Under review as a conference paper at ICLR 2026

QUANTILE RENDERING: EFFICIENTLY EMBEDDING
LANGUAGE FEATURES ON 3D GAUSSIAN SPLATTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in computer vision have successfully extended Open-
vocabulary segmentation (OVS) to the 3D domain by leveraging 3D Gaus-
sian Splatting (3D-GS). Despite this progress, efficiently rendering the high-
dimensional features required for open-vocabulary queries poses a significant
challenge. Existing methods employ codebooks or feature compression, causing
information loss, thereby degrading segmentation quality. To address this limita-
tion, we introduce Quantile Rendering (Q-Render), a novel rendering strategy for
3D Gaussians that efficiently handles high-dimensional features while maintain-
ing high fidelity. Unlike conventional volume rendering, which densely samples
all 3D Gaussians intersecting each ray, Q-Render sparsely samples only those
with dominant influence along the ray. By integrating Q-Render into a gener-
alizable 3D neural network, we also propose Gaussian Splatting Network (GS-
Net), which predicts Gaussian features in a generalizable manner. Extensive ex-
periments on ScanNet and LeRF demonstrate that our framework outperforms
state-of-the-art methods, while enabling real-time rendering with an approximate
~43.7x speedup on 512-D feature maps. Code will be made publicly available.

1 INTRODUCTION

3D Gaussian Splatting (3D-GS) (Kerbl et al, 2023)) has emerged as a powerful representation for
the neural rendering task, offering an explicit set of 3D Gaussians combined with efficient splat-
ting (Zwicker et al.} [2001) and tile-based rasterization for real-time rendering. This pipeline delivers
both high-quality reconstruction and real-time frame rates—capabilities that have quickly made it
a foundation for numerous 3D vision and graphics applications. Beyond photorealistic rendering,
recent works (Qin et al.| [2024}; [Wu et al}, 2024b; [Ye et all, 2024} [Lyu et all, 2024} Jun-Seong et al.
have begun leveraging 3D Gaussians as a medium for scene understanding. A prevalent ap-
proach is to distill knowledge from powerful 2D foundation models—such as CLIP (Radford et al.
2021} [[lharco et all, 2021), SAM (Kirillov et all [2023; [Ravi et al. [2024), and DINO (Caron et al.
2021} [Oquab et al. 2023} [Siméoni et al., 2025)—into pre-optimized 3D Gaussians by embedding
high-dimensional features. In this work, we focus on open-vocabulary segmentation (OVS) using
OpenCLIP (Ilharco et all, [2021]), which outputs 512-dimensional language-aligned features for ar-
bitrary text or image queries.

The original volume rendering algorithm (Kerbl et al., 2023) samples all Gaussians intersecting a
ray, regardless of their actual contribution to the output, i.e. rendered pixel color. For RGB rendering
this overhead is manageable, but for high-dimensional embeddings (e.g., 512-D CLIP features) it
becomes computationally heavy. To resolve this problem, series of studies compress the dimension-
ality of 512-D CLIP features into 3-D or 6-D features or codebooks (Qin et all [2024; [Wu et al}
[2024b};[Zhou et al.} 2024} Jun-Seong et al.,[2025)). While effective, this strategy is not a fundamental
solution and can potentially loss the original information that was stored in the high-dimensional
features. Moreover, the distribution of the optimized 3D Gaussians potentially have noisy or local
minima due to its per-scene optimization scheme. Accordingly, it is challenging to properly embed
high-dimensional feature vectors on the top of these 3D Gaussians.

Based on this observation, we hypothesize that not all Gaussians are influential—only a partial
fraction of 3D Gaussians meaningfully affect the high-dimensional feature rendering along a ray.
This observation motivates Quantile Rendering (Q-Render), our transmittance-aware and efficient

Under review as a conference paper at ICLR 2026

0 Transmittance T 0 Transmittance T When K = 3,

P P : p
Camera \ ; Sk_ip!)
<>k __ - P o Skipt 7
<’ g
Rendered 512-D Rendered 512-D e) / . Y
feature map F? ¢All” intersecting Gaussians feature map F© 'A few” Quantile Gaussnar?s
will attend alpha-blending. will go through alpha-blending.
(a) Volume rendering (b) Quantile rendering (ours)

Figure 1: Quantile rendering. (a) Unlike volume rendering (Mildenhall et al., [2021} [Kerbl et al.,
2023)) that densely samples and blends all 3D Gaussians along the rays, (b) our Quantile render
selectively samples and blends a sparse set of quantile Gaussians — those with dominant influence
along the ray, which can efficiently render high-dimensional feature maps from Gaussian features.

rendering algorithm for high-dimensional Gaussian features. Instead of densely accumulating every
rasterized 3D Gaussian, Q-Render adaptively selects a small set of quantile Gaussians—those that
dominate the ray’s transmittance profile—and renders only these representatives. This quantile-
based selection cuts redundant computation, and approximates the original signals for downstream
tasks that may require to render high-dimensional feature maps.

In this work, integrating Q-Render into a 3D neural network (Choy et al.l [2019; Wu et al.| |2024a;
Chen et al., [2024), we build Gaussian Splatting Network (GS-Net) that operates on 3D Gaussians
to predict Gaussian features. Typically, Q-Render serves as an efficient bridge between 2D super-
vision and the 3D neural network, allowing backward gradients (Rumelhart et al., |1986) to flow
from image-space losses to the 3D neural network’s predictions. Moreover, with this integration,
Q-Render’s sparse sampling becomes even more advantageous: the inductive bias of the 3D neu-
ral network tends to predict spatially smooth Gaussian features, meaning that densely sampling all
Gaussians along each ray is unnecessary. Instead, the sparsely selected quantile Gaussians are suffi-
cient to faithfully render high-dimensional feature maps while significantly reducing computational
overhead during the rendering process and its backward computation.

We validate our method on two open-vocabulary 3D semantic segmentation benchmarks: (1) Scan-
Net and (2) LeRF-OVS, where CLIP-based embeddings are stored directly in 3D Gaussians. In both
cases, Q-Render achieves state-of-the-art results, underscoring its value as a scalable bridge between
2D foundation models and 3D Gaussian representations.

* Quantile Rendering — a sparse, transmittance-guided sampling strategy that selects only
the most representative Gaussians along each ray for efficiency.

* Gaussian Splatting Network — A 3D neural network that predicts high-dimensional fea-
turemetric Gaussians from optimized 3D Gaussians, with Q-Render enabling efficient and
effective feature distillation from 2D foundation models.

* Extensive Validation — comprehensive experiments on open-vocabulary 3D semantic seg-
mentation benchmarks with superior performances against recent studies.

2 RELATED WORKS

High-dimensional Features on Gaussian representation. There is a growing body of this field
that adopts 3D Gaussian Splatting (Kerbl et al.| [2023) as the underlying representation, incorporat-
ing these language-aligned embeddings into per-Gaussian memory (Qin et al.,[2024}|Shi et al.,2024;
Zhou et al., 2024; ‘Wu et al.| [2024bj Jun-Seong et al., 2025). The core idea is to utilize a render-
ing pipeline of vanilla 3DGS (Kerbl et al., [2023) to sample 3D Gaussians for distillation from 2D
image embeddings, a capability that point clouds inherently lack. Nonetheless, their memory-based
approaches force per-scene feature optimization, which limits their application in practice. More-

Under review as a conference paper at ICLR 2026

over, lifting high-dimensional embeddings (e.g., CLIP 512-D feature) into 3D Gaussians demands
significant computational resources.

Neural scene representation networks. Recent research has explored treating neural scene rep-
resentations as 3D models, using neural networks to process them and solve various 3D tasks. PeR-
Fception (Jeong et al., 2022) trains networks to process Plenoxels (Fridovich-Keil et al.| [2022)) for
classification and semantic segmentation. SPARF (Hamdi et al., 2023) improves Plenoxel in a few-
shot setup by training networks that process few-shot Plenoxels and output the enhanced version.
SplatFormer (Chen et al., |2024) adopts Point Transformer V3 (Wu et al., [2024a) to improve the
robustness of 3D-GS under out-of-distribution poses. To the best of our knowledge, we are the first
to address language and grouping tasks using networks that process 3D-GS.

3 PRELIMINARY

3D Gaussian Splatting. 3D-GS (Kerbl et al.,[2023) represents 3D scenes as a set of 3D Gaussians
where each 3D Gaussian g is parameterized as center position p € R3, covariance matrix X €
R3*3, opacity a € R, and spherical harmonics coefficients with d degree sph € R(E+1D*x3_ In
particular, the covariance matrix of the anisotropic Gaussian distribution is decomposed into scaling
factors s € Rio, rotation in quaternion representation r € R%, where ¥ = RSSTR". Given a
set of N numbers of 3D Gaussians G = {g;}Y., = {u;,s;,r;, a;,sph;}¥ |, 3D-GS (Kerbl et al.|
2023) organizes the rendering pipeline as: (1) tiling strategy; (2) splatting algorithm (Zwicker et al.,
2001); and (3) volume rendering (Mildenhall et al., [2021). In details, volume rendering proceeds
with alpha-blending through densely rasterized 3D Gaussians along a ray ? as:

C[7] = Zwici st w; =Tl T; = H (1-a}), of=0a;-Gp, 5, (u) (1)

1€S, JESri—1

where C is a rendered image, é[?] is a rendered pixel color at the ray ?, c; is the emitted color
of the i-th Gaussians obtained from sph;, S, is an ordered sequence of indices of densely sam-
pled Gaussians along 7, T; is the transmittance at i-th Gaussian along 7, and G(-) is the Gaus-
sian function evaluated at pixel location u by projecting the Gaussian parameters (Eq. ?? of the
appendix). For training, 3D-GS optimizes parameters G by minimizing a rendering loss L, =
[IC — CJl1 + Assmv - SSIM(C, C) where C is a ground truth image and Asspv is the hyperparameter
adjusting the SSIM loss.

High-dimensional Gaussian features. Recent studies (Qin et al.,|2024; Wu et al.,|2024b;|Ye et al.}
20245 [Lyu et al., |2024; |[Zhou et al.l 2024) propose to register high-dimensional features for each
3D Gaussian g. These embedded features store 3D scene information such as language attributes,
mask identities, efc. These methods commonly start from optimized 3D Gaussians G following
the original 3D-GS paper (Kerbl et al., [2023). Then, while freezing G, this method allocates C'-
dimensional feature vector f € R for every 3D Gaussian g such that these feature vectors are
optimized to minimize feature rendering losses.

4 METHODOLOGY

As shown in Figure [2| given a set of N numbers of optimized 3D Gaussians G = {g;}¥,, a 3D
neural network predicts a set of C-dimensional Gaussian features 7 = {f;}V, where f € RC.
Through our Quantile Rendering, the Gaussian features are rendered into C'-dimensional feature
maps. The 3D neural network is trained to minimize the rendering loss between the rendered feature
maps and the target 2D feature maps extracted from CLIP’s vision encoder.

4.1 3D NEURAL NETWORK

Conventional 3D neural networks for pointcloud (Choy et al., 2019 Wu et al [2024a; |Choe et al.,
2021} [Yang et al., 2024} |Ding et al., 2023} |[Lee et al.,|2025) often voxelize 3D points to efficiently
process scene-scale 3D points. They transform scattered points into sparse voxel grids with unique

Under review as a conference paper at ICLR 2026

Grounded SAM |+

& CLIP Vision
—_— —_— —

3D neural n orkﬁ o '{%w« Q-Render
D b gﬁ’r& 3 % (ours)
T b,

5
Optimized Gaussians features F Rendered Pseudo ground truth Training image
\ 3D Gaussians G feature map (F2P) } \ features F2P J
(a) Single feed-forward pipeline (b) Data acquisition pipeline

Figure 2: Overview. Given optimized 3D Gaussians G, our network is trained to predict Gaussian
features F that are aligned with the language embedding space from CLIP’s vision encoder. Typi-
cally, the proposed Q-Render accelerates the training and inference speed by transforming predicted
Gaussian features into rendered feature maps.

spatial locations, enabling single-pass inference over an entire 3D scene thanks to its efficiency.
In contrast to handling pointclouds, modeling a scene with continuous 3D Gaussians (Kerbl et al.,
2023)) introduces overlapping regions since each Gaussian has a volumetric extent. To resolve this
issue, we follow SplatFormer (Chen et al., 2024) that introduces voxelization on 3D Gaussians by
sampling its center location g to ensure compatibility with typical 3D backbones: Point Transformer
v3 (PTv3) (Wu et al., [2024a) and MinkUnet (Choy et al., 2019). These models are designed to
predict voxel features such that we proceed with the de-voxelization steps to convert predicted voxel
features into predicted Gaussian features J, which will be used for rendering procedures.

4.2 QUANTILE RENDERING

To train the 3D neural network using the knowledge from 2D foundation models, rendering process
is necessary. Volume rendering (Mildenhall et al., [2021}; |Kerbl et al., |2023)) can be an option, but it
may require large computation power (Qin et al.| 2024 Wu et al.l [2024b; [Zhou et al.| [2024)) when
rendering high-dimensional Gaussian features. This is because volume rendering repeatedly accu-
mulates high-dimensional Gaussian features F along the ray, which quickly becomes prohibitively
expensive as dimensionality grows as described in Table[T]

To address this, we introduce a quantile-based sampling strategy. Quantiles—statistical cutpoints
that divide a distribution into intervals of equal probability—enable sparse yet representative sam-
pling. By approximating the distribution in traditional volume rendering with a carefully selected
subset of Gaussians, our Quantile Rendering achieves efficient rendering while preserving represen-
tativeness. Specifically, given a hyperparameter K, the algorithm samples K Quantile Gaussians
along each ray. The detailed procedure is presented in Algorithm [l We first rasterize and splat
3D Gaussians following (Kerbl et al., 2023) to obtain the indices of rasterized 3D Gaussians [at
the target ray ? as described in Section Then, our Q-Render takes place to run three sub-steps:
Quantile Gaussian sampling, alpha-blending, and feature normalization.

Sampling Quantile Gaussian. Given hyperparameter K, we partition the transmittance 7' € Ry 1
into K+1 evenly distributed segments at each ray, and track how much the transmittance changes
by passing through each Gaussian. Once crossing a segment boundary(line [f] of Algorithm[T), we
determine that this Gaussian as Quantile in this interval.

Alpha-blending on Quantile Gaussians. With these Quantile Gaussians that show the relatively
big transmittance change, we participate such Gaussians in alpha-blending. As summarized in Ta-
ble |1} this selective blending reduces the time complexity from O(NC') (volume rendering) to
O(N + KC'), where N is the number of Gaussians for each pixel and C is the feature dimension.
Unlike top-K sampling proposed by a concurrent study (Jun-Seong et al.| [2025), which requires
additional complexity to sort values, O(N log K + KC).

Normalizing feature vector. In the volume rendering (Kerbl et al., [2023; [Mildenhall et al.,|2021)),
transmittance 7' is initialized as one and then the remaining transmittance 1" closes to zero as pro-
ceeding with the alpha blending along a ray. However, alpha-blending on sub-sampled Gaussians
may have remaining transmittance that has relatively higher than 0. To approximate the original
distribution in volume rendering that returns zero-close final transmittance value, we forcefully set

the final transmittance 79 as zero by normalizing the accumulated feature £Q as fQ « 1fCT2Q .

Under review as a conference paper at ICLR 2026

Algorithm 1 Quantile Rendering

Require: Optimized 3D Gaussians G, predicted Gaussian features F, the number of Quantile Gaus-
sians K, indices of rasterized 3D Gaussians [at target ray.
Ensure: Rendered feature vector at the target ray fQ e RC.
1: procedure QUANTILERENDER(G, F, K, I)
20 T+ 1, T9« 1, f%«0, k<0

3: for ¢ in I do
4: gi < Gli], f; < Fli] > g = {M;,8i,Ti, i, sph, }
5: Test < T+ (1 —al)
6: if Ty < 1— 1124_;11 then > Sampling Quantile Gaussian
7: k<—k+1
8: w@ «+ T? - o,
9: @« fQ +w@ - f; > Alpha-blending on Quantile Gaussians
10: T9 «+T9.(1-a))
11: while Tioq < 1 — 2 do
12: k+—k+1
13: end while
14: end if
15: if Tiese < ﬁ then
16: break
17: end if
18: T ¢ Tieg
19: end for
20: fQ JW > Normalizing feature vector

21: return <
22: end procedure

Table 1: Complexity comparison table. K intervals along each ray, NV is the number of Gaussians
per pixel and C'is the feature dimension. It shows the efficiency of our Q-Render, which avoids any
multiplier for the large V. Precise inference time is in Figure @

\ V-Render (Kerbl et al.|[2023) top-K (Jun-Seong et al.|[2025) Q-Render (ours)

Complexity | O(NC) O(Nlog K + KC) O(N + KC)
10 = V-Render Q-Render ——top-K
0.8
206
g 0.4
g
02
0.0
1.18 1.23 1.28 1.33 1.38

Depth

Figure 3: Comparison of transmittance distribution across different Gaussians sampling algorithms.
Our Q-Render effectively approximates the distribution of the transmittance distribution of the orig-
inal 3D-GS. We used K = 10 for visualization.

Finally, our Quantile rendering has been formulated as f¢ = QuantileRender(G, F, K, I) where
I is the indices of rasterized 3D Gaussians. As illustrated in Figure [3] Q-Render well approximates
the transmittance tendency from the volume rendering (Kerbl et al.| [2023) while top-K sampling
strategy (Jun-Seong et al., 2025) shows different the tendency. In short, our method avoids the
overhead and outperforms top-K in both efficiency and accuracy as stated in Table[6]

Under review as a conference paper at ICLR 2026

Table 2: Open vocabulary 3D semantic segmentation performances in the ScanNet dataset.

Method Per-scene 19 classes 15 classes 10 classes
optim. mloU (1) mAcc (1) | mIoU (1) mAcc (1) | mIoU (1) mAcc (1)
LangSplat (Qin et al.|2024) v 1.47 10.23 2.00 11.85 3.24 16.79
OpenGaussian (Wu et al.||2024b) v 22.60 34.41 24.21 37.58 34.74 51.58
Dr.Splat (Jun-Seong et al.||2025) 23.21 3542 25.33 34.64 36.71 53.29
GS-Mink (ours) 50.75 62.00 53.54 66.39 64.95 79.34
GS-PTv3 (ours) 48.99 60.36 52.39 66.05 62.57 77.70
- ", &
e, L oy
s, 5 e,
S B > : i
* % ¥
ok .
i %
e Lo o Q 4
LangSplat OpenGaussian GS-Mink GS-Mink (overfit) GT

Figure 4: Qualitative results on the open-vocabulary 3D semantic segmentation task.

Furthermore, the inductive bias of the 3D neural network promotes spatially smooth Gaussian fea-
ture predictions. Accordingly rendering dense sampling along rays becomes redundant. Our sparse
quantile selection remains sufficient for high-fidelity feature mapping while significantly reducing
computational overhead during both rendering and backward passes. Such an approximation is
bounded by O(1/K) where we provide a detailed theoretical justification of Q-Render as a Rie-
mann sum approximation in Appendix C.

4.3 TRAINING LOSS

We validate our GS-Net in open-vocabulary 3D semantic segmentation task with two datasets, Scan-
Net dataset and LeRF-OVS dataset. In this task, CLIP (Radford et al., 2021} [Ilharco et al.| 2021)
is one of the popular vision language models that predicts a 512-D feature vector from a given in-
put image. Following the previous studies (Qin et al., [2024; |Wu et al., |2024b; Jun-Seong et al.,
20235])), we set the distillation target as CLIP vision encoder’s feature vectors. We first extract image
patches, a.k.a. masks {m}, using Grounded-SAM2 (Ren et al., 2024), and extract CLIP embed-
dings from the corresponding patch M. Given a pair of training data {m;, "}, the 3D neural
network is trained to minimize a discrepancy between our rendered feature vector f< and CLIP
embedding fE'P in the format of the contrastive loss £ as follows:

exp(sim(f‘Q, FOLIPY)
Zi;ﬁj exp(sim(f@, fJCLIP)))

where sim(+, -) is the cosine similarity function.

L= —log 2)

5 EXPERIMENTS

We provide experiments to verify the efficacy of our GS-Net on open-vocabulary 3D semantic seg-
mentation task using the ScanNet dataset and LeRF-OVS dataset. Given a set of open-vocabulary
text queries, we extract their text features using CLIP’s text encoder. For fair comparison, we used

Under review as a conference paper at ICLR 2026

Table 3: Open-vocabulary semantic segmentation performances in the LeRF-OVS dataset.

Method | Feature dim. | mIoU (1) mAcc (1)
LangSplat (Qin et al.|[2024) 3 9.7 12.4
LEGaussians (Shi et al.}[2024) 8 16.2 23.8
OpenGaussian (Wu et al.|[2024b) 6 38.4 51.4
SuperGSeg (Liang et al.|[2024) 64 359 52.0

GS-Mink (ours) 6 38.6 52.3
GS-Mink (ours) 512 45.8 56.9

Figure 5: Our qualitative results in the LeRF-OVS dataset.

the sam CLIP model provided by the recent work (Jun-Seong et al., [2025). We then compute the
cosine similarity between Gaussian features and these text features, assigning each Gaussian the
labels with the highest similarity scores.

Following the evaluation protocol of OpenGaussian (Kerbl et al.| [2023)), we assess mloU and mAcc
on predefined sets of 19, 15, and 10 categories by theirs. In contrast to OpenGaussian, which freezes
the original pointclouds and disables densification and pruning, we enable both densification and
pruning to fully leverage the capacity of 3D-GS. As a result, per-Gaussian labels are required for
evaluation that is extracted from pointcloud labels. To assign semantic labels to each Gaussian, we
use the Mahalanobis distance to find the K nearest neighbors, similar to Dr.Splat (Jun-Seong et al.,
20235)). Furthermore, we found that filtering points based on opacity and Gaussian influence leads
to more reliable labels, as reported in section[B.2] For a fair comparison, we reproduce the results
of LangSplat (Qin et al.| [2024), OpenGaussian (Wu et al.l 2024b), and Dr.Splat (Jun-Seong et al.,
20235)) using our training and evaluation setup.

5.1 SCANNET DATASET

We compare GS-Net against baselines (Qin et al., 2024; |Wu et al., |2024b)) on the ScanNetv2 (Dai
et al., [2017) dataset, which includes 1,513 scenes and 124,505 frames of indoor captures featuring
various household objects. When training our generalized network, we use the same 10 validation
scenes as OpenGaussian (Wu et al., 2024b) and train on the remaining 1,503 scenes. Additionally,
we train GS-Net to overfit a single scene to ensure a fair comparison with the baselines. We pre-
optimize all 3D-GS (Kerbl et al., [2023)) using the original implementation across all scenes to train
and evaluate GS-Net.

In Table E], we compare two GS-Net models, GS-Mink and GS-PTv3 where each model has
MinkUnet (Choy et al.,|2019) and PTv3 (Wu et al., 2024a) as baseline 3D neural networks, against
previous baselines (Qin et al., 2024} |Wu et al.l |2024b; [Jun-Seong et al., 2025). Although the eval-
uation scenes are not used for training GS-Net, GS-Net achieves significant performance improve-
ments or comparable results to previous baselines. Furthermore, when overfitted to a single scene,
GS-Mink and GS-PTv3 improve mIoU by 12.08%p and 12.73%p, respectively. Interestingly, while
GS-PTv3 outperforms GS-Mink in the overfitting scenario, this trend reverses when training for
generalization. We found that GS-PTv3 is more prone to overfitting during training, suggesting
that architectural improvements for handling Gaussians could mitigate this issue. As shown in Fig-
ure 4] our GS-Net produces much clearer semantic segmentation results, further demonstrating the
superiority of our method.

Under review as a conference paper at ICLR 2026

— V-Render Q-Render =f\=top-K
30
3D neural network | Feature renderer | K | 19 classes mloU (1)

= | V-Render (Kerbl et al.|[2023) | - | 49.02
=1 5 37.84
g 20 10 40.22
2 top-K (Jun-Seong et al.|[2025) | 20 43.59
E 40 45.70
£ MinkUNet 50 44.93
=10 5 49.98
10 50.75

Q-Render (ours) 20 50.65

40 50.85

50 50.28

%05 10 20 40 80
Number of Gaussians (K)

Figure 6: Comparison of (a) FPS and (b) mloU by varying the number of Gaussians participating on
rendering. Our Q-Render allows real-time rendering while preserving the mloU performance. For
the fair speed comparison, while using our implementation with the same rasterized Gaussians and
512-D Gaussian features, we only change the sampling strategies among the rasterized Gaussians:
V-Render (Mildenhall et al., 2021} Kerbl et al., 2023)) uses all intersecting Gaussians, top-K (Jun-
Seong et al., [2025)) sorts and selects K Gaussians, and ours collect K Quantile Gaussians.

5.2 LERF-OVS DATASET.

We compare GS-Mink with previous baselines on LeRF-OVS dataset (Kerr et al.| 2023} |Qin et al.|
2024)) where the scenes has sampled for the open vocabulary semantic segmentation task such ‘ra-
men’, ‘teatime’, ‘kitchen’, efc. we maintain to use the same ground truth masks and corresponding
text captions for the fair comparison. We use GS-Mink as our baselines and train the model with
this dataset. As demonstrated in Table [3] our method outperforms recent studies while having 6-D
compressed Gaussian embeddings and 512-D Gaussian embeddings as the same dimensionality as
CLIP’s image embeddings. For visualization, we also provide our qualitative results in Figure[5]

5.3 CONTROL EXPERIMENTS

Feature renderer. We conduct ablation study by replacing our Q-Render of our GS-Net with other
feature rendering algorithms, such as volume render (Kerbl et al.,|2023)), and the top- K render (Jun-
Seong et al.| 2025). The comparison results are described in Figure [0]in terms of rendering speed
and accuracy in open-vocabulary semantic segmentation.

In general, Q-Render achieves superior or comparable performance compared to other feature ren-
dering algorithms. In terms of rendering speed, our Q-Render demonstrate up to 1.5x faster speed
in comparison with volume rendering (V-Render). Moreover, top-K rendering shows remarkable
speed drops as K increases. Such a phenomenon is related to our complexity analysis in Table [T}

For the detailed ablation study about K, the number of quantile Gaussians, we achieve the best per-
formance when setting K = 40. Nonetheless, the performance becomes converged as K > 10, and
reaches ~ 50mloU. Furthermore, Table |I| shows that top- K render has relatively big performance
drop when setting smaller K. We deduce that this is because of the discrepancy in the transmittance
profile as we visualized in Figure[3]

In another analysis, our Q-render with K = 40 outperforms the performance of the volume render.
Theoretically speaking, our Q-render is designed to approximate the original transmittance profile by
the volume render as stated in section 4.2} Though we do not have concrete experimental supports,
we guess that this is related to the potential noise in the optimized 3D Gaussians G which have some
difficulties in representing the precise geometry information due to the limited training images (Zhu
et al.,[2024)) or the 3D Gaussian representation itself (Huang et al., 2024)).

Grid size. Throughout the paper, we used a grid size of 10.0cm for both GS-Mink and GS-PTv3.
We also conducted ablation studies by varying the grid size to 10.0, 5.0, 2.0, 1.0, 0.50, and 0.25
cm. The results of open vocabulary semantic segmentation experiments with different grid sizes are

Under review as a conference paper at ICLR 2026

Table 4: Ablation study for the grid size. Note that the scene scale is aligned metric-unit as described
in section@of the appendix. So the grid size is determined as below.

3D neural network ‘ Feature renderer Grid Size 19 classes 15 classes 10 classes

(cm) mloU (1) mAcc (1) | mIoU (1) mAcc (1) | mIoU (1) mAcc (1)

10.0 47.07 58.46 49.38 62.85 59.79 75.33

5.0 50.39 62.14 53.14 66.39 63.37 78.30

. 2.0 50.28 61.58 53.00 65.98 63.29 78.34

GS-Mink

Q-Render 1.0 45.00 55.41 48.27 60.99 60.29 75.45

(K=40) 0.5 41.12 49.72 44.40 55.32 57.05 71.46

0.25 34.36 42.42 37.34 47.47 49.03 61.78

10.0 43.71 55.96 49.94 63.09 59.60 74.79

GS-PTv3 5.0 48.64 59.42 51.35 64.83 62.57 78.18

2.0 48.99 60.36 52.39 66.05 62.57 77.70

Table 5: Rendering speed on ScanNet scene0006_00 (frame 0). Note that 5127 is implemented by
for-loop iterations, leveraging the original baseline code to render a 512 dimension feature map.

| LangSplat | OpenGaussian | GS-Mink (ours)
Feature dim. | 3 6 512 |3 6 5121 3 6 512
FPS (1) ‘ 112.12 - 0.65 ‘ - 7113 0.83 ‘ 172.52 80.98 28.42 (x43.71)

X N R & Vs e
Original image 3DGS Devox. 3DGS (2cm) Devox. 3DGS (10cm) Voxel Raster. (2cm) Voxel Raster. (10cm)
(PSNR: 19.89) (PSNR: 17.42) (PSNR: 15.19) (PSNR: 10.21) (PSNR: 8.12)

Figure 7: Information loss after voxelization. It shows that ‘a rendered image from de-voxelized
Gaussians’ achieved higher fidelity compared to ‘a rendered image directly from sparse voxels’
(w/o de-voxelization).

presented in Table] We observed that reducing the grid size to 5.0cm shows the best performance.
While the performance started to dramatically drop after setting grid size smaller than 1.0 cm. We
deduce this phenomenon from the model architecture and voxelization strategy. While we follow
the Gaussian voxelization scheme by (Chen et all, [2024), it only sample one voxel per Gaussian
though each Gaussian has volumetric shapes. Moreover, the 3D neural network baselines have some
receptive field extent. Once we reduce the grid size smaller than specific numbers, some voxels may
not aggregated together due to the receptive field limitations. Based on this analysis, we believe that
exploring model designs or voxelization type can become potential future research directions for the
further improvements.

Inference time. In Table 5] we evaluate the inference speed of recent methods and our GS-Mink
on scene0000_00 from ScanNet. For a fair comparison, we measure frames per second (FPS) using
the same feature dimension settings as in LangSplat (3 dim) and OpenGaussian (6 dim), and utilize
the full Gaussian scene. Our method achieves the highest rendering speed among the evaluated
approaches. We modify the official implementation by (Qin et al} [2024) and (Wu et al., [2024D)
to render 512-D feature maps by for-loop iterations (we denoted these implementations as 5127
in Table[5). It turns out that our Q-Render achieves upto ~43.7 x speed gains when rendering 512-D
feature maps.

Information loss after voxelization. We visualize the voxelization results in Figure|/} The vox-
elization itself potentially brings information loss, and changes the original 3D Gaussian parameters,
such as opacity, spherical harmonics, efc. To estimate the amount of information loss, we conduct an
experiment that renders images from (1) original Gaussians, or (2) voxelized & de-voxelized Gaus-
sians. Figure[7]shows that PSNR drops from 19.89 to 15.19 when §=0.10. Due to these reasons, we
de-voxelize the estimated voxel features from the 3D neural network into Gaussian features. Then,
we proceed with our Q-rendering. We used 2025) to directly render images from sparse
voxels without de-voxelization steps.

Under review as a conference paper at ICLR 2026

Table 6: Performance change on the number of K. We use a model trained with K = 40 and use
different numbers of K during inference.

K 5 10 20 40 50

mloU (1) 39.16 42.18 4494 4581 45.71
mAcc (1) 4843 5394 56.14 56.87 56.94

Table 7: Comparison of GS-Net performance across different input 3D-GS models. GS-Net v2
utilizes 3D Gaussians pre-trained with an additional depth loss as input.

Method | Training 3D-GS | 19 classes | 15 classes | 10 classes
| | mIoU (1) mAcc () | mloU (1) mAce (1) | mIoU (1) mAcc (1)
GS-Net vl Rendering 28.42 38.85 31.02 44.02 42.58 57.92

GS-Net v2 (Ours) | Rendering + Depth 50.75 62.00 53.54 66.39 64.94 79.34

6 CONCLUSION

The core contribution of this work is Quantile Rendering (Q-Render), a transmittance-aware strategy
that resolves the computational bottleneck of embedding high-dimensional features in 3D Gaussian
Splatting. Unlike conventional rendering that densely accumulates all intersections, Q-Render adap-
tively samples only the influential ‘quantile’ Gaussians that dominate a ray’s transmittance profile.
This sparse sampling drastically reduces computational overhead, enabling efficient rendering of full
512-dimensional feature maps with up to a 43.7x speedup. Consequently, Q-Render achieves state-
of-the-art performance on open-vocabulary segmentation benchmarks, establishing it as a scalable
bridge between 2D foundation models and 3D representations.

Limitations and Future Work. Although Q-Render has shown efficient approximation of volu-
metric rendering, there still exists several limitations and failure cases.

Limitation 1: Dynamic K Selection. Theoretically, the optimal number of samples K should
vary depending on the distribution of transmittance along a ray. However, in this work, we use
a fixed K across all experiments for simplicity. To investigate the sensitivity of our model to K,
we conducted an analysis where we trained the model with K = 40 and performed inference with
varying K € {5, 10, 20,40, 50}. As shown in TableEI, the performance significantly drops when the
inference K differs from the training configuration. This underscores the necessity of an adaptive K
selection strategy. Although we explored two adaptive strategies in Appendix [E-I] they incur high
computational costs. Thus, we leave the development of efficient, adaptive sampling strategies for
future work.

Limitation 2: Dependence on 3D-GS. Our current framework assumes that input 3D Gaussians
are obtained through per-scene optimization, which inherently limits practical scalability. However,
emerging generalizable 3D-GS approaches that eliminate the need for per-scene optimization, such
as DepthSplat 2025), WorldMirror 2025), and DepthAnything3
[2024) offer a promising path to resolve this issue. Furthermore, we observe that the quality of
the input 3D Gaussians significantly impacts downstream performance. As shown in Table[7, GS-
Net v1, which utilizes the original 3D-GS optimized without depth supervision, yields suboptimal
results. Conversely, GS-Net v2 takes as input a more recent 3D-GS implementation trained with
additional depth loss. This improvement leads to substantial performance gains, highlighting the
critical importance of geometric accuracy in the input representation. We belive advancements in
3D-GS will also involve the improvement of GS-Net.

Limitation 3: Dependence on 3D Network Architecture. As reported in Appendix [E:3} we ob-
serve that performance highly depends on the choice of backbone network. In particular, Minkowsk-
iNet (Choy et al [2019) and PTv3 2024a)) exhibit strong sensitivity to the voxel grid
resolution, as shown in Table[d] This suggests that developing a more efficient and Gaussian-aware
architecture could further improve the performance of our GS-Net framework. Potential directions
include introducing Gaussian-friendly operators, reducing or eliminating voxelization, and design-
ing modules that are robust to noise in Gaussian parameters.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470-5479, 2022.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Yutong Chen, Marko Mihajlovic, Xiyi Chen, Yiming Wang, Sergey Prokudin, and Siyu Tang. Splat-
former: Point transformer for robust 3d gaussian splatting. arXiv preprint arXiv:2411.06390,
2024.

Jaesung Choe, Byeongin Joung, Francois Rameau, Jaesik Park, and In So Kweon. Deep point cloud
reconstruction. arXiv preprint arXiv:2111.11704, 2021.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3075-3084, 2019.

Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. Depth-regularized optimization for 3d gaus-
sian splatting in few-shot images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 811-820, 2024.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5828-5839, 2017.

Runyu Ding, Jihan Yang, Chuhui Xue, Wenqing Zhang, Song Bai, and Xiaojuan Qi. Pla: Language-
driven open-vocabulary 3d scene understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7010-7019, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501-5510, 2022.

Abdullah Hamdi, Bernard Ghanem, and Matthias NieBsner. Sparf: Large-scale learning of 3d sparse
radiance fields from few input images. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) Workshops, pp. 2930-2940, October 2023.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In ACM SIGGRAPH 2024 conference papers, pp.
1-11, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, et al. Openclip, 2021.

Yoonwoo Jeong, Seungjoo Shin, Junha Lee, Chris Choy, Anima Anandkumar, Minsu Cho, and
Jaesik Park. Perfception: Perception using radiance fields. Advances in Neural Information
Processing Systems, 35:26105-26121, 2022.

Kim Jun-Seong, GeonU Kim, Kim Yu-Ji, Yu-Chiang Frank Wang, Jaesung Choe, and Tae-Hyun Oh.
Dr. splat: Directly referring 3d gaussian splatting via direct language embedding registration. In
CVPR, pp. 14137-14146, 2025.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin, and

George Drettakis. A hierarchical 3d gaussian representation for real-time rendering of very large
datasets. ACM Transactions on Graphics (TOG), 43(4):1-15, 2024.

11

Under review as a conference paper at ICLR 2026

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 19729-19739, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015-4026, 2023.

Junha Lee, Chunghyun Park, Jaesung Choe, Yu-Chiang Frank Wang, Jan Kautz, Minsu Cho, and
Chris Choy. Mosaic3d: Foundation dataset and model for open-vocabulary 3d segmentation.
arXiv preprint arXiv:2502.02548, 2025.

Mingye Li, Weicai Zhu, Yini Wang, Jing Wang, Chao Li, Siyu Wang, Kai Han, and Ruimao Zhang.
Depth anything v3: Removing the gaps between zero-shot, single-dataset, and multi-dataset depth
estimation. arXiv preprint arXiv:2406.05943, 2024.

Siyun Liang, Sen Wang, Kunyi Li, Michael Niemeyer, Stefano Gasperini, Nassir Navab, and Fed-
erico Tombari. Supergseg: Open-vocabulary 3d segmentation with structured super-gaussians.
arXiv preprint arXiv:2412.10231, 2024.

Yifan Liu, Zhiyuan Min, Zhenwei Wang, Junta Wu, Tengfei Wang, Yixuan Yuan, Yawei Luo, and
Chunchao Guo. Worldmirror: Universal 3d world reconstruction with any-prior prompting. arXiv
preprint arXiv:2510.10726, 2025. URL https://arxiv.org/abs/2510.10726,

Weijie Lyu, Xueting Li, Abhijit Kundu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Gaga: Group any
gaussians via 3d-aware memory bank. arXiv preprint arXiv:2404.07977, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017.

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Abed Al Kader Hammoud, Mohamed
Elhoseiny, and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and
scaling strategies. In Advances in Neural Information Processing Systems (NeurIPS) 35, 2022.

Minghan Qin, Wanhua Li, Jiawei Zhou, Haogian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
guage gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20051-20060, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing
Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks,
2024.

12

https://arxiv.org/abs/2510.10726

Under review as a conference paper at ICLR 2026

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533-536, 1986.

Johannes Lutz Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
view selection for unstructured multi-view stereo. In European Conference on Computer Vision
(ECCV), 2016.

Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, and Shao-Hua Guan. Language embedded 3d gaus-
sians for open-vocabulary scene understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5333-5343, 2024.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaél Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3. August 2025. URL https://ai.
meta.com/research/publications/dinov3.

Cheng Sun, Jaesung Choe, Charles Loop, Wei-Chiu Ma, and Yu-Chiang Frank Wang. Sparse voxels
rasterization: Real-time high-fidelity radiance field rendering. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 16187-16196, 2025.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong
He, and Hengshuang Zhao. Point transformer v3: Simpler faster stronger. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4840-4851, 2024a.

Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao,
Haocheng Feng, Errui Ding, Jingdong Wang, et al. Opengaussian: Towards point-level 3d
gaussian-based open vocabulary understanding. arXiv preprint arXiv:2406.02058, 2024b.

Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann Blum, Daniel Barath, Andreas Geiger, and
Marc Pollefeys. Depthsplat: Connecting gaussian splatting and depth. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Jihan Yang, Runyu Ding, Weipeng Deng, Zhe Wang, and Xiaojuan Qi. Regionplc: Regional point-
language contrastive learning for open-world 3d scene understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19823-19832, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875-21911,
2025.

Mingqgiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In European Conference on Computer Vision, pp. 162—179. Springer,
2024.

Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari,
Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d gaussian
splatting to enable distilled feature fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 21676-21685, 2024.

Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. Fsgs: Real-time few-shot view synthe-
sis using gaussian splatting. In European conference on computer vision, pp. 145-163. Springer,
2024.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29-538. IEEE, 2001.

13

https://ai.meta.com/research/publications/dinov3
https://ai.meta.com/research/publications/dinov3

Under review as a conference paper at ICLR 2026

APPENDIX

A RESOLVING UP-TO-SCALE WITH MONOCULAR DEPTH

The scale of a 3D scene is a critical factor in 3D scene understanding. However, when camera
poses are estimated solely from multi-view images, recovering the absolute scene scale—referred to
as the up-to-scale problem—becomes challenging. For instance, COLMAP [Schonberger & Frahm
(2016); |Schonberger et al.| (2016), a widely used tool for extracting extrinsic and intrinsic camera
parameters in neural rendering pipelines, does not inherently address this issue. Since our method
relies on optimized Gaussian parameters O, the up-to-scale problem naturally arises when handling
diverse 3D scenes captured purely from images.

To overcome this issue, we employ DepthAnythingV2|Yang et al.| (2025)), an off-the-shelf monocular
depth estimation method trained to produce metric-scale depth maps from single images. Similar to
the depth alignment process in |Kerbl et al.[(2024); (Chung et al.[(2024), we fix the original Gaussian
parameters © and optimize the global scene scale a € R to approximate the metric scale:

Nz
arg min Z |invDI"™ — ¢ - invDiendered| 3)

i=1
where N7z is the number of known images, invD]*" is i-th inverse depth map from DepthAny-
thingV2 Yang et al.| (2025), and invD{™"*"*! is the corresponding rendered inverse depth map using
3DGS. After obtaining the scene scale a, we update the Gaussian parameter © as © = {6}, =

{% C U, % - 8i, T4, a;, sph; } Y ;. Note that only the mean and the scale attributes of each Gaussian
are changed. We provide an example result in Figure

Unlike the original 3DGS Kerbl et al.| (2023), which recently introduced a scale-alignment method,
we avoid pruning initial COLMAP points that could affect the distribution of our optimized Gaussian
parameters ©. This ensures a fair comparison with recent studies such as Gaga [Lyu et al.| (2024).
Furthermore, we use a metric depth estimator, ‘depth-anything-v2-metric-hypersim-vitl.pth‘ in the
official repository, whereas 3DGS employs an inverse depth estimator, ‘depth-anything-v2-vitl.pth’.
Instead of normalizing the estimated depth maps, we directly take their reciprocal to obtain inverse
depth maps D™°™.

el S

@
[
/ s ;

3DGS 3DGS 3DGS

from GT points. w/ scene scale w/o scene scale
Figure 8: Visualization of 3D Gaussians with different conditions: (left) 3D Gaussians that are
trained from ground truth pointcloud, (middle) 3D Gaussians that are trained from COLMAP points,

then are applied with scene scale a, (right) 3D Gaussians that are trained from COLMAP points
without considering scene scale a.

B DATA PREPROCESSING

B.1 3D GAUSSIAN SPLATTING OPTIMIZATION

We use the original implementation with the proposed hyperparameters, such as training itera-
tions and upsampling frequency, for pre-optimizing 3D-GS. For the initial points, we follow the
initialization strategies used by OpenGaussian Wu et al.| (2024b) and Dr.Splat Jun-Seong et al.
(2025)), utilizing the point clouds provided by the original ScanNetv2 dataset instead of using

14

Under review as a conference paper at ICLR 2026

PO

3

4

Raw mahalanobis labels (+) opacity threshold (+) distance threshold GT Pointcloud

Figure 9: Generated Gaussian Splatting labels from point cloud labels. Applying both opacity and
distance thresholding allows much clearer label generation for Gaussian Splatting.

COLMAP [Schénberger & Frahml| (2016); [Schonberger et al| (2016). Note that we maintain the
densification and pruning processes of 3D-GS to preserve its capacity.

B.2 PSEUDO GROUND TRUTH ACQUISITION

Since we enable the densification and pruning processes of 3D-GS, the number and coordinates of
each Gaussian differ from the original point clouds. To evaluate the predicted Gaussians, we need
to create Gaussian-specific labels derived from the original point labels. As shown in Figure 9] for
each Gaussian, we first explore the K nearest neighbor points and assign the label based on the
most frequent label among these neighbors. However, we observed that due to the large number of
Gaussians, many Gaussians contribute minimally to the scene (i.e., their opacity is below 0.1), and
we filtered out these less significant Gaussians. Despite this, we found that some isolated Gaussians
(i.e., "floaters”) still received labels, resulting in noisy ground truth (GT) labels. To address this, we
ignored labels if all the nearest points had a Mahalanobis distance above 0.1, effectively removing
such noisy assignments. As a result, we were able to obtain clearer and more consistent Gaussian
labels.

C THEORETICAL ANALYSIS OF QUANTILE RENDERING

Based on the definitions provided in Section 4.2 and Algorithm 1 of the manuscript, we provide the
theoretical analysis of Quantile Rendering (Q-Render) as an approximation of the volume rendering

in 3D-GS [2023) using Riemann sums.

C.1 PRELIMINARIES: RIEMANN SUMS AND THE RIGHT RULE

Let f : [a,b] — R be a bounded function defined on a closed interval [a, b]. We define a partition P
of the interval into /V sub-intervals:

a=uy<u <uy<---<uy==~b

The width of the k-th sub-interval [uy—_1,uy] is denoted by Auy, = ug — ur—1. A Riemann Sum
approximates the definite integral of f over [a, b] by summing the areas of rectangles:

N
S =" flup)Au &)
k=1
where u; is a sample point chosen from the sub-interval [ug—1, ug)-
The Right Riemann Sum specifically chooses the right endpoint of each sub-interval as the sample
point:
Uy, = Ug. 5)
Thus, the approximation becomes:

N
Sright = > f(ur)Auy, ©6)
k=1

15

Under review as a conference paper at ICLR 2026

When the partition is uniform, Az = (b—a)/N, due to the ‘Right endpoint approximation theorem’,
the Right Rule converges linearly:

M(b—a)?

b
/a f([L‘) dx — Sright IN)

where M is the maximum value of the absolute value of 8](;—(;) over the interval.

C.2 VOLUME RENDERING AS AN INTEGRAL

We observe that the discrete volume rendering process is fundamentally equivalent to a Riemann
sum approximation of a continuous path integral. Theoretically, volume rendering assumes that
the accumulated transmittance 7" monotonically decreases from 1 to 0 along the ray, creating a
bounded integration domain. Different neural rendering approaches can be characterized by how
they partition this domain:

e NeRF (Mildenhall et al,[2021): The integral is approximated in the spatial domain (t).
Query points are sampled uniformly or hierarchically (coarse-to-fine) along the ray. The
Riemann partition is defined by the distance between adjacent samples (0; = t;4.1 — t;),
where the opacity «; is derived from the learned volumetric density o.

* 3D-GS (Kerbl et al,[2023): The integral is evaluated using a set of discrete primitives
sorted by depth. Here, the rasterized Gaussians act as the representative samples for inter-
vals along the ray. The rendering equation accumulates the alpha-blended contribution of
each intersecting Gaussian, effectively performing a Riemann summation where the step
size and weight are determined by the Gaussian’s covariance and opacity.

* Quantile Rendering (Ours): Unlike the spatial sampling in NeRF or the dense accumu-
lation in 3D-GS, our method shifts the Riemann partition to the transmittance domain (T').
By sampling intervals of equal probability in transmittance space, we ensure that the sum-
mation is performed only over the most significant contributors, offering a more efficient
approximation of the underlying integral.

C.3 VOLUME RENDERING AS A CONTINUOUS INTEGRAL

Consider a camera ray parameterized by distance ¢t € [0,00). Let o(t) denote the volume density
and c(t) the feature (or color) emitted at position ¢.

T(t) = exp(- /Otcr(s)ds>.

T ore) = ~“La=oran

The transmittance is defined as

Its derivative satisfies

The continuous volume rendering integral is

Cua = [ety attT(t) . @

The Quantile render operates by analyzing the change in Transmittance 7" rather than spatial dis-
tance t. We can reformulate the volume rendering integral Eq.[7/by performing a change of variables
from spatial distance ¢ to transmittance v = 7'(¢). Following (Mildenhall et al., 2021} [Kerbl et al.,
[2023), u and ¢ are noted as:

e When ¢t = 0, u = 1 (Ray starts with full transmittance starting from 1).

16

Under review as a conference paper at ICLR 2026

e When t — oo, u — 0 (Transmittance converges to 0).

Since 7' is strictly decreasing from 1 to 0, the substitution
u="T(t), du = —o(t)T'(t)dt
transforms Eq.[7]into

Coot = / Y o) (—du) = /0 (o) du

u=1

Thus, volume rendering is exactly the integral of a function c(u) over the transmittance interval
[0, 1]:

1
Coor = / () du. ®)
0

C.4 QUANTILE RENDERING AS A RIGHT RIEMANN SUM

As described in Section 4.2 of the manuscript, the Quantile Rendering algorithm partitions the Trans-
mittance T € [0, 1] into K + 1 evenly distributed segments. The algorithm selects a specific ‘Quan-
tile Gaussian” whenever the accumulated transmittance drops.

In detail, the Quantile Rendering partitions the transmittance domain [0, 1] into
OZ’LLK+1<'LLK<"'<’LL1<U():1.

For each interval [uj_1,u], Q-render selects the Gaussian whose transmittance crossing corre-
sponds to the right endpoint ug. Thus the algorithm evaluates ¢(u) at ug. Therefore, Q-render
implements exactly the Right Riemann Sum for Eq. [}

K+1

nght = Z c(ug) Au. 9)
k=1

This replaces the dense per-Gaussian accumulation with a sparse, quantile-driven sampling strategy.

C.5 APPROXIMATION ERROR OF QUANTILE RENDERING

Following (Mildenhall et al.|[2021}; Kerbl et al., 2023)), the integrand c(u) is differentiable and satis-
fies

|d(u)] < M Yue|0,1].
Applying the classical Right Rule error bound witha = 0,b =1, and N = K + 1 gives:

M M

2(K +1) <o (10)

’Cvol - nght| <
Thus the quantile approximation converges at rate O(1/K).

C.6 CONVERGENCE OF Q-RENDER WITH TRANSMITTANCE NORMALIZATION

Q-render includes a final normalization step to correct for residual transmittance:

right
CQ

Co= 127y (1)

where T¢, is the remaining transmittance after processing all K quantile Gaussians.

Since each quantile removes at least Au, we have

1
To < Au = ——. 12
Q=2UT a12)

17

Under review as a conference paper at ICLR 2026

Hence the normalization factor satisfies

1 1 K+1
< — = 1 (13)
Combining with eq. [I0] yields
~ K+1 M M
ol — G < 00 - (14)

K 2(K+1) 2K

Final Theorem. Under the assumptions that ¢ is differentiable and |¢/(u)| < M (Mildenhall et al.|
2021}, [Kerbl et al, 2023)), Q-render converges to volume rendering with rate

~ M
|Cvol - CQ| <

K (15)

and the approximation error vanishes linearly as K — oo.

D IMPLEMENTATION DETAILS

For optimization, we use the default optimizers provided by MinkUNet (Adam) and PTv3
(AdamW). The learning rate is adjusted using PyTorch’s ReduceLROnPlateau scheduler, reduc-
ing by a factor of 10 when a plateau is detected. Training is conducted with a batch size of 4 across
8 A100-80GB GPUs while computing rendering loss from 4 randomly chosen training viewpoints.
Both MinkUNet and PTv3 follow their default configurations.

E ADDITIONAL EXPERIMENTS

E.1 ADAPTIVE GAUSSIAN SAMPLING STRATEGY

We additionally implement two adaptive variants of Q-Render, namely Learned-K and
Stratified-K, to assess whether adaptive selection of K can effectively mitigate the sensitivity
to this hyperparameter.

Learned-K. In this variant, we train the model with three candidate values for K, specifically
{10, 20,40}. Inspired by the mloU-prediction head in SAM2, we introduce an additional similarity-
prediction head that estimates the expected similarity between the predicted features and the target
features for each candidate K. This head takes the transmittance profile as input and outputs the
predicted similarity scores. Therefore, similar to SAM2, we use an additional loss that computes the
difference between predicted similarity and the actual similarity.

Loim (£9, £ {T}01) = || Sim-Heado ({T0}7y) — sim (9, £77)| I3, (16)

where {7}, }_, are transmittance values along the ray, f< is a rendered feature via Q-Render, and
£CLIP is the CLIP feature used in training.

In addition, we apply the original loss for three K's during training to optimize features for all Ks.
During inference, the model evaluates these similarity scores and dynamically selects the value of
K that yields the highest expected similarity. This allows the model to adaptively determine K per
input without relying on a manually fixed value.

Stratified-sampling. In the second variant, we compute the mean and standard deviation of the
transmittance values along the depth dimension. Rather than uniformly partitioning the transmit-
tance for sampling, we instead draw samples based on the z-score under a Gaussian distribution pa-
rameterized by the estimated mean and standard deviation. This enables denser sampling at depths
where objects are more likely to contribute, analogous to the stratified sampling strategy used in

18

Under review as a conference paper at ICLR 2026

Table 8: Open vocabulary 3D semantic segmentation performances in the ScanNet dataset.

19 classes 15 classes 10 classes
Method ‘ FPS | mloU (1) mAcc () | mIoU (1) mAce (1) | mIoU (1) mAce (1)
Learned-K 1431 | 4014 49.16 | 4385 5560 | 55.84 68.53
Stratified-K 15.14 | 4130 49.52 4467 5578 | 5666 70.10
Q-Render (ours) | 32.17 | 41.12 4972 | 4440 5532 | 5705 7146

Table 9: Comparison between Dr.Splat and GS-Mink on MipNeRF360 benchmark.

Scene Dr.Splat GS-Mink
mloU mAcc | mloU mAcc
bicycle | 0.2112 0.3012 | 0.2236 0.3165
garden | 0.5543 0.6114 | 0.6721 0.7813
treehill | 0.2122 0.2713 | 0.2063 0.2585

Avg. | 03359 0.3946 | 0.3673 0.4521

NeRF, and improves robustness under diverse transmittance distributions. Specifically, we uni-
formly partition the transmittance interval in the z-score space and then map the samples back to the
original transmittance domain. Consequently, unlike the original Q-Render—which uniformly parti-
tions the transmittance values—this variant adapts the sampling locations according to the underlying
transmittance distribution, encouraging the model to draw more Gaussians from regions where they
are more densely concentrated.

Results. We compare these two adaptive variants against the original Q-Render in terms of seg-
mentation performance and rendering FPS. Due to the large memory footprint of the Learned-K
model, we use a voxel size of 0.5 for all experiments. For a fair comparison, we set KX = 40 for both
the stratified-K variant and the original Q-Render. As shown in Table [the Learned-K
model slightly underperforms the other strategies, likely because the model must additionally learn
the similarity-prediction head, which makes it harder to focus on improving feature quality. We also
observe that the st rat i f ied-K variant performs on par with the original Q-Render. However, the
most critical observation is that both adaptive variants achieve nearly half the FPS of Q-Render. This
slowdown arises because they require two passes along each ray: one to estimate the transmittance
statistics and another to perform rendering. Despite their increased computational cost, we do not
observe any clear performance improvement over Q-Render. Therefore, we adopt Q-Render as our
rendering algorithm of choice, as it provides an efficient and effective approximation of V-Render.

E.2 OPEN VOCABULARY SEGMENTATION ON OUTDOOR SCENES

Since our evaluation benchmarks are all indoor datasets, we also demonstrate the effectiveness of
our proposed method on outdoor benchmarks. However, to the best of our knowledge, there are
currently no benchmarks that jointly cover multi-view and outdoor scenes for open-vocabulary seg-
mentation (OVS). To enable comparison in outdoor settings, we manually annotated 3 scenes from
MipNeRF360 (Barron et al.} 2022) outdoor scenes. Specifically, we use SAM2 to obtain an initial
mask corresponding to the queried object and then manually refine the segmentation by providing
additional positive and negative point prompts. This process allows for reliable ground-truth masks
for evaluating outdoor multi-view OVS performance across all baselines.

We compare our framework with the state-of-the-art method, Dr.Splat (Jun-Seong et al., [2025)), us-
ing the manually annotated MipNeRF360 benchmark. As reported in Table[9] Q-Render consistently
outperforms Dr.Splat, corroborating our main findings and demonstrating robust generalization to
outdoor scenarios. Qualitative comparisons are visualized in Figure[T0] As observed in the first col-
umn, our method achieves clear separation between the target object and its surroundings. However,
we acknowledge that VRAM constraints necessitated the use of larger voxel sizes. We leave the
development of more memory-efficient network architectures for 3D-GS to future work.

19

Under review as a conference paper at ICLR 2026

Rendered map Prediction (ours) Ground Truth Original Image

Figure 10: Our qualitative results in the MipNeRF360 dataset.

Table 10: Comparison of various 3D network backbone to GS-Net.

3D arch ‘ Rendering 19 classes 15 classes 10 classes
: mloU (1) mAcc (1) | mIoU (1) mAcc (1) | mloU (1) mAcc (1)
PointNet++ (Qi et al.|[2017) 39.42 50.62 42.88 56.66 52.21 69.14
PointNeXT (Qian et al.[[2022) Q-render 37.89 45.80 41.15 52.09 51.57 63.83
PTv3 (Wu et al.|[2024a) 48.99 60.36 52.39 66.05 64.95 79.34
MinkUNet (Choy et al.||2019) 50.75 62.00 53.54 66.39 64.95 79.34

E.3 MORE NETWORK ARCHITECTURE

To evaluate the generalizability of our approach across different backbones, we conducted additional
experiments using two representative point-based architectures: PointNet++ (Q1 et al., 2017 and
PointNeXT (Qian et al.,|2022). PointNet++ utilizes hierarchical feature learning via local neighbor-
hood grouping to capture fine-grained geometry, while PointNeXT advances this design with resid-
ual connections and improved scaling strategies. However, as reported in Table[T0] both point-based
models exhibit inferior performance compared to voxel-based baselines (MinkUNet and PTv3). We
conjecture that this disparity stems from the handling of point density. Since 3D Gaussians are often
densely clustered around object surfaces, the k-nearest neighbor (k-NN) search used in point-based
networks tends to limit the metric receptive field, thereby hindering the aggregation of broader con-
textual information. In contrast, voxel-based networks are inherently more robust to such density
variations, resulting in superior performance.

E.4 THOROUGH COMPARISON WITH OPENGAUSSIAN

To better understand which components of our method contribute most to the performance improve-
ment, we conduct an ablation by modifying each part of the pipeline individually and comparing the
results against OpenGaussian. Specifically, we introduce two hybrid models: one that uses the GS-
Net feature extractor while retaining the original rendering module of OpenGaussian, and another
that keeps the OpenGaussian feature extractor but replaces the renderer with Q-Render. As shown in
Table [T} incorporating Q-Render yields a consistent performance gain for both OpenGaussian and
GS-Net. Moreover, replacing the OpenGaussian codebooks with GS-Net features leads to a sub-
stantial improvement. We conjecture that preserving high-dimensional features is a key factor, as
OpenGaussian encodes only 6-dimensional attributes, whereas GS-Net leverages 512-dimensional
CLIP features that retain richer semantic information.

E.5 SENSITIVITY UNDER GAUSSIAN PERTURBATION
We also investigate the sensitivity of GS-Net to perturbations applied to the input 3D-GS representa-

tion. Specifically, on top of the predicted opacity, we inject Gaussian noise with varying scales into
the Gaussian opacity values and evaluate the resulting segmentation performance. To avoid extreme

20

Under review as a conference paper at ICLR 2026

Table 11: Comparison of V-Render and Q-Render under different feature extractors.

Feature Extractor | Renderin 19 classes 15 classes 10 classes
€ | mloU M mAcc (1) mloU(T) mAcc(?) mloU (1) mAcc (1)
OpenGaussian V-Render 22.60 3441 24.21 37.58 34.74 51.58
P Q-Render 23.10 35.55 26.18 38.12 36.13 56.12
. V-Render 49.02 58.75 50.41 63.65 61.04 76.21
GS-Net (Mink) ‘ Q-Render ‘ 5075 6200 5354 6639 6494 7934

Table 12: Robustness of Q-Render to Gaussian noise added to opacity.

Noise Scale 19 classes
mloU (1) mAcc (1)
0 50.75 62.00
0.25 50.13 60.94
0.5 50.18 60.88
1 47.13 57.10
2 38.13 44.11
4 16.12 32.19

i S o '%e:v : :
Quantile rendering (K=10)
66.087 FPS (1063 x1600 image)

Quantile rendering (K=1)
70.065 FPS (1063 x1600 image)

Volumetric rendering
59.429 FPS (1063 x1600 image)

Figure 11: Comparison between V-Render and Q-Render on RGB reconstruction using a pre-trained
3D-GS model without fine-tuning. Q-Render shows only minor PSNR degradation, demonstrating
that it serves as an efficient and accurate approximation of V-Render in the RGB domain.

cases where the opacity becomes negative values, we apply the noise before the sigmoid activation
is applied. As shown in Table [T2] GS-Net remains highly robust under mild noise levels: perfor-
mance degradation at noise scales of 0.25 and 0.5 is negligible, demonstrating that Q-Render retains
sufficient stability even when the opacity field is moderately corrupted. However, as the noise scale
increases beyond 1.0, we observe a marginal drop in both mIoU and mAcc, and the performance
eventually collapses at extreme noise levels such as 4.0. These results indicate that while Q-Render
is resilient to realistic perturbations in the opacity field, strong distortions that heavily corrupt the
underlying geometry inevitably degrade performance. Overall, this experiment suggests that our
pipeline maintains robust performance under practical levels of noise in 3D-GS inputs.

E.6 RENDERING RGB

Since our Q-Render is not restricted to CLIP features, it could also be applied to RGB image ren-
dering. Using this setup, we quantify how much information is lost when replacing V-Render with
Q-Render. To isolate the behavior of the renderer itself, we directly apply Q-Render to pre-trained
3D-GS models without any fine-tuning. As shown in Fig.[TT] Q-Render exhibits only a very slight
drop in PSNR compared to V-Render, indicating that it provides an effective approximation of the
original renderer even in the RGB domain. This suggests that Q-Render is broadly applicable be-
yond our semantic feature rendering setup. In particular, we believe Q-Render can be seamlessly
integrated into various 3D-GS variants—including dynamic or time-varying Gaussians—since these
models also assume fixed Gaussian positions at each rendering step.

21

Under review as a conference paper at ICLR 2026

Table 13: Peak inference memory on scene0000_00 (ScanNet, 100 frames).

Method | Feature Dim. | Peak Memory (GB)
LangSplat 3 7.18
OpenGaussian 6 16.13
Dr.Splat 512 61.13
Q-Render (K'=40) 512 27.18

E.7 MEMORY FOOTPRINT COMPARISON

We also compare the VRAM requirements of each baseline on scene0000_00 from ScanNet (100
frames). As summarized in Table [I3] LangSplat and OpenGaussian require little memory due to
their low-dimensional feature representations (3D and 6D). However, this compression inevitably
introduces information loss, which correlates with their reduced segmentation performance.

Dr.Splat relies on 512D features and stores per-view Gaussian visibility masks, which causes mem-
ory usage to grow proportionally with the number of frames and leads to more than 61,GB of peak
consumption. Q-Render also uses 512D features, and its cache-free per-ray accumulation avoids
this overhead, reducing the peak memory to 27.18,GB at =40 while preserving high-dimensional
semantic capacity.

F PSEUDO-CODE FOR VOXELIZATION, VOXEL FEATURE COMPOSITION,
AND DE-VOXELIZATION

To ensure reproducibility, we provide detailed pseudo-code of our implementation. Listing [I] out-
lines the voxelization pipeline that groups Gaussians into voxels for efficient processing. Listing 2]
details the organization of voxel positions and features as inputs for the 3D network. Finally,
Listing [3] describes the de-voxelization process, where voxel features are redistributed to predict
Gaussian-level features.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

mon

2.
3.

from typing import List, Tuple
from typing extensions import Literal

Global variable indicating the shape to be sampled
SAMPLE_SHAPE: Literal["volume", "tri-plane", "tri-line", "center"] = "volume"

def voxelization(gaussians, grid_size):
Convert a set of 3D Gaussians into a set of unique voxels and their associated features.

This function does the following:
1.

Counts how many voxels will be needed for each Gaussian based on the current
SAMPLE_SHAPE (e.g., "volume", "tri-plane", etc.).

Generates voxel coordinates and features for all Gaussians.

Removes duplicates, resulting in a unique set of voxel coordinates, their
corresponding features, and an index map that indicates how each original
voxel maps to the new unique list.

Args:

gaussians : List[dict]
A list of 3D Gaussian parameters. Each Gaussian is typically a dictionary
containing at least a "scale" key (and possibly position or other attributes)
needed by the downstream functions.

grid_size : float
A hyperparameter defining the size of each voxel.

Returns:

uni_voxels_xyz : List[Tuple[float, float, float]]
The (x, y, z) coordinates of the unique voxels.
uni_voxel_feats : List
The feature vectors corresponding to each unique voxel.
inverse _indices : List[int]
A list of indices that maps each original voxel back to its corresponding
index in the unique voxel list.

num_voxels_per_g: List[int]

A list of number of voxels that are sampled from each 3D Gaussian.

Notes:
— The function relies on three helper functions which are assumed to be defined:
1) ‘“count_voxels per g(gaussians, grid _size)
Determines the number of voxels for each Gaussian given the sampling shape.
2) ‘“compose_voxel_ features (gaussians, num_voxels_per._g) "
Produces the (x, y, z) coordinates and any features for each voxel.
3) ‘“return_unique_voxels (voxels_xyz, voxel_ feats)"
Removes duplicate voxel coordinates and returns a list of unique
coordinates, their combined features, and an inverse index array.
- If you are implementing this in a parallel computing environment (e.g., CUDA),
each step may be adapted for batch or GPU-based processing.
wnn
1. Determine how many voxels are required for each Gaussian.

num_voxels_per_g = count_voxels_per_g(gaussians, grid_size)

2. Generate voxel coordinates (xyz) and their associated feature vectors.

These features might include Gaussian-related attributes or other data.
voxels_xyz, voxel_feats = compose_voxel_features (gaussians, num_voxels_per_g)

3. Deduplicate the generated voxels:

— Get unique voxel coordinates,

- Aggregate/merge features for any duplicates,

- Obtain the inverse index mapping from original voxels to unique.
uni_voxels_xyz, uni_voxel feats, inverse_indices = return_unique_voxels (voxels_xyz,
— voxel_feats)

return uni_voxels_xyz, uni_voxel_ feats, inverse_indices, num_voxels_per_g

Listing 1: Our voxelization process for 3D Gaussians.

23

Under review as a conference paper at ICLR 2026

1242
1243
1244
1245
1246
1247
1248
1249
1250 from torch import Tensor
1251 def compose_voxel_ features (gaussians, num_voxels_per_g, grid_size):
1252 wnn
Generate per-voxel feature vectors for a set of 3D Gaussians.
1253 This function iterates through each Gaussian and computes:
1254 1. The xyz location of each voxel in the Gaussian.
2. A Mahalanobis distance-based influence (voxel opacity).
1255 3. Additional attributes such as RGB.
1256 Args:
gaussians : List[dict]
1257 A list of Gaussian definitions
1258 num_voxels_per_g : List[int] or torch.Tensor
Number of voxels associated with each Gaussian (e.g., from
1259 ‘count_voxels_per_g® or another precomputation).
1260 grid_size : float
The size of each voxel cell, used to help determine voxel coordinates.
1261 Returns:
1262 voxel_ features : List[torch.Tensor]
A list of per-voxel feature tensors having [voxel_xyz, voxel_rgb, voxel_ opacity].
1263 Notes:
The function “get_voxel location(...) 1is assumed to provide the precise xyz
1264 — coordinate of each voxel. Implementation details are omitted for readibility.
1265 wnn
1266 voxel_features = []
1267 voxel_xyzs = []
1268 # Iterate over Gaussians
1269 for g_idx, gaussian in enumerate (gaussians) :
Retrieve the number of voxels expected for this Gaussian
1270 num_voxels = num_voxels_per_g[g_idx]
1271

Extract Gaussian parameters for clarity
1272 mu = gaussian["mean"] # Center location of a 3D Gaussian
inv_cov = gaussian["inverse_3d_covariance_matrix"]

1273 opacity_factor = gaussian["opacity"]
1274 color_rgb = gaussian["rgb"]
1275 # Generate features for each voxel in this Gaussian
1276 for voxel_idx in range (num_voxels) :
1. Get the 3D coordinate for the current voxel
1277 voxel_xyz = get_voxel location(voxel_idx, gaussian, grid_size)
1278 voxel_xyzs.append (voxel_ xyz)
1279 # 2. Compute the Mahalanobis distance, Eg. 1 of the main manuscript
1280 dist = (voxel_xyz - mu).T @ inv_cov @ (voxel_xyz - mu)
1281 # 3. Compute voxel opacity using a Gaussian attenuation factor
1282 voxel_opacity = opacity_factor % torch.exp(-0.5 % dist)
1283 # 4. Concatenate features
feature_vec = torch.cat ([voxel xyz, color_rgb, voxel_opacity], dim=1)
1284 voxel_features.append (feature_vec)
1285
1286 return voxel_xyzs, voxel_features
1287
1288 Listing 2: Pseudocode for the compose-voxel-features function.
1289
1290
1291
1292
1293
1294
1295

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

from typing extensions import Literal
from torch_scatter import scatter, segment_csr

Global reduction mode (could also be passed as a parameter)
REDUCE: Literal["mean", "max"] = "max"

def de_voxelization (uni_voxels_pred, inverse_indices, num_voxels_per_g):
wnn
Aggregate network predictions from unique voxels back to full voxel predictions,
and then further reduce them into per Gaussian predictions.
This function performs two main steps:
1. Unique Voxels -> All Voxels: Uses ‘scatter’ to expand the predictions
from the unique-voxel level back to the original list of all voxels, by
indexing through ‘inverse_indices".
2. All Voxels —-> Gaussians: Uses ‘segment_csr’ to combine per-voxel
predictions for each Gaussian. This is done by summing the number of
voxels per Gaussian in ‘num_voxels_per. g, which creates offsets used by
“segment_csr’ to group voxel predictions into Gaussian predictions.
Args:
uni_voxels _pred : torch.Tensor
A tensor containing the predicted values (e.g., features or logits) for each
unique voxel. Its shape could be (N_unique, C), where N_unique is the number
of unique voxels and C 1s the dimensionality of the prediction (e.g. channels).
inverse_indices : torch.Tensor
A 1D tensor of indices mapping every original voxel to its corresponding
index in the unique voxel array.
num_voxels_per_g : torch.Tensor
A 1D tensor indicating how many voxels belong to each Gaussian.
Returns:
gs_pred : torch.Tensor
A tensor containing the final predictions at the Gaussian level, with shape

(G, C).
Notes:
- If your pipeline needs a different reduction mode (e.g. “"sum"') or you want
to pass it in as a parameter, replace ‘REDUCE’ accordingly.
wnn
1. Expand predictions from unique voxels to all voxels using ‘scatter’.
- 'uni_voxels_pred' has shape (N_unique, C).
- 'inverse_indices' has shape (M,) with M >= N_unique (the total number of voxels).
- 'scatter' will produce a new tensor of shape (M, C), where each entry 1is
the value from the appropriate unique voxel. The method of combination
(mean, max, etc.) is determined by ‘REDUCE".

voxels_pred = scatter (uni_voxels_pred, index=inverse_indices, reduce=REDUCE)

2. Combine per-voxel predictions into Gaussian-level predictions using ‘segment_csr’ .

- We first compute offsets with cumulative sums of the number of voxels in each
— Gaussian.

- The 'segment_csr' function then takes the voxel predictions and segments them

into groups corresponding to each Gaussian, reducing via the same ‘REDUCE’ rule.

offset = torch.cumsum(num_voxels_per_g, dim=0)
gs_pred = segment_csr (voxels_pred, ptr=offset, reduce=REDUCE)

return gs_pred

Listing 3: Our de-voxelization process for 3D Gaussians.

25

	Introduction
	Related works
	Preliminary
	Methodology
	3D neural network
	Quantile rendering
	Training loss

	Experiments
	ScanNet dataset
	LeRF-OVS dataset.
	Control experiments

	Conclusion
	Resolving up-to-scale with monocular depth
	Data preprocessing
	3D Gaussian Splatting optimization
	Pseudo ground truth acquisition

	Theoretical Analysis of Quantile Rendering
	Preliminaries: Riemann Sums and the Right Rule
	Volume Rendering as an Integral
	Volume Rendering as a Continuous Integral
	Quantile Rendering as a Right Riemann Sum
	Approximation Error of Quantile Rendering
	Convergence of Q-render with Transmittance Normalization

	Implementation Details
	Additional Experiments
	Adaptive Gaussian Sampling Strategy
	Open Vocabulary Segmentation on Outdoor Scenes
	More network architecture
	Thorough Comparison with OpenGaussian
	Sensitivity under Gaussian Perturbation
	Rendering RGB
	Memory Footprint Comparison

	Pseudo-code for Voxelization, Voxel Feature Composition, and De-voxelization

