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Abstract

Linear contextual bandits represent a fundamental class of models with numer-
ous real-world applications, and it is critical to developing algorithms that can
effectively manage noise with unknown variance, ensuring provable guarantees
for both worst-case constant-variance noise and deterministic reward scenarios.
In this paper, we study linear contextual bandits with heteroscedastic noise and
propose the first noise-adaptive Thompson sampling-style algorithm that achieves a

variance-dependent regret upper bound of Õ
(
d3/2 + d3/2

√∑T
t=1 σ

2
t

)
, where d is

the dimension of the context vectors and σ2
t is the variance of the reward in round

t. This recovers the existing Õ(d3/2
√
T ) regret guarantee in the constant-variance

regime and further improves to Õ(d3/2) in the deterministic regime, thus achieving
a smooth interpolation in between. Our approach utilizes a stratified sampling
procedure to overcome the too-conservative optimism in the linear Thompson
sampling algorithm for linear contextual bandits.

1 Introduction

Linear contextual bandits represent a natural extension of multi-armed bandit problems (Auer et al.,
2002a; Robbins, 1952; Lai et al., 1985), where the reward of each arm is assumed to be a linear
function of the contextual information associated with the arm. Such problems manifest in numerous
real-world applications, encompassing online advertising (Wu et al., 2016), recommendation sys-
tems (Deshpande and Montanari, 2012), and personalized medicine (Varatharajah and Berry, 2022;
Lu et al., 2021). A multitude of algorithms have been proposed, tailored to diverse settings within
the domain of linear contextual bandits (Auer et al., 2002b; Abe et al., 2003). Notably, two main
streams of approaches to address the exploration-exploitation dilemma in linear contextual bandits
have emerged: Upper Confidence Bound (UCB) (Chu et al., 2011; Abbasi-Yadkori et al., 2011)
and Thompson sampling (TS) (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017). In practical
scenarios, the varying and non-transparent noise variance inherent in each reward is a common phe-
nomenon (Towse et al., 2015; Omari et al., 2018; Somu et al., 2018; Cheng and Kleijnen, 1999). Such
noise, which may exhibit heteroscedasticity and correlation with the context, can significantly impact
algorithm performance, particularly when the variance of the noise is unknown a priori (Kirschner
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and Krause, 2018; Zhao et al., 2022). Thus, it is imperative to develop adaptive algorithms capable of
handling noise with unknown heteroscedastic variance, ensuring provable guarantees when operating
with both constant-variance noise and deterministic reward scenarios. Recently, a few variance-aware
UCB algorithms have been proposed for linear bandits. In particular, Zhou et al. (2021) examined the
scenario where the variance is known and observed after each arm pull, while Zhang et al. (2021);
Kim et al. (2022b); Zhao et al. (2023) explored the unknown variance case. Nevertheless, there is a
scarcity of results concerning TS algorithms in this context.

Thompson Sampling (Thompson, 1933), a notable Bayesian approach, provides a computationally
efficient means of addressing the exploration-exploitation trade-off (Rusmevichientong and Tsitsiklis,
2010; Chapelle and Li, 2011). This method applies posterior sampling to generate a parameter
estimator for arm selection, thereby naturally balancing exploration and exploitation by selecting
arms with high expected rewards and those with substantial uncertainty (Russo et al., 2018; Riquelme
et al., 2018). In the existing literature, the regret upper bound for the linear TS algorithm for linear
contextual bandits is of order Õ(d3/2

√
T ) (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017),

and the existing algorithm cannot adapt to higher-order structure of the noise.

As an initial endeavor to incorporate variance information into TS-style algorithmic design for linear
bandits, we adopt a weighted ridge regression approach to construct a TS algorithm, LinVDTS,
detailed in Algorithm 2. This algorithm achieves a variance-dependent performance guarantee on
the expected regret, as demonstrated in Theorem 4.1. Nonetheless, a technical barrier intrinsic to
TS-style algorithms, yet absent in UCB, emerges during this naive integration of weighted regression
with TS. Specifically, the issue stems from inadequate control over the variance-adjusted norm of
unselected context vectors at each step, necessitating an anti-concentration argument that only allows
for a variance-dependent upper bound on the expected regret and precludes the acquisition of a
high-probability guarantee that is simultaneously variance-dependent. More discussion on this will
be given in Section 4.2.

In a bid to navigate this intricate issue and exert explicit uncertainty control, we further propose a
novel noise-adaptive TS variant in Algorithm 3. Our algorithmic design features (1) an uncertainty
stratification scheme applied to contextual vectors, providing explicit regulation of the uncertainty
quantification, (2) a cascading construction process for the feasible set, which, in tandem with the
stratification scheme, operates to filter out unlikely arms, thereby eliminating the requirement for
the anti-concentration argument in the analysis, and (3) the use of noise-adaptive confidence radii to
direct the sampling procedure, thereby ensuring a more constricted variance-dependent regret. The
theoretical analysis yields a high-probability regret bound that interpolates smoothly between the
constant-variance and deterministic reward regimes.

Main contributions. The main contributions of our paper are summarized in three key aspects.

• We introduce a simple and efficient TS-style algorithm, named LinVDTS (Algorithm 2), that can
utilize variance information for linear contextual bandits. We prove that the expected regret of

LinVDTS is bounded by Õ
(
d3/2

(
1 +

√∑T
t=1 σ

2
t

))
, where d is the ambient dimension and σ2

t is
the variance of the noise in round t. We also prove that, with high probability, the regret of LinVDTS

is bounded by Õ
(
d3/2

(
1 +

√∑T
t=1 σ

2
t

)
+
√
T
)

. In the analysis of LinVDTS, we identify the
inherent difficulty of controlling the uncertainty induced by posterior sampling, which precludes a
high-probability guarantee that is aware of the noise variance.

• We devise a stratified sampling procedure that fulfills more efficient exploration for linear con-
textual bandits by exerting explicit uncertainty control over the context vectors. Based on this
framework, we propose LinNATS (Algorithm 3), a noise-adaptive variant of linear TS. To the best
of our knowledge, this is the first noise-adaptive TS algorithm for linear contextual bandits with
heteroscedastic noise.

• We prove that LinNATS enjoys a high-probability regret bound of order Õ
(
d3/2

(
1+
√∑T

t=1 σ
2
t

))
,

under standard assumptions for linear contextual bandits with heteroscedastic noise. This improves
over the existing Õ(d3/2

√
T ) regret bound for linear Thompson sampling (Agrawal and Goyal,

2013; Abeille and Lazaric, 2017), especially when the noise variance diminishes. Our analysis
bypasses the standard anti-concentration argument thanks to the stratification framework.
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Notation. For any n ∈ N+, we denote [n] := {1, 2, . . . , n}, and x1:n is a shorthand for the set
{x1, . . . , xn}. We write scalars in normal font while representing vectors and matrices in bold
font. For any vector x and positive semi-definite matrix Σ, we define ∥x∥Σ = ∥Σ1/2x∥2. For
two functions f and g defined on N+, we use f(n) ≲ g(n) to indicate that there exists a universal
constant C > 0 such that f(n) ≤ C · g(n) for all n ∈ X; f(n) ≳ g(n) is defined analogously. We
use f(n) ≍ g(n) to imply that both f(n) ≲ g(n) and f(n) ≳ g(n) hold true. We use O(·) to hide
constant factors and Õ(·) to further hide poly-logarithmic terms.

2 Related work

Heteroscedastic linear bandits. The challenge of heteroscedastic noise in linear bandits has been
studied through a multitude of perspectives: In particular, Kirschner and Krause (2018) studied
linear bandits with heteroscedastic noise via the approach of information-directed sampling. Dai
et al. (2022) examined heteroscedastic sparse linear bandits and demonstrated a versatile framework
capable of transforming any heteroscedastic linear bandit algorithm into an algorithm tailored for
heteroscedastic sparse linear bandits. Building on the UCB approach, Zhou et al. (2021) developed
an adaptive algorithm that handles known-variance noise, providing performance guarantees of

Õ
(√

dT + d
√∑T

t=1 σ
2
t

)
. Zhang et al. (2021) introduced a variance-aware confidence set using

elimination with peeling and proved a regret bound of Õ
(
poly(d)

√
1 +

∑T
t=1 σ

2
t

)
. Kim et al.

(2022b) further refined this upper bound to Õ
(
d2 + d3/2

√∑T
t=1 σ

2
t

)
for linear bandits. Zhao

et al. (2022) proposed a multi-layered design for UCB algorithm that achieves a Õ
(
(R+ 1)

√
dT +

d
√∑T

t=1 σ
2
t

)
regret. More recently, Zhao et al. (2023) proposed a UCB-style algorithm with

a unified regret upper bound of Õ
(
d + d

√∑T
t=1 σ

2
t

)
, where the guarantee is facilitated by the

introduction of a novel Freedman-type concentration inequality for self-normalized martingales.

Thompson sampling. TS as a method to address the exploration-exploitation trade-off has gained
significant attention in recent years due to its simplicity, adaptability, and robust empirical perfor-
mance (Chapelle and Li, 2011; Gopalan et al., 2014; Kandasamy et al., 2018). Its effectiveness
has been demonstrated across various scenarios (Russo et al., 2018), and in particular, a multitude
of theoretical results have been solidified within multi-armed bandit settings (May et al., 2012;
Kaufmann et al., 2012; Korda et al., 2013; Russo and Van Roy, 2016). For linear contextual bandits,
Agrawal and Goyal (2013) provided the first proof for the Õ(d3/2

√
T ) regret of linear TS, and later

Abeille and Lazaric (2017) delivered an alternate proof and further extended the analysis to more
general linear problems. Notably, Hamidi and Bayati (2020) showed that the Õ(d3/2

√
T ) rate cannot

be improved in worse-case scenarios. While under additional assumptions such as regularity of the
contexts, better rates can be achieved (Hamidi and Bayati, 2020; Kim et al., 2021, 2022a).

Moreover, Zhang (2022) introduced a modified version called Feel-Good TS, which is more aggressive
in exploring new actions and achieves an Õ(d

√
T ) regret. Recently, Luo and Bayati (2023) also

proposed a geometry-aware approach, enabling the establishment of a minimax optimal regret of
order Õ(d

√
T ) for the TS algorithm. Xu et al. (2022) proposed a Langevin Monte Carlo TS algorithm

that samples from the posterior distribution beyond Laplacian approximation. Investigations have
also been undertaken into TS for kernelized bandits (Chowdhury and Gopalan, 2017) as well as
integration of TS with neural networks (Wang and Zhou, 2020; Zhang et al., 2020). Recently, Saha
and Kveton (2023) proposed a variance-aware TS algorithm on the topic of Bayesian bandits with a
variance-dependent upper bound on its Bayesian regret. As far as our awareness extends, no existing
results address noise-adaptive TS algorithms in the context of linear bandits.

3 Preliminaries

In this section, we introduce the fundamental framework for contextual linear bandits. We also provide
a concise overview of the linear TS algorithm, which functions as our benchmark methodology.
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Algorithm 1 Linear Thompson Sampling

1: for t = 1, . . . , T do
2: Sample θTS

t from N(θ̂t, β
2V−1

t )
3: Select arm xt ← argmaxx∈Xt

⟨x,θTS
t ⟩ and observe reward rt

4: end for

3.1 Linear contextual bandits

We investigate a linear contextual bandit problem with heteroscedastic noise. Let T be the total
number of bandit selection rounds and let d be the ambient dimension. In each round t ∈ [T ], the
environment generates an arbitrary set of context vectors Xt ⊆ Rd, potentially even in an adversarial
manner, where each x ∈ Xt denotes the context vector of a feasible action. Upon observing the
decision set Xt, the agent selects a context vector xt ∈ Xt, and then receives a reward rt from
the environment. In particular, here the reward is a linear function of the selected context further
corrupted by noise, i.e.,

rt = x
⊺
t θ

∗ + εt,

where θ∗ ∈ Rd represents the true model parameter and εt is the stochastic noise. In this paper, we
impose standard assumptions on the linear contextual bandit model, which are common in literature.

Assumption 3.1. The ground truth θ∗ satisfies ∥θ∗∥2 ≤ 1. For all t ∈ [T ], the decision set Xt is
contained in the unit ball, i.e., ∥x∥2 ≤ 1 for all x ∈ Xt. There exists a constant R > 0 such that
|εt| ≤ R for all t ∈ [T ]. For every t ∈ [T ], E[εt | x1:t, ε1:t−1] = 0 and E[ε2t | x1:t, ε1:t−1] = σ2

t .

In each round t, an algorithm selects an arm xt ∈ Xt, and we denote the optimal arm as x∗
t , i.e.,

x∗
t = argmaxx∈Xt

x⊺θ∗. As a result, the suboptimality of the selected arm at time t can be expressed
as ∆t = x∗

t
⊺
θ∗ − x⊺

t θ
∗. The objective of the agent is to minimize the cumulative regret incurred

over the time horizon T , which is defined as

R(T ) =
∑T

t=1
∆t =

∑T

t=1
⟨x∗

t − xt,θ
∗⟩ .

3.2 Thompson sampling for linear contextual bandits

A standard TS algorithm for linear contextual bandits (i.e., Algorithm 1) was first proposed in
Agrawal and Goyal (2013), employing Gaussian priors and likelihood functions in the design. At
each round t ∈ [T ], a sample θTS

t is drawn from the Gaussian posterior distribution, centered at the
estimate θ̂t = V−1

t

∑t−1
s=1 rsxs with covariance matrix β2V−1

t , where Vt = Id +
∑t−1

s=1 xsx
⊺
s and

the confidence radius β = 3R
√
d log(T/δ). The arm xt is then selected against the sample θTS

t .

The main idea here is to achieve exploitation by updating the posterior using collected information,
and the exploration among the arms is performed naturally in posterior sampling. Agrawal and Goyal
(2013) demonstrated that the algorithm presented in Algorithm 1 achieves a regret bound of order
Õ(d3/2

√
T ). This bound is worse than the minimax lower bound by an unavoidable factor of

√
d

(Hamidi and Bayati, 2020). Despite this discrepancy, the regret bound effectively showcases the
algorithm’s ability to balance exploration and exploitation in the linear contextual bandit setting.

4 Warm up: a simple and variance-dependent Thompson sampling algorithm

In this section, we introduce a preliminary algorithm, LinVDTS, delineated in Algorithm 2, which
combines TS with a weighted ridge regression estimator in a straightforward manner. For the sake of
clear exposition, we focus on a less complex linear bandit problem in which the agent is privy to both
the reward rt and its variance σ2

t subsequent to the selection of an arm.

4.1 Algorithmic design

In order to integrate variance information into the estimation process, the use of weighted regression
has emerged as a prevalent approach in the field of variance-aware online learning (Zhou et al., 2021;
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Algorithm 2 Linear Variance-Dependent Thompson Sampling (LinVDTS)

Require: Total number of iterations T , number of total arms n
1: Initialize V1 ← λId, ν1 ← 0, θ̂1 ← 0, β̂1 ←

√
λ, and Σ1 ← β̂2

1V
−1
1

2: for t = 1, . . . , T do
3: Observe context vectors Xt

4: Draw θTS
t ∼ N(θ̂t,Σt)

5: xt ← argmaxx∈Xt
⟨x,θTS

t ⟩
6: Observe reward rt and variance σ2

t
7: Update Vt+1 ← Vt + xtx

⊺
t /σ

2
t

8: Update νt+1 ← νt + rtxt/σ
2
t

9: Update θ̂t+1 ← V−1
t+1νt+1

10: Compute covariance matrix Σt+1 ← β̂2
t+1V

−1
t+1

11: end for

Min et al., 2021b, 2022a; Zhou and Gu, 2022; Yin et al., 2022; Zhao et al., 2023). This methodology
is intimately associated with the concept of the Best Linear Unbiased Estimator (BLUE), a well-
established statistical technique for achieving optimal linear estimation (Henderson, 1975).

Let us first explain the details of the proposed algorithm LinVDTS. In every round t, the algorithm
computes an estimate θ̂t of the ground truth θ∗ by solving a weighted ridge regression problem:

θ̂t = argmin
θ

∑t

s=1

1

σ2
s

(rs − ⟨xs,θ⟩)2 + λ∥θ∥22.

Here σt represents a weight parameter and λ denotes a regularization constant. For each approxi-
mation θ̂t, we stochastically draw θTS

t from a Gaussian distribution with mean θ̂t and covariance
Σt = β̂tV

−1
t , where Vt = λId +

∑t−1
s=1 xsx

⊺
s/σ

2
s is computed from previous context and reward

pairs, and the confidence radius, β̂t, is chosen as

β̂t ≍

√
d log

(
t

dλα2

)
log

(
t2

δ
log

γ2

α

)
+

R

γ2
log

(
t2

δ
log

γ2

α

)
+
√
λ.

Refer to (A.2) for a detailed delineation of β̂t. For each context vector x ∈ Xt, we compute the
estimated reward as ⟨x,θTS

t ⟩, and the algorithm outlined in Algorithm 2 then selects the arm xt

that optimizes this estimated reward. Following the approach of Zhou and Gu (2022), we construct
the weight parameter σt = max{σt, α, γ∥xt∥1/2V−1

t

}, which is designed as the maximum among
the variance, a constant α, and the uncertainty associated with the selected arm xt. It ensures the
formulation of a tight confidence radius β̂t, guided by a Bernstein-type concentration inequality,
cf.Theorem A.1.

4.2 Regret guarantee and technical challenges

The theorem below establishes a variance-dependent upper bound on the expected regret of LinVDTS.
See Appendix A.3 for detailed proof.

Theorem 4.1. Set parameters α = 1/
√
T , γ = R

1
2 /d

1
4 , λ = d. For any δ ∈ (0, 1), the expected

regret of Algorithm 2 is upper bounded as follows:

E[R(T )] = O

(
d3/2

(
1 +

√∑T

t=1
σ2
t

)
log T + δT

)
.

Further, it holds with probability 1− δ that

R(T ) = O

(
d3/2

(
1 +

√∑T

t=1
σ2
t

)
log T +

√
T log

1

δ

)
.
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Remark 4.2. Choosing δ = 1/T , then we see that the expected regret of Algorithm 2 is bounded by

Õ
(
d3/2

(
1 +

√∑T
t=1 σ

2
t

))
. However, the high-probability regret bound of Algorithm 2 is of order

Õ
(
d3/2

(
1 +

√∑T
t=1 σ

2
t

)
+
√
T
)

, where the additional
√
T term fails to be variance-dependent.

Nonetheless, this regret bound already improves over the existing Õ(d3/2
√
T ) bound for linear

Thompson sampling in the literature (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017).

The limitation on the high-probability bound arises from a set of technical challenges that are implicit
and inherent in the posterior sampling used in Algorithm 2. To illustrate this, we now provide an
outline of the proof for Theorem 4.1, and then discuss the technical intricacies therein.

Proof sketch of Theorem 4.1. Let us denote ∆t(x) = ⟨x∗
t − x,θ∗⟩ as the suboptimality of x ∈ Xt.

We introduce the saturated set S(t) for round t as the ensemble of arms whose confidence radius is
dwarfed by its suboptimality, i.e., S(t) =

{
x ∈ Xt : ∆t(x) > (2

√
d log t+ 1)β̂t∥x∥V−1

t

}
(Agrawal

and Goyal, 2013). Then the suboptimality ∆t of the chosen context xt can be decomposed as follows:

∆t = ⟨x∗
t − xt,θ

∗⟩ = ∆t(x
†
t) + x†

t

⊺
θ∗ − x

⊺
t θ

∗,

where the term x†
t = argminx/∈S(t) ∥x∥V−1

t
refers to the unsaturated arm that possesses the smallest

V−1
t norm. Leveraging the concentration results delineated in Lemmata A.2 and A.3 pertaining to θ̂t

and θTS
t , we have

∆t ≲
√
d log t(∥x†

t∥V−1
t

+ ∥xt∥V−1
t
)β̂t. (4.1)

For upper bound on the expected regret, we use an anti-concentration argument (Lemma A.6) to
relate ∥x†

t∥V−1
t

back to ∥xt∥V−1
t

. This yields

E[∆t | Ht] ≲
√

d log tE[∥xt∥V−1
t
]β̂t +

2

t2
, (4.2)

where {Ht}t≥1 represents a filtration of the information available up to the observation of the set of
context vectors at each round. Then collecting the above inequality for all t ∈ [T ], together with an
elliptical potential lemma, we get the desired upper bound for E[R(T )].
Next, for the high-probability regret bound, we decompose

R(T ) =
∑T

t=1
E[∆t | Ht] +

∑T

t=1
(∆t − E[∆t | Ht]) (4.3)

where the first term corresponds to the expected regret bound. We control the second term using
martingale concentration, which results in an additional

√
T term in the final regret bound.

Why cannot simultaneously achieve variance awareness and high-probability bound?

First, the optimism induced by the posterior sampling is too conservative.1 A primary challenge
in the analysis is to effectively control each suboptimality term ∆t, cf.(4.1). It is important to note
that one key algorithmic design in UCB-type algorithms is the exact optimism from the UCB bonus
β∥xt∥V−1

t
, which ensures ⟨x∗

t , θ̂t⟩ + β∥x∗
t ∥V−1

t
≤ ⟨xt, θ̂t⟩ + β∥xt∥V−1

t
. However, for TS-style

algorithms, the absence of this exact optimism hinders our control over the term ∥x∗
t ∥V−1

t
throughout

all rounds t ∈ [T ], i.e., a standard decomposition of ∆t = ⟨x∗
t − xt,θ

∗⟩ yields ∆t ≤ (2
√
d log t+

1)β̂t(2∥x∗
t ∥V−1

t
+ ∥xt∥V−1

t
) in this case. As a result, standard analyses turn to methodologies that

employ an anti-concentration inequality on the sampling distribution (Agrawal and Goyal, 2013).
This leads to the inequality ∥x†

t∥V−1
t
≤ ∥xt∥V−1

t
with a constant probability, thereby providing an

upper bound on the expected regret.

Second, in the conversion of the expected regret bound to a high-probability bound, we have no
help from the noise variance information. One may wonder if it is possible to incorporate the

1This is also identified in Zhang (2022) as the source of suboptimal dependence on dimension in the regret
bound for TS.
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variance of ∆t − E[∆t | Ht] to get a Bernstein-type concentration result. However, the variance of
∆t−E[∆t | Ht] does not necessarily conform to the noise variance, especially when the decision set
Xt is revealed adversarially. To see this, consider the following situation: Given θ̂t, the environment
reveals a decision set Xt = {x⊥,−x⊥} where x⊥ is orthogonal to θ̂t. Then a small perturbation
in θTS

t along the direction of x⊥ can cause the change of arm selection. This implies that a small
uncertainty of the posterior distribution along the direction of x⊥ will be amplified to a constant
variation of the selected arm xt. Therefore, in general, we do not have any delicate control of the
variance of ∆t − E[∆t | Ht]. Consequently, we can only apply Azuma-Hoeffding inequality to get
a non-noise-adaptive term of Õ(

√
T ). We discuss in the next section how to conquer this via more

advanced algorithmic design.

5 General case: a noise-adaptive Thompson sampling algorithm

In this section, we propose another TS algorithm LinNATS for linear contextual bandits, one that is
provably adaptive to unknown heteroscedastic noise. For greater generality, we adopt the identical
problem setting delineated in Section 3, and we refrain from assuming access to the variance
information {σ2

t }Tt=1 associated with the rewards {rt}Tt=1.

5.1 Algorithm

The proposed algorithm LinNATS is displayed in Algorithm 3. Below we go through the details of
LinNATS and explain the algorithmic design along the way.

Stratification over contextual uncertainty. For more efficient uncertainty control, we adopt a
stratification strategy akin to that previously used for UCB-type algorithms (Chu et al., 2011; Li et al.,
2023; Zhao et al., 2023). Our algorithm segments the context vectors at each round t into L distinct
layers, enabling the precise control of both ∥xt∥V−1

t
and ∥x∗

t ∥V−1
t

.

Specifically, the ℓ-th layer establishes a threshold of 2−ℓ and retains a separate estimate θ̂t,ℓ and
sampled variable θTS

t,ℓ for each ℓ ∈ [L] and t ∈ [T ] (Line 3). Commencing from ℓ = 1, a sequence of
decision sets Xt = Xt,1 ⊇ Xt,2 ⊇ . . . of diminishing sizes is derived by excluding the arms x ∈ Xt,ℓ

that are less likely to maximize ⟨x,θ∗⟩ at each layer ℓ. More specifically, on Line 11 we let

Xt,ℓ+1 =
{
x ∈ Xt,ℓ : ⟨x,θTS

t,ℓ⟩ ≥ max
x′∈Xt,ℓ

⟨x′,θTS
t,ℓ⟩ − 2−ℓ+1(

√
2d log(4t2L/δ) + 1)β̂t,ℓ

}
, (5.1)

which ensures that the optimal arm x∗
t falls into all decision sets with high probability. The context

vector xt = argmaxx∈Xt,ℓ
⟨x,θTS

t,ℓ⟩ is chosen if the uncertainty term ∥x∥V−1
t,ℓ
≤ α for all x ∈

Xt,ℓ (Line 8). Otherwise, xt is selected only when the uncertainty surpasses the threshold, i.e.,
∥xt∥V−1

t,ℓ
≥ 2−ℓ for some ℓ, and the elimination process in (5.1) terminates (Line 13).

The round index t is incorporated into a growing index set Ψt+1,ℓ (Line 9 & 15), and the observation
pair (xt, rt) participates the later estimation of θ̂s,ℓ for all s > t only if the chosen arm exhibits large
uncertainty within the current layer, i.e., ∥xt∥V−1

t,ℓ
≥ 2−ℓ (Line 21). This process guarantees that every

context vector x ∈ Xt,ℓ, cascading through the first (ℓ− 1)-th layer, satisfies ∥x∥V−1
t,ℓ−1

≤ 2−ℓ+1.

Parameter estimation with weighted ridge regression. To estimate θ∗, we again utilize weighted
ridge regression, but this time within each uncertainty level. For each layer ℓ ∈ [L] and round t ∈ [T ],
the associated estimator θ̂t,ℓ is given by

θ̂t,ℓ = argmin
θ∈Rd

∑
s∈Ψt,ℓ

w2
s(rs − ⟨xs,θ⟩)2 + 2−2ℓ∥θ∥22,

where the weight parameter wt > 0 is selected to fulfill the condition ∥wtxt∥V−1
t,ℓ

= 2−ℓ (Line 14).
Owing to the specific formulation of the weighting parameter, it follows that sups∈Ψt,ℓ

∥wsxs∥V−1
s,ℓ

=

2−ℓ holds universally for all t ∈ [T ] and ℓ ∈ [L]. This allows the application of a Freedman-type
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Algorithm 3 Linear Noise-Adaptive Thompson Sampling (LinNATS)

Require: Time horizon T , number of arms n, and threshold α = T−3/2/R

1: Initialize L← ⌈log2(1/α)⌉, V1,ℓ ← 2−2ℓId, ν1,ℓ ← 0, θ̂1,ℓ ← 0, Ψ1,ℓ ← ∅ and β̂1,ℓ ← 2−ℓ+1

for all ℓ ∈ [L]
2: for t = 1, . . . , T do
3: Draw θTS

t,ℓ ∼ N(θ̂t,ℓ,Σt,ℓ) for all ℓ ∈ [L]

4: Observe context vectors Xt = (xt,1, . . . ,xt,n)
5: Let ℓ← 1, Xt,ℓ ← Xt

6: while xt is not selected do
7: if ∥x∥V−1

t,ℓ
≤ α for all x ∈ Xt,ℓ then

8: Choose xt ← argmaxx∈Xt,ℓ
⟨x,θTS

t,ℓ⟩ and observe reward rt
9: Update Ψt+1,ℓ′ ← Ψt,ℓ′ for all ℓ′ ∈ [L]

10: else if ∥x∥V−1
t,ℓ
≤ 2−ℓ for all x ∈ Xt,ℓ then

11: Update Xt,ℓ+1 following (5.1)
12: else
13: Choose any xt ∈ Xt,ℓ such that ∥xt∥V−1

t,ℓ
> 2−ℓ and observe reward rt

14: Compute wt ← 2−ℓ/∥xt∥V−1
t,ℓ

15: Update Ψt+1,ℓ ← Ψt,ℓ ∪ {t} and Ψt+1,ℓ′ ← Ψt,ℓ′ for all ℓ′ ∈ [L]\{ℓ}
16: end if
17: Update ℓ← ℓ+ 1
18: end while
19: for ℓ ∈ [L] do
20: if Ψt+1,ℓ ̸= Ψt,ℓ then
21: Update Vt+1,ℓ ← Vt,ℓ + w2

txtx
⊺
t , νt+1,ℓ ← νt,ℓ + w2

t rtxt

22: Update θ̂t+1,ℓ ← V−1
t+1,ℓνt+1,ℓ

23: Compute confidence radius β̂t+1,ℓ following Eq. (5.3)
24: Compute covariance matrix Σt+1,ℓ ← β̂2

t+1,ℓV
−1
t+1,ℓ

25: else
26: Vt+1,ℓ ← Vt,ℓ, νt+1,ℓ ← νt,ℓ, θ̂t+1,ℓ ← θ̂t,ℓ, β̂t+1,ℓ ← β̂t,ℓ, Σt+1,ℓ ← Σt,ℓ

27: end if
28: end for
29: end for

concentration inequality to guarantee with high probability for all layer ℓ ∈ [L] that

∥θ̂t,ℓ − θ∗∥Vt,ℓ
= Õ

(
R

2ℓ
+

1

2ℓ

√∑
s∈Ψt,ℓ

w2
sσ

2
s

)
. (5.2)

Variance-dependent confidence radius. The variance-dependent error bound (5.2) is sufficient
for the formulation of a TS confidence radius, provided that the variance σ2

t is known. However,
under scenarios where the variance is unknown, it is necessary to further estimate them adaptively
and on the fly. Specifically, we estimate the summation of past weighted variances, represented
as
∑

s∈Ψt,ℓ
w2

sσ
2
s , each using an empirical estimator (rt − ⟨xt, θ̂t,ℓ⟩)2 as a substitute for σ2

t . The

weighted summation of these estimators ζt,ℓ =
∑

s∈Ψt,ℓ
w2

s(rs − ⟨xs, θ̂s,ℓ⟩)2 effectively acts as
a precise estimator of

∑
s∈Ψt,ℓ

w2
sσ

2
s (Zhao et al., 2023). Utilizing this estimator, we adjust the

posterior distribution according to the following confidence radius

β̂t,ℓ =
1

2ℓ−4

√(
8ζt,ℓ + 6R2 log

8t2L

δ
+ 2−2ℓ+4

)
log

8t2L

δ
+

3R

2ℓ−1
log

8t2L

δ
+

1

2ℓ−1
, (5.3)

where the variance estimator takes a slight variant for technical considerations:

ζt,ℓ =

{∑
s∈Ψt,ℓ

w2
s(rs − ⟨xs, θ̂t,ℓ⟩)2, if 2ℓ ≥ 64

√
log(8t2L/δ)

R2|Ψt,ℓ|, otherwise.
(5.4)
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5.2 Regret analysis

We provide the regret guarantee of Algorithm 3 in the following theorem. We also present a proof
sketch of Theorem 5.1 to emphasize the main idea. A complete proof is given in Appendix B.3.

Theorem 5.1. Set parameters α = T−3/2/R and L = ⌈log2(1/α)⌉. For any δ ∈ (0, 1), choose
the confidence radii {β̂t,ℓ}t∈[T ],ℓ∈[L] and the variance estimators {ζt,ℓ}t∈[T ],ℓ∈[L] according to (5.3)
and (5.4) respectively. Then with probability at least 1− 2δ, Algorithm 3 has regret guarantee

R(T ) = O

(
d3/2

(
1 +R+

√∑T

t=1
σ2
t

)
log T

)
.

Remark 5.2. Theorem 5.1 shows that our proposed algorithm, LinNATS, delivers a variance-dependent
regret guarantee free of any prior knowledge of the noise variance. The regret upper bound is also

stipulated to be of the order Õ
(
d3/2

(
1 +

√∑T
t=1 σ

2
t

))
, considering R as a constant. Notably, in

scenarios where the variance is constant, our LinNATS algorithm recovers the regret guarantee of
Õ(d3/2

√
T ) for linear TS (Agrawal and Goyal, 2013; Abeille and Lazaric, 2017), and in situations

where the reward is deterministic, it attains a regret guarantee of Õ(d3/2). This highlights the
versatility and adaptive performance of our proposed algorithm across various environmental settings.

Next, we present the main ingredients of our analysis for Algorithm 3.

Proof sketch of Theorem 5.1. The choice of the weight parameters in LinNATS allows us to first
apply a standard Freedman-type concentration argument (Theorem B.1), and deduce in Lemma B.2
that the estimator θ̂t,ℓ is accurate up to a variance-dependent quantity β̃t,ℓ:

∥θ̂t,ℓ − θ∗∥Vt,ℓ
≤ β̃t,ℓ ≍

1

2ℓ

√∑
s∈Ψt,ℓ

w2
sσ

2
s log

t2L

δ
+

R

2ℓ
log

t2L

δ
+

1

2ℓ−1
.

However, β̃t,ℓ comprises the variance information {σ2
s}s∈Ψt,ℓ

, which is unknown to the algorithm
and thus cannot be employed in the construction of the TS process. Thanks to Lemma B.4, the sum of
past weighted variances

∑
s∈Ψt,ℓ

w2
sσ

2
s can be upper-bounded by the empirical estimator ζt,ℓ defined

in (5.4). Therefore, we can use β̂t,ℓ as defined in (5.3) for the confidence radius, and show that

∥θTS
t,ℓ − θ∗∥Vt,ℓ

≤ (
√

2d log(4t2L/δ) + 1)β̂t,ℓ.

Then, by leveraging the stratified structure in conjunction with the cascading arm selection procedure
across ℓ ∈ [L], we are equipped to exert uniform control over ∥x∥V−1

t,ℓ−1
for every x ∈ Xt,ℓ in each

instance of t ∈ ΨT+1,ℓ, which resolves the technical challenge laid out in Section 4.2. Note that for
any context vector x ∈ Xt,ℓ, we have ∥x∥V−1

t,ℓ−1
≤ 2−ℓ+1, and thus by Cauchy-Schwarz inequality

|⟨x,θTS
t,ℓ − θ∗⟩| ≤ ∥x∥V−1

t,ℓ−1
∥θTS

t,ℓ − θ∗∥Vt,ℓ−1
≤ 2−ℓ+1(

√
2d log(4t2L/δ) + 1)β̂t,ℓ. (5.5)

Indeed, we ascertain in Lemma B.5 via an induction argument that for all t ≥ 1 and ℓ ∈ [L], where
Xt,ℓ exists, x∗

t ∈ Xt,ℓ. Hence (5.5) holds for both x∗
t and xt as a consequence of the stratified

structure. This allows us to execute the following decomposition of suboptimality for all t ∈ ΨT+1,ℓ:

∆t ≤ ⟨x∗
t ,θ

TS
t,ℓ−1⟩ − ⟨xt,θ

TS
t,ℓ−1⟩︸ ︷︷ ︸

≤0 by the definition of xt

+ |⟨x∗
t ,θ

TS
t,ℓ−1 − θ∗⟩|+ |⟨xt,θ

TS
t,ℓ−1 − θ∗⟩|︸ ︷︷ ︸

controlled via (5.5)

≤ 8 · 2−ℓ(
√
2d log(4t2L/δ) + 1)β̂t,ℓ−1.

The main result is then obtained by collating the preceding inequalities for all ℓ ∈ [L] followed by an
elliptical potential inequality, taking into account that L = O(log T ).
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6 Conclusion and future work

In this paper, we aimed to address the task of noise-adaptive learning on linear contextual bandits
with indeterminate heteroscedastic variance. As part of our endeavor, we put forth a straightforward
algorithm, LinVDTS, which assures a variance-dependent guarantee on the expected regret. Our
analytical exploration reveals that a simplistic implementation of Thompson Sampling culminates in
a sub-optimal regret bound. To mitigate this issue, we put forth an innovative Thompson Sampling
algorithm, LinNATS. With the incorporation of a stratification scheme, the algorithm successfully
navigates the technical challenges of uncertainty control, securing a variance-dependent regret
under unknown variance. Consequently, it effectively bridges the performance chasm between the
worst-case scenarios involving constant variance and those concerning deterministic rewards.

Looking forward, it would be intriguing to conceive a noise-adaptive variant of the recently devised
Feel-Good TS as introduced by Zhang (2022), which enhances the dependency on the dimension
d. Furthermore, extending the noise-adaptive methodology to TS algorithms designed for more
general settings, e.g., generalized linear bandits and Reinforcement Learning with linear function
approximation, constitutes an appealing direction for future research.
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A Regret analysis of Algorithm 2

A.1 Clarification of notation

Before elaborating on proofs, we delineate several shorthands to facilitate our discourse. For each
t ∈ [T ], we establish the events Eθ

t and ETS
t . These events are denoted as the inclusion of θ̂t and θTS

t

in the pertinent confidence ellipse with some confidence radius β̂t, respectively, i.e.,

Eθ
t =

{
|x⊺

θ̂t − x
⊺
θ∗| ≤ β̂t∥x∥V−1

t
,∀x ∈ Xt

}
and

ETS
t =

{
|x⊺

θTS
t − x

⊺
θ̂t| ≤ 2β̂t

√
d log t∥x∥V−1

t
,∀x ∈ Xt

}
.

We proceed to define the set S(t) representing the saturated arms at round t as follows:

S(t) =
{
x ∈ Xt : ∆t(x) > (2

√
d log t+ 1)β̂t∥x∥V−1

t

}
, (A.1)

where we denote ∆t(x) = ⟨x∗
t − x,θ∗⟩ as the suboptimality of x ∈ Xt. Moreover, we present a

filtration, denoted by {Ht}t≥1, which is defined as

Ht = {X1,θ
TS
1 , x1, σ1, r1, . . . ,Xt−1,θ

TS
t−1, xt−1, σt−1, rt−1,Xt}.

This filtration encapsulates the information that has been gleaned up until the observation of the set
of context vectors Xt at each particular round.

Concentration inequalities are widely used in literature (Fei and Xu, 2022b; Min et al., 2022b; He
et al., 2022; Lu et al., 2022; Xu et al., 2023), and here we introduce a Bernstein-type inequality
applicable to vector-valued martingales. This theorem, when coalesced with the approach of weighted
ridge regression, enables us to construct stringent bounds that are dependent on the variance {σ2

t }t≥1.

Theorem A.1 (Zhou and Gu (2022), Theorem 4.3). Let {Ht}∞t=1 be a filtration, {yt, ϱt}t≥1 a
stochastic process so that for each t ≥ 1, yt ∈ Rd is Ht-measurable and ϱt ∈ R is Ht+1-measurable.
For each t ≥ 1, define rt := ⟨yt,θ

∗⟩+ ϱt and suppose that ϱt, yt satisfy

∥yt∥ ≤ L, |ϱt| ≤ R, E[ϱt | Ht] = 0, E[ϱ2t | Ht] ≤ σ2

for some constants L,R, σ, ϵ > 0 and θ∗ ∈ Rd. Then, for any 0 < δ < 1, with probability at least
1− δ we have for all t > 0 that∥∥∥∥ t∑

s=1

ϱsys

∥∥∥∥
U−1

t

≤ βt, ∥θt − θ∗∥Ut
≤ βt +

√
λ∥θ∗∥,

where Ut = λId +
∑t

s=1 yty
⊺
t , νt =

∑t
s=1 rsyt, θt = U−1

t νt, and

βt = 12σ

√
d · log

(
1 +

tL2

dλ

)
log

(
32
(
1 + log

R

ϵ

) t2
δ

)
+ 6 log

(
32
(
1 + log

R

ϵ

) t2
δ

)
ϵ

+ 24 log

(
32
(
1 + log

R

ϵ

) t2
δ

)
max
s∈[t]
{|ϱs|min{1, ∥ys∥U−1

s−1
}}.

A.2 Proof of supporting lemmata

The forthcoming Lemmas A.2 and A.3 show that the events Eθ
t and ETS

t hold with high probability
for all t ∈ [T ]. The anti-concentration argument can then be developed in a manner analogous to
the approach employed by Agrawal and Goyal (2013), which is often not necessary in UCB-type of
arguments (Fei and Xu, 2022a; Chu et al., 2011; Min et al., 2023; Zhao et al., 2023).

Lemma A.2. Under Assumption 3.1, for any δ ∈ (0, 1), if we define for all t ≥ 1 that

β̂t = 12

√
d · log

(
1 +

t

dλα2

)
log

(
64
(
1 + log

γ2

α

) t2
δ

)
+

30R

γ2
· log

(
64
(
1 + log

γ2

α

) t2
δ

)
+
√
λ

(A.2)

15



with the coefficients α, γ, λ introduced in Algorithm 2, then the estimate θ̂t given by the associated
weighted regressions satisfy

P
(
|x⊺

θ̂t − x
⊺
θ∗| ≤ β̂t∥x∥V−1

t
,∀x ∈ Xt,∀t ≥ 1

)
≥ 1− δ/2.

Proof. Observe that for any t ≥ 1 and x ∈ Xt, by Cauchy-Schwarz inequality we have

|x⊺
θ̂t − x

⊺
θ∗| ≤ ∥θ̂t − θ∗∥Vt

∥x∥V−1
t
, (A.3)

so it suffices to bound each ∥x∥V−1
t

. By Assumption 3.1, the following conditions on εt and xt hold:∣∣∣ εt
σt

∣∣∣ ≤ R

α
, E[εt | Ht] = 0, E

[( εt
σt

)2 ∣∣∣Ht

]
≤ 1,

∥∥∥xt

σt

∥∥∥ ≤ 1

α
.

Moreover, we can obtain following σt = max{σt, α, γ∥xt∥1/2V−1
t

} that∣∣∣ εt
σt

∣∣∣ ·min
{
1,
∥∥∥xt

σt

∥∥∥
V−1

t

}
≤ R

σ2
t

∥xt∥V−1
t
≤ R

γ2
.

Therefore, by applying Theorem A.1 with the stochastic process {xt/σt, εt/σt}t≥1 and ϵ = R/γ2,
we deduce that with probability at least 1− δ/2 for all t ≥ 1

∥θ̂t − θ∗∥Vt
≤ 12

√
d · log

(
1 +

t

dλα2

)
log

(
64
(
1 + log

γ2

α

) t2
δ

)
+

30R

γ2
· log

(
64
(
1 + log

γ2

α

) t2
δ

)
+
√
λ∥θ∗∥.

Since ∥θ∗∥2 ≤ 1 by Assumption 3.1, it follows from the definition of β̂t that ∥θ̂t − θ∗∥Vt
≤ β̂t.

Combining this with (A.3), we conclude that with probability at least 1− δ/2,

|x⊺
θ̂t − x

⊺
θ∗| ≤ β̂t∥x∥V−1

t

for all t ≥ 1 and x ∈ Xt.

The following lemma establishes the control over |x⊺θTS
t − x⊺θ̂t|.

Lemma A.3. Under Assumption 3.1, for any δ ∈ (0, 1), let β̂t be as defined in Lemma A.2 for all
t ≥ 1. Then the sampled variable θTS

t in Algorithm 2 satisfies

P
(
|x⊺

θTS
t − x

⊺
θ̂t| ≤ β̂t

√
2d log(4t2/δ) · ∥x∥V−1

t
,∀x ∈ Xt,∀t ≥ 1

)
≥ 1− δ

2
.

Proof. By definition, θTS
t ∼ N(θ̂t,Σt) where Σt = β̂2

tV
−1
t , thus ∥θTS

t − θ̂t∥Σ−1
t
∼ N(0, 1). Then

using the concentration inequality in Lemma C.1 for standard normal distribution, for every t ∈ [T ],
we have with probability at least 1− δ

4t2 that

|x⊺
θTS
t − x

⊺
θ̂t| = |x⊺

V
−1/2
t V

1/2
t (θTS

t − θ̂t)|

≤ β̂t

∥∥∥∥∥V1/2
t (θTS

t − θ̂t)

β̂t

∥∥∥∥∥
2

∥x∥V−1
t

≤ β̂t

√
2d log(4t2/δ)∥x∥V−1

t
,

where the first inequality follows from Cauchy-Schwarz inequality. Applying a union bound over
t ∈ [T ] and utilizing the fact that

∑∞
t=1

1
t2 ≤ 2, we obtain the final result.

In the following, we delve into the anti-concentration argument presented in Lemmas A.4 to A.6,
which constitute the upper bound on expected regret.
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Lemma A.4. For any t ≥ 1, if Ht is a filtration such that Eθ
t holds, we have a constant probability

that the reward estimate ⟨x∗
t ,θ

TS
t ⟩ of the optimal arm constitutes an upper confidence bound, i.e.,

P(x∗
t
⊺
θTS
t > x∗

t
⊺
θ∗ | Ht) ≥

1

4e
√
π
.

Proof. Note that we can bound the quantity Jt = (x∗
t
⊺
θ∗ − x∗

t
⊺
θ̂t)/(β̂t∥x∗

t ∥V−1
t
) as follows:

|Jt| =

∣∣∣∣∣x∗
t
⊺
θ∗ − x∗

t
⊺
θ̂t

β̂t∥x∗
t ∥V−1

t

∣∣∣∣∣
≤

β̂t∥x∗
t ∥V−1

t

β̂t∥x∗
t ∥V−1

t

= 1, (A.4)

where the inequality is due to Lemma A.2. Recalling that θTS
t has a mean of θ̂t, we can establish

that the probability of the reward estimate x∗
t
⊺
θTS
t serving as an upper bound for the true reward is

lower-bounded by

P(x∗
t
⊺
θTS
t > x∗

t
⊺
θ∗ | Ht) = P(x∗

t
⊺
θTS
t − x∗

t
⊺
θ̂t > x∗

t
⊺
θ∗ − x∗

t
⊺
θ̂t | Ht)

= P

(
x∗
t
⊺
θTS
t − x∗

t
⊺
θ̂t

β̂t∥x∗
t ∥V−1

t

>
x∗
t
⊺
θ∗ − x∗

t
⊺
θ̂t

β̂t∥x∗
t ∥V−1

t

∣∣∣∣∣Ht

)

≥ 1

4
√
π
e−J2

t . (A.5)

The last inequality follows from the anti-concentration inequality in Lemma C.1 for standard normal
distribution and the fact that

x∗
t
⊺
θTS
t − x∗

t
⊺
θ̂t

β̂t∥x∗
t ∥V−1

t

∼ N(0, 1).

Consequently, combining (A.4) and (A.5), it follows that the desired probability is lower bounded by
a constant, i.e., P(x∗

t
⊺
θTS
t > x∗

t
⊺
θ∗ | Ht) ≥ 1

4e
√
π

.

Lemma A.5. For any t ≥ 1, if Ht is a filtration such that Eθ
t holds, we have with a constant

probability that the chosen arm xt is not a saturated arm, i.e.,

P(xt /∈ S(t) | Ht) ≥
1

4e
√
π
− 1

t2
.

Proof. Recall the definition of the set of saturated arms S(t) in (A.1) and that the selected arm
xt = argmaxx∈Xt

x⊺θTS
t aims to maximize the estimated reward. Consequently, xt /∈ S(t) if

x∗
t
⊺
θTS
t ≥ x⊺θTS

t for all saturated arms x ∈ S(t), implying that the estimated reward for the optimal
arm surpasses the estimated rewards of all saturated arms. It follows that:

P(xt /∈ S(t) | Ht) ≥ P(x∗
t
⊺
θTS
t ≥ x

⊺
θTS
t ,∀x ∈ S(t) | Ht).

Further note that by the definition of saturated arms, we have

x
⊺
θTS
t ≤ x

⊺
θ∗ + (2

√
d log t+ 1)β̂t∥x∥V−1

t
< x

⊺
θ∗ +∆t(x) = x∗

t
⊺
θ∗

when both Eθ
t and ETS

t hold. Therefore,

P(xt /∈ S(t) | Ht) ≥ P(x∗
t
⊺
θTS
t > x∗

t
⊺
θ∗ | Ht)− P(ETS(t) | Ht),

The last inequality is a consequence of Lemmas A.3 and A.4.
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Lemma A.6. For any t ≥ 1, if Ht is a filtration such that both Eθ
t and ETS

t hold, we have

E[∆t | Ht] ≤

(
2

1
4e

√
π
− 1

t2

+ 1

)
(2
√
d log t+ 1)β̂t E[∥xt∥V−1

t
| Ht] +

2

t2
.

Proof. Let x†
t represent the unsaturated arm with the smallest ∥ · ∥V−1

t
norm, i.e.,

x†
t = argmin

x/∈S(t)

∥x∥V−1
t
.

The existence of such an unsaturated arm x†
t is guaranteed since x∗

t /∈ S(t). When both Eθ
t and ETS

t
hold, we can express the suboptimality as follows:

∆t = ∆t(x
†
t) + x†

t

⊺
θ∗ − x

⊺
t θ

∗

≤ ∆t(x
†
t) + (x†

t

⊺
θTS
t + (2

√
d log t+ 1)β̂t∥x†

t∥V−1
t
)

− (x
⊺
t θ

TS
t − (2

√
d log t+ 1)β̂t∥xt∥V−1

t
)

Then since xt is the optimal arm under θTS
t , we further have

∆t ≤ ∆t(x
†
t) + (2

√
d log t+ 1)β̂t∥x†

t∥V−1
t

+ (2
√
d log t+ 1)β̂t∥xt∥V−1

t

≤ (2
√
d log t+ 1)β̂t(2∥x†

t∥V−1
t

+ ∥xt∥V−1
t
),

where the second inequality results from x†
t /∈ S(t). Note that ∥xt∥V−1

t
≥ ∥x†

t∥V−1
t

with constant
probability, i.e.,

E[∥xt∥V−1
t
| Ht] ≥ E[∥xt∥V−1

t
| Ht,xt /∈ S(t)] · P(xt /∈ S(t) | Ht)

≥
(

1

4e
√
π
− 1

t2

)
E[∥x†

t∥V−1
t
| Ht]. (A.6)

The last inequality is due to Lemma A.5 and the definition of x†
t as the unsaturated arm with the

smallest ∥ · ∥V−1
t

. Consequently,

E[∆t | Ht] ≤ E[(2
√
d log t+ 1)β̂t(2∥x†

t∥V−1
t

+ ∥xt∥V−1
t
) | Ht] + 2P(ETS

t )

≤

(
2

1
4e

√
π
− 1

t2

+ 1

)
(2
√
d log t+ 1)β̂t E[∥xt∥V−1

t
| Ht] +

2

t2
,

where the first inequality is due to ∆t ≤ 2 for all t, the second inequality follows from applying (A.6),
Lemmas A.3 and A.4.

A.3 Proof of Theorem 4.1

Let us define a shorthand Eθ = ∩Tt=1E
θ
t . The expected regret can be decomposed as follows:

E[R(T )] =
T∑

t=1

E[∆t | Eθ]P(Eθ) +

T∑
t=1

E[∆t | Eθ]P(Eθ)

≤
T∑

t=1

E[∆t | Ht,E
θ] + 2T · δ

2

≤
T∑

t=1

E[min{2, (2
√
d log t+ 1)Cβ̂t∥xt∥V−1

t
} | Ht] +

T∑
t=1

2

t2
+ δT

= E
[ T∑

t=1

min{2, (2
√

d log t+ 1)Cβ̂t∥xt∥V−1
t
}
∣∣∣∣Eθ

]
+ δT + 4,
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where we write C = maxt≥1
2

| 1
4e

√
π
− 1

t2
| + 1. The first inequality is due to Lemma A.2, the second

inequality is due to Lemma A.6, and the last inequality follows from ∆t ≤ 2 for all t ∈ [T ]. To
alleviate the burden on notation, we write gt = min{2, (2

√
d log t+ 1)Cβ̂t∥xt∥V−1

t
} and an index

set T = {t ∈ [T ] : ∥xt/σt∥V−1
t
≥ 1}. It follows that

T∑
t=1

gt =

T∑
t=1

min{2, (2
√
d log t+ 1)Cβ̂tσt∥xt/σt∥V−1

t
}

=
∑
t∈T

min{2, (2
√
d log t+ 1)Cβ̂tσt∥xt/σt∥V−1

t
}

+
∑
t/∈T

min{2, (2
√
d log t+ 1)Cβ̂tσt∥xt/σt∥V−1

t
}

≤ 2|T|+
∑
t/∈T

(2
√

d log t+ 1)Cβ̂tσt∥xt/σt∥V−1
t

= 2|T|+ 3C
∑
t/∈T

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
}

≤ 4d log(1 + T/(dλα2)) + 3C
∑
t/∈T

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
}, (A.7)

where the first inequality follows from the definition of gt, the last equality is due to ∥xt/σt∥V−1
t

< 1

for all t /∈ T, and the second inequality is due to

|T| ≤
∑
t∈T

min{1, ∥xt/σt∥2V−1
t
}

≤
T∑

t=1

min{1, ∥xt/σt∥2V−1
t
}

≤ 2d log(1 + T/(dλα2)).

The last inequality is due to Lemma C.2 and ∥xt/σt∥ ≤ 1/α. Further, we decompose T = [T ]\T =

T1 ∪ T2 where

T1 = {t ∈ T : σt = σt or σt = α}, T1 = {t ∈ T : σt = γ∥xt∥1/2V−1
t

}.

The second term in (A.7) can be controlled through a decomposition∑
t/∈T

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
} =

∑
t∈T1

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
}

+
∑
t∈T2

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
},

For t ∈ T1, we have∑
t∈T1

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
} ≤

∑
t∈T1

β̂t

√
d log t(σt + α)min{1, ∥xt/σt∥V−1

t
}

≤
T∑

t=1

β̂t

√
d log t(σt + α)min{1, ∥xt/σt∥V−1

t
}

≤

√√√√2d

T∑
t=1

β̂2
t (σ

2
t + α2) log T

√√√√ T∑
t=1

min{1, ∥xt/σt∥2V−1
t

}

≤ 2

√√√√d

T∑
t=1

β̂2
t (σ

2
t + α2) log T

√
d log(1 + T/(dλα2)),
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where the first inequality is due to Cauchy-Schwarz inequality, and the second inequality is due to
Lemma C.2 and ∥xt/σt∥ ≤ 1/α. For t ∈ T2, we have σt = γ2∥xt/σt∥V−1

t
, and then∑

t∈T2

β̂t

√
d log tσt min{1, ∥xt/σt∥V−1

t
} =

∑
t∈T2

β̂t

√
d log tσt∥xt/σt∥V−1

t

≤ γ2
∑
t∈T2

β̂t

√
d log t∥xt/σt∥2V−1

t

≤ γ2
T∑

t=1

β̂t

√
d log tmin{1, ∥xt/σt∥2V−1

t
}

≤ 2γ2d
√

d log T log(1 + T/(dλα2))(max
t∈[T ]

β̂t).

Hence, combining the inequalities above, we have

T∑
t=1

gt ≤ 4d log(1 + T/(dλα2)) + 3C · 2

√√√√d

T∑
t=1

β̂2
t (σ

2
t + α2) log T

√
d log(1 + T/(dλα2))

+ 3C · 2γ2d
√
d log T log(1 + T/(dλα2))(max

t∈[T ]
β̂t),

and an upper bound on expected regret follows noting that
∑T

t=1 min{2, (2
√
d log t +

1)Cβ̂t∥xt∥V−1
t
} enjoys a deterministic upper bound:

E[R(T )] ≤
T∑

t=1

gt + δT + 4

≤ 4d log(1 + T/(dλα2)) + 3C · 2

√√√√d

T∑
t=1

β̂2
t (σ

2
t + α2) log T

√
d log(1 + T/(dλα2))

+ 3C · 2γ2d
√
d log T log(1 + T/(dλα2))(max

t∈[T ]
β̂t) + δT + 4

Take λ = d, α = 1/
√
T , and γ =

√
R/d1/4, it follows that

log(1 + T/(dλα2)) ≤ log(T 2/d2 + 1)

and
β̂t = 12

√
d log(1 + t/(dλα2)) log(32(1 + log(γ2/α))t2/δ)

+ 30R log(32(1 + log(γ2/α))t2/δ)/γ2 +
√
λ

≤ 12

√
d log(1 + tT/d2) log(32(1 + log(R

√
T/
√
d))t2/δ)

+ 30
√
d log(32(1 + log(R

√
T/
√
d))t2/δ) +

√
d.

Combining Lemma A.2 and the inequalities above with δ = 1
T , we conclude that

E[R(T )] ≲ d log T + d log T

√√√√ T∑
t=1

β̂2
t (σ

2
t + α2) + γ2

√
d3 log3 T (max

t∈[T ]
β̂t)

≲ d log T + d log T

√√√√ T∑
t=1

β̂2
t (σ

2
t + α2) + d log T

√
d log T

≲ d log T

√√√√ T∑
t=1

β̂2
t (σ

2
t + 1/T ) + d log T

√
d log T

≲ d3/2 log T

√√√√ T∑
t=1

σ2
t + d3/2 log T.
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Recall that we have

E[R(T )] ≤
T∑

t=1

E[min{2, (2
√
d log t+ 1)Cβ̂t∥xt∥V−1

t
} | Ht] +

T∑
t=1

2

t2
,

For notational convenience, we further define St =
∑t

s=1 Dt where Dt = ∆t − gt − 2
t2 , and

gt = min{2, (2
√

d log t+ 1)Cβ̂t∥xt∥V−1
t
}.

It follows that E[Dt | Ht] ≤ 0 for all t ∈ [T ], and {St}t≥1 therefore forms a super-martingale
process with respect to the filtrations {Ht}t. Note that |Dt| ≤ 2gt + 2 ≤ 4, and with Azuma-
Hoeffding inequality we have with probability at least 1− δ/2 that

T∑
t=1

Gt ≤
T∑

t=1

gt +

T∑
t=1

2

t2
+

√√√√2

T∑
t=1

4 log(2/δ)

≤
T∑

t=1

min{2, (2
√
d log t+ 1)Cβ̂t∥xt∥V−1

t
}+

T∑
t=1

2

t2
+ 2
√

2T log(2/δ)

=

T∑
t=1

min{2, (2
√
d log t+ 1)Cβ̂tσt∥xt/σt∥V−1

t
}+

T∑
t=1

2

t2
+ 2
√

2T log(2/δ)

≲ d3/2 log T

√√√√ T∑
t=1

σ2
t + d3/2 log T +

√
T .

B Regret Analysis of Algorithm 3

B.1 Clarification of notation

Analogous to Appendix A, we first introduce two concentration events Eθ
t,ℓ and ETS

t,ℓ for each t ∈ [T ]

and ℓ ∈ [L], i.e.,

Eθ
t,ℓ = {|x

⊺
θ̂t,ℓ − x

⊺
θ∗| ≤ β̃t,ℓ∥x∥V−1

t,ℓ
,∀x ∈ Xt}

and

ETS
t,ℓ = {|x

⊺
θTS
t,ℓ − x

⊺
θ̂t,ℓ| ≤

√
2d log(4t2L/δ)β̂t,ℓ∥x∥V−1

t,ℓ
,∀x ∈ Xt}.

These events are also characterized as the inclusion of θ̂t,ℓ and θTS
t,ℓ in the corresponding confidence

ellipse, respectively. It is noteworthy that the event Eθ
t,ℓ is defined using

β̃t,ℓ = 16 · 2−ℓ

√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(8t

2L/δ) + 6 · 2−ℓR log(8t2L/δ) + 2−ℓ+1 (B.1)

rather than the confidence radius β̂t,ℓ.

Subsequently, we introduce a Freedman-type concentration inequality pertinent to vector-valued
martingales. This theorem, distinct from Theorem A.1, necessitates a nuanced control on the
uncertainty term ∥yt∥U−1

t−1
for all t ≥ 1. Consequently, it furnishes an even more stringent bound in

comparison to Theorem A.1.

Theorem B.1 (Zhao et al. (2023), Theorem 2.1). Let {Ht}∞t=1 be a filtration, {yt, ϱt}t≥1 a stochastic
process so that yt ∈ Rd is Ht-measurable and ϱt ∈ R is Ht+1-measurable. For t ≥ 1 let
rt = ⟨yt,θ

∗⟩+ ϱt and suppose that ϱt, yt satisfy

|ϱt| ≤ R, E[ϱt | Ht] = 0,

t∑
s=1

E[ϱ2s | Hs] ≤ vt
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for some constants R, {vt}t > 0 and θ∗ ∈ Rd. Then, for any 0 < δ < 1, with probability at least
1− δ we have for all t > 0 that∥∥∥ t∑

s=1

ϱsys

∥∥∥
U−1

t

≤ βt, ∥θt − θ∗∥Ut
≤ βt +

√
λ∥θ∗∥,

where Ut = λId +
∑t

s=1 ysy
⊺
s , νt =

∑t
s=1 rsys, θt = U−1

t νt, and

βt = 16ρ
√

vt log(4t2/δ) + 6ρR log(4t2/δ),

where ρ ≥ supt≥1 ∥yt∥U−1
t−1

.

B.2 Proof of supporting lemmata

Lemmas B.2 and B.3 show that the concentration events Eθ
t,ℓ and ETS

t,ℓ hold with high probability for
all t ∈ [T ] and ℓ ∈ [L].

Lemma B.2. For any δ ∈ (0, 1), if we define β̃t,ℓ for all t ≥ 1 and ℓ ∈ [L] as in (B.1), then the
estimate θ̂t,ℓ given by the associated weighted regressions in Algorithm 3 satisfy

P
(
|x⊺

θ̂t,ℓ − x
⊺
θ∗| ≤ β̃t,ℓ∥x∥V−1

t,ℓ
,∀x ∈ Xt,∀t ∈ Ψt+1,ℓ,∀ℓ ∈ [L]

)
≥ 1− δ

2
.

Proof. Notice that for any fixed ℓ ∈ [L], t ∈ Ψt+1,ℓ, and x ∈ Xt that

|x⊺
θ̂t,ℓ − x

⊺
θ∗| ≤ ∥θ̂t,ℓ − θ∗∥Vt,ℓ

∥x∥V−1
t,ℓ
.

Following the assumption on εt, it holds that

|wtεt| ≤ |εt| ≤ R, E[wtεt | Ht] = 0, E[w2
t ε

2
t | Ht] ≤ w2

t σ
2
t , ∥wtxt∥V−1

t,ℓ
= 2−ℓ,

where wt = 2−ℓ/∥xt∥V−1
t,ℓ
≤ 1. Apply Theorem B.1 with stochastic process {wtxt, wtεt} to get

that with probability at least 1− δ
2L for all t ∈ ΨT+1,ℓ

∥θ̂t,ℓ − θ∗∥Vt,ℓ
≤ β̃t,ℓ,

where

β̃t,ℓ = 16 · 2−ℓ

√ ∑
s∈Ψt,ℓ

w2
sσ

2
s log(8t

2L/δ) + 6 · 2−ℓR log(8t2L/δ) + 2−ℓ+1.

It follows from a union bound that with probability at least 1− δ/2 that for all ℓ ∈ [L], t ∈ Ψt+1,ℓ,
and x ∈ Xt

|x⊺
θ̂t,ℓ − x

⊺
θ∗| ≤ β̃t,ℓ∥x∥V−1

t,ℓ
.

Lemma B.3. For any δ ∈ (0, 1) and β̂t,ℓ defined in (5.3) for all t ≥ 1 and ℓ ∈ [L], the sampled
variables θTS

t,ℓ in Algorithm 3 satisfy

P
(
|x⊺

θTS
t,ℓ − x

⊺
θ̂t,ℓ| ≤

√
2d log(4t2L/δ) · β̂t,ℓ∥x∥V−1

t,ℓ
,∀x ∈ Xt,∀t ∈ Ψt+1,ℓ,∀ℓ ∈ [L]

)
≥ 1− δ

2
.

Proof. Note that θTS
t,ℓ ∼ N(θ̂t,ℓ,Σt,ℓ) where Σt = β̂2

t,ℓV
−1
t,ℓ , we have with probability at least

1− δ
4t2L

|x⊺
θTS
t,ℓ − x

⊺
θ̂t,ℓ| = |x⊺

V
−1/2
t,ℓ V

1/2
t,ℓ (θTS

t,ℓ − θ̂t,ℓ)|

≤ β̂t,ℓ

∥∥∥∥∥V
1/2
t,ℓ (θTS

t,ℓ − θ̂t,ℓ)

β̂t,ℓ

∥∥∥∥∥
2

∥x∥V−1
t,ℓ

≤ β̂t,ℓ

√
2d log(4t2L/δ)∥x∥V−1

t,ℓ
,
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where the last inequality follows the concentration inequality in Lemma C.1 for standard normal
distribution and that ∥∥∥∥∥V

1/2
t,ℓ (θTS

t,ℓ − θ̂t,ℓ)

β̂t,ℓ

∥∥∥∥∥
2

∼ N(0, 1).

A union bound over all ℓ ∈ [L] and t ≥ 1 yields the desired result, where the probability bound
follows

∑∞
t=1 1/t

2 < 2.

Next, we show that the empirical estimator ζt,ℓ provides an accurate estimate of the summation of
weighted variance up to a logarithmic factor. The proof is analogous to Zhao et al. (2023), and we
provide it here for the sake of maintaining a self-contained discourse.

Lemma B.4. For all t ≥ 1 and ℓ ∈ [L] such that 2ℓ ≥ 64
√
log(4(t+ 1)2L/δ), if Eθ

t,ℓ is satisfied

and ζt,ℓ =
∑

s∈Ψt,ℓ
w2

s(rs − ⟨xs, θ̂s,ℓ⟩)2, then the following inequalities hold:∑
s∈Ψt+1,ℓ

w2
sσ

2
s ≤ 8ζt+1,ℓ + 6R2 log(4(t+ 1)2L/δ) + 2−2ℓ+4,

ζt+1,ℓ ≤
3

2

∑
s∈Ψt+1,ℓ

w2
sσ

2
s +

7

3
R2 log(4t2L/δ) + 2−2ℓ.

Proof. For any ℓ ∈ [L] and t ∈ [T ], we have
∑

s∈Ψt+1,ℓ
w2

i ε
2
s being an unbiased estimator of∑

s∈Ψt+1,ℓ
w2

i σ
2
s conditioned on past observations. More specifically, we have E[ε2t | x1:t, r1:t−1]−

E[σ2
t | x1:t, r1:t−1] = 0 for all t ≥ 1 and∑

s∈Ψt+1,ℓ

E[w2
s(ε

2
s − σ2

s)
2 | x1:t, r1:t−1] ≤

∑
s∈Ψt+1,ℓ

E[w2
sε

4
s | x1:t, r1:t−1]

≤ R2
∑

s∈Ψt+1,ℓ

w2
sσ

2
s ,

where the first inequality follows from Var(wsε
2
s | x1:t, r1:t−1) ≤ E[w2

sε
4
s | x1:t, r1:t−1]. Following

Freedman inequality, it holds that with probability at least 1− 2δ/L that for all t ≥ 1∣∣∣∣∣∣
∑

s∈Ψt+1,ℓ

w2
sε

2
s −

∑
s∈Ψt+1,ℓ

w2
sσ

2
s

∣∣∣∣∣∣ ≤
√

2R2
∑

s∈Ψt+1,ℓ

w2
sσ

2
s log(4t

2L/δ) +
4

3
R2 log(4t2L/δ)

≤ 1

2

∑
s∈Ψt+1,ℓ

w2
sσ

2
s +

7

3
R2 log(4t2L/δ),

(B.2)

where the second inequality follows from Young’s inequality.

It then follows that∑
s∈Ψt+1,ℓ

w2
sσ

2
s ≤ 2

∑
s∈Ψt+1,ℓ

w2
sε

2
s +

14

3
R2 log(4t2L/δ)

≤ 4
∑

s∈Ψt,ℓ

w2
s(rs − ⟨xs, θ̂t,ℓ⟩)2 +

14

3
R2 log(4t2L/δ)

+ 4
∑

s∈Ψt,ℓ

w2
s((rs − ⟨xs, θ̂t,ℓ⟩)− εs)

2,

where the second inequality follows from (x+ y)2 ≤ 2x2 +2y2. Notice that the last term is bounded
by ∑

s∈Ψt,ℓ

w2
s((rs − ⟨xs, θ̂t,ℓ⟩)− εs)

2 =
∑

s∈Ψt,ℓ

w2
s⟨xs, θ̂t,ℓ − θ∗⟩2

≤ (θ̂t,ℓ − θ∗)
⊺
Vt+1,ℓ(θ̂t,ℓ − θ∗)

≤ β̃2
t+1,ℓ,
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where the first inequality follows from w2
sxsx

⊺
s ⪯ Vt+1,ℓ and the second inequality is due to

Lemma B.2. If we have 2ℓ ≥ 64
√
log(8t2L/δ), then

β̃2
t+1,ℓ ≤

1

8

∑
s∈Ψt+1,ℓ

w2
sσ

2
s + 2(6 · 2−ℓR log(4(t+ 1)2L/δ) + 2−ℓ+1)2

and ∑
s∈Ψt+1,ℓ

w2
sσ

2
s ≤ 4

∑
s∈Ψt,ℓ

w2
s(rs − ⟨xs, θ̂t,ℓ⟩)2 +

14

3
R2 log(4t2L/δ)

+
1

2

∑
s∈Ψt+1,ℓ

w2
sσ

2
s + 8(6 · 2−ℓR log(4(t+ 1)2L/δ) + 2−ℓ+1)2.

Move 1
2

∑
s∈Ψt+1,ℓ

w2
sσ

2
s to the other side of the inequality, we get the desired result.

Moreover, we can establish the inequality in the other direction:∑
s∈Ψt,ℓ

w2
s(rs − ⟨xs, θ̂t,ℓ⟩)2 ≤

∑
s∈Ψt,ℓ

w2
s(rs − ⟨xs,θ

∗⟩)2 + 2−2ℓ∥θ∗∥22

≤
∑

s∈Ψt+1,ℓ

w2
sε

2
s + 2−2ℓ,

where the first inequality follows from θ̂t,ℓ being the minimizer of the weighted ridge regression
problem. Combining the inequality with (B.2) yields the desired result.

Lemma B.5. Suppose that Eθ
t,ℓ and ETS

t,ℓ hold for all ℓ ∈ [L] and t ∈ Ψt+1,ℓ. If all the elements in

series {β̃t,ℓ}t,ℓ and {β̂t,ℓ}t,ℓ, as defined in (B.1) and (5.3) respectively, satisfy

β̃t,ℓ ≤ β̂t,ℓ,

then for all t ≥ 1 and ℓ ∈ [L] such that Xt,ℓ exists, it holds x∗
t ∈ Xt,ℓ.

Proof. We prove the statement by induction. If ℓ = 1, then x∗
t ∈ Xt,ℓ = Xt trivially holds. Suppose

x∗
t ∈ Xt,ℓ for some ℓ ∈ Z+ and Xt,ℓ+1 exists, we have for all x ∈ Xt,ℓ that

|⟨x,θTS
t,ℓ − θ∗⟩| ≤ |⟨x, θ̂t,ℓ − θ∗⟩|+ |⟨x,θTS

t,ℓ − θ̂t,ℓ⟩|

≤ (
√

2d log(4t2L/δ) + 1)β̂t,ℓ∥x∥V−1
t,ℓ

≤ 2−ℓ(
√

2d log(4t2L/δ) + 1)β̂t,ℓ,

where the second inequality is due to the assumption β̃t,ℓ ≤ β̂t,ℓ, Lemmas B.2 and B.3, and the last
inequality is due to ∥x∥V−1

t,ℓ
≤ 2−ℓ for all x ∈ Xt,ℓ. If we define x̃t = argmaxx∈Xt,ℓ

⟨x,θTS
t,ℓ⟩, the it

holds that

⟨x̃t − x∗
t ,θ

TS
t,ℓ⟩ ≤ ⟨x̃t − x∗

t ,θ
∗⟩+ ⟨x̃t − x∗

t ,θ
TS
t,ℓ − θ∗⟩

≤ |⟨x̃t,θ
TS
t,ℓ − θ∗⟩|+ |⟨x∗

t ,θ
TS
t,ℓ − θ∗⟩|

≤ 2 · 2−ℓ(
√
2d log(4t2L/δ) + 1)β̂t,ℓ,

where the second inequality follows from ⟨x̃t − x∗
t ,θ

∗⟩ ≤ 0. Hence, the optimal action x∗
t ∈ Xt,ℓ+1

and the statement follows from induction.

Lemma B.6. Suppose that β̃t,ℓ ≤ β̂t,ℓ, Eθ
t,ℓ, and ETS

t,ℓ hold for all ℓ ∈ [L] and t ∈ Ψt+1,ℓ. For any
ℓ ∈ [L]\{1}, we have∑

t∈ΨT+1,ℓ

∆t ≤ 16d · 2ℓ(
√
2d log(4T 2L/δ) + 1)β̂T,ℓ−1 · log(1 + 22ℓT/d).
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Proof. For all t ∈ ΨT+1,ℓ, we have xt,x
∗
t ∈ Xt,ℓ following Lemma B.5 and the assumptions on

β̃t,ℓ ≤ β̂t,ℓ, Eθ
t,ℓ, and ETS

t,ℓ. Due to Line 11 in Algorithm 3, it holds

⟨x∗
t ,θ

TS
t,ℓ−1⟩ − ⟨xt,θ

TS
t,ℓ−1⟩ ≤ 2 · 2−ℓ+1(

√
2d log(4(t2L/δ) + 1)β̂t,ℓ−1. (B.3)

In addition, for any t ∈ ΨT+1,ℓ, we have both ∥xt∥V−1
t,ℓ−1

≤ 2−ℓ+1 and ∥x∗
t ∥V−1

t,ℓ−1
≤ 2−ℓ+1. It

follows that

∆t ≤ ⟨x∗
t ,θ

TS
t,ℓ−1⟩ − ⟨xt,θ

TS
t,ℓ−1⟩+ |⟨x∗

t ,θ
TS
t,ℓ−1 − θ∗⟩|+ |⟨xt,θ

TS
t,ℓ−1 − θ∗⟩|

≤ 2 · 2−ℓ+1(
√

2d log(4t2L/δ) + 1)β̂t,ℓ−1 + 2 · 2−ℓ+1(
√
2d log(4t2L/δ) + 1)β̂t,ℓ−1

≤ 8 · 2−ℓ(
√
2d log(4t2L/δ) + 1)β̂t,ℓ−1,

where the second inequality is due to (B.3), Lemmas B.2 and B.3. Summing over t ∈ ΨT+1,ℓ, we
have ∑

t∈ΨT+1,ℓ

∆t ≤ 8 · 2−ℓ(
√
2d log(4T 2L/δ) + 1)β̂T,ℓ−1|ΨT+1,ℓ|

≤ 8 · 2ℓ(
√
2d log(4T 2L/δ) + 1)β̂T,ℓ−1 ·

∑
t∈ΨT+1,ℓ

∥wtxt∥2V−1
t,ℓ

≤ 8 · 2ℓ(
√
2d log(4T 2L/δ) + 1)β̂T,ℓ−1 · 2d log(1 + 22ℓT/d),

where the second inequality is due to ∥wtxt∥V−1
t,ℓ

= 2−ℓ for all t ∈ ΨT+1,ℓ, and the last inequality is
due to Lemma C.2.

B.3 Proof of Theorem 5.1

With probability at least 1 − 2δ, all the statements of Lemmas B.2 and B.3 hold, and the rest of
our proof will build on such an event. Let ℓ0 = ⌈ 12 log2 log(8(T + 1)2L/δ)⌉ + 8, and we have
β̃t,ℓ ≤ β̂t,ℓ for all t ∈ [T ] and ℓ ∈ [L]\[ℓ0] following Lemma B.4. It then follows Lemma B.6 that
for all ℓ ∈ [L]\[ℓ0]∑

t∈ΨT+1,ℓ

∆t ≤ Õ(d3/22ℓβ̂T,ℓ−1)

≤ Õ

d3/2

√√√√ T∑
t=1

w2
t (rt − ⟨xt, θ̂t+1,ℓ⟩)2 +R2 + 1 +R


≤ Õ

d3/2

√√√√ T∑
t=1

σ2
t + d3/2R+ d3/2

 ,

where the first inequality is due to Lemma B.6, the second inequality is due to the definition of β̂T,ℓ−1,
and the last inequality is due to Lemma B.4. For any layer ℓ ∈ [ℓ0] and t ∈ ΨT+1,ℓ, we have∑

t∈ΨT+1,ℓ

∆t ≤ 2|ΨT+1,ℓ|

= 22ℓ+1
∑

t∈ΨT+1,ℓ

∥wtxt∥2V−1
t,ℓ

≤ Õ(d),

where the first inequality follows from ⟨x,θ∗⟩ ≤ 1 for all x ∈ Xt and t ∈ [T ], the equality is
due to ∥wtxt∥V−1

t,ℓ
= 2−ℓ for all t ∈ ΨT+1,ℓ, and the last inequality is due to Lemma C.2 and

2ℓ0 ≲
√
log(TL/δ).
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For any t ∈ [T ]\(∪ℓ∈[L]ΨT+1,ℓ), Algorithm 3 selects an arm at some ℓt-th layer, and it follows that∑
t∈[T ]\(∪ℓ∈[L]ΨT+1,ℓ)

∆t ≤
∑

t∈[T ]\(∪ℓ∈[L]ΨT+1,ℓ)

(⟨x∗
t ,θ

TS
t,ℓt⟩ − ⟨xt,θ

∗⟩)

+
∑

t∈[T ]\(∪ℓ∈[L]ΨT+1,ℓ)

√
2d log(4t2L/δ) + 1)β̂t,ℓt∥x∗

t ∥V−1
t,ℓt

≤
∑

t∈[T ]\(∪ℓ∈[L]ΨT+1,ℓ)

(⟨xt,θ
TS
t,ℓt − θ∗⟩+ α(

√
2d log(4t2L/δ) + 1)β̂t,ℓt)

≤
∑

t∈[T ]\(∪ℓ∈[L]ΨT+1,ℓ)
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√
2d log(4t2L/δ) + 1)β̂t,ℓt)

≤
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2α(
√
2d log(4t2L/δ) + 1)β̂t,ℓt

≤ T · Õ(
√
d/T )

≤ Õ(
√
d),

where the first inequality is due to β̃t,ℓ ≤ β̂t,ℓ, Lemmas B.2, B.3 and B.5, the second inequality is due
to the arm selection rule of Algorithm 3, the third inequality is due to Cauchy-Schwarz inequality,
and the fourth inequality is due to β̃t,ℓ ≤ β̂t,ℓ, Lemmas B.2 and B.3, and the fifth inequality follows
from the definition of α and β̂t,ℓt ≤ Õ(R

√
T ).

Combining the above inequalities together, we conclude that

R(T ) =

T∑
t=1

∆t

≤ Õ

d3/2 + d3/2R+ d3/2

√√√√ T∑
t=1

σ2
t

 ,

where the inequality follows from L ≲ log T and ℓ0 = ⌈ 12 log2 log(8(T + 1)2L/δ)⌉+ 8.

C Auxiliary Lemmata

Lemma C.1 (Abramowitz et al. (1964)). For a Gaussian distributed random variable X with mean
m and variance σ2, it holds that for any x ≥ 1 that

1

2
√
πx

exp(−x2/2) ≤ P(|X −m| > xσ) ≤ 1√
πx

exp(−x2/2).

Lemma C.2 (Abbasi-Yadkori et al. (2011), Lemma 11). Let {Xt}∞t=1 be a sequence in Rd, V ∈ Rd×d

positive definite matrix, and Vt = V +
∑t

s=1 XsX
⊺
s . Then we have that

log

(
det(Vn)

det(V)

)
≤

n∑
t=1

∥Xt∥2V−1
t−1

.

Further, if ∥Xt∥2 ≤ L for all t, then
n∑

t=1

min

{
1, ∥Xt∥2V−1

t−1

}
≤ 2(log det(Vn)− log det(V))

≤ 2(d log((Tr(V) + nL2)/d)− log det(V)),

and finally, if λmin(V) ≥ max(1, L2) then
n∑

t=1

∥Xt∥2V−1
t−1

≤ 2 log
det(Vn)

det(V)
.
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D Numerical Results

In our simulation, we test our algorithm on a linear contextual bandit problem with different sets
of reward perturbations. Specifically, the simulation is carried out over T = 2000 rounds with an
ambient dimension of d = 25. For each selection round t ∈ [T ], the environment yields a set of
contexts Xt, which contains K = 50 context vectors. The context vectors are randomly drawn and
structured as truncated Gaussian vectors, ensuring their norms remain bounded by 1. Within each
trial, a random ground truth vector θ∗ is generated as another Gaussian vector. The reward associated
with every context vector is then computed based on the expected reward, perturbed by Gaussian
noise. We employ our proposed algorithms, LinVDTS and LinNATS, to scrutinize their performance
within this configuration.

Figure 1: Performance comparison of LinVDTS, LinNATS, and the vanilla TS algorithms on the linear
contextual bandit problem. The blue (LinVDTS), orange (LinNATS), and green (vanilla TS) lines
depict the average regret for each method. Dashed lines represent the average regret in a constant
variance scenario, while solid lines indicate the average regret under diminishing noise variance.
Confidence bands, plotted for each method, are derived from 50 random trials.

Figure Fig. 1 presents the cumulative regrets of the LinVDTS and LinNATS algorithms, using the
vanilla TS as a benchmark. The algorithms are evaluated in two distinct bandit environments: one
characterized by constant variance and the other by a quadratically decaying variance. Performance
under the constant variance setup is captured by dashed lines, whereas the decaying variance scenario
is depicted by solid lines, with the observations being grounded on 50 randomized trials. It is
noteworthy that while LinVDTS is privy to the ground truth variance, LinNATS operates without this
knowledge in our experimental framework. This distinction underscores LinNATS’s commendable
adaptability in environments where the variance is elusive. Given its access to variance data, the
superior performance of LinVDTS vis-a-vis LinNATS in fluctuating variance situations is anticipated.
The presented outcomes showcase the variance-awareness of our proposed algorithms and the inherent
flexibility of these algorithms in modulating their regret according to the prevailing variance dynamics.

Future directions and broader impact. The recent progress in understanding the training dynamics
of deep neural networks (Jacot et al., 2018; Song et al., 2021) has paved the way for investigations
at the intersection of deep learning and reinforcement learning (Lillicrap et al., 2015; Chen et al.,
2021; Xu et al., 2021). This integrative approach promises to yield transformative insights and
substantially enhance the performance of existing learning architectures. Further, the incorporation
of non-linear function approximation into our frameworks emerges as a pivotal research direction,
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with the potential to significantly improve their robustness (Ling et al., 2019; Chen et al., 2020; Min
et al., 2021a; Ye et al., 2023). We believe that engaging in these research endeavors is important for
the refinement of our methodologies.
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