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Abstract

The study of neural representations, both in biological and artificial systems, is increas-
ingly revealing the importance of geometric and topological structures. Inspired by this,
we introduce Event2Vec, a novel framework for learning representations of discrete event
sequences. Our model leverages a simple, additive recurrent structure to learn composable,
interpretable embeddings. We provide a theoretical analysis demonstrating that, under
specific training objectives, our model’s learned representations in a Euclidean space con-
verge to an ideal additive structure. This ensures that the representation of a sequence is
the vector sum of its constituent events, a property we term the linear additive hypothesis.
To address the limitations of Euclidean geometry for hierarchical data, we also introduce a
variant of our model in hyperbolic space, which is naturally suited to embedding tree-like
structures with low distortion. We present experiments to validate our hypothesis and
demonstrate the benefits of each geometry, highlighting the improved performance of the
hyperbolic model on hierarchical event sequences.

1. Introduction

The convergence of neuroscience and machine learning has highlighted the critical role of
geometry in shaping neural representations Bronstein et al. (2017). In the brain, neural
activity often unfolds on low-dimensional manifolds, reflecting the underlying structure of
tasks and environments Kriegeskorte and Kievit (2013). Similarly, in artificial intelligence,
principles like equivariance and compositionality are key to developing generalizable and
interpretable models Cohen and Welling (2016). This paper contributes to this effort by
investigating how a simple geometric prior can lead to highly structured and interpretable
representations of sequential data.

In this paper, we address the challenge of learning representations for sequences of dis-
crete events by introducing Event2Vec, a model designed to learn geometrically structured
and sequentially compositional representations. Our central hypothesis, which we term
the linear additive hypothesis Mikolov et al. (2013a), is that the representation of an en-
tire event history can be modeled as the vector sum of the embeddings of its constituent
events. While based on addition, this structure enables a rich vector arithmetic, allowing
for both the composition (via addition) and decomposition (via subtraction) of event tra-
jectories. This high degree of interpretability allows for reasoning about entire trajectories;
for instance, the displacement vector between first job and promotion (a subtraction) can
represent the abstract concept of 'career progression’. Such a structure allows us to analyze
a complex event trajectory by deconstructing it into its ordered, constituent steps, providing
a clear path towards geometric mechanistic interpretability for sequential data.

We present two variants of our model: one operating in a standard Euclidean space
and another in a hyperbolic space. Hyperbolic geometry is particularly well-suited for
embedding hierarchical or tree-like structures with low distortion Nickel and Kiela (2017).
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Figure 1: Geometric Properties of Event2Vec Embeddings. The model learns to represent
event sequences as trajectories in a vector space. (A) Probable event sequences form
trajectories where consecutive event vectors are directionally aligned. For example, two
distinct life paths ("homeschool’ — 'career’ and 'startup’ — 'career’) converge towards
a similar state ('death’) by adding event vectors that follow a logical progression. (B)
The additive structure enables analogical reasoning through vector arithmetic. The
"formalization” vector learned from the ‘engagement’ to ‘marriage’ transition can be
applied to ‘parenthood’ to correctly identify the parallel concept of ‘adoption’. (C)
Euclidean space provides a simple, flat geometry for these trajectories. (D) Hyperbolic
space, with its exponential volume, is better suited for capturing the hierarchical
branching often found in complex event data, preventing the 'crowding’ of distinct
paths.

2. Related Work

The concept of vector space embeddings for words, such as Word2Vec Mikolov et al. (2013b)
and GloVe Pennington et al. (2014), demonstrated the power of capturing semantic relation-
ships through vector arithmetic. These models are trained on local co-occurrence statistics
within a fixed context window. However, their reliance on local co-occurrence statistics
within a fixed context window makes them unsuitable for modeling the long-range, ordered
dependencies found in event sequences. In contrast, our model’s recurrent architecture and
novel reconstruction loss are designed to explicitly capture this directed, temporal structure,
enforcing sequential compositionality over the entire event history.

Our work is related to methods for learning node representations in graphs, such as
DeepWalk Perozzi et al. (2014) and Node2Vec Grover and Leskovec (2016). These methods
generate sequences of nodes through random walks on the graph and then use them to learn
embeddings. However, these approaches treat the generated walks as unordered contexts.
They are designed to capture neighborhood structure rather than the explicit, directed, and
temporal order of events in a sequence, which is the primary focus of our model.

Recurrent Neural Networks (RNNs) and their variants, like Long Short-Term Memory
(LSTM) Hochreiter and Schmidhuber (1997) and Gated Recurrent Units (GRUs) Cho et al.
(2014), are the standard for modeling sequential data. While powerful, their complex,
non-linear dynamics, involving gating mechanisms and matrix multiplications, can lead to
representations that are difficult to interpret. Other powerful sequence models like Neural
Temporal Point Processes Shchur et al. (2021); Mei and Eisner (2017); Du et al. (2016)
also learn embeddings from event histories, their complex, non-linear representations are
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optimized for temporal prediction and are not designed to support the kind of simple,
interpretable vector arithmetic that our model explicitly enforces.

The idea of using geometric priors in deep learning termed Geometric Deep Learn-
ing Bronstein et al. (2017), has gained traction, including work on graph neural networks,
equivariant models, and the use of non-Euclidean geometries. Our work is a specific instance
of this paradigm, imposing a strong additive prior on a sequence model. Our hyperbolic
prototype is directly inspired by recent advances showing that hyperbolic spaces are partic-
ularly effective for embedding hierarchical data. Their exponential volume growth naturally
accommodates tree-like structures with low distortion, a property first leveraged for repre-
sentation learning in Poincaré embeddings Nickel and Kiela (2017) and later extended to
neural network models that operate directly within curved geometry Ganea et al. (2018).

Our approach introduces a novel contribution by bridging the gap between purely se-
quential models and context-based embedding methods. While RNNs capture order and
methods like Word2Vec capture context, our model is, to our knowledge, the first to explic-
itly unify both within a simple, geometrically interpretable framework. The core novelty lies
in our training objective, which learns representations that are not just contextually similar
but are also compositionally sequential. Specifically, our loss function encourages the model
to place likely subsequent events linearly along a trajectory in the embedding space, while
positioning semantically unrelated or unlikely events in orthogonal directions. This creates
a much richer geometric structure where the vector displacement between events is directly
tied to their sequential probability, a property not explicitly enforced by prior methods.

3. The Event2Vec Model

We model a sequence of events S = (s1, S2,..., 1), where each event s; is drawn from a
vocabulary of event types. Our goal is to learn an embedding vector e; € R? for each event
type i, and a hidden state vector h; € R? that represents the history of events up to time ¢.

3.1. Model Architecture

The core of the Event2Vec model is its additive state update mechanism, where the event
embedding e;, encodes a transition that is applied to the previous state hy;_1. We propose
two geometric variants: a Euclidean model using standard vector addition, and a Hyperbolic
model using M6bius addition, which is better suited for hierarchical data.

Euclidean Model In the Euclidean variant, the update rule is a pure vector addition.
However, simple additivity can be numerically unstable, as the magnitude of the hidden
state vector can grow without bound over long sequences. To ensure stable training, we
employ a regularization technique. After the additive update, we clip the L2 norm of
the resulting hidden state vector to a maximum value. This preserves the direction of
the vector, and thus the additive semantics, while preventing its magnitude from causing
training instabilities.

ht = hi—1 + es, (with norm clipping) (1)

The initial hidden state hg is a zero vector. The model predicts the next event sy41 via a
linear decoder followed by a softmax function:

P(s+1]he) = softmax(Wyecht + baec) (2)



Hyperbolic Model For the hyperbolic variant, we operate in the Poincaré ball model
from Ganea et al. (2018), a conformal model of hyperbolic space that represents points
within a unit ball. The additive update is replaced by Mobius addition 6., the natural
generalization of addition to hyperbolic space with curvature ¢ < 0. It is defined as:

(1+ 2¢(z, y) + cllyl®)z + (1 — cllz]*)y

_ 3
T Dy 1+ 2c(z,y) + ||z?||y||? )

This operation ensures that the addition of two vectors within the Poincaré ball results in
another vector that also lies within the ball. The update rule is:

h: = hy_1 D¢ €sy (4)

To make a prediction, we must interface the hyperbolic representation with a standard
Fuclidean classifier. We do this by mapping the hyperbolic state h; to the tangent space at
the origin (a Euclidean space) via the logarithmic map, logy .(+), before applying the linear
transformation. This is a standard and principled approach for decoding from hyperbolic
representations.

3.2. Training Objective
The model is trained to minimize a composite loss function L., Which consists of three

components designed to enforce our desired geometric properties:

1. Prediction Loss (Lp¢q): A standard cross-entropy loss for predicting the next event
in the sequence. This ensures the model learns to capture the sequential dependencies

in the data.
T—1

Epred = - Z log P(st+1|ht) (5)
t=1

2. Reconstruction Loss (L;ccon): This loss is central to our linear additive hypothe-
sis. It ensures that the event embedding can be ”subtracted” from the hidden state
to perfectly recover the previous state. This explicitly enforces the algebraic group
structure of addition and its inverse.

T
Lrecon = Z ”(ht - est) - ht—ng (6)
t=1

For the hyperbolic case, this becomes Lyecon = Y, de(ht @ (—€s,), hi_1)?, where d, is
the Poincaré distance.

3. Consistency Loss (Lconsist): To ensure robustness and a smooth embedding space,
we use dropout as a stochastic perturbation Gao et al. (2021). We run the same
input through the model twice and penalize differences in the resulting hidden states.
This encourages the model to be insensitive to small perturbations, leading to a more
stable and generalizable representation space.

T
Leonsist = Z ||h§1) - h§2)”% (7)
t=1
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where hgl) and h,g?) are the hidden states from two separate forward passes with the

same input but different dropout masks.
The total loss is a weighted sum of these components:
ﬁtotal = Epred + )\reconﬁrecon + )\consistﬁconsist (8)

4. Theoretical Justification for Additivity

Here, we justify that for the Fuclidean Event2Vec model, minimizing our composite loss
function forces the recurrent update to converge to an ideal additive form. This provides a
theoretical foundation for our claim that the model learns composable representations.

Theorem 1 (Justification for Ideal Additivity) Let the hidden state update be defined
as hy = f(hi—1,€es,), where f is a function parameterized by the neural network. Minimizing
the reconstruction 10ss Lrecon = >4 | f(ht, —€s,) — hi—1||3 with respect to the parameters of
f drives f to approzimate the linear additive function hy = hi—1 + e, .

Proof The reconstruction loss, L, econ reaches its minimum of zero only when its argument
is zero for all steps. This imposes the following constraint on the learned update function
f:

f(f(ht*b est)? _est) = hi—1

This equation dictates that the update operation must be perfectly reversible, the effect

of applying an event embedding (es,) is undone by applying its additive inverse (—es,).
The simplest function satisfying this property in a vector space is linear addition,

f(h,e) = h + e, which an optimizer will converge to. [ |

It is important to note that while the reconstruction loss enforces this reversible struc-
ture, it does not by itself guarantee a meaningful solution. For instance, a trivial solution
where all event embeddings are zero (e; = 0) would perfectly satisfy the reversibility con-
straint. This outcome is prevented by the prediction loss, which compels the model to learn
informative, non-zero embeddings to make accurate forecasts about the sequence. While
the reconstruction loss enforces the algebraic structure of additivity, the prediction loss
imposes the semantic grounding for the embeddings. The two work in tandem.

Theorem 2 (Semantic Grounding via Prediction Loss) The prediction l0ss Lpcq en-
courages the inner product of a hidden state hy and a subsequent event embedding e, , to
be proportional to their pointwise mutual information (PMI).

Proof [Sketch] The L,,¢q provides the semantic grounding for the embeddings by linking
them to the statistical properties of the event sequences. The objective is analogous to the
Skip-Gram with Negative-Sampling (SGNS) framework Levy and Goldberg (2014), which
has been shown to implicitly factorize a word-context matrix where each cell is the shifted
Pointwise Mutual Information (PMI). The optimal solution for the dot product of a word
vector and its context vector under the SGNS objective is w’e¢ = PMI(w, ¢) — log k.

By analogy, in our model, the next event s;+; acts as the "word” and the history
vector h; acts as the ”context.” Therefore, at the optimum, the model learns embeddings



such that hles,,, ~ PMI(s¢p1,h) — logk. A crucial feature of our model is the linear
additive hypothesis, where the history vector is the sum of its constituent event embeddings
hy = Zgzl es; (additive hypothesis). Substituting this into the relationship yields:

t T ¢
T T ~
hi €s,., = g s, | €spyy = E 5,651~ PMI(str1,{s1,...,5¢})
i—1 i=1

by analogy to the SGNS objective

Additive hypothesis Distributive property

This result demonstrates that the prediction loss £,,..q forces the embeddings to be geomet-
rically arranged such that events statistically likely to follow a sequence are directionally
aligned with that sequence’s vector. This grounds the learned geometry in the statistical
reality of the data. |

The prediction and reconstruction losses work in synergy to create a space that is both
semantically meaningful and structurally coherent. The prediction loss first provides the
semantic grounding, arranging the space by ensuring that embeddings for statistically likely
event sequences (e.g., ‘birth‘ then ‘infancy‘) are geometrically close. However, this proximity
alone does not enforce a specific algebraic rule. The reconstruction loss then acts as a
structural constraint, taking this semantically organized space and ”cementing” it with the
rules of vector arithmetic. By forcing the event update to be perfectly reversible, Ly ccon
ensures that the representation of a sequence is the precise vector sum of its parts (e.g.,
h(‘birth', ‘infancy’ = epirtn + €infancy), making the learned space truly and interpretably
compositional.

Theorem 3 (Hyperbolic Equivalence) In the Poincaré ball, minimizing the hyperbolic
reconstruction 10ss Lrecon = Y, de(ht ®c (—es,), hi—1)? forces the update rule to be Mdbius
addition.

Proof The proof follows the same logic as the Euclidean case, but with hyperbolic oper-
ations. The distance d.(x,y) is minimized when z = y. Thus, the loss is minimized when
hi ®c (—es,) = hy—1. In hyperbolic geometry, the inverse of Mébius addition with a vector
e is Mobius addition with its negative, —e. Let the update rule be hy = f.(ht—1,es,). The
loss minimum requires fo(fe(hi—1,€s,), —€s,) = ht—1. The function that satisfies this prop-
erty in the Poincaré ball is Mobius addition, f.(h,e) = h @, e. Therefore, minimizing the
hyperbolic reconstruction loss forces the model to learn the correct additive compositional
rule for that geometry. |

5. Experiments

To validate our model and its theoretical underpinnings, we propose the following experi-
ments designed to rigorously test our claims and demonstrate the utility of our approach.
In all experiments, the loss weights A were set to 1.

5.1. Life Path Example
To demonstrate the practical utility and interpretability of Event2Vec, we apply it to a

synthetic dataset modeling a human life path. This dataset consists of sequences of signif-
icant life events, from birth and education to career milestones and retirement. The goal
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of this experiment is to qualitatively assess whether our model can learn a geometrically
coherent representation of a chronological trajectory, a task that requires capturing not just
the semantic meaning of events but also their inherent temporal order. Appendix explains
the entire scenario.

‘ ID ‘ Analogy Query (A— B+ C) Result (D) ‘ Cosine sim. ‘
1A | ‘elementary_school® - ‘birth* + ‘first_job* = ‘late_childhood’ 0.4504
1B ‘death’ - ‘retirement’ + ‘graduation’ = ‘internship 0.4090
2A ‘promotion’ - ‘career_start' + ‘first_job* = ‘military_service‘ 0.5048
2B | ‘business_success’ - ’entrepreneurship’ + ’investment’ = ‘inheritance’ 0.5976
3A ‘marriage’ - ‘engagement* + ‘parenthood* = ‘adoption’ 0.4653
3B ‘divorce* - ‘relationship_challenge’ + ‘financial hardship® = ‘major_purchase‘ 0.3869

Table 1: Analogical reasoning examples demonstrating that vector arithmetic (A — B+ C)
on Event2Vec embeddings captures coherent semantic relationships between life
events.

Analogical Reasoning Task: The examples in Table 1 show the model’s ability to learn
abstract relationships through analogical reasoning. For example, the query in row 1B
is interpreted as a ’life phase transition,” mapping the career-to-retirement shift onto the
school-to-work transition to yield ‘internship‘ as the model’s result. Other tests reveal the
model’s grasp of thematic clustering (row 2B), where it groups ‘business_success* and ‘in-
heritance‘ as major financial events, and even causal reasoning (row 3B), where it identifies
‘major_purchase’ as a common cause of financial hardship.

Geometric Analysis of Embedding This theoretical structure is borne out in our ex-
periments. The model’s learned geometry, shown in Figure 2, reveals distinct life trajecto-
ries. A primary path flows from an initialization phase of education (‘birth‘, ‘study_abroad®)
into a dense central hub representing a conventional career and family life (‘marriage’, ‘lead-
ership_role‘), with logical offshoots for events like ‘divorce' and ‘grandparenthood‘. The
visualization also captures alternative paths, such as a specialized academic sequence and
individualistic pursuits (‘travel‘, ‘volunteer_work‘). Critically, the event ‘death‘ is not a
single endpoint but is located centrally, reflecting its status as a shared outcome. However,
this static visualization does not convey the full power of Event2Vec; its compositional ad-
ditivity, which enables arithmetic reasoning on trajectories, is more robustly validated by
the quantitative results of the Brown Corpus experiment in the following section.

Comparison of Euclidean vs. Hyperbolic Space: We trained a hyperbolic variant
of Event2Vec to better model the inherently hierarchical nature of life paths, leveraging
a geometry designed for tree-like data. The resulting embedding space, visualized using
Poincaré distances, suggests a branching structure where life events appear to separate into
domains like Education, Relationships, and Career. We hypothesize that this structure
may be more effective at representing the divergent nature of life choices than a standard
Euclidean trajectory, while still preserving the temporal structure.

5.2. Brown Corpus
To validate our model’s ability to capture linguistic structure, we conducted an unsuper-

vised experiment on the Brown Corpus Bird et al. (2009). We trained Event2Vec and
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Figure 2: A t-SNE comparison of life path embeddings. (Left) The Euclidean Event2Vec
model learns a clear chronological trajectory. (Center) The Hyperbolic
Event2Vec model captures a more powerful hierarchical structure, with life paths
branching radially from the ‘birth‘ event. (Right) The Word2Vec baseline learns
thematic clusters, grouping events by semantic context (e.g., ‘birth* and ‘death‘)
while failing to capture sequential or hierarchical relationships.

a Word2Vec baseline on raw sentences without any grammatical labels. Subsequently, we
evaluated the models by composing vector representations for specific Part-of-Speech (POS)
tag sequences (e.g., ‘AT-JJ-NN* for article-adjective-noun) by summing the learned embed-
dings of corresponding words. This directly tests if the model’s additive property learns
meaningful syntactic composition.

The results, visualized in Figure 3, show that Event2Vec successfully organizes these
composite vectors into distinct clusters corresponding to their grammatical structure. No-
tably, it groups similar patterns like ‘AT-JJ-NN*‘ and ‘IN-AT-NN‘, a separation that is far
less distinct in the Word2Vec baseline. This visual finding is quantitatively supported by
a silhouette score of 0.0564, more than double the 0.0215 achieved by Word2Vec. This
demonstrates that Event2Vec can discover and represent grammatical regularities from raw
text without any explicit supervision.

6. Limitations

The model’s deliberate simplicity and reliance on a additive structure introduce two key
limitations. First, the pure additive mechanism is numerically unstable on long sequences,
as the hidden state vector can grow without bound (see Figure 12 in Appendix). This neces-
sitates regularization techniques that, in turn, compromise the model’s perfect additivity.
Second, the additive prior is a conceptual constraint, as it cannot capture complex, non-
linear interactions between events (e.g., the effect of a 'market_crash’ on an ’investment’).
Our approach sacrifices the ability to model these complex dynamics in favor of a more
interpretable geometric framework.

7. Conclusion

We introduced Event2Vec, a model that learns composable representations of event se-
quences by enforcing geometric simplicity. Our theoretical analysis provides a justification
that our training objective guides the model to learn a Euclidean representation space with
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Figure 3: t-SNE visualization of embedded POS tag sequences from the Brown Corpus.
Event2Vec (left) produces well-defined clusters corresponding to grammatical
structures, correctly grouping similar sequences like ‘AT-JJ-NN‘ and ‘IN-AT-
NN¢‘. The Word2Vec baseline (right) shows significantly weaker separation and
overlapping clusters.

an ideal additive structure, a property we term the linear additive hypothesis. This struc-
ture is key to the model’s utility, offering a clear path toward mechanistic interpretability
by allowing a meaning to be derived from the sum of its parts. A key quantitative result
is the model’s outcome on the Brown Corpus, where it discovered and clustered distinct
grammatical structures from raw text in a completely unsupervised manner outperforming
a Word2Vec baseline. This provides powerful evidence that the learned geometry captures
meaningful, compositional semantics.

Recognizing that Euclidean geometry is ill-suited for hierarchical data, we also devel-
oped and investigated a hyperbolic variant of our model. The exponential "room” in hy-
perbolic geometry is intuitively better suited for embedding tree-like data structures with
low distortion, which is a common characteristic of branching paths. Our experiments on
synthetic life-path data confirm the utility of this approach, with the hyperbolic variant
show a potential to capture hierarchical relationships over Euclidean space.

Finally, we acknowledge the trade-offs inherent in our design. The model’s simplic-
ity, while central to its interpretability, introduces limitations in numerical stability and
conceptually restricts it from capturing complex, non-linear event interactions. This work
establishes a clear framework for geometrically-grounded, interpretable sequence represen-
tation, paving the way for future research into hybrid models that seek to balance this
interpretability with the capacity for more complex dynamics.
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Experiments
LIFE SCENARIO

The following figures show states and transitions of the life scenario as described by our
model. We begin with Figure 4 which provides an overview of the individual blocks shown
in further detail below.

We see the education in Figure 6, which maps out the paths through the educational
system. From there, Figure 7 details the professional life. Running parallel to this, Figure 11
illustrates the transition to states of e.g. finding partners and building a family. Personal
choices shown in Figure 10 can alter this path, while the critical interplay of wellness and
wealth is detailed in Figure 8. The scenario transition concludes in Figure 9, which shows
the transition from retirement into the elder years. In each of these detailed figures, the
arrows show the chance of moving from one event to the next.

Dataset Generation
The synthetic Life Path dataset was generated using a stochastic process designed to sim-

ulate realistic life trajectories. The generation follows a guided random walk on a state
transition graph, where nodes represent life events.
The process for generating a single sequence is as follows:

e Initialization: Each sequence begins at the predefined initial state, ‘birth‘.

e Probabilistic Transition: At each step, the next event is chosen based on the
current event. For a given event, there is a predefined dictionary of possible subse-
quent events, each with an assigned probability weight. The next event is selected by
sampling from this distribution.

e Stochastic Exploration: To ensure diversity in the generated sequences and model
less common life paths, a 10% chance of a random transition is introduced at every
step. In this case, instead of following the weighted probabilities, the model selects
the next event uniformly at random from the entire vocabulary of possible life events.

e Termination: The sequence generation continues until the terminal state, ‘death’,
is reached or a maximum sequence length of 16 events is exceeded. If the maximum
length is reached, the 'Death’ event is appended to formally conclude the trajectory.

This procedure was used to generate 10,000 unique life path sequences, which formed the
training set for the experiments described in Section 5.1.

12
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Figure 4: A high-level overview of the life model, where each node represents a major life
stage. The directed edges indicate the flow between stages, with the label and
thickness of each edge representing the total number of distinct transition paths.
This illustrates the central roles of the Career and Health & Finances stages
as highly interconnected hubs in a person’s life journey.
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Figure 5: The Early Life stage, showing the foundational years from the ‘birth‘ event
through childhood. The diagram shows a strong, linear progression through key
developmental milestones, from ‘infancy* to ‘Late Childhood‘, with high transition
probabilities indicating a canonical path. The stage concludes with transitions
to later life phases such as ‘Middle School‘ and the formation of ‘Friendship*.
Notably, the model also captures the persistent, low-probability risk of a ‘Health
Issue‘ occurring at any point during this period, demonstrating its ability to
model both sequential and parallel events.
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Figure 6: The Education life stage, detailing the probabilistic paths from elementary school
through higher education. Nodes within the colored block represent educational
milestones, while gray nodes indicate transitions to external stages like Career or
Health. The numbers and thickness of the arrows correspond to the transition
probabilities, highlighting the primary path towards graduation while showing
alternative routes like vocational training or internships.
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Figure 7: A model of the Career life stage, illustrating the dynamic and non-linear nature
of professional life. The diagram shows the typical progression from a first job
to a career start, but also includes significant feedback loops such as job loss and
job searching. The probabilities on the edges guide the likelihood of events like
promotions, career changes, or entrepreneurial ventures, with gray nodes showing
strong connections to financial and relationship outcomes.
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Figure 8: The Health & Finances block, a central hub that influences all other aspects
of life. This model visualizes the critical interplay between health events and
financial stability. It contains feedback loops for both positive outcomes, like
investment leading to financial success, and negative challenges, such as a health
issue leading to financial hardship. The gray nodes show how these events directly
impact career, relationships, and later life stages.
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Figure 9: The Later Life stage, modeling the period from retirement to the end of life.
The diagram illustrates the shift in focus post-career towards travel, hobbies, and
grandparenthood. It also shows the increasing probability of health issues, which
create a clear, probabilistic funnel through terminal illness and hospice care to
the model’s terminal state, Death.
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Figure 10: The Life Events block, representing significant personal milestones and pursuits
that shape the life path. These events, such as relocation, travel, or military
service, often act as catalysts that connect or alter the course of an individual’s
career and relationships. The graph shows how these pursuits are interconnected
and lead to personal development or changes in other life stages.
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Figure 11: The Relationships life stage, mapping the progression of romantic and family
connections. The model follows a common path from dating to marriage and
parenthood, with probabilities indicating the likelihood of each step. Crucially,
it also incorporates potential setbacks such as relationship challenges or divorce,
which create cycles that can return an individual to earlier stages.
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QUANTITATIVE EVALUATION OF ADDITIVITY

We quantitatively validate our linear additive hypothesis by measuring the deviation from
ideal additivity as a function of sequence length, as shown in Figure 12. In this test,
random sequences of increasing length were generated and we compute the cosine similarity
between the final hidden state produced by the model’s recurrent updates and the ideal
state calculated via a direct vector sum of the event embeddings. The results from Figure 12
confirm a strong additive structure, with the observed gradual decay in similarity for longer
sequences being an expected trade-off for the numerical stability provided by the norm
clipping regularization discussed in Section 6.

Model Additivity vs. Sequence Length
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Figure 12: This plot validates our model’s compositionality. Cosine similarity between the
final hidden state and the ideal vector sum of its parts remains high ( 0.7), even
for long sequences.

DETAILED JUSTIFICATION OF ANALOGICAL EMBEDDING

The analogical reasoning results, presented in the Table 1, show the ability to capture data-
driven relationships that go beyond simple chronological order. By analyzing the Analogy
Query for each ID, we can interpret the geometric logic behind the Model’s Result.

In 1A, the query attempts to map the transition from birth to school onto a career
context. However, the model interprets the vector ‘elementary_school‘ - ‘birth‘ as the literal
concept of ”childhood development”. When this vector is illogically added to ‘first_job‘,
the model defaults to the most representative childhood event it knows, ‘late_childhood®,
although with a moderate cosine similarity of 0.4504. Conversely, in 1B, the model correctly
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interprets the vector ‘death’ - ‘retirement* as a ”final life transition”. Applying this concept
to ‘graduation’, it identifies ‘internship‘ as the corresponding next step, representing the
transition from academic life to professional life.

The tests in group 2 explore professional trajectories. In 2A, the model associates the
vector for career advancement ‘promotion‘ - ’career_start’ with ‘military_service‘. This sug-
gests the model has learned that both a promotion and military service are significant,
structured steps that follow initial employment, resulting in a relatively high cosine similar-
ity of 0.5048. Analogy test case 2B shows the model clustering concepts of major positive
financial events where the vector representing the outcome of entrepreneurship, when ap-
plied to an investment, logically yields another major financial event ‘inheritance‘ with high
similarity score 0.5976.

Finally, the tests in group 3 examine relationship dynamics. Row 3A shows a good
example, where the model correctly identifies ‘adoption‘ as a direct parallel to ‘parenthood'
when applying the ”formalization” vector from ‘marriage’ - ‘engagement‘. In row 3B, the
model displays a fascinating insight: when asked to find the outcome of financial hardship by
applying the vector for a relationship ending (‘divorce‘ - ‘relationship_challenge‘), it returns
‘major_purchase‘. This indicates the model has likely learned from the data that a major
purchase is a common cause of financial hardship, linking the two events causally rather
than sequentially.
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