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1 | INTRODUCTION

Kevin Z. Lin?

Abstract

Single-cell transcriptomics, epigenomics, and other ‘omics applied at single-cell
resolution can significantly advance hypotheses and understanding of glial biology.
Omics technologies are revealing a large and growing number of new glial cell
subtypes, defined by their gene expression profile. These subtypes have significant
implications for understanding glial cell function, cell-cell communications, and glia-
specific changes between homeostasis and conditions such as neurological disease.
For many, the training in how to analyze, interpret, and understand these large data-
sets has been through reading and understanding literature from other fields like bio-
statistics. Here, we provide a primer for glial biologists on experimental design and
analysis of single-cell RNA-seq datasets. Our goal is to further the understanding of
why decisions are made about datasets and to enhance biologists’ ability to interpret
and critique their work and the work of others. We review the steps involved in
single-cell analysis with a focus on decision points and particular notes for glia. The
goal of this primer is to ensure that single-cell ‘omics experiments continue to

advance glial biology in a rigorous and replicable way.
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analysis, glia, multiome, RNA-seq, single-cell, single-nucleus, transcriptomics

relevant to their fields of study. ‘Omics approaches provide powerful

tools for understanding the biology of glia, and the technologies to

Single-cell ‘omics studies of various sorts have provided datasets
unprecedented in their size and resolution to generate testable
hypotheses about glia. One of the significant benefits of these single-
cell ‘omics approaches is the ability to distinguish and differentiate
subpopulations of glial cells. Glial cell types are exquisitely sensitive to
their surrounding environment. This results in many distinct pheno-
types, which each have varied impacts on the surrounding cells. When
working with glia, it is then important to describe and test hypotheses
about the diversity within these cell types, not just the overall
population of all cell types within a donor. For many glial biologists,
single-cell/nucleus RNA-seq, multiome (the combination of two
‘omics technologies), and various forms of epigenomics, proteomics,

lipidomics, and spatial transcriptomics are becoming increasingly

generate the datasets in the wet lab are simple enough to use these
days. Analysis of these large datasets is also becoming more accessi-
ble with a variety of analysis pipelines and toolsets available either
open source or through licensed software.

‘Omics approaches are descriptive in nature (Diaz-Ortiz & Chen-
Plotkin, 2020). Even if one designs a well-controlled multi-group
multi-biological replicate experiment, the dataset generated will pro-
vide evidence that gene expression or epigenetic markers (or both)
changed but will not provide the mechanistic or direct experimental
evidence that these changes are biologically meaningful. Validation of
the findings by directly testing the alterations in gene expression and
what they mean functionally are then required to fully interpret the

results of these ‘omics datasets.
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We write this primer with the goal of providing informed
guidelines for researchers on the application and analysis of single-
cell ‘omics datasets. These sometimes-daunting datasets consist of
large matrices of genes by samples by cells. There are new pack-
ages available for analysis every day and there is potentially pro-
gramming to be learned on top of determining what algorithm to
apply. These hurdles are all surmountable for glial biologists. We
focus on single-cell RNA-seq and single-nucleus multiome
approaches with the idea that these are some of the most ubiqui-
tous of datasets to analyze. While our focus is on these specific
datasets, the general themes we cover will be broadly applicable to
other forms of ‘omics technologies and analysis. We provide an
overview of the best practices and a guide on how to make deci-
sions when analyzing datasets. Our goal is to make single-cell
‘omics more accessible to those interested in applying these pow-
erful tools to their studies. Advancing the science of glial biology
will involve knowledge of how/when/why to apply these tech-
niques and the appropriate analysis tools (Table 1).

2 | DESIGNING THE EXPERIMENT

2.1 | Why use single-cell/nucleus transcriptomics?

If the scientific question being asked is about how cells might shift
their gene expression in response to a specific condition/disease
state/stimulus and specifically involves understanding the diversity of
responses within the larger cell population, then single-cell transcrip-
tomics may be the right approach. If the questions involve whether
gene expression changes overall within a well-defined cell type that
can be enriched for and isn't suspected to have a high degree of het-
erogeneity, a whole organ, or is about less abundant/rare transcripts
then bulk RNA-seq is the technique of choice. The power of single-
cell datasets is primarily in detecting unique shifts in different subpop-
ulations of cells rather than a shift in gene expression at the larger
population level. Single-cell RNA-sequencing technologies can be
applied to either whole cells or nuclei. For the remainder of this
primer, we will refer to cells when the word is generic, though know
that this could be cells or nuclei depending on your application (for
more information on the choice of whole cells vs. nuclei we refer
you to the section 2.7 on this topic below). This allows their applica-
tion to a wide range of tissues including fresh, fresh frozen, and fixed
from which to extract glia and analyze their gene expression. Bulk
RNA-seq is typically much cheaper, potentially faster than single-cell
approaches, more sensitive to detect lowly expressed genes, and
enables better capture of splice isoforms. We acknowledge that for
emerging research areas, bulk RNA-seq will be the technique of
choice due to cost. However, technologies continue to improve that
may allow for the low-cost processing of hundreds of single-cell sam-
ples for transcriptomics analysis in the future and technologies to
merge long-read sequencing with single cell approaches will improve
the power of single-cell sequencing to identify splicing and more rare

transcripts.

2.2 | Why use single-nucleus epigenomics?

If the scientific question involves the chromatin accessibility, conforma-
tion, or histone modifications that shift gene expression, then single-cell
epigenomics is a likely technique candidate. The assay for transposase-
accessible chromatin with sequencing (ATAC-seq) detects regions of
open chromatin. Single-nucleus methylation technologies are also avail-
able if epigenetic markers driven by methylation are of interest for the
science. Single-cell Hi-C allows an understanding of the chromosome
conformation (Flyamer et al., 2017; Nagano et al., 2013). Single-cell cut
and tag identifies histone modifications and areas of open chromatin
(Bartosovic et al., 2021; Bartosovic & Castelo-Branco, 2023). In the case
of ATAC-seq datasets, it is often useful to have a reference dataset of
single-nucleus RNA-seq to assist with clustering the dataset to then
determine the cluster-level peaks of open chromatin regions. Note that
ATAC-seq requires nuclei, so while transcriptomics at the RNA level
can use cells or nuclei, the technology behind epigenomics requires a
shift to nuclei.

2.3 | Why use single-nucleus multiomics?

Multiome is the combination of ‘omics technologies from the same
cell source. Single-nucleus multiome is commonly used to refer to
the combination of performing RNA-seq and ATAC-seq on material
generated from the same nucleus. There are additional single-cell
multi-omic technologies that allow combinations of lipidomics, prote-
omics, HI-C, or DNA methylomics, but these technologies are still
emerging. Colloquial use of “multiome” may shift as technologies
beyond the combination of RNA-seq and ATAC-seq become more
widely used. The power of performing multiomics is that both types
of ‘omics datasets are generated simultaneously. In the case of
single-nuclei RNA-seq and ATAC-seq, this would allow one to corre-
late a specific gene expression change to differential accessibility of
its regulatory region within the same cell. Multiome avoids the need
to integrate datasets from different physical samples, and the issues
of needing to identify a good reference dataset as both datasets are
built from the same nuclei. Several publications are out or forthcom-
ing with glial multiome datasets (Trevino et al., 2021; Wang
et al., 2023; Xiong et al., 2023; Zhao et al.,, 2024). We also note
there are promising methods that help “predict” the ATAC-seq data
from RNA-seq data or vice-versa (Cao & Gao, 2022; Gong
et al, 2021), as well as methods to computationally link RNA-seq
profiles from one sequencing run to ATAC-seq profiles from a differ-
ent sequencing run (Chen et al., 2023), but it is still not clear if these
methods work for all biological systems related to glial cells. Impor-
tantly, we caution against using these computational cross-modality
prediction tools without further validation. For instance, if we trea-
ted the predicted/imputed ATAC-seq data based on the RNA-seq
data as if we had originally sequenced the multiome, we should
expect unrealistically high correlations between the chromatin acces-
sibility and gene expression profiles. Such findings would only be rig-

orous if paired with additional biological validations.
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TABLE 1 Glossary of terms.

Glossary of terms

Term

Differentially expressed
gene (DEG)

Epigenomics

Gene Set Analysis (GSA)

Gene Set Enrichment
Analysis (GSEA)

Highly-variable gene

Library

Model

Multiome/multi-omics

Multiplexing

Over-dispersion

Principal component
analysis (PCA)

Proteomics

Pseudobulk

Sequencing count

Sparse

t-SNE/UMAP

Definition

A DEG is detected when the expression of that gene is significantly altered. DEG analysis typically occurs twice in
analysis of single-cell datasets. Once to detect genes that separate clusters (cell types or states), and once to detect
genes that differ between experimental conditions, such as treatments or groups. The detection of DEGs for each of
these two questions is different, as the identification of DEGs that are for experimental conditions should involve either
a pseudobulk approach or modeling of the source of each cell in the dataset to account for the group-level data.

The class of ‘omics technologies used to identify alterations in epigenetics such as open chromatin regions, chromatin
conformation, histone modifications, and other forms of epigenetic modifications. These modifications can affect gene
expression and are both heritable and modified by the environment of an organism.

A technique that applies a Fisher's exact test (typically) to a set of significant genes identified by DEG analysis to detect
biological pathways or other correlated biological functions with those genes. This analysis takes only the significant
genes, does not account for their directionality or the magnitude of effect, and is not well powered when gene lists are
small (<100).

A technique that identifies correlated biological pathways using the entire list of highly variable genes (or the full
genome) and combines them into enriched pathways using both the direction and magnitude of change in the dataset.
This pathway analysis technique is preferred because it takes into account the fold change of the genes and detects
where groups of genes are changing in a correlated manner. Note that the genes identified as contributing to the
pathway enrichment may not be significantly different themselves.

A gene whose expression level varies significantly across different cells in the dataset. In some cells, it has very high
expression and in other cells, it is lowly expressed. Computationally identifying highly-variable genes helps to focus the
analysis on the most informative parts of the data.

A unit of cDNA prepared for sequencing through appropriate size discrimination and sequencing platform adaptor
ligation. A single library typically contains all the cDNA transcripts from a single source. Libraries are typically prepared
in batches of samples, which are a source of batch effects in the sequencing dataset.

A statistical equation to describe the dataset. An example of “modeling” is to determine differential gene expression
while accounting for cell source-level covariates.

The term used when multiple forms of ‘omics technologies are applied to a single cell source. This is often used to refer
to the combination of RNA-seq and ATAC-seq performed on the same nucleus, but can refer to any combination of two
or more ‘omics technologies performed on the same cells/nuclei.

A technique used to label multiple sample sources such that they can be effectively pooled for single cell separation and
library preparation. The labels allow the sequence from each sample source to be later identified as a separate sample in
the dataset. This technique reduces reagent costs but allows use of the full N of samples obtained, a better outcome
than pooling without multiplexing.

Variability in the sequencing count that is greater than expected based on a given statistical model.

A technique that reduces the number of “dimensions”/”features” in your data while keeping the most important
information. It helps you see patterns and trends by creating new variables (called principal components) that are
combinations of the original variables, but fewer in number. This makes complex data easier to visualize and analyze.
PCA falls in a category of methods called “dimension reduction methods”, of which PCA is one of the most common.

The class of ‘omics technologies used to identify changes in protein expression within a given cell source.

A method in single-cell RNA-seq analysis where the data from individual cells generated from the same cell source are
aggregated or summed to create a bulk RNA-seq-like profile for that source. This approach helps to mitigate the noise
and sparsity inherent in single-cell data by combining the expression levels of cells, making it easier to apply traditional
bulk RNA-seq analysis methods. This method should better approximate the statistical question when asking what
differs between experimental groups, though regression methods that account for cell source variability are also
appropriate.

The non-negative number (e.g., 0, 1, 2, ...) representing the number of fragments from a particular gene sequenced for a
particular cell. The single-cell sequencing matrix is typically called a “count matrix”, and is oriented to have one row per
gene, and one column per cell. This matrix is often sparse, meaning many of its entries are O (no counts for a given gene
for a given cell). This sparsity needs to be addressed by the statistical applications developed for single-cell analysis.

A matrix is sparse when it contains data table cells that are zero. In single-cell datasets, there are many zeros because
not every cell contains counts sequenced for every gene in the genome.

Two dimension reduction methods that are particularly well-suited for the visualization of high-dimensional datasets. The
t-stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the most common
ways to visualize single-cell datasets. While these two methods offer more insightful visualizations of single-cell sequencing
data within one plot when compared to PCA, the coordinate-system produced in these plots should not be over-interpreted.

(Continues)
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TABLE 1 (Continued)

Glossary of terms

Term Definition

Type-1 error

Also known as a “false positive,” this occurs when a statistical test incorrectly rejects a true null hypothesis. In other

words, it is the mistake of concluding that there is an effect or difference when, in fact, none exists. A “Type-1 error
inflation” means that there are substantially more incorrect rejections than anticipated. This would lead to inaccurate
interpretation of significant effects when in fact there are few to none.

HI-C An epigenomics proximity ligation method that captures the organizational structure of chromatin in three dimensions,
where genomic sequences that are distal to each other in linear terms are close to each other in 3D space.

24 | Questions regarding splice variants or small
non-coding RNAs

In cases where investigating splice variants or small non-coding RNAs like
microRNAs is the goal, specialized technologies need to be utilized. The
standard single-cell RNA-seq protocols will not be sufficient. In short-read
sequencing (the traditional RNA-seq technology), the cDNA is cut to a
specific fragment length near either the 3’ or 5" end of the transcript. Thus,
sequencing does not provide a whole transcript, but simply enough bases
near one end of the transcript to identify the gene associated with the
transcript in question with some specificity. These short reads typically do
not provide datasets sufficient to answer scientific questions regarding
small RNAs or splice variants outside of the small region of transcript.

To identify whether specific splice variants are present in subpop-
ulations of glial cells, then single-cell long-read sequencing approaches
should be considered. These approaches allow for sequencing of the
full-length (or close to it) transcript, whereas traditional 3’ or 5’ single-
cell RNA-seq will not capture variations in the transcript unless they
are very close to the 3’ or 5’ end. Nonetheless, researchers have dis-
covered some glial splice variants on the 3’ end using short-read
single-cell RNA-seq sequencing (Fansler et al., 2024; Gao et al., 2021;
Kang et al., 2023), but this likely represents only a fraction of the dis-
coveries that will be made in the upcoming years with long-read
sequencing. Single-cell long-read sequencing has advanced signifi-
cantly in the last few years, so the ability to detect splice variants and
other variations in transcript makeup are more available now.

There are also now several technologies available to sequence
small RNAs like micro-RNAs from single-cells (Benesova et al., 2021).
While not as widely utilized as standard short-read single-cell RNA-seq,
they exist and are available for use. Several studies have applied small
RNA-sequencing to glia to identify unique results in micro-RNA regula-
tion of glial function (Huang et al., 2023; Li et al., 2022). The application
of these alternative technologies, while imperative for asking these sci-
entific questions, may require alterations in the analysis approaches
described below. In this primer, we focus on traditional short-read

single-cell RNA-sequencing approaches, as they are the most common.
2.5 | Enriching datasets for glial populations
of interest

One consideration for the experimental design is whether to enrich
for cell types of interest prior to performing single-cell ‘omics. This

may be particularly important when working with glia, as their popula-
tions are often more limited compared to other cell types. For exam-
ple, microglia are estimated to make up 5%-10% of human brain cells
(Blinkow & Glezer, 1968; Pelvig et al., 2008). However, in single-
nucleus datasets isolated directly from human brain they make up just
2%-3% of the nuclei that can be analyzed (Alsema et al., 2020;
Del-Aguila et al., 2019; Mathys et al., 2019; Olah et al., 2020). This
sparsity in the number of microglia nuclei available for analysis limits
the ability to capture the complete representation of the full diversity
of subpopulations of this cell. Datasets in both human and mouse with
limited numbers of microglia detect fewer subpopulations than data-
sets that enrich for microglia (Gerrits et al., 2021; Mathys et al.,, 2017,
2019; Nguyen et al., 2020; Prater et al., 2023). Fortunately, tech-
niques exist to enrich for all types of glia ahead of performing
single-cell ‘omics assays that are easily employed and will make the
resulting dataset more powerful for answering specific scientific ques-
tions (e.g., Gerrits et al., 2021; Nott et al., 2019; Ochocka et al., 2021;
Prater et al., 2023; Sadick et al., 2022; Schroeter et al., 2021; Wei
et al., 2023; Yang et al., 2022). Enrichment can be achieved through
positive selection (by using a protein marker on your cell type of inter-
est), or via negative selection (by using a protein marker on alternative
cell(s) to remove them from the dataset). Both are viable strategies to
enrich for specific glia in the dataset and each has a different set of
caveats associated with it. For example, positive selection may miss
selecting for subpopulations where the protein used to select was
either not expressed or expressed at low or undetectable levels.
Negative selection may not enrich for a particular cell type as effec-
tively. Examples of both positive and negative selection can be found in
the literature for many types of glia (e.g., Gerrits et al., 2021; Nott
et al,, 2019; Ochocka et al., 2021; Prater et al., 2023; Sadick et al., 2022;
Schroeter et al.,, 2021; Wei et al., 2023; Yang et al., 2022).

One additional consideration for glial cells is that they contain exten-
sive processes. These processes are always lost in single-nucleus prepara-
tions and are often lost in single-cell preparations as well. If an
investigator is particularly interested in the gene expression outside of
the soma, there are methods available to identify those transcripts,
though they currently lose single-cell fidelity and are usually focused on
the translatome (active translation) rather than the transcriptome (all
mRNA present; Acharjee et al., 2021; Hinman et al, 2021; Jiao &
Meyerowitz, 2010; Jiwaji et al., 2022; Kim et al., 2021; Sanz et al., 2019).
We anticipate that as technologies develop these methods may be
improved to arrive at a single-cell resolution of even gene expression

within cell processes.
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2.6 | Determining sample size

An important aspect of experimental design is how many samples to
collect. For the purposes of this discussion, we will refer to technical
replicates as replicates of a single sample that may be generated from
either multiple cultures, multiple differentiations, or multiple cell isola-
tions from a single source (cell line or animal). Biological replicates, in
contrast, are replicates from multiple different sources, whether those
are unique individuals (animals or human), or cell lines. Whenever pos-
sible, we would advocate prioritizing biological replicates over techni-
cal ones, as having too few biological replicates risks over-generalizing
the biological findings. There are ways of calculating power for single-
cell analyses (see Jeon et al., 2023 for a review), which should assist in
the design of studies. In general, the answer (as always with statistics)
is that more samples will give you more power. If your experimental
question is comparing groups, then it will be necessary to have more
than one biological replicate per group. There are scientific questions
where one might ask about shifts in cells within a sample itself - this
may require multiple technical replicates but potentially fewer biologi-
cal replicates, although for validity, it would likely be better to have
multiple of both. While there is no specific number of samples that
can be given, the need for multiple biological and technical replicates
depending on the scientific question being asked is critical, and data-
sets with a single data point should be viewed with caution since their
generalizability is unknown.

One discussion point of note is that as your study focuses on
more and more specific cell types or cell states (which we will describe
in detail later in this review), you are sacrificing statistical power. For
instance, even if the original single-cell RNA-seq dataset contains a
million cells across 10 donors, if the study focuses on one particular
cell type, there might only be a 1000 cells of this cell type across the
10 donors. We will discuss later in this review on how to design your
analysis pipeline to answer biological questions about the donors and
to analyze your statistical power in such settings.

Another discussion point is that no matter whether technical or
biological replicates are generated, pooling those replicates into a sin-
gle sequencing library (the unit of transcripts prepared for sequencing)
without multiplexing reduces the N to one. This compresses the repli-
cates together and reduces the dataset to a single point, an undesir-
able outcome. Better alternatives are multiplexing technologies, which
allow researchers to pool their samples for cost-efficiency. Multiplex-
ing typically involves attaching an identifier (potentially an oligonucle-
otide or some other tag) to a specific sample and then pooling
samples with different tags for the generation of the single-cell library.
Once the library is sequenced, the identifiers can be used to de-
multiplex or to pull the samples back apart so that the higher sample
number can be used. This is very different from pooling samples and
then receiving a single sequencing file back, which cannot determine
which cells came from which sample. The latter case would be a data-
set from a single data point rather than a multiplexed dataset, which
allows the use of the replicates as multiple individual data points.
There are many published studies where replicates were collected

and then pooled without multiplexing, which effectively reduces the

power of the study. We strongly encourage researchers to use multi-
plexing if pooling must occur so that the generation of replicates can

be utilized fully in the datasets.

2.7 | Cells or nuclei, which is better?

In some cases, like when using ATAC-seq technologies, researchers are
required to use nuclei. However, in traditional single-cell RNA-seq,
researchers have the choice of using the technology either on single
cells or single nuclei. In some cases, the choice of whether a study is
performed on cells or nuclei is driven by the tissue available. For exam-
ple, it is currently extremely difficult to isolate whole cells from flash
frozen human brain tissue. Thus, if a study is utilizing archival samples,
it is likely that they are using single nuclei. In contrast, freshly resected
tissue is more easily dissociated and allows for the isolation of whole
glial cells for single-cell RNA-seq. There are examples of tissues like spi-
nal cord or dorsal root ganglia where glia may be of interest that are
also difficult to dissociate into single cells due to connective tissues
even when freshly resected. In these instances, nuclei isolation will be
the solution for single-nucleus RNA-seq. There are studies which sug-
gest that the transcriptional profile of single nuclei may differ from that
of whole cells (Thrupp et al., 2020). However, there are additional stud-
ies which suggest that the transcriptional profile may not differ as
widely (Lake et al., 2017; Bakken et al., 2018).

2.8 | Dissociation methodology

The isolation of single cells requires the dissociation of cells from each
other and from the surrounding tissue components. There is a clear
consensus that the dissociation is critical while collecting single cells
from fresh tissue to avoid inducing spurious gene expression profiles
that are altered by the processing of the tissue itself (e.g., Marsh
et al., 2022; Mattei et al., 2020). In particular, enzymatic digestion can
significantly alter gene expression of glia, leading to potentially spuri-
ous interpretation of datasets. Methods are available to prevent this
issue, including choosing alternative dissociation methods at low tem-
perature (Mattei et al., 2020) or the introduction of inhibitors of tran-
scription and translation to prevent gene expression shifts during the
dissociation process (Marsh et al., 2022). Careful choices made during
the dissociation protocol selection and processing can dramatically
improve the quality of the single-cell RNA-seq data produced in the

experiment.

2.9 | Batching in an experiment

One piece of critical experimental design consideration is how to set
up library and sequencing batches. In this instance, a batch is a set of
samples that will have their libraries or sequencing generated together
in one grouping. We will discuss batch correction further in the analy-

sis portion of this primer as it is an important component of analysis
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as well. Multiple studies have identified batch effects in large studies
of sequence (Hartl & Gao, 2020; Katayama et al., 2019; Lauss
et al.,, 2013; Leek et al., 2010; Taub et al., 2010; Tung et al., 2017).
These studies demonstrate that counterbalancing and consideration
of batches (how samples are grouped) in the experimental design is
critical to the results of the study. Studies using single-cell technolo-
gies typically involve generating multiple rounds of library batches.
While minimizing batches where possible is useful, there is often no
way to avoid multiple library batches in particular because of proces-
sing time and sample expiration dates. What is critical is ensuring that,
where possible, these batches are not confounded by biological vari-
ables of interest (Hartl & Gao, 2020; Lauss et al, 2013; Leek
et al, 2010; Tung et al., 2017). For example, a library batch should
have equal representation of “cases” and “controls” or as close to it
as possible. If library or sequencing batches are represented primarily
of a single experimental cohort, the batch confound and the biological
variable of interest will be unable to be fully disentangled and result in
an inability to fully interpret the results of the study. It is almost
impossible to avoid batch effects and we will discuss their removal
during the analysis section of this primer. However, counterbalancing
and randomizing samples across library and sequencing batches is crit-

ical to ensure high quality datasets.

210 | Study design conclusions

Once you determine that you will use single-cell ‘omics of whatever
sort best fits the experimental question, then the goal will be to
design the experiment to minimize batch effects and utilize the appro-
priate number of samples. Power analysis can help determine an
appropriate number of samples needed to answer the questions of
interest. As noted above, we caution against pooling samples without
multiplexing as this practice removes the ability to understand biologi-
cal variability in the dataset. Practicing appropriate counterbalancing
of samples in the scheduling of experiments is also critical to avoid
introducing batch effects in library preparation or sequencing that will
cause the dataset to be uninterpretable. Many of these practices are
standard in non-single-cell experimental design as well, so all that
is required is a simple transfer of applicable skills to these new

experiments.

3 | ANALYSIS

Once a well-designed study is completed, next comes the analysis.
These large datasets require significant amounts of computing power
and usually some ability to script in a language like R or Python. We
note that languages, such as Julia and Matlab have also been gaining
traction. Several groups have generated single-cell transcriptomics
analysis tutorials that are excellent resources for specific packages
and the analysis steps that can be applied to datasets (Amezquita
et al., 2020; Andrews et al, 2021; Haque et al, 2017; Heumos
et al.,, 2023; Lahnemann et al., 2020; Wang et al., 2022).

Not every dataset is alike, and the algorithms available for
single-cell analysis change rapidly. Websites, such as https://www.
scrna-tools.org/ maintain a repository of more than 1700 computa-
tional tools (at time of writing). However, the tools that worked on
a previous dataset may not work as well on a new one. New better
tools may be available but will require troubleshooting, validation,
and assessment to confirm they work well for the current dataset.
When choosing packages, we recommend selecting tools that are
commonly seen in publications in your field. We also recommend
identifying GitHub repositories for packages that have active
updates and responses to issues. This suggests that the tool is
actively being maintained and you will be able to find support from
the authors of the tool.

Below we outline a general approach to analysis for single-cell
datasets and identify where the approach would differ for multiome
datasets (which includes analysis of single-nucleus ATAC-seq data).
Our goal is to outline important decisions and why you might choose
one approach over another (see Figure 1). There are a multitude of
packages and options for approaching single-cell analysis written in
both R and Python. Where important, we make specific package rec-
ommendations, but our intention here is to outline how to think about
the application of analyses to datasets rather than to identify specific
packages to use since packages can change regularly. Our goal is to
leave readers more informed about how to approach datasets, both
their own and others', so that the use of ‘omics in glial biology can
continue to enhance our understanding and build trustworthy new
hypotheses to test.

Two important notes about single-cell analysis: Traditional statis-
tical analysis does not typically involve visualizing a dataset to make
informed decisions. In fact, visualizing a dataset and making decisions
based upon what is seen leads to inaccurate and faulty statistical anal-
ysis in traditional datasets. Single-cell analysis is the exact opposite of
this traditional method. There are many times when the best way to
determine whether the algorithm applied to the dataset was effective
is to visualize the dataset and see how it looks. You'll note throughout
this primer that we recommend visualizing your dataset (and we dis-
cuss what visualizations are commonly used) and that is why. There
may be a future where visualizing the dataset in between statistical
applications to the dataset becomes unnecessary because there are
metrics and quantitative ways to interpret the results, but currently
the field is set up such that visualization is part of the way decisions
are made as to how to approach these data.

Finally, it is critical to note that once you are finished with the
analysis of your single-cell RNA-seq dataset, you have generated
hypotheses that need to be validated by another experimental
means. In many cases, this is confirmation via in situ hybridization
that the RNA quantities have shifted in the particular cell type of
interest. This could also include qPCR in sorted cells, or immunohis-
tochemistry or immunocytochemistry to detect shifts in protein
abundance, or alternatively spatial transcriptomics. Whatever method
is chosen for validation, the important thing is to demonstrate that
the gene expression shifts seen in the single-cell RNA-seq data are

observable outside of the single-cell context.
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FIGURE 1 We provide a flowchart overview of the workflow for standard single-cell/nucleus RNA-seq analyses. Analysis begins with a raw
dataset that undergoes quality control (QC) which includes thresholding and may optionally include the removal of ambient RNA and doublets.
From the QC'd dataset analysis can proceed to batch correction and downstream methods that rely on more on data visualization. The other path
is to determine differentially expressed genes, which may include normalizing the dataset but should not be performed on the batch corrected
dataset. In either the batch correction or differential expression output areas of analysis there are several optional analyses (in purple boxes) that
can be applied to datasets. The analysis options in blue are standard approaches seen in the field.
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3.1 | Quality control

One of the first steps in analysis of single-cell datasets is quality
control (QC). This includes setting some thresholds to exclude poor
quality cells from the analysis, as well as doublet and ambient RNA
identification.

Setting thresholds is typically the minimum QC for a single-cell
dataset. Thresholds are set to remove cells with low quality sequence
and low numbers of genes expressed. Ideally, this removes the empty
droplets generated by separating the single cells. Setting thresholds
for the dataset is a critical step in analysis because it can exclude cells
with quality sequencing if done too stringently. For example, microglia
often have a smaller number of unique transcripts than other cell
types, likely because of their biological size. A higher threshold on the
number of unique transcripts per cell can potentially exclude microglia
from the dataset being analyzed not because they're low quality, but
because they as a cell type express fewer transcripts. Alternatively,
settings thresholds too loosely can allow empty droplets or poor qual-
ity cells into the analysis, which may make later algorithms struggle.
Identifying the location for each sample where the majority of empty
droplets are excluded but one is unlikely to exclude high quality low
expressing cells is key.

Doublets occur in processing single-cell datasets when more than
one cell is captured in a droplet or capture area and transcribed with the
same barcode as if it were a single cell. In the past, an upper bound
threshold on the number of genes expressed was set to exclude dou-
blets from analysis by excluding cells that had very high transcripts.
Newer technologies provide ways to identify doublets algorithmically
based on their gene expression rather than on an upper bound threshold
(e.g., McGinnis et al., 2019; Wolock et al., 2019). These technologies are
far superior to the thresholding techniques originally applied, and we
highly recommend the use of a package to identify doublets. Recently,
researchers are moving toward applying two or three doublet-calling
packages and then removing doublets that were identified in a union of
the package results. This approach gives confidence since multiple
slightly different algorithms have identified a cell as a doublet. One con-
sideration for quality control of datasets is whether to fully remove dou-
blets from the dataset early on, or simply to mark them as doublets with
an identifier to use later in analysis. One advantage of the labeling
approach is that you continue to visualize the cells labeled as doublets in
your later analysis techniques and can determine whether other cells
may have been missed in the labeling process. However, leaving dou-
blets in the analysis can also potentially confuse results later on, so
removing high confidence doublets remains a reasonable and favored
approach to analyzing a dataset.

Ambient RNA is another confounder and place where quality con-
trol can occur in the analysis early on. Ambient RNA contamination
occurs in single-cell technologies because RNAse-inhibitors are pre-
sent and RNA that exists in the solution from lysed cells is sequenced
as if it were transcript from the cell of interest. Tools exist to identify
transcripts likely to be ambient in the dataset and are particularly use-
ful in single-nuclei datasets where ambient RNAs are likely to be com-
mon (Fleming et al., 2023; Young & Behjati, 2020). The presence of

ambient RNA can alter downstream analyses like differential gene
expression where genes that may have differential expression are not
identified because they are weakly expressed across the whole data-
set. However, some researchers argue that the algorithms developed
for ambient RNA removal are too stringent and remove more than
they should from datasets. These criticisms are valid and so this
approach should be carefully applied and reviewed for each dataset.
In general, ambient RNA removal is recommended for single-cell data-
sets, but not all researchers will agree with this. We recommend run-
ning your analysis with and without ambient RNA removal. Ideally,
the removal of ambient RNA only increases the power of your ana-
lyses but does not yield drastic and conflicting results compared to
the analysis without ambient RNA removal. If the ambient RNA
removal results in drastically different results, we recommend using
the analysis without ambient RNA removal. In the more likely scenario
that the two are similar but the p-value thresholds are slightly higher
in the corrected (ambient RNA removed) dataset, we recommend pro-
ceeding with the corrected dataset.

3.2 | Normalization

After quality control, the next step is to transform the data into a
more biologically meaningful proxy of gene expression. This step is
called normalization because it provides the relative ratio of expres-
sion, not the absolute expression. Normalization is similar conceptu-
ally to normalization in other methods (like western blotting or gPCR
where data is normalized to housekeeping proteins/genes) but is spe-
cific for the sparse nature of single-cell RNA-seq datasets. Remember
that the count matrix associated with a single-cell RNA-seq dataset is
sparse or contains many zeros (no counts for a particular gene for a
particular cell). Normalization methods therefore need to account for
the “count nature” of sequencing data. The “counts”, or number of
times a gene has been sequenced during a run, can be present or
absent in a given cell due to both biological and technical factors. Fac-
tors beyond biological processes contribute to the variability in gene
expression in these datasets. Technical contributions to variability
include differences in the amount or efficiency of sequencing in cells
or contribution of genes that are not biologically informative. To iso-
late the biological drivers of gene expression changes, we first try to
remove the technical effects. Because there can be variability
between cells, even from the same sample, of the number of times a
gene is sequenced due to technical reasons, there is a need to normal-
ize the “depth” or number of times a gene is sequenced, to the overall
number of times all genes are sequenced.

The preferred normalization procedure has evolved dramatically
over the years due to the simultaneous advancements in sequencing
technology and statistical modeling. Two key ideas have stood the
test of time and are found in most modern normalization procedures:
the first is to model the ratio between a cell's count for a specific gene
and the total counts for the cell (i.e., the sequencing depth for that
cell), and the second is to model the over-dispersed nature of single-

cell sequencing counts (see glossary). In the earlier days of single-cell
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RNA-seq analysis, these two aspects were solved by computing the
sequencing depth of a cell and then performing a log transformation.
This procedure is called log-normalization. However, more recent
papers have demonstrated that this simple transformation often over-
represents cells with a small but non-zero count (Hafemeister &
Satija, 2019; Townes et al., 2019). Hence, methods that explicitly
model the count nature of the data, are now more widely used
(Hafemeister & Satija, 2019; Lopez et al., 2018). We note that bench-
marking papers provide slightly different recommendations for nor-
malization (Ahlmann-Eltze & Huber, 2023; Choudhary & Satija, 2022;
Lause et al., 2021). Overall, we recommend you choose a diagnostic
metric (a quantitative value or visual criterion) to check prior to nor-
malizing the data, and then choose the normalization method that
best maximizes that metric. This is because while the benchmarking
papers offer a good overview of all the normalization methods, the
authors' recommendations might not apply to your particular biologi-
cal system, sequencing technology, or available budget for sequencing
depth. We have found the diagnostic metrics that check how gene
expression correlates with each cell's sequencing depth or how much
variation is explained by genes of different mean sequencing depth to
be quite useful (Hafemeister & Satija, 2019).

Newer normalization methods have the added benefit that con-
founding covariates can be adjusted for (i.e., “regressed” out). This
ensures that the resulting normalized dataset for downstream analyses
is free of biological effects that might obfuscate the intended biology
you're studying. Two covariates commonly adjusted for are the cell's
percentage of gene expression from mitochondrial genes, which is
increased in stressed or dying cells, or the cell's cell-cycling phase.
However, if you're working with human or animal cohorts, there is an
additional concern of how you would remove the donor-level covari-
ates such as age, sex, cognitive score, and so forth. Since each donor
contributes many cells, all the cells from the same donor have the same
donor-level covariate. This means that methods like SCTransform that
normalize each gene separately struggle to adjust for donor covariates.
(e.g., it isn't easy to reliably estimate the effect of age when there are
not many different values of donor ages and also a lot of zeros in a
gene's expression.) Alternatively, for scenarios like this, normalization
procedures that group information across all the genes (e.g., scVI or
GLM-PCA) when accounting for donor covariates are recommended
(Lopez et al., 2018; Townes et al., 2019). These methods come with an
added benefit of providing a low-dimensional embedding directly,
which will help with later batch correction, cell type labeling, and visu-
alizations. Regardless, we recommend visualizing the data with and
without removing donor covariates to gage how successful a normali-
zation procedure was.

Since normalization methods can struggle with donor-level cov-
ariates, it is commonplace to perform a principal component analysis
(PCA) afterwards since PCA will additionally help to reduce technical
variability. At a high level, a PCA defines a low-dimensional space
driven mainly by the densely sequenced genes. A PCA provides a
short vector to describe each cell by the number of PCs (typically
30 numbers), instead of a long vector of the counts of every gene

expressed by that cell over the whole genome. This condensing of

signal is how a PCA can help further clean up your single-cell dataset.
Many methods then use the PCA result for visualization or further
analyses.

After the normalization, it is also commonplace to assess which
genes are “highly variable.” All downstream analysis is then performed
only on these highly variable genes. Typically, most analyses use
somewhere between 2000 and 5000 genes. The choice of 2000 or
5000 is often based on computational resources and time available to
analyze a dataset. These highly variable genes are selected computa-
tionally because their variability across all the cells is large relative to
the mean normalized expression. Many computational tools we will
discuss later treat each gene equally. Too many uninformative or noisy
genes in the analysis might hinder the performance of these down-
stream computational tools, which is why the dataset is limited when
applying these.

One last note - of all the different analyses for a sequencing
dataset, normalization is typically the step that is ‘omics-technology-
specific. The normalization procedures for single-cell RNA-seq are dif-
ferent from those for single-cell ATAC-seq, long-read sequencing, and
so forth. As we discuss in the next section, this is complicated since
some batch correction and differential analysis methods involve nor-
malizing the data within the method implicitly. Single-cell tutorials
(e.g., Amezquita et al., 2020; Andrews et al., 2021; Haque et al., 2017,
Heumos et al., 2023; Lahnemann et al., 2020; Wang et al., 2022) are a
good place to start to determine what method will be best for your
particular application.

3.3 | Batch correction

Earlier we mentioned the need for batch correction in many single-cell
datasets. While not necessary in all cases, batch correction is often
beneficial (or needed) to account for artifacts introduced by technical
confounds, such as library preparations or sequencing batches (Leek
et al., 2010; Tung et al., 2017). The need for batch correction can
often be identified by visualizing the dataset (more on this later) and
identifying whether the dataset appears striped or there is a clear sep-
aration of the dataset along axes of potential confounds, such as sam-
ple, or sequencing batch, or library preparation, when looking at the
colorized display of cells. A very large batch effect will result in the
data separating into two portions of the visualization based on a tech-
nical confounder. More often, the batch effects are more subtle and
may simply result in mild striping or small differences in the visualiza-
tion of the dataset. If your dataset from all conditions, sequencing
batches, and so forth perfectly overlays or is nicely mixed in the great
majority of areas of your visualization then batch correction may not
be necessary.

Once you have determined that batch correction is needed,
there are multiple tools that could be implemented to complete
this step. We should note that it is possible that different batch cor-
rection methods may perform differently on different tissue types
(Luecken et al.,, 2022). Batch correction methods can take several

forms, which have been overviewed in many benchmarking papers
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(Chu et al.,, 2022; Luecken et al., 2022; Tran et al., 2020). While over-
correcting during batch correction can mean the loss of a true positive
in cell state presence or absence, under-correcting could lead to false
results of a difference between groups if groups are confounded by
batch effects. As discussed earlier, it is incredibly important that sam-
ples of different groupings be counterbalanced as evenly as possible
across batches. When batch is confounded by a biological variable
of interest, the results cannot be interpreted properly (Hartl &
Gao, 2020). Figure 2 depicts one batch correction using scVI (Lopez
et al, 2018) applied to two hypothetical datasets where one has
sequencing batches perfectly aligned with the biological variable of
interest, while the other dataset has the biological variable of interest
balanced between the two batches. The figure demonstrates that
when there is perfect alignment between sequencing batches and the
biological variable of interest, it is impossible to assess if the batch
correction was properly done or if there are significant biological dif-
ferences. This showcases that you should carefully determine how to
balance your samples when sequencing your cells.

Batch correction is one of the more important steps that can be
applied to datasets for appropriate visualization and downstream ana-

lyses based on corrected data. We recommend applying a standard

Batches (aligned with cognitive status)
(@) Before scVI (c)

By donors

(b) After scVI (removing batch effect)

By donors

(d) After scVI (removing batch effect)

batch correction tool often used in your field and visualizing your
results. If you so choose, you could apply several batch correction
methods to determine whether they may be correcting the dataset in
different ways. Tran et al. (2020) and Korsunsky et al. (2019) offer
suggestions on how to assess which batch correction method worked
the best. Typically, this involves computationally quantifying if there is

a good mixing of cells across the different batches.

3.4 | Data visualization

Most single-cell papers have a so-called “UMAP plot” or “t-SNE plot”
to visualize the single-cell data as demonstrated previously in
Figure 2. The intent of such plots is usually to provide the reader with
a quick bird's-eye summary of how many cells the dataset contains,
how many cell types, and how separated the cell types are. In these
plots, each point is a cell/nucleus, and the color of each point iden-
tifies the cluster. Clusters most commonly represent the cell type, cell
cluster, or cell sub-state (more on this in the following section). If you
have donor information or batches, you might also color your cells

based on that covariate. Alternatively, you might color each point

Batches (split b/w cognitive statuses)
Before scVI

FIGURE 2 Impact of batch correction
and difficulties when batch is aligned with
/ the phenotype/treatment of interest.

i (a) In a hypothetical dataset where the
batches (in purple or orange) are perfectly

i %f’ aligned with donor phenotype (shown in
Al the inset, where each shade denotes the
By donors donor of a nucleus and blue or red denote

the two different phenotypes). In this
example, phenotype is the cognitive
status of the individual and batches
contained one or the other phenotype but
not both. It is normal to see separation of
data by donor and/or batch prior to batch
correction. (b) After applying batch
correction, we see a modest mixing of
nuclei by batch, but not much mixing by
donor phenotype. We cannot disentangle
if this modest performance is due to
significant biological differences between
the two classes of donors or because we
did not apply a good batch correction
method. (c) Another hypothetical dataset
where the donor phenotypes are equally
split between the batches. (d) After
applying batch correction, we see a
substantial mixing among nuclei across
the two batches but there are still
substantial differences between the two
phenotypes of donors. All the plots

By donors

@ Nuclei from batch 1
© Nuclei from batch 2

Nuclei from one of the four
.'" O control donors

@0 Nuclei from one of the four
donors diagnosed with AD

shown are UMAPs where each point is a
nucleus, and originated from a dataset of
microglia among donors with and without
AD (Prater et al., 2023). scVI is used here
as an example of batch correction.
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according to a color gradient based on how high or low that cell's gene
expression is. These visualizations are highly flexible and quite power-
ful. As mentioned earlier, visualizing the dataset is particularly critical
in single-cell analyses as the way the visualization looks is often a
decision point in assessing whether a given algorithm in the analysis
was effective.

The computation of t-SNE (Maaten & van der Maaten &
Hinton, 2008) or UMAP (Becht et al., 2019) is typically based on the
PCA embedding. Technically, both PCA embedding and t-SNE/UMAP
are forms of “dimension reduction.” However, the key difference lies
in the number of dimensions they retain. A PCA embedding usually
retains many dimensions, typically around 30 and are used for many
methods in a downstream analysis. In contrast, t-SNE and UMAP are
specifically designed for visualization, and therefore, they retain only
two dimensions. This distinction is crucial to understanding the role of
dimension reduction in visualization.

It is important to know that t-SNE and UMAP have some random-
ness inherent in them since they visualize high-dimensional data. If you
have 5000 highly variable genes, your visualization condenses all those

genes into a two-dimensional plot. A lot of distortions are expected. A

good analogy to think about is maps of Earth. If the Mercator projec-
tion is used to visualize the three-dimensional world in two dimensions,
area is distorted (Greenland deceivingly looks as large as Africa) and
distance is distorted (the distance from California to Japan deceivingly
looks twice as much as the distance from France to Japan). These dis-
tortions are even more exacerbated when 5000 genes are visualized in
two dimensions. Nonetheless, UMAPs and t-SNEs are still vital tools
for assessing the dataset. In general, UMAPs are often preferred over
t-SNEs since UMAPs (empirically) better capture the structure of the
dataset. In general, both these visualizations can capture “large cell
type separations,” but the literal distance between cell types based on
these plots should not be over-interpreted. You can use tools to
numerically check how far apart cells really are (Johnson et al., 2022;
Xia et al., 2024). Figure 3 depicts different visualizations of glial cells
from the same single-nuclei RNA-seq dataset where the cell states are
labeled. We can appreciate that the coordinates of the UMAP and
t-SNE are arbitrary, as different instances of computing UMAP or
t-SNE vyields different visualizations. Despite this weakness, these plots
contribute useful information by summarizing the differences between

cell types and cell states all in one plot. In contrast, PCA coordinates
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FIGURE 3 Differences in visualization of a single-nucleus RNA-seq dataset. (a) Three different UMAPs, which were computed using the same
dataset and parameters. This demonstrates that every time you compute a UMAP, you might get a slightly different plot due to the inherent
randomness of the method. Furthermore, the orientation of the cell types and distances between cell types is meaningless in a UMAP, so the
UMAP mainly offers a glimpse into the number of cell types and a rough dichotomy of cell states within each cell type. (b) A t-SNE plot, which
usually shows less separation among cell types compared to a UMAP but typically offers greater spread to appreciate the different cell states
within a cell type. This method also provides a different visualization every time you use it. (c) PCA plots of the nuclei, which will give you the
same plot every time you make this plot. However, since PCA is a linear method, you will typically need to make multiple PCA plots showing just
two PCs at a time to appreciate the entire landscape of nuclei, such as the first and second, or the third and fourth. All the plots originated from a

dataset available through the SEA-AD consortium (Gabitto et al., 2023).
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used to denoise your data are well-defined. This means every time you
compute the PCA, you will get the same plot. However, the linearity of
PCA means it cannot separate the cell types or cell states when you
visualize two principal components (even if you have many principal
components, e.g., 30) at a time unless you make many plots.

As a rule of thumb, while UMAPs and t-SNEs sometimes have a
contentious reputation for providing misleading insight (Chari &
Pachter, 2023), these tools still play an essential role in single-cell ana-
lyses because a “perfect” visualization of high-dimensional data will
never exist. While quantitative tools, such as clustering and differen-
tially expressed gene (DEG) analyses offer insight by themselves,
applying qualitative tools, such as visualizations is equally essential. If
your quantitative analysis uncovers a strong pattern among the cells,
then, you should see some qualitative evidence of the same signal

when visualizing the data appropriately, and vice-versa.

3.5 | Clusters and cluster stability

As stated previously, there's a biological distinction between cell states
and cell types. Nonetheless, computational clustering of your cells can
be beneficial for both tasks. A clustering method canonically partitions
all your cells into one of many different clusters. These methods typi-
cally require you to input the number of clusters, either explicitly or
implicitly. If you want to differentiate cell types, you can cluster your
cells and look at which marker genes are highly expressed in each clus-
ter. You often might purposely “over-cluster” your cells since you can
combine clusters manually after the fact when investigating the marker
genes. It is crucial to understand that the clustering procedure does not
require marker genes, but you will need the marker genes to give the
discovered clusters biological meaning. The typical clustering method
in single-cell analyses are graph-based, such as Louvain or Leiden
(Traag et al., 2019). These methods first compute a graph that repre-
sents a cell as a node, and two cells are connected if they have similar
transcriptomic profiles.

Clustering serves a different purpose when analyzing cells of a
single cell type, such as states of glial cells. These cells might have dif-
ferent transcriptomic profiles since they undergo state changes due to
their environment or extracellular signaling. In these situations, clus-
tering aims to find the subtle differences between cell states. Typi-
cally, differential expression or gene enrichment analysis is used to
discover how the clusters differ. We will discuss this in detail later.

How do you pick the “correct” number of clusters? Some methods
don't let you explicitly set the number of clusters, but instead have you
set the “cluster resolution,” which implicitly controls the number of
clusters. This question is nuanced when working with cells of the same
type but having different states. Many statistical tools have been devel-
oped to aid with these questions, but every tool is slightly imperfect in
its own way. On the statistical end, methods related to data thinning
are promising, where the dataset is split into two, the clustering is per-
formed on one piece, and the quality of the clustering evaluated on the
other piece of the dataset (Neufeld et al., 2024). However, such
methods are difficult to deploy when many confounding variables, such

as donor covariates, are involved. A more commonly used alternative is
based on the stability of the clustering (Yu et al., 2022). These methods
use the philosophy that a cluster's numeric stability over some user-
generated randomness might hint at a biologically meaningful partition-
ing of the cells. For example, you can randomly select a group of genes
and cluster the cells based on only those genes. After iterating this pro-
cedure multiple times where each time involves a slightly different set
of genes, you can determine the best number of clusters as the one
where the cell's cluster identity changed the least across the multiple
iterations.

Lastly, we mention that there are also procedures that provide
“soft” clusterings, where cells are instead treated as a weighted mix-
ture of cell states. This is opposed to the abovementioned clusterings,
typically called “hard” clusterings, where each cell is assigned to only
one sub-state. Topic modeling is often used for this version of cluster-
ing (Carbonetto et al., 2022, 2023). While this modeling flexibility can
be beneficial for finding differential pathways in your analysis, you will
still have to deal with the question of picking the number of “pure”
cell sub-states. While algorithms are available for the “hard” clustering
methods discussed above, topic modeling does not benefit from
methods that can assist in detecting the stability of “soft” clustering.
As these methods develop further, we anticipate that additional algo-

rithms will become available.

3.6 | Cell type annotation

Once a dataset is visualized, the cell types and states can be anno-
tated. Even if a dataset was enriched for a specific glial type, most
sequencing experiments will result in at least a few cell types and sev-
eral cell states. We demonstrated in the previous section that UMAP
and t-SNE can both allow visualization of your cell types of interest
because they often separate by gene expression. Historically, cells
were annotated by visualizing cell type marker gene expression on a
UMAP/t-SNE and then assigning cell type names to areas of the visu-
alization where those markers were highly expressed. While the
marker gene visualization is still useful, there are now computational
tools available for cell type annotation.

Before discussing this, it is important to remember that the con-
cept of “cell types” is quite nebulous. While some cell types are
unequivocally different (there are many ways to distinguish a neuron
from a microglia based on morphology, cellular function, transcrip-
tomics, and spatial organization), some “cell types” are challenging to
distinguish (Zeng, 2022). For example, the biological signature to define
if a microglia is inflamed or in senescence is itself an active and evolv-
ing area of research (e.g., Ng et al., 2023; Saul et al., 2022; Vidal-Itriago
et al., 2022). For our discussion here, we reserve the concept that two
cells have different “cell types” if multiple biological modalities corrob-
orate their differences. Here, “cell types” refer to the larger category of
cells (e.g., neuron, astrocyte, oligodendrocyte, etc.). Otherwise, we
reserve the word “cell state” to cells of the same type with slightly dif-
ferent cellular functions in the instantaneous moment defined primarily

through transcriptomics. These “cell states” might often be described
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as subpopulations or phenotypes of a specific cell type. For example,
we might call cells reprogramming differently due to stimuli or in
different cell cycle stages as cells in different cell states (e.g., Batiuk
et al., 2020; Chamling et al., 2021; Hammond et al., 2019; Matusova
et al.,, 2023; Park et al., 2023).

The most common way to label cells by their cell type is through
the help of marker genes. The marker genes for a particular cell type
are selected to be uniquely (highly) expressed for only cells of this
specific cell type relative to other cells. These genes are typically
defined to have high sensitivity rather than high specificity. Usually,
marker genes are defined by other labs, consortiums, or the literature.
Once the marker genes of every cell type that may be in your experi-
ment are organized, a computational procedure scores each cell for its
enrichment for each set of marker genes to determine its likely cell
type. We will discuss how a clustering of your cells can go hand-
in-hand with this approach shortly.

This manual process of curating the marker genes of each cell
type is fantastic for its transparency but can also be quite laborious.
Hence, there are also computational methods to perform “label trans-
fer” also known as using an existing annotation reference to label your
cells. One advantage to label transfer is that these methods can facili-
tate the common labeling of both cell types and cell states in datasets
(Aran et al.,, 2019; Xu et al., 2021). We note that these methods some-
times fall under the broader category of “data integration” methods
and are sometimes repurposed to do batch correction. Our general
recommendation is to apply label correction, visualize the data
(as described before), and assess if the cell type labeling is satisfactory.
See Abdelaal et al. (2019) for a more general discussion.

As a word of caution, first, as you use more granular cell states,
the accuracy of these cell labels might not be as biologically meaning-
ful. After all, other researchers defined these cell states using a possi-
bly different experiment or biological model. Second, almost all the
procedures described so far will struggle to identify cell types that
exist in your dataset but not in the reference dataset. While most cur-
rent label-transfer methods provide a “confidence score” that helps
assess if there's a new cell type in your dataset, it is difficult to ascer-
tain how reliable these computational procedures are. We strongly
recommend that you spend time picking an appropriate reference
dataset. A good reference dataset should be on a similar biological
model, have a sequencing depth and sample size larger than your
experiment (and so often come from consortiums), and have cell types
labeled through procedures beyond single-cell RNA-seq data since
transcriptomics only offers a partial view of a cellular phenotype. See
Molbert and Haghverdi (2023) for useful guidelines.

3.7 | Detecting differentially expressed
genes (DEG)

Differentially expressed genes allow the transition from computa-
tional analysis to new biological insight. Differentially expressed genes
are often calculated for two different purposes in an analysis. One is

to determine what genes separate different cell types/states, and the

second is to determine what genes have altered expression based on
sample source or treatment. We will discuss both of these steps and
how they differ in the next sections.

Detecting DEGs for clusters: This step enables identifying which
genes separate two groups of cells. Typically, the groups are based on
the clustering step discussed above. (In the next section, we will dis-
cuss how this differs from computing DEGs across different sources,
such as individuals or treatments).

The most important guideline we offer is that DEGs should be
identified using normalized but not batch-corrected/integrated gene
counts. Using these further manipulated values artificially manipulates
p-values and provides incorrect statistical inference. Some DEG algo-
rithms (e.g., DESeq2, NEBULA) provide their own normalization, so
starting from raw counts is most appropriate (He et al., 2021; Love
et al.,, 2014). Other algorithms (e.g., MAST) expect log-transformed
data, so normalized raw counts are appropriate (without further cor-
rection; Finak et al., 2015). If you use Seurat's SCTransform to normal-
ize your dataset, the residuals or the log normalized corrected raw
counts can be used for DEG analysis (Hafemeister & Satija, 2019). The
most important thing here is not to use batch-corrected, PCA,
denoised, imputed, or otherwise further transformed data in your
DEG analysis. This message is illustrated in Figure 4.

Statistically, the batch-corrected or denoised gene expression matrix
should not be used because most batch-corrected or denoised methods
purposefully combine information across multiple genes together. This
leads to interdependence of the gene expression because the genes are
combined and no longer represented by their individual count values.
This is the antithesis of an accurate DEG analysis since a truly differen-
tially expressed gene should not contaminate the signal in a truly non-
differentially expressed gene. This pitfall is well-documented and leads
to the so-called “Type-1 error inflation” (Agarwal et al., 2020). While
some methods have been developed to address such a scenario, we
would advise you to use multiple DEG analyses and keep only the genes
that multiple methods deem significant (Lin et al., 2024).

Most of the DEG analyses we mentioned so far are only valid for
the setting where the groups of cells are defined via experimental
design. For example, a dataset might consist of DEGs between cells in
differential experimental conditions or between cells that have under-
gone a treatment for differing lengths of time. This validity stems from
the fact that the groups of cells were defined independently from the
gene expression itself. The statistical validity of the p-value gets less
reliable when you begin to deviate from this rule. The most common
deviation occurs when you use the single-cell dataset to cluster the
cells into different sub-states and then use the same exact single-cell
dataset again to test for significant DEGs (Ldhnemann et al., 2020).
Unsurprisingly, this produces extremely high levels of DEGs since the
clustering method partitioned the cells into different sub-states based
on the differences in gene expression (Zhang et al., 2019). This “dou-
ble-dipping” has been the focal point of many new statistical methods
(Vandenbon & Diez, 2020; Zhang et al., 2019). While it is possible to
use clusters defined by gene expression to then find DEGs with valid
p-values using sophisticated statistical methods, it is generally recom-

mended to use a reference dataset to cluster so that DEGs can be
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FIGURE 4 Workflow and example of DEG analysis. (a) A flowchart illustrating that batch-correcting and visualizing the cells often uses a
pipeline that is separate from computing the DEGs. (b) A volcano plot when analyzing DEG genes, where the input data did not denoise genes by
pooling information across the genes. We get a reasonable number of significant genes, marked by the horizontal dashed line denoting the
multiple-testing threshold. (c) A volcano plot when analyzing DEG genes, where the input data denoised the genes by pooling information across
all the genes. We erroneously get too many significant genes. Notice that the y-axis scale is also dramatically higher. It is unlikely for most
biological analyses that almost all the genes are contributing toward differences in the phenotype or treatment. The data here originates from the
SEA-AD consortium when analyzing oligodendrocytes based on the pseudoprogression of donor's AD (Gabitto et al., 2023).

identified in the dataset in a more independent way (Lidhnemann
et al., 2020). As mentioned above in the section on cell type labels, it
is quite important to identify a well-matched reference dataset from
which to define clusters, and one may not be available in all instances.
We anticipate that as the number of glial single-cell datasets grows
appropriate reference datasets for clustering will become more
available.

DEGs for group differences: If the scientific question involves
groups of donors (i.e., case vs. control, treated vs. untreated, young
vs. aged), then the previous DEG methods do not offer the most
insightful results. This is true generally, but especially for the human
population. This is because many DEG methods were designed for cell
lines and clonal mice but not for human donors, where there are con-
siderable donor covariates, such as age and sex. For instance, if you
were studying glial cells in Alzheimer's Disease (AD), you might com-
pare the donors with a high AD pathology burden to those with a low
AD pathology burden based on the single-nucleus RNA-seq data from
all the donors in the cohort.

It is important to understand why the typical DEG analysis we
mentioned previously might not be appropriate for cohort-level ana-
lyses. First, there is considerable human variation that a cohort-level
analysis needs to account for. For example, when analyzing data from
human cohorts where some donors were diagnosed clinically with
AD, it is common to find that almost every gene separates the AD
donors from control donors. However, some of these differences
might be driven by age or sex or other confounds that are not the bio-
logical aspect that you are studying. Second, when studying the
human population, the number of cells and the number of donors play

a different role. Consider two hypothetical datasets, each with one

million cells. One dataset sequenced two donors with half a million
cells each. The other dataset sequenced a 1000 donors with a 1000
cells each. While the former dataset offers a more thorough picture of
all the cells in two donors, the latter offers findings that generalize
better to the human population. Third, the previous DEG methods
would categorize the cells into two groups based on the phenotype of
the originating donor. These methods would not be able to account
for within-donor variation. This oversight could lead to inaccurate
results.

How should we analyze cohort-level data then? The most used
method is to “pseudobulk” the single-cell RNA-seq data based on the
donors. This means you compute the summed count expression
matrix among all the cells of a particular cell type for each donor, and
then you perform a DEG analysis originally designed for bulk RNA-seq
data. Typically, this is done using bioinformatics packages such as
DESeqg2 or Limma (Love et al., 2014; Ritchie et al., 2015), which can
adjust for donor covariates. This procedure is often called “pseudo-
bulking” because we are computationally emulating sequencing bulk
data from each donor. Pseudobulking may be counter-intuitive since
you sequenced single-cell data only to analyze bulk-level data. How-
ever, the advantage of this procedure is that you first label your
single-cell dataset based on their cell types and then perform pseudo-
bulk analysis on cells of one cell type or cell state specifically. Using
your clusters provides the power of single-cell datasets to identify
subpopulations but pseudobulk statistically uses donor covariates
appropriately.

While pseudobulking is considered a “gold standard” in a cohort-
level analysis, it potentially has low power due to its failure to account

for within-donor gene expression variation. Furthermore, since tools
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used to analyze psuedobulk were designed for bulk RNA-seq studies
where RNA input is matched, there is not always a built in control for
cell number. It can also yield false positives in certain cases where the
within-donor variation is large, relative to the between-donor varia-
tion. Specific methods have been developed to analyze cohort-level
data at the single-cell level (e.g., He et al., 2021; Lin et al., 2024). The
same warning that we mentioned previously about pooling informa-
tion across genes for DEGs still holds. Mixed-effect models adjust for
donor covariates when analyzing one gene at a time. The sparsity in
single-cell RNA-seq data creates challenges in this adjustment when
complex relationships exist between the donor covariates and the
gene expression. Embedding methods like eSVD-DE are better able to
provide reliable p-values while accounting for donor-level covariates.
Overall, note that increasing the number of cells for one donor
allows profiling all the different cell states present in that donor with
high fidelity, and increasing the number of donors allows the dataset
to generalize more readily to the human population. When planning
your experimental design to study a cohort of donors, it is important
to strike a good balance between the number of cells per donor, the
sequencing depth for each cell, and the number of donors. Suppose
an existing dataset of a similar cohort already exists. In that case, a
power calculation can be made to determine how many donors you
might need to recruit into your cohort (reviewed in Jeon et al., 2023).
Be aware that your own study might have a different number of cells
per donor or sequencing depth. There has yet to be a consensus on
how to perform cohort-level single-cell analyses, so it may be useful

to discuss an analysis plan with a fellow statistician.

3.8 | Biological function correlates

One of the most applied analysis tools after computing the DEGs is
pathway analysis. This is typically done as gene set analysis or gene set
enrichment analysis. There are significant differences between these
two approaches. Gene set analysis (GSA) is applied when a user takes a
list of significantly different genes and uses a tool like DAVID or
Panther to perform a Fisher's exact test to identify putative biological
pathways associated with that particular list of genes (Mi et al., 2019;
Sherman et al., 2022). You can interpret this analysis as asking which
biological pathways are most likely associated with the genes identi-
fied. Gene set enrichment analysis (GSEA), in contrast, takes a ranked
list by fold change of all genes present in the analysis, and utilizes the
directionality of their change in addition to the amount of change to
assess pathways where significant numbers of genes are changing in
the same direction. This analysis does not require the genes themselves
to be significantly altered, but if a large number are shifting together in
the same direction then a pathway will be called significant. You can
interpret the results of this analysis as providing biological pathways
that are changing in either a positive or negative direction based on
gene expression shifts as a result of the condition of interest. Since
each of these pathways analysis approaches utilizes gene expression in
a different way, the results are not perfectly aligned. Gene set enrich-

ment analysis provides the opportunity to identify pathways that are

shifting because of coordinated gene expression changes even if the
gene expression changes are not themselves significant, whereas GSA
only utilizes significantly expressed genes and does not take direction-
ality or magnitude into account.

Gene set analysis is a useful tool; however, interpretation of these
pathways and the links to genes can be less clear than GSEA, particu-
larly if the user does not separate their list of genes into those posi-
tively and negatively regulated by the condition of interest. Thus,
when applying GSA it is important to remember that only the signifi-
cantly different genes are taken into account, and directionality is only
taken into account so far as the user splits their lists apart. Magnitude
of change is also not assessed in this analysis. GSA is best used when
the list of genes is long. If a list of differential genes is on the shorter
side, for example having only 20 genes, the reliability is likely low.

Gene set enrichment analysis provides additional capability
beyond GSA because it utilizes both magnitude and directionality of
change to identify pathways that are altered in the dataset. Although
GSA is simpler because multiple websites exist where lists of gene
names can be supplied and pathways retrieved, we recommend the
use of GSEA because of the additional information that is utilized in
identifying the pathways.

When identifying biological pathway correlates, it is also good to
consider that each of the commonly utilized databases (e.g., GO, KEGG,
Reactome, Wikipathways) is based on a specific set of scientific papers
curated by one or a group of individuals (Agrawal et al., 2024;
Ashburner et al., 2000; Kanehisa, 1997; Milacic et al., 2024; The Gene
Ontology Consortium et al., 2023). These databases are biased by what
is known about biological pathways in certain fields with which the
curators are familiar and may not be accurate for all cell types or situa-
tions. One of the ways that scientists have attempted to overcome this
bias is to utilize multiple databases and then identify the common path-
ways across databases rather than selecting a single database from
which to draw results. Ideally, this makes the resulting pathways identi-
fied more reliable as they are shared beyond the bias of a single data-
base. While the databases themselves will continue to improve, they
will always be inherently biased by what is already known in science.
By combining the results of databases and reporting the common
themes, confidence is higher that the pathways identified represent

the biology seen in these gene expression shifts.

3.9 | Inferring gene regulatory networks or ligand-
receptor interactions and WGCNA

After one defines the differentially expressed genes in the dataset,
there are many optionally applicable downstream analysis options
depending on the scientific questions to be answered. This could
include inferring gene regulatory networks (Aibar et al., 2017; Badia-
i-Mompel et al., 2023; Yuan & Duren, 2024). Tools are also available
to detect sets of genes that change together (similar to the GSEA con-
cept described above) but then to correlate that coordinated shift in
expression with known transcription factors that drive gene expres-

sion. This allows the identification of gene regulatory networks. One
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tool commonly utilized in bulk RNA-seq publications is weighted gene
network correlation analysis (WGCNA; Langfelder & Horvath, 2008,
2012). Similar to GSEA, this method detects genes in the dataset that
move up or down in a correlated or coordinated manner. There are
methods that allow WGCNA to be applied to single-cell RNA-seq
datasets (Morabito et al., 2023), and other tools that expand the capa-
bility (Lu & Keles, 2023; Su et al., 2023). Other tools utilize databases
that identify ligand-receptor interactions in different fields of biology
to infer the way cells may be communicating with each other based
on the gene expression in the dataset (Armingol et al., 2021; Jin
et al,, 2021; Wilk et al., 2024; Xie et al., 2023). All of these methods
utilize the DEGs detected in the dataset and rely on databases that
already exist so the choice of database and the way DEGs are calcu-

lated are important inputs.

3.10 | Trajectory Analysis

Typically, when isolating the glial cells in your single-cell datasets, one
might care about how cells change over time. Moreover, one might
hypothesize that different glial cells undergo different transcriptomic
changes. For example, these changes might be due to experimental
perturbation in the wet lab or cellular response due to increasing neu-
rodegenerative burden. Whichever the case might be, a trajectory
analysis might provide insight into what exactly is changing with
respect to time. What makes this complicated in glial analyses, how-
ever, is that these methods are often designed for developmental sys-
tems where there is a clear development of vastly different cell types.
Hence, your glial analysis is less likely about “development” but more
likely about “responding” (i.e., how the glial cells gradually shift). This
distinction affects how likely it is that the trajectory analyses will pro-
vide meaningful insight.

Trajectory analyses, broadly speaking, fall into two categories.
The first category requires you to specify the “start” and/or “end” of
the trajectory. If you suspect multiple trajectory routes, some
methods require you to enumerate each route's start and end. Then,
these methods find paths through the transcriptome space (often the
PCA embedding of the normalized gene expression data) that go
through the high-density regions between each start and end (Street
et al., 2018; Trapnell et al., 2014). The second category instead uses a
molecular model to dictate how cells should change over time and
typically requires additional annotations of your gene expression
matrix (La Manno et al., 2018). Neither category is strictly preferable.
While the first category requires you to label the routes roughly, the
second requires you to trust that the molecular model is appropriate
for your biological system.

A few downstream analyses are commonplace once you've per-
formed a trajectory analysis. One is to compute the pseudotime of
each cell in the dataset. We use the word “pseudotime” since most
trajectory methods do not explicitly account for how time affects
gene expression. That is, there are no meaningful units to pseudotime.
Biologically, we typically interpret the pseudotime as a mathematical

proxy of how far along a cell is in responding to a perturbation or a

disease's burden. The second downstream analysis is to find the order
of cascading genes. These are genes that are highly expressed at dif-
ferent times along a trajectory. The third downstream analysis is to
identify the branch points. If a glial dataset has multiple trajectory
routes, one might be interested in which cell sub-state was the “last”
sub-state before the cells had to “make a decision” on which later
state would be its endpoint. Note that all three downstream analyses
are often specific to the trajectory analysis. The exact calculation for
each downstream analysis will likely change depending on the trajec-
tory inference applied.

Figure 5 demonstrates one common weakness of existing trajec-
tory methods when analyzing subtle glial shifts. While many trajectory
methods were designed for studying early embryonic development
where cells are changing their cell types, for example a stem cell
developing into a neuron, you might be instead studying how micro-
glia change their cell states. This means there is dramatically less dis-
tinction between the cell states than most trajectory methods require.
In Figure 5, we demonstrate this, where our suggestion is to down-
sample the number of cells, apply the trajectory method on the data-
set with less cells, and repeat this procedure multiple times to build a
consensus among the random subsetting of the dataset.

A final word of caution is that the vast majority of trajectory ana-
lyses are exploratory in nature. These analyses often do not claim any
causality of how cells are responding. In fact, many authors argue that
the regulatory network is a more meaningful biological representation
of a cell's identity (Kamimoto et al., 2023). Validation of trajectory
analysis findings is fruitful. The most common strategy is to find the
cascading genes along a trajectory and perform a GSA on those genes.
Another is to correlate the pseudotime with a biologically and inde-
pendently derived score of the cells. For example, if you are analyzing
cells from a human cohort studying a neurodegenerative disease, you
might separately construct a score for the neurodegenerative burden
in each glial cell. Then, you would assess how correlated pseudotime
is with this neurodegenerative burden score. Alternative methods of
validation include generating a dataset with samples taken at well
controlled time points to compute the actual DEGs at each time point
of interest, or using gPCR/in situ hybridization/spatial transcriptomics
or another orthogonal method on samples taken at multiple time
points to validate a small subset of the DEGs from the calculated
pseudotime of the single-cell RNA-seq dataset. These validations are
not always logistically feasible given certain tissue types or experi-
mental questions but would represent the best biological validation of

trajectory inference.

3.11 | Composition analysis

The last topic we will cover is composition analysis. After all, the ben-
efit of collecting single-cell data is that we can annotate individual
cells by their cell type. We can then compute the proportion of cells
across different treatment conditions in wet bench experiments or
across different donors with varying phenotypes. This allows us to ask

questions about the changing composition of cells. For example, we
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FIGURE 5

Trajectory analyses. (a) Analyzing the trajectories of microglia, where the lack of nuclei separation among the clusters yields overly

complex and likely irreproducible trajectories. (b) Analyzing the trajectories of the same dataset, but now downsampling the nuclei. By having less
nuclei, the trajectories are less complex, and this downsampling procedure is redone many times (not shown) to ensure that the trajectories do
not vary with the downsampling randomness. Both figures are analyzing the same data of microglia from Prater et al., 2023 using Monocle. The

nuclei are colored by their cell state cluster.

might hypothesize that certain microglia states become more preva-
lent as the AD burden increases. This hypothesis is fundamentally a
compositional question, as we are less interested in which pathways
or genes are being activated. Hence, the previous DEG methods are
not applicable.

While you might be tempted to compare the measured propor-
tion of cell types across the different conditions to answer this ques-
tion, we warn you of a few caveats. First, cell proportions sum up to
1, so an increase of one cell composition necessarily means the other
cell type proportions decrease if all other biological factors were held
fixed. This demonstrates the complex nature of a composition analy-
sis. You might wonder if activated astrocytes became more prevalent,
or if other astrocyte states died. While both scenarios might mathe-
matically yield the same compositional proportions, they have founda-
tionally different scientific meanings. Second, the cell types or states
are estimated, so you have a variable estimate of the cell type propor-
tion. This might result in your analysis being overly confident about a
change in proportion when, in reality, the estimate of proportion itself
is noisy.

Specific tools (scCODA and Cacoa) can help perform this compo-
sition analysis (Buttner et al., 2021; Petukhov et al., 2022). In short,
these methods often elect one cell type or cell state to the “reference
class,” and assume that two treatment conditions do not affect the
cells in this reference class. Investigators need to rely on the activated
genes of each cell type or cell state to biologically make a meaningful
choice on which one should be the reference class. Additionally, be
aware that the meaning of “samples” differs when doing a composi-
tion analysis. Whereas in the DEG or trajectory analysis, the more
cells sequenced yield more power, a composition analysis's power is
limited by how many donors or replicates there are. For example, a
perturbation experiment performed across two different conditions
on a cell line with only two replicates for each condition will only have
four samples (two in each of the two conditions). This design means
there might not be enough statistical power to detect significant

changes in cell composition.

We make one cautionary note for any composition analysis for
single-cell sequencing data. The composition analysis is only per-
formed on cells that pass QC, but not every cell type/state of interest
might pass QC. For instance, certain cell states might be harder to iso-
late during the sample production of single-cell suspension, or might
be erroneously deemed to be doublets or have primarily ambient
RNA. We advise keeping track of how many cells are discarded at
each stage of the entire scientific workflow, ideally of each cell type/
state if possible. Certain publications have found that changing the
QC criteria have uncovered biological insights that helped to explain

the discrepancies between different analyses (Xiong et al., 2023).

4 | CONCLUSION

Single-cell technologies and the analyses that can be applied to them
have rapidly evolved and now are widely available. Here we call out
common pitfalls in terms of batch analysis, dataset visualization, and
DEG detection. We also provide an outline of experimental design
and analysis considerations with a focus on how these decisions may
differ when working with glia.

Like all science, quality single-cell datasets begin with careful
experimental design. The ‘omics technology needed to answer the sci-
entific question as well as a careful consideration of batch effects that
may be introduced in the data are key. Glial biologists may also con-
sider whether to enrich for their cell type of interest to provide better
power in detecting cell states within the population, and the method
of dissociation of their tissue to account for artificially induced gene
expression states.

Once a dataset is collected, analysis begins with quality control,
which includes removing empty droplets, correcting for ambient RNA,
and detecting doublets. Following quality control, the downstream
analyses take two routes. In the first route, normalization is performed
to enhance the biological signal, followed by batch correction if

deemed necessary. After batch correction, the dataset can proceed
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down PCA dimension reduction to visualization using UMAP or t-SNE
to clustering, cluster annotation, composition analysis, and trajectory
analysis among other downstream analyses detailed above. The second
analysis route after quality control results in differential gene expres-
sion and analyses downstream of that detection. These analyses are
not appropriate to perform on batch corrected data, so are considered
a separate analysis stream. Some DEG detection algorithms require
normalized data to operate effectively, but the first thing to determine
is what form of data (normalized or raw counts) the algorithm expects.
When group-level questions are involved (how do two treatments dif-
fer, or do cases differ from controls), pseudobulking is the gold stan-
dard for DEG approaches. Once DEGs are defined, then biological
pathway enrichment, cell-cell communication, gene regulatory net-
works, and other downstream analyses can be added.

As we have mentioned throughout this review, we note that
single-cell analyses might differ quite dramatically from other forms of
biological data analyses. Single-cell analyses often require visualization
for informed decision-making, which is a unique difference, compared
to standard statistical approaches to data. Also, much care is needed
when thinking about the balance between the number of cells and
number of donors relative to the budgeted sequencing, the role of
technical replicates or biological replicates, and the statistical power
of the experiment. Furthermore, since many single-cell analysis pipe-
lines are primarily meant to discover associative, but not necessarily
causal, biological findings, it is worthwhile to plan the experiments to
validate your biological findings beforehand.

Together, we hope that the information provided will allow the

advance of glial biology in a rigorous way.
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