Table 5 contains the quantitative comparison results. For all the models, accuracy (CD) degrades as
the input gets sparser. However, cGCA (w/ cond.) achieves best accuracy at all times, indicating that
our model is the most robust to the sparsity of input. For probabilistic models, the diversity (TMD)
increases as the density decreases. This implies that the diversity of the reconstructions is dependent
to the ambiguity of the input. This is intuitively a natural response, since the multi-modality of
plausible outcomes increases as the partial observations become less informative.

Fig. 10 visualizes the results for various sparsity. All of the models produce less plausible reconstruc-
tions with 500 points (leftmost column of Fig. 10) compared to that of higher density inputs. However,
we observe a clear distinction between the completions of probabilistic models (GCA, cGCA) and
deterministic models (ConvOcc, IFNet). While probabilistic models try to generate the learned
shapes from the observations, such as a shade of the lamp, deterministic methods tend to fill the gaps
between points. As discussed in Sec. 4.1, we hypothesize that this consequence stems from the fact
that deterministic methods produce blurry results since it is forced to generate a single result along
out of multiple plausible shapes which are the modes of the multi-modal distribution (Goodfellow
(2017)). Therefore, we claim that a generative model capable of modeling multi-modal distribution
should be used for shape completion task.

F.2 RESULTS ON NON-AMBIGUOUS INPUT

We present experiments where cGCA is given a non-ambiguous input. For the models trained
on various level of completeness on ShapeNet scene dataset, we evaluate each model on an input
presenting distinct geometry. The input is generated by sampling 100,000 points from the mesh
without any procedure of removal.

Table 6 shows the quantitative results of the experiments. The first row shows the accuracy (CD) and
diversity (TMD) scores of the models operated on test set when the removal procedure is same as that
of the training set. The second row shows the metrics when the input of the test set is sampled densely
(100,000 points) without any removal. For all models trained with varying level of completeness,
accuracy increases with decreasing diversity given a clear shape compared to an ambiguous shape.
The result indicates that the diversity of the trained models is dependent on the ambiguity of the input.
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Figure 10: Qualitative results on ShapeNet scenes with varying level of density. Note that all the
models are trained on dataset containing 10,000 points (rightmost column), but only tested with
different density. While the probabilistic methods (GCA, cGCA) tries to generate the learned shapes
(e.g. shades of lamp) with only 500 points, deterministic methods (ConvOcc, IFNet) tend to fill the
gaps between the points of the partial observation.

Output 1 Output 2 Output 3 Output 4Input

Figure 11: Qualitative results of cGCA tested on ShapeNet scenes where the input is non-ambiguous.
The model is trained on completeness of 0.2.
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Table 6: Quantitative results on cGCA trained on our ShapeNet dataset, but tested with non-
ambiguous input. The first row (training) indicates the metrics evaluated on dataset created with same
removal procedure as the corresponding training dataset. The second row (non-ambiguous) shows
the metrics where the input from the test dataset is sampled very densely without any removal from
the ground truth mesh with the same trained models as the first row. Both CD (quality, ↓) and TMD
(diversity, ↑) in tables are multiplied by 104.

min. rate 0.2 min. rate 0.5 min. rate 0.8
evaluation dataset min. CD avg. CD TMD min. CD avg. CD TMD min. CD avg. CD TMD

training 2.80 3.88 10.07 1.16 1.49 3.91 0.69 0.87 3.05
non-ambiguous 2.46 3.58 8.72 0.73 0.87 2.91 0.61 0.71 2.72

This coincides with the result of Sec. F.1 that the reconstructions of our model is dependent on the
multi-modality of plausible outcomes of input.

We also observe that the diversity of reconstructions is associated with the training data. Comparing
the quantitative results on non-ambiguous input, the accuracy is low while the diversity is high when
the model is trained on relatively incomplete data. We hypothesize that models trained with higher
level of incompleteness are more likely to generate shapes from the input. However, Fig. 11 shows
that while the completions of cGCA trained on highly incomplete data (min. rate 0.2) are diverse,
they are quite plausible.

G PROBABILISTIC SCENE COMPLETION ON REAL DATASET

We investigate how our model behaves on indoor real-world data. We test on the ScanNet indoor
scene dataset (Dai et al. (2017a)), which is highly incomplete compared to other datasets, such
as Matterport (Chang et al. (2017)). The input is sampled by collecting 500 points/m2 from each
scene. ScanNet dataset does not have a complete ground truth mesh, so we test our model trained on
3DFront (Fu et al. (2021)) dataset with completness of 0.8. We align the walls of ScanNet data to
xy-axis since the scenes of 3DFront are axis aligned. We compare our result with GCA (Zhang et al.
(2021)).

The results are visualized in Fig. 12. Our model shows diverse results (e.g. chairs, closets) and
generalizes well to the real data, which has significantly different statistics compared to the training
data. Especially, the conditioned variant of our model shows better results by generalizing well to
new data (e.g. tree), not found in 3DFront training dataset. We emphasize that our model is trained
on unsigned distance fields and does not require the sliding-window technique, unlike the previous
methods (Peng et al. (2020); Chibane et al. (2020a)).
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Figure 12: Qualitative results on ScanNet dataset with models trained on 3DFront dataset. Best
viewed on screen. Multiple plausible reconstructions are shown (pink and blue box). cGCA (w/
cond.) shows better results for reconstructing a tree (green box) compared to that of vanilla cGCA,
where a tree is never found in the training dataset. This allows us to infer that the conditioned variant
tends to help generalize to unseen data better compared to the vanilla cGCA.

26



Published as a conference paper at ICLR 2022

H ADDITIONAL RESULTS FOR SCENE COMPLETION

H.1 ADDITIONAL RESULTS FOR SHAPENET SCENE

min. rate 0.2 min. rate 0.5 min. rate 0.8
cG

C
A

 (w
/ c

on
d.

)
cG

C
A

G
C

A
IF

N
et

C
on

vO
cc

In
pu

t

Figure 13: Additional qualitative results on ShapeNet scene, with varying level of completeness.
Best viewed on screen.
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Figure 14: Additional qualitative results on ShapeNet scene, with varying level of completeness.
Best viewed on screen.
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H.2 ADDITIONAL RESULTS FOR 3DFRONT
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Figure 15: Additional qualitative results on 3DFront, with varying level of completeness. Best
viewed on screen.
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Figure 16: Additional qualitative results on 3DFront, with varying level of completeness. Best
viewed on screen.
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I ADDITIONAL RESULTS FOR SINGLE OBJECT COMPLETION

Figure 17: Additional qualitative results on ShapeNet sofa.

Figure 18: Additional qualitative results on ShapeNet chair.
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Figure 19: Additional qualitative results on ShapeNet table.
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