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Abstract

Single-cell transcriptomics, epigenomics, and other ‘omics applied at single-cell

resolution can significantly advance hypotheses and understanding of glial biology.

Omics technologies are revealing a large and growing number of new glial cell

subtypes, defined by their gene expression profile. These subtypes have significant

implications for understanding glial cell function, cell–cell communications, and glia-

specific changes between homeostasis and conditions such as neurological disease.

For many, the training in how to analyze, interpret, and understand these large data-

sets has been through reading and understanding literature from other fields like bio-

statistics. Here, we provide a primer for glial biologists on experimental design and

analysis of single-cell RNA-seq datasets. Our goal is to further the understanding of

why decisions are made about datasets and to enhance biologists’ ability to interpret

and critique their work and the work of others. We review the steps involved in

single-cell analysis with a focus on decision points and particular notes for glia. The

goal of this primer is to ensure that single-cell ‘omics experiments continue to

advance glial biology in a rigorous and replicable way.
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1 | INTRODUCTION

Single-cell ‘omics studies of various sorts have provided datasets

unprecedented in their size and resolution to generate testable

hypotheses about glia. One of the significant benefits of these single-

cell ‘omics approaches is the ability to distinguish and differentiate

subpopulations of glial cells. Glial cell types are exquisitely sensitive to

their surrounding environment. This results in many distinct pheno-

types, which each have varied impacts on the surrounding cells. When

working with glia, it is then important to describe and test hypotheses

about the diversity within these cell types, not just the overall

population of all cell types within a donor. For many glial biologists,

single-cell/nucleus RNA-seq, multiome (the combination of two

‘omics technologies), and various forms of epigenomics, proteomics,

lipidomics, and spatial transcriptomics are becoming increasingly

relevant to their fields of study. ‘Omics approaches provide powerful

tools for understanding the biology of glia, and the technologies to

generate the datasets in the wet lab are simple enough to use these

days. Analysis of these large datasets is also becoming more accessi-

ble with a variety of analysis pipelines and toolsets available either

open source or through licensed software.

‘Omics approaches are descriptive in nature (Diaz-Ortiz & Chen-

Plotkin, 2020). Even if one designs a well-controlled multi-group

multi-biological replicate experiment, the dataset generated will pro-

vide evidence that gene expression or epigenetic markers (or both)

changed but will not provide the mechanistic or direct experimental

evidence that these changes are biologically meaningful. Validation of

the findings by directly testing the alterations in gene expression and

what they mean functionally are then required to fully interpret the

results of these ‘omics datasets.
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We write this primer with the goal of providing informed

guidelines for researchers on the application and analysis of single-

cell ‘omics datasets. These sometimes-daunting datasets consist of

large matrices of genes by samples by cells. There are new pack-

ages available for analysis every day and there is potentially pro-

gramming to be learned on top of determining what algorithm to

apply. These hurdles are all surmountable for glial biologists. We

focus on single-cell RNA-seq and single-nucleus multiome

approaches with the idea that these are some of the most ubiqui-

tous of datasets to analyze. While our focus is on these specific

datasets, the general themes we cover will be broadly applicable to

other forms of ‘omics technologies and analysis. We provide an

overview of the best practices and a guide on how to make deci-

sions when analyzing datasets. Our goal is to make single-cell

‘omics more accessible to those interested in applying these pow-

erful tools to their studies. Advancing the science of glial biology

will involve knowledge of how/when/why to apply these tech-

niques and the appropriate analysis tools (Table 1).

2 | DESIGNING THE EXPERIMENT

2.1 | Why use single-cell/nucleus transcriptomics?

If the scientific question being asked is about how cells might shift

their gene expression in response to a specific condition/disease

state/stimulus and specifically involves understanding the diversity of

responses within the larger cell population, then single-cell transcrip-

tomics may be the right approach. If the questions involve whether

gene expression changes overall within a well-defined cell type that

can be enriched for and isn't suspected to have a high degree of het-

erogeneity, a whole organ, or is about less abundant/rare transcripts

then bulk RNA-seq is the technique of choice. The power of single-

cell datasets is primarily in detecting unique shifts in different subpop-

ulations of cells rather than a shift in gene expression at the larger

population level. Single-cell RNA-sequencing technologies can be

applied to either whole cells or nuclei. For the remainder of this

primer, we will refer to cells when the word is generic, though know

that this could be cells or nuclei depending on your application (for

more information on the choice of whole cells vs. nuclei we refer

you to the section 2.7 on this topic below). This allows their applica-

tion to a wide range of tissues including fresh, fresh frozen, and fixed

from which to extract glia and analyze their gene expression. Bulk

RNA-seq is typically much cheaper, potentially faster than single-cell

approaches, more sensitive to detect lowly expressed genes, and

enables better capture of splice isoforms. We acknowledge that for

emerging research areas, bulk RNA-seq will be the technique of

choice due to cost. However, technologies continue to improve that

may allow for the low-cost processing of hundreds of single-cell sam-

ples for transcriptomics analysis in the future and technologies to

merge long-read sequencing with single cell approaches will improve

the power of single-cell sequencing to identify splicing and more rare

transcripts.

2.2 | Why use single-nucleus epigenomics?

If the scientific question involves the chromatin accessibility, conforma-

tion, or histone modifications that shift gene expression, then single-cell

epigenomics is a likely technique candidate. The assay for transposase-

accessible chromatin with sequencing (ATAC-seq) detects regions of

open chromatin. Single-nucleus methylation technologies are also avail-

able if epigenetic markers driven by methylation are of interest for the

science. Single-cell Hi-C allows an understanding of the chromosome

conformation (Flyamer et al., 2017; Nagano et al., 2013). Single-cell cut

and tag identifies histone modifications and areas of open chromatin

(Bartosovic et al., 2021; Bartosovic & Castelo-Branco, 2023). In the case

of ATAC-seq datasets, it is often useful to have a reference dataset of

single-nucleus RNA-seq to assist with clustering the dataset to then

determine the cluster-level peaks of open chromatin regions. Note that

ATAC-seq requires nuclei, so while transcriptomics at the RNA level

can use cells or nuclei, the technology behind epigenomics requires a

shift to nuclei.

2.3 | Why use single-nucleus multiomics?

Multiome is the combination of ‘omics technologies from the same

cell source. Single-nucleus multiome is commonly used to refer to

the combination of performing RNA-seq and ATAC-seq on material

generated from the same nucleus. There are additional single-cell

multi-omic technologies that allow combinations of lipidomics, prote-

omics, HI-C, or DNA methylomics, but these technologies are still

emerging. Colloquial use of “multiome” may shift as technologies

beyond the combination of RNA-seq and ATAC-seq become more

widely used. The power of performing multiomics is that both types

of ‘omics datasets are generated simultaneously. In the case of

single-nuclei RNA-seq and ATAC-seq, this would allow one to corre-

late a specific gene expression change to differential accessibility of

its regulatory region within the same cell. Multiome avoids the need

to integrate datasets from different physical samples, and the issues

of needing to identify a good reference dataset as both datasets are

built from the same nuclei. Several publications are out or forthcom-

ing with glial multiome datasets (Trevino et al., 2021; Wang

et al., 2023; Xiong et al., 2023; Zhao et al., 2024). We also note

there are promising methods that help “predict” the ATAC-seq data

from RNA-seq data or vice-versa (Cao & Gao, 2022; Gong

et al., 2021), as well as methods to computationally link RNA-seq

profiles from one sequencing run to ATAC-seq profiles from a differ-

ent sequencing run (Chen et al., 2023), but it is still not clear if these

methods work for all biological systems related to glial cells. Impor-

tantly, we caution against using these computational cross-modality

prediction tools without further validation. For instance, if we trea-

ted the predicted/imputed ATAC-seq data based on the RNA-seq

data as if we had originally sequenced the multiome, we should

expect unrealistically high correlations between the chromatin acces-

sibility and gene expression profiles. Such findings would only be rig-

orous if paired with additional biological validations.
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TABLE 1 Glossary of terms.

Glossary of terms

Term Definition

Differentially expressed

gene (DEG)

A DEG is detected when the expression of that gene is significantly altered. DEG analysis typically occurs twice in

analysis of single-cell datasets. Once to detect genes that separate clusters (cell types or states), and once to detect

genes that differ between experimental conditions, such as treatments or groups. The detection of DEGs for each of

these two questions is different, as the identification of DEGs that are for experimental conditions should involve either

a pseudobulk approach or modeling of the source of each cell in the dataset to account for the group-level data.

Epigenomics The class of ‘omics technologies used to identify alterations in epigenetics such as open chromatin regions, chromatin

conformation, histone modifications, and other forms of epigenetic modifications. These modifications can affect gene

expression and are both heritable and modified by the environment of an organism.

Gene Set Analysis (GSA) A technique that applies a Fisher's exact test (typically) to a set of significant genes identified by DEG analysis to detect

biological pathways or other correlated biological functions with those genes. This analysis takes only the significant

genes, does not account for their directionality or the magnitude of effect, and is not well powered when gene lists are

small (<100).

Gene Set Enrichment

Analysis (GSEA)

A technique that identifies correlated biological pathways using the entire list of highly variable genes (or the full

genome) and combines them into enriched pathways using both the direction and magnitude of change in the dataset.

This pathway analysis technique is preferred because it takes into account the fold change of the genes and detects

where groups of genes are changing in a correlated manner. Note that the genes identified as contributing to the

pathway enrichment may not be significantly different themselves.

Highly-variable gene A gene whose expression level varies significantly across different cells in the dataset. In some cells, it has very high

expression and in other cells, it is lowly expressed. Computationally identifying highly-variable genes helps to focus the

analysis on the most informative parts of the data.

Library A unit of cDNA prepared for sequencing through appropriate size discrimination and sequencing platform adaptor

ligation. A single library typically contains all the cDNA transcripts from a single source. Libraries are typically prepared

in batches of samples, which are a source of batch effects in the sequencing dataset.

Model A statistical equation to describe the dataset. An example of “modeling” is to determine differential gene expression

while accounting for cell source-level covariates.

Multiome/multi-omics The term used when multiple forms of ‘omics technologies are applied to a single cell source. This is often used to refer

to the combination of RNA-seq and ATAC-seq performed on the same nucleus, but can refer to any combination of two

or more ‘omics technologies performed on the same cells/nuclei.

Multiplexing A technique used to label multiple sample sources such that they can be effectively pooled for single cell separation and

library preparation. The labels allow the sequence from each sample source to be later identified as a separate sample in

the dataset. This technique reduces reagent costs but allows use of the full N of samples obtained, a better outcome

than pooling without multiplexing.

Over-dispersion Variability in the sequencing count that is greater than expected based on a given statistical model.

Principal component

analysis (PCA)

A technique that reduces the number of “dimensions”/”features” in your data while keeping the most important

information. It helps you see patterns and trends by creating new variables (called principal components) that are

combinations of the original variables, but fewer in number. This makes complex data easier to visualize and analyze.

PCA falls in a category of methods called “dimension reduction methods”, of which PCA is one of the most common.

Proteomics The class of ‘omics technologies used to identify changes in protein expression within a given cell source.

Pseudobulk A method in single-cell RNA-seq analysis where the data from individual cells generated from the same cell source are

aggregated or summed to create a bulk RNA-seq-like profile for that source. This approach helps to mitigate the noise

and sparsity inherent in single-cell data by combining the expression levels of cells, making it easier to apply traditional

bulk RNA-seq analysis methods. This method should better approximate the statistical question when asking what

differs between experimental groups, though regression methods that account for cell source variability are also

appropriate.

Sequencing count The non-negative number (e.g., 0, 1, 2, …) representing the number of fragments from a particular gene sequenced for a

particular cell. The single-cell sequencing matrix is typically called a “count matrix”, and is oriented to have one row per

gene, and one column per cell. This matrix is often sparse, meaning many of its entries are 0 (no counts for a given gene

for a given cell). This sparsity needs to be addressed by the statistical applications developed for single-cell analysis.

Sparse A matrix is sparse when it contains data table cells that are zero. In single-cell datasets, there are many zeros because

not every cell contains counts sequenced for every gene in the genome.

t-SNE/UMAP Two dimension reduction methods that are particularly well-suited for the visualization of high-dimensional datasets. The

t-stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the most common

ways to visualize single-cell datasets. While these two methods offer more insightful visualizations of single-cell sequencing

data within one plot when compared to PCA, the coordinate-system produced in these plots should not be over-interpreted.

(Continues)
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2.4 | Questions regarding splice variants or small
non-coding RNAs

In cases where investigating splice variants or small non-coding RNAs like

microRNAs is the goal, specialized technologies need to be utilized. The

standard single-cell RNA-seq protocols will not be sufficient. In short-read

sequencing (the traditional RNA-seq technology), the cDNA is cut to a

specific fragment length near either the 30 or 50 end of the transcript. Thus,

sequencing does not provide a whole transcript, but simply enough bases

near one end of the transcript to identify the gene associated with the

transcript in question with some specificity. These short reads typically do

not provide datasets sufficient to answer scientific questions regarding

small RNAs or splice variants outside of the small region of transcript.

To identify whether specific splice variants are present in subpop-

ulations of glial cells, then single-cell long-read sequencing approaches

should be considered. These approaches allow for sequencing of the

full-length (or close to it) transcript, whereas traditional 30 or 50 single-

cell RNA-seq will not capture variations in the transcript unless they

are very close to the 30 or 50 end. Nonetheless, researchers have dis-

covered some glial splice variants on the 30 end using short-read

single-cell RNA-seq sequencing (Fansler et al., 2024; Gao et al., 2021;

Kang et al., 2023), but this likely represents only a fraction of the dis-

coveries that will be made in the upcoming years with long-read

sequencing. Single-cell long-read sequencing has advanced signifi-

cantly in the last few years, so the ability to detect splice variants and

other variations in transcript makeup are more available now.

There are also now several technologies available to sequence

small RNAs like micro-RNAs from single-cells (Benesova et al., 2021).

While not as widely utilized as standard short-read single-cell RNA-seq,

they exist and are available for use. Several studies have applied small

RNA-sequencing to glia to identify unique results in micro-RNA regula-

tion of glial function (Huang et al., 2023; Li et al., 2022). The application

of these alternative technologies, while imperative for asking these sci-

entific questions, may require alterations in the analysis approaches

described below. In this primer, we focus on traditional short-read

single-cell RNA-sequencing approaches, as they are the most common.

2.5 | Enriching datasets for glial populations
of interest

One consideration for the experimental design is whether to enrich

for cell types of interest prior to performing single-cell ‘omics. This

may be particularly important when working with glia, as their popula-

tions are often more limited compared to other cell types. For exam-

ple, microglia are estimated to make up 5%–10% of human brain cells

(Blinkow & Glezer, 1968; Pelvig et al., 2008). However, in single-

nucleus datasets isolated directly from human brain they make up just

2%–3% of the nuclei that can be analyzed (Alsema et al., 2020;

Del-Aguila et al., 2019; Mathys et al., 2019; Olah et al., 2020). This

sparsity in the number of microglia nuclei available for analysis limits

the ability to capture the complete representation of the full diversity

of subpopulations of this cell. Datasets in both human and mouse with

limited numbers of microglia detect fewer subpopulations than data-

sets that enrich for microglia (Gerrits et al., 2021; Mathys et al., 2017,

2019; Nguyen et al., 2020; Prater et al., 2023). Fortunately, tech-

niques exist to enrich for all types of glia ahead of performing

single-cell ‘omics assays that are easily employed and will make the

resulting dataset more powerful for answering specific scientific ques-

tions (e.g., Gerrits et al., 2021; Nott et al., 2019; Ochocka et al., 2021;

Prater et al., 2023; Sadick et al., 2022; Schroeter et al., 2021; Wei

et al., 2023; Yang et al., 2022). Enrichment can be achieved through

positive selection (by using a protein marker on your cell type of inter-

est), or via negative selection (by using a protein marker on alternative

cell(s) to remove them from the dataset). Both are viable strategies to

enrich for specific glia in the dataset and each has a different set of

caveats associated with it. For example, positive selection may miss

selecting for subpopulations where the protein used to select was

either not expressed or expressed at low or undetectable levels.

Negative selection may not enrich for a particular cell type as effec-

tively. Examples of both positive and negative selection can be found in

the literature for many types of glia (e.g., Gerrits et al., 2021; Nott

et al., 2019; Ochocka et al., 2021; Prater et al., 2023; Sadick et al., 2022;

Schroeter et al., 2021; Wei et al., 2023; Yang et al., 2022).

One additional consideration for glial cells is that they contain exten-

sive processes. These processes are always lost in single-nucleus prepara-

tions and are often lost in single-cell preparations as well. If an

investigator is particularly interested in the gene expression outside of

the soma, there are methods available to identify those transcripts,

though they currently lose single-cell fidelity and are usually focused on

the translatome (active translation) rather than the transcriptome (all

mRNA present; Acharjee et al., 2021; Hinman et al., 2021; Jiao &

Meyerowitz, 2010; Jiwaji et al., 2022; Kim et al., 2021; Sanz et al., 2019).

We anticipate that as technologies develop these methods may be

improved to arrive at a single-cell resolution of even gene expression

within cell processes.

TABLE 1 (Continued)

Glossary of terms

Term Definition

Type-1 error Also known as a “false positive,” this occurs when a statistical test incorrectly rejects a true null hypothesis. In other

words, it is the mistake of concluding that there is an effect or difference when, in fact, none exists. A “Type-1 error

inflation” means that there are substantially more incorrect rejections than anticipated. This would lead to inaccurate

interpretation of significant effects when in fact there are few to none.

HI-C An epigenomics proximity ligation method that captures the organizational structure of chromatin in three dimensions,

where genomic sequences that are distal to each other in linear terms are close to each other in 3D space.
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2.6 | Determining sample size

An important aspect of experimental design is how many samples to

collect. For the purposes of this discussion, we will refer to technical

replicates as replicates of a single sample that may be generated from

either multiple cultures, multiple differentiations, or multiple cell isola-

tions from a single source (cell line or animal). Biological replicates, in

contrast, are replicates from multiple different sources, whether those

are unique individuals (animals or human), or cell lines. Whenever pos-

sible, we would advocate prioritizing biological replicates over techni-

cal ones, as having too few biological replicates risks over-generalizing

the biological findings. There are ways of calculating power for single-

cell analyses (see Jeon et al., 2023 for a review), which should assist in

the design of studies. In general, the answer (as always with statistics)

is that more samples will give you more power. If your experimental

question is comparing groups, then it will be necessary to have more

than one biological replicate per group. There are scientific questions

where one might ask about shifts in cells within a sample itself – this

may require multiple technical replicates but potentially fewer biologi-

cal replicates, although for validity, it would likely be better to have

multiple of both. While there is no specific number of samples that

can be given, the need for multiple biological and technical replicates

depending on the scientific question being asked is critical, and data-

sets with a single data point should be viewed with caution since their

generalizability is unknown.

One discussion point of note is that as your study focuses on

more and more specific cell types or cell states (which we will describe

in detail later in this review), you are sacrificing statistical power. For

instance, even if the original single-cell RNA-seq dataset contains a

million cells across 10 donors, if the study focuses on one particular

cell type, there might only be a 1000 cells of this cell type across the

10 donors. We will discuss later in this review on how to design your

analysis pipeline to answer biological questions about the donors and

to analyze your statistical power in such settings.

Another discussion point is that no matter whether technical or

biological replicates are generated, pooling those replicates into a sin-

gle sequencing library (the unit of transcripts prepared for sequencing)

without multiplexing reduces the N to one. This compresses the repli-

cates together and reduces the dataset to a single point, an undesir-

able outcome. Better alternatives are multiplexing technologies, which

allow researchers to pool their samples for cost-efficiency. Multiplex-

ing typically involves attaching an identifier (potentially an oligonucle-

otide or some other tag) to a specific sample and then pooling

samples with different tags for the generation of the single-cell library.

Once the library is sequenced, the identifiers can be used to de-

multiplex or to pull the samples back apart so that the higher sample

number can be used. This is very different from pooling samples and

then receiving a single sequencing file back, which cannot determine

which cells came from which sample. The latter case would be a data-

set from a single data point rather than a multiplexed dataset, which

allows the use of the replicates as multiple individual data points.

There are many published studies where replicates were collected

and then pooled without multiplexing, which effectively reduces the

power of the study. We strongly encourage researchers to use multi-

plexing if pooling must occur so that the generation of replicates can

be utilized fully in the datasets.

2.7 | Cells or nuclei, which is better?

In some cases, like when using ATAC-seq technologies, researchers are

required to use nuclei. However, in traditional single-cell RNA-seq,

researchers have the choice of using the technology either on single

cells or single nuclei. In some cases, the choice of whether a study is

performed on cells or nuclei is driven by the tissue available. For exam-

ple, it is currently extremely difficult to isolate whole cells from flash

frozen human brain tissue. Thus, if a study is utilizing archival samples,

it is likely that they are using single nuclei. In contrast, freshly resected

tissue is more easily dissociated and allows for the isolation of whole

glial cells for single-cell RNA-seq. There are examples of tissues like spi-

nal cord or dorsal root ganglia where glia may be of interest that are

also difficult to dissociate into single cells due to connective tissues

even when freshly resected. In these instances, nuclei isolation will be

the solution for single-nucleus RNA-seq. There are studies which sug-

gest that the transcriptional profile of single nuclei may differ from that

of whole cells (Thrupp et al., 2020). However, there are additional stud-

ies which suggest that the transcriptional profile may not differ as

widely (Lake et al., 2017; Bakken et al., 2018).

2.8 | Dissociation methodology

The isolation of single cells requires the dissociation of cells from each

other and from the surrounding tissue components. There is a clear

consensus that the dissociation is critical while collecting single cells

from fresh tissue to avoid inducing spurious gene expression profiles

that are altered by the processing of the tissue itself (e.g., Marsh

et al., 2022; Mattei et al., 2020). In particular, enzymatic digestion can

significantly alter gene expression of glia, leading to potentially spuri-

ous interpretation of datasets. Methods are available to prevent this

issue, including choosing alternative dissociation methods at low tem-

perature (Mattei et al., 2020) or the introduction of inhibitors of tran-

scription and translation to prevent gene expression shifts during the

dissociation process (Marsh et al., 2022). Careful choices made during

the dissociation protocol selection and processing can dramatically

improve the quality of the single-cell RNA-seq data produced in the

experiment.

2.9 | Batching in an experiment

One piece of critical experimental design consideration is how to set

up library and sequencing batches. In this instance, a batch is a set of

samples that will have their libraries or sequencing generated together

in one grouping. We will discuss batch correction further in the analy-

sis portion of this primer as it is an important component of analysis
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as well. Multiple studies have identified batch effects in large studies

of sequence (Hartl & Gao, 2020; Katayama et al., 2019; Lauss

et al., 2013; Leek et al., 2010; Taub et al., 2010; Tung et al., 2017).

These studies demonstrate that counterbalancing and consideration

of batches (how samples are grouped) in the experimental design is

critical to the results of the study. Studies using single-cell technolo-

gies typically involve generating multiple rounds of library batches.

While minimizing batches where possible is useful, there is often no

way to avoid multiple library batches in particular because of proces-

sing time and sample expiration dates. What is critical is ensuring that,

where possible, these batches are not confounded by biological vari-

ables of interest (Hartl & Gao, 2020; Lauss et al., 2013; Leek

et al., 2010; Tung et al., 2017). For example, a library batch should

have equal representation of “cases” and “controls” or as close to it

as possible. If library or sequencing batches are represented primarily

of a single experimental cohort, the batch confound and the biological

variable of interest will be unable to be fully disentangled and result in

an inability to fully interpret the results of the study. It is almost

impossible to avoid batch effects and we will discuss their removal

during the analysis section of this primer. However, counterbalancing

and randomizing samples across library and sequencing batches is crit-

ical to ensure high quality datasets.

2.10 | Study design conclusions

Once you determine that you will use single-cell ‘omics of whatever

sort best fits the experimental question, then the goal will be to

design the experiment to minimize batch effects and utilize the appro-

priate number of samples. Power analysis can help determine an

appropriate number of samples needed to answer the questions of

interest. As noted above, we caution against pooling samples without

multiplexing as this practice removes the ability to understand biologi-

cal variability in the dataset. Practicing appropriate counterbalancing

of samples in the scheduling of experiments is also critical to avoid

introducing batch effects in library preparation or sequencing that will

cause the dataset to be uninterpretable. Many of these practices are

standard in non-single-cell experimental design as well, so all that

is required is a simple transfer of applicable skills to these new

experiments.

3 | ANALYSIS

Once a well-designed study is completed, next comes the analysis.

These large datasets require significant amounts of computing power

and usually some ability to script in a language like R or Python. We

note that languages, such as Julia and Matlab have also been gaining

traction. Several groups have generated single-cell transcriptomics

analysis tutorials that are excellent resources for specific packages

and the analysis steps that can be applied to datasets (Amezquita

et al., 2020; Andrews et al., 2021; Haque et al., 2017; Heumos

et al., 2023; Lähnemann et al., 2020; Wang et al., 2022).

Not every dataset is alike, and the algorithms available for

single-cell analysis change rapidly. Websites, such as https://www.

scrna-tools.org/ maintain a repository of more than 1700 computa-

tional tools (at time of writing). However, the tools that worked on

a previous dataset may not work as well on a new one. New better

tools may be available but will require troubleshooting, validation,

and assessment to confirm they work well for the current dataset.

When choosing packages, we recommend selecting tools that are

commonly seen in publications in your field. We also recommend

identifying GitHub repositories for packages that have active

updates and responses to issues. This suggests that the tool is

actively being maintained and you will be able to find support from

the authors of the tool.

Below we outline a general approach to analysis for single-cell

datasets and identify where the approach would differ for multiome

datasets (which includes analysis of single-nucleus ATAC-seq data).

Our goal is to outline important decisions and why you might choose

one approach over another (see Figure 1). There are a multitude of

packages and options for approaching single-cell analysis written in

both R and Python. Where important, we make specific package rec-

ommendations, but our intention here is to outline how to think about

the application of analyses to datasets rather than to identify specific

packages to use since packages can change regularly. Our goal is to

leave readers more informed about how to approach datasets, both

their own and others', so that the use of ‘omics in glial biology can

continue to enhance our understanding and build trustworthy new

hypotheses to test.

Two important notes about single-cell analysis: Traditional statis-

tical analysis does not typically involve visualizing a dataset to make

informed decisions. In fact, visualizing a dataset and making decisions

based upon what is seen leads to inaccurate and faulty statistical anal-

ysis in traditional datasets. Single-cell analysis is the exact opposite of

this traditional method. There are many times when the best way to

determine whether the algorithm applied to the dataset was effective

is to visualize the dataset and see how it looks. You'll note throughout

this primer that we recommend visualizing your dataset (and we dis-

cuss what visualizations are commonly used) and that is why. There

may be a future where visualizing the dataset in between statistical

applications to the dataset becomes unnecessary because there are

metrics and quantitative ways to interpret the results, but currently

the field is set up such that visualization is part of the way decisions

are made as to how to approach these data.

Finally, it is critical to note that once you are finished with the

analysis of your single-cell RNA-seq dataset, you have generated

hypotheses that need to be validated by another experimental

means. In many cases, this is confirmation via in situ hybridization

that the RNA quantities have shifted in the particular cell type of

interest. This could also include qPCR in sorted cells, or immunohis-

tochemistry or immunocytochemistry to detect shifts in protein

abundance, or alternatively spatial transcriptomics. Whatever method

is chosen for validation, the important thing is to demonstrate that

the gene expression shifts seen in the single-cell RNA-seq data are

observable outside of the single-cell context.
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F IGURE 1 We provide a flowchart overview of the workflow for standard single-cell/nucleus RNA-seq analyses. Analysis begins with a raw
dataset that undergoes quality control (QC) which includes thresholding and may optionally include the removal of ambient RNA and doublets.
From the QC'd dataset analysis can proceed to batch correction and downstream methods that rely on more on data visualization. The other path
is to determine differentially expressed genes, which may include normalizing the dataset but should not be performed on the batch corrected
dataset. In either the batch correction or differential expression output areas of analysis there are several optional analyses (in purple boxes) that
can be applied to datasets. The analysis options in blue are standard approaches seen in the field.
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3.1 | Quality control

One of the first steps in analysis of single-cell datasets is quality

control (QC). This includes setting some thresholds to exclude poor

quality cells from the analysis, as well as doublet and ambient RNA

identification.

Setting thresholds is typically the minimum QC for a single-cell

dataset. Thresholds are set to remove cells with low quality sequence

and low numbers of genes expressed. Ideally, this removes the empty

droplets generated by separating the single cells. Setting thresholds

for the dataset is a critical step in analysis because it can exclude cells

with quality sequencing if done too stringently. For example, microglia

often have a smaller number of unique transcripts than other cell

types, likely because of their biological size. A higher threshold on the

number of unique transcripts per cell can potentially exclude microglia

from the dataset being analyzed not because they're low quality, but

because they as a cell type express fewer transcripts. Alternatively,

settings thresholds too loosely can allow empty droplets or poor qual-

ity cells into the analysis, which may make later algorithms struggle.

Identifying the location for each sample where the majority of empty

droplets are excluded but one is unlikely to exclude high quality low

expressing cells is key.

Doublets occur in processing single-cell datasets when more than

one cell is captured in a droplet or capture area and transcribed with the

same barcode as if it were a single cell. In the past, an upper bound

threshold on the number of genes expressed was set to exclude dou-

blets from analysis by excluding cells that had very high transcripts.

Newer technologies provide ways to identify doublets algorithmically

based on their gene expression rather than on an upper bound threshold

(e.g., McGinnis et al., 2019; Wolock et al., 2019). These technologies are

far superior to the thresholding techniques originally applied, and we

highly recommend the use of a package to identify doublets. Recently,

researchers are moving toward applying two or three doublet-calling

packages and then removing doublets that were identified in a union of

the package results. This approach gives confidence since multiple

slightly different algorithms have identified a cell as a doublet. One con-

sideration for quality control of datasets is whether to fully remove dou-

blets from the dataset early on, or simply to mark them as doublets with

an identifier to use later in analysis. One advantage of the labeling

approach is that you continue to visualize the cells labeled as doublets in

your later analysis techniques and can determine whether other cells

may have been missed in the labeling process. However, leaving dou-

blets in the analysis can also potentially confuse results later on, so

removing high confidence doublets remains a reasonable and favored

approach to analyzing a dataset.

Ambient RNA is another confounder and place where quality con-

trol can occur in the analysis early on. Ambient RNA contamination

occurs in single-cell technologies because RNAse-inhibitors are pre-

sent and RNA that exists in the solution from lysed cells is sequenced

as if it were transcript from the cell of interest. Tools exist to identify

transcripts likely to be ambient in the dataset and are particularly use-

ful in single-nuclei datasets where ambient RNAs are likely to be com-

mon (Fleming et al., 2023; Young & Behjati, 2020). The presence of

ambient RNA can alter downstream analyses like differential gene

expression where genes that may have differential expression are not

identified because they are weakly expressed across the whole data-

set. However, some researchers argue that the algorithms developed

for ambient RNA removal are too stringent and remove more than

they should from datasets. These criticisms are valid and so this

approach should be carefully applied and reviewed for each dataset.

In general, ambient RNA removal is recommended for single-cell data-

sets, but not all researchers will agree with this. We recommend run-

ning your analysis with and without ambient RNA removal. Ideally,

the removal of ambient RNA only increases the power of your ana-

lyses but does not yield drastic and conflicting results compared to

the analysis without ambient RNA removal. If the ambient RNA

removal results in drastically different results, we recommend using

the analysis without ambient RNA removal. In the more likely scenario

that the two are similar but the p-value thresholds are slightly higher

in the corrected (ambient RNA removed) dataset, we recommend pro-

ceeding with the corrected dataset.

3.2 | Normalization

After quality control, the next step is to transform the data into a

more biologically meaningful proxy of gene expression. This step is

called normalization because it provides the relative ratio of expres-

sion, not the absolute expression. Normalization is similar conceptu-

ally to normalization in other methods (like western blotting or qPCR

where data is normalized to housekeeping proteins/genes) but is spe-

cific for the sparse nature of single-cell RNA-seq datasets. Remember

that the count matrix associated with a single-cell RNA-seq dataset is

sparse or contains many zeros (no counts for a particular gene for a

particular cell). Normalization methods therefore need to account for

the “count nature” of sequencing data. The “counts”, or number of

times a gene has been sequenced during a run, can be present or

absent in a given cell due to both biological and technical factors. Fac-

tors beyond biological processes contribute to the variability in gene

expression in these datasets. Technical contributions to variability

include differences in the amount or efficiency of sequencing in cells

or contribution of genes that are not biologically informative. To iso-

late the biological drivers of gene expression changes, we first try to

remove the technical effects. Because there can be variability

between cells, even from the same sample, of the number of times a

gene is sequenced due to technical reasons, there is a need to normal-

ize the “depth” or number of times a gene is sequenced, to the overall

number of times all genes are sequenced.

The preferred normalization procedure has evolved dramatically

over the years due to the simultaneous advancements in sequencing

technology and statistical modeling. Two key ideas have stood the

test of time and are found in most modern normalization procedures:

the first is to model the ratio between a cell's count for a specific gene

and the total counts for the cell (i.e., the sequencing depth for that

cell), and the second is to model the over-dispersed nature of single-

cell sequencing counts (see glossary). In the earlier days of single-cell
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RNA-seq analysis, these two aspects were solved by computing the

sequencing depth of a cell and then performing a log transformation.

This procedure is called log-normalization. However, more recent

papers have demonstrated that this simple transformation often over-

represents cells with a small but non-zero count (Hafemeister &

Satija, 2019; Townes et al., 2019). Hence, methods that explicitly

model the count nature of the data, are now more widely used

(Hafemeister & Satija, 2019; Lopez et al., 2018). We note that bench-

marking papers provide slightly different recommendations for nor-

malization (Ahlmann-Eltze & Huber, 2023; Choudhary & Satija, 2022;

Lause et al., 2021). Overall, we recommend you choose a diagnostic

metric (a quantitative value or visual criterion) to check prior to nor-

malizing the data, and then choose the normalization method that

best maximizes that metric. This is because while the benchmarking

papers offer a good overview of all the normalization methods, the

authors' recommendations might not apply to your particular biologi-

cal system, sequencing technology, or available budget for sequencing

depth. We have found the diagnostic metrics that check how gene

expression correlates with each cell's sequencing depth or how much

variation is explained by genes of different mean sequencing depth to

be quite useful (Hafemeister & Satija, 2019).

Newer normalization methods have the added benefit that con-

founding covariates can be adjusted for (i.e., “regressed” out). This

ensures that the resulting normalized dataset for downstream analyses

is free of biological effects that might obfuscate the intended biology

you're studying. Two covariates commonly adjusted for are the cell's

percentage of gene expression from mitochondrial genes, which is

increased in stressed or dying cells, or the cell's cell-cycling phase.

However, if you're working with human or animal cohorts, there is an

additional concern of how you would remove the donor-level covari-

ates such as age, sex, cognitive score, and so forth. Since each donor

contributes many cells, all the cells from the same donor have the same

donor-level covariate. This means that methods like SCTransform that

normalize each gene separately struggle to adjust for donor covariates.

(e.g., it isn't easy to reliably estimate the effect of age when there are

not many different values of donor ages and also a lot of zeros in a

gene's expression.) Alternatively, for scenarios like this, normalization

procedures that group information across all the genes (e.g., scVI or

GLM-PCA) when accounting for donor covariates are recommended

(Lopez et al., 2018; Townes et al., 2019). These methods come with an

added benefit of providing a low-dimensional embedding directly,

which will help with later batch correction, cell type labeling, and visu-

alizations. Regardless, we recommend visualizing the data with and

without removing donor covariates to gage how successful a normali-

zation procedure was.

Since normalization methods can struggle with donor-level cov-

ariates, it is commonplace to perform a principal component analysis

(PCA) afterwards since PCA will additionally help to reduce technical

variability. At a high level, a PCA defines a low-dimensional space

driven mainly by the densely sequenced genes. A PCA provides a

short vector to describe each cell by the number of PCs (typically

30 numbers), instead of a long vector of the counts of every gene

expressed by that cell over the whole genome. This condensing of

signal is how a PCA can help further clean up your single-cell dataset.

Many methods then use the PCA result for visualization or further

analyses.

After the normalization, it is also commonplace to assess which

genes are “highly variable.” All downstream analysis is then performed

only on these highly variable genes. Typically, most analyses use

somewhere between 2000 and 5000 genes. The choice of 2000 or

5000 is often based on computational resources and time available to

analyze a dataset. These highly variable genes are selected computa-

tionally because their variability across all the cells is large relative to

the mean normalized expression. Many computational tools we will

discuss later treat each gene equally. Too many uninformative or noisy

genes in the analysis might hinder the performance of these down-

stream computational tools, which is why the dataset is limited when

applying these.

One last note – of all the different analyses for a sequencing

dataset, normalization is typically the step that is ‘omics-technology-

specific. The normalization procedures for single-cell RNA-seq are dif-

ferent from those for single-cell ATAC-seq, long-read sequencing, and

so forth. As we discuss in the next section, this is complicated since

some batch correction and differential analysis methods involve nor-

malizing the data within the method implicitly. Single-cell tutorials

(e.g., Amezquita et al., 2020; Andrews et al., 2021; Haque et al., 2017;

Heumos et al., 2023; Lähnemann et al., 2020; Wang et al., 2022) are a

good place to start to determine what method will be best for your

particular application.

3.3 | Batch correction

Earlier we mentioned the need for batch correction in many single-cell

datasets. While not necessary in all cases, batch correction is often

beneficial (or needed) to account for artifacts introduced by technical

confounds, such as library preparations or sequencing batches (Leek

et al., 2010; Tung et al., 2017). The need for batch correction can

often be identified by visualizing the dataset (more on this later) and

identifying whether the dataset appears striped or there is a clear sep-

aration of the dataset along axes of potential confounds, such as sam-

ple, or sequencing batch, or library preparation, when looking at the

colorized display of cells. A very large batch effect will result in the

data separating into two portions of the visualization based on a tech-

nical confounder. More often, the batch effects are more subtle and

may simply result in mild striping or small differences in the visualiza-

tion of the dataset. If your dataset from all conditions, sequencing

batches, and so forth perfectly overlays or is nicely mixed in the great

majority of areas of your visualization then batch correction may not

be necessary.

Once you have determined that batch correction is needed,

there are multiple tools that could be implemented to complete

this step. We should note that it is possible that different batch cor-

rection methods may perform differently on different tissue types

(Luecken et al., 2022). Batch correction methods can take several

forms, which have been overviewed in many benchmarking papers
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(Chu et al., 2022; Luecken et al., 2022; Tran et al., 2020). While over-

correcting during batch correction can mean the loss of a true positive

in cell state presence or absence, under-correcting could lead to false

results of a difference between groups if groups are confounded by

batch effects. As discussed earlier, it is incredibly important that sam-

ples of different groupings be counterbalanced as evenly as possible

across batches. When batch is confounded by a biological variable

of interest, the results cannot be interpreted properly (Hartl &

Gao, 2020). Figure 2 depicts one batch correction using scVI (Lopez

et al., 2018) applied to two hypothetical datasets where one has

sequencing batches perfectly aligned with the biological variable of

interest, while the other dataset has the biological variable of interest

balanced between the two batches. The figure demonstrates that

when there is perfect alignment between sequencing batches and the

biological variable of interest, it is impossible to assess if the batch

correction was properly done or if there are significant biological dif-

ferences. This showcases that you should carefully determine how to

balance your samples when sequencing your cells.

Batch correction is one of the more important steps that can be

applied to datasets for appropriate visualization and downstream ana-

lyses based on corrected data. We recommend applying a standard

batch correction tool often used in your field and visualizing your

results. If you so choose, you could apply several batch correction

methods to determine whether they may be correcting the dataset in

different ways. Tran et al. (2020) and Korsunsky et al. (2019) offer

suggestions on how to assess which batch correction method worked

the best. Typically, this involves computationally quantifying if there is

a good mixing of cells across the different batches.

3.4 | Data visualization

Most single-cell papers have a so-called “UMAP plot” or “t-SNE plot”
to visualize the single-cell data as demonstrated previously in

Figure 2. The intent of such plots is usually to provide the reader with

a quick bird's-eye summary of how many cells the dataset contains,

how many cell types, and how separated the cell types are. In these

plots, each point is a cell/nucleus, and the color of each point iden-

tifies the cluster. Clusters most commonly represent the cell type, cell

cluster, or cell sub-state (more on this in the following section). If you

have donor information or batches, you might also color your cells

based on that covariate. Alternatively, you might color each point

F IGURE 2 Impact of batch correction
and difficulties when batch is aligned with
the phenotype/treatment of interest.
(a) In a hypothetical dataset where the
batches (in purple or orange) are perfectly
aligned with donor phenotype (shown in
the inset, where each shade denotes the
donor of a nucleus and blue or red denote
the two different phenotypes). In this
example, phenotype is the cognitive
status of the individual and batches

contained one or the other phenotype but
not both. It is normal to see separation of
data by donor and/or batch prior to batch
correction. (b) After applying batch
correction, we see a modest mixing of
nuclei by batch, but not much mixing by
donor phenotype. We cannot disentangle
if this modest performance is due to
significant biological differences between
the two classes of donors or because we
did not apply a good batch correction
method. (c) Another hypothetical dataset
where the donor phenotypes are equally
split between the batches. (d) After
applying batch correction, we see a
substantial mixing among nuclei across
the two batches but there are still
substantial differences between the two
phenotypes of donors. All the plots
shown are UMAPs where each point is a
nucleus, and originated from a dataset of
microglia among donors with and without
AD (Prater et al., 2023). scVI is used here
as an example of batch correction.
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according to a color gradient based on how high or low that cell's gene

expression is. These visualizations are highly flexible and quite power-

ful. As mentioned earlier, visualizing the dataset is particularly critical

in single-cell analyses as the way the visualization looks is often a

decision point in assessing whether a given algorithm in the analysis

was effective.

The computation of t-SNE (Maaten & van der Maaten &

Hinton, 2008) or UMAP (Becht et al., 2019) is typically based on the

PCA embedding. Technically, both PCA embedding and t-SNE/UMAP

are forms of “dimension reduction.” However, the key difference lies

in the number of dimensions they retain. A PCA embedding usually

retains many dimensions, typically around 30 and are used for many

methods in a downstream analysis. In contrast, t-SNE and UMAP are

specifically designed for visualization, and therefore, they retain only

two dimensions. This distinction is crucial to understanding the role of

dimension reduction in visualization.

It is important to know that t-SNE and UMAP have some random-

ness inherent in them since they visualize high-dimensional data. If you

have 5000 highly variable genes, your visualization condenses all those

genes into a two-dimensional plot. A lot of distortions are expected. A

good analogy to think about is maps of Earth. If the Mercator projec-

tion is used to visualize the three-dimensional world in two dimensions,

area is distorted (Greenland deceivingly looks as large as Africa) and

distance is distorted (the distance from California to Japan deceivingly

looks twice as much as the distance from France to Japan). These dis-

tortions are even more exacerbated when 5000 genes are visualized in

two dimensions. Nonetheless, UMAPs and t-SNEs are still vital tools

for assessing the dataset. In general, UMAPs are often preferred over

t-SNEs since UMAPs (empirically) better capture the structure of the

dataset. In general, both these visualizations can capture “large cell

type separations,” but the literal distance between cell types based on

these plots should not be over-interpreted. You can use tools to

numerically check how far apart cells really are (Johnson et al., 2022;

Xia et al., 2024). Figure 3 depicts different visualizations of glial cells

from the same single-nuclei RNA-seq dataset where the cell states are

labeled. We can appreciate that the coordinates of the UMAP and

t-SNE are arbitrary, as different instances of computing UMAP or

t-SNE yields different visualizations. Despite this weakness, these plots

contribute useful information by summarizing the differences between

cell types and cell states all in one plot. In contrast, PCA coordinates

F IGURE 3 Differences in visualization of a single-nucleus RNA-seq dataset. (a) Three different UMAPs, which were computed using the same

dataset and parameters. This demonstrates that every time you compute a UMAP, you might get a slightly different plot due to the inherent
randomness of the method. Furthermore, the orientation of the cell types and distances between cell types is meaningless in a UMAP, so the
UMAP mainly offers a glimpse into the number of cell types and a rough dichotomy of cell states within each cell type. (b) A t-SNE plot, which
usually shows less separation among cell types compared to a UMAP but typically offers greater spread to appreciate the different cell states
within a cell type. This method also provides a different visualization every time you use it. (c) PCA plots of the nuclei, which will give you the
same plot every time you make this plot. However, since PCA is a linear method, you will typically need to make multiple PCA plots showing just
two PCs at a time to appreciate the entire landscape of nuclei, such as the first and second, or the third and fourth. All the plots originated from a
dataset available through the SEA-AD consortium (Gabitto et al., 2023).
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used to denoise your data are well-defined. This means every time you

compute the PCA, you will get the same plot. However, the linearity of

PCA means it cannot separate the cell types or cell states when you

visualize two principal components (even if you have many principal

components, e.g., 30) at a time unless you make many plots.

As a rule of thumb, while UMAPs and t-SNEs sometimes have a

contentious reputation for providing misleading insight (Chari &

Pachter, 2023), these tools still play an essential role in single-cell ana-

lyses because a “perfect” visualization of high-dimensional data will

never exist. While quantitative tools, such as clustering and differen-

tially expressed gene (DEG) analyses offer insight by themselves,

applying qualitative tools, such as visualizations is equally essential. If

your quantitative analysis uncovers a strong pattern among the cells,

then, you should see some qualitative evidence of the same signal

when visualizing the data appropriately, and vice-versa.

3.5 | Clusters and cluster stability

As stated previously, there's a biological distinction between cell states

and cell types. Nonetheless, computational clustering of your cells can

be beneficial for both tasks. A clustering method canonically partitions

all your cells into one of many different clusters. These methods typi-

cally require you to input the number of clusters, either explicitly or

implicitly. If you want to differentiate cell types, you can cluster your

cells and look at which marker genes are highly expressed in each clus-

ter. You often might purposely “over-cluster” your cells since you can

combine clusters manually after the fact when investigating the marker

genes. It is crucial to understand that the clustering procedure does not

require marker genes, but you will need the marker genes to give the

discovered clusters biological meaning. The typical clustering method

in single-cell analyses are graph-based, such as Louvain or Leiden

(Traag et al., 2019). These methods first compute a graph that repre-

sents a cell as a node, and two cells are connected if they have similar

transcriptomic profiles.

Clustering serves a different purpose when analyzing cells of a

single cell type, such as states of glial cells. These cells might have dif-

ferent transcriptomic profiles since they undergo state changes due to

their environment or extracellular signaling. In these situations, clus-

tering aims to find the subtle differences between cell states. Typi-

cally, differential expression or gene enrichment analysis is used to

discover how the clusters differ. We will discuss this in detail later.

How do you pick the “correct” number of clusters? Some methods

don't let you explicitly set the number of clusters, but instead have you

set the “cluster resolution,” which implicitly controls the number of

clusters. This question is nuanced when working with cells of the same

type but having different states. Many statistical tools have been devel-

oped to aid with these questions, but every tool is slightly imperfect in

its own way. On the statistical end, methods related to data thinning

are promising, where the dataset is split into two, the clustering is per-

formed on one piece, and the quality of the clustering evaluated on the

other piece of the dataset (Neufeld et al., 2024). However, such

methods are difficult to deploy when many confounding variables, such

as donor covariates, are involved. A more commonly used alternative is

based on the stability of the clustering (Yu et al., 2022). These methods

use the philosophy that a cluster's numeric stability over some user-

generated randomness might hint at a biologically meaningful partition-

ing of the cells. For example, you can randomly select a group of genes

and cluster the cells based on only those genes. After iterating this pro-

cedure multiple times where each time involves a slightly different set

of genes, you can determine the best number of clusters as the one

where the cell's cluster identity changed the least across the multiple

iterations.

Lastly, we mention that there are also procedures that provide

“soft” clusterings, where cells are instead treated as a weighted mix-

ture of cell states. This is opposed to the abovementioned clusterings,

typically called “hard” clusterings, where each cell is assigned to only

one sub-state. Topic modeling is often used for this version of cluster-

ing (Carbonetto et al., 2022, 2023). While this modeling flexibility can

be beneficial for finding differential pathways in your analysis, you will

still have to deal with the question of picking the number of “pure”
cell sub-states. While algorithms are available for the “hard” clustering
methods discussed above, topic modeling does not benefit from

methods that can assist in detecting the stability of “soft” clustering.

As these methods develop further, we anticipate that additional algo-

rithms will become available.

3.6 | Cell type annotation

Once a dataset is visualized, the cell types and states can be anno-

tated. Even if a dataset was enriched for a specific glial type, most

sequencing experiments will result in at least a few cell types and sev-

eral cell states. We demonstrated in the previous section that UMAP

and t-SNE can both allow visualization of your cell types of interest

because they often separate by gene expression. Historically, cells

were annotated by visualizing cell type marker gene expression on a

UMAP/t-SNE and then assigning cell type names to areas of the visu-

alization where those markers were highly expressed. While the

marker gene visualization is still useful, there are now computational

tools available for cell type annotation.

Before discussing this, it is important to remember that the con-

cept of “cell types” is quite nebulous. While some cell types are

unequivocally different (there are many ways to distinguish a neuron

from a microglia based on morphology, cellular function, transcrip-

tomics, and spatial organization), some “cell types” are challenging to

distinguish (Zeng, 2022). For example, the biological signature to define

if a microglia is inflamed or in senescence is itself an active and evolv-

ing area of research (e.g., Ng et al., 2023; Saul et al., 2022; Vidal-Itriago

et al., 2022). For our discussion here, we reserve the concept that two

cells have different “cell types” if multiple biological modalities corrob-

orate their differences. Here, “cell types” refer to the larger category of

cells (e.g., neuron, astrocyte, oligodendrocyte, etc.). Otherwise, we

reserve the word “cell state” to cells of the same type with slightly dif-

ferent cellular functions in the instantaneous moment defined primarily

through transcriptomics. These “cell states” might often be described
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as subpopulations or phenotypes of a specific cell type. For example,

we might call cells reprogramming differently due to stimuli or in

different cell cycle stages as cells in different cell states (e.g., Batiuk

et al., 2020; Chamling et al., 2021; Hammond et al., 2019; Matusova

et al., 2023; Park et al., 2023).

The most common way to label cells by their cell type is through

the help of marker genes. The marker genes for a particular cell type

are selected to be uniquely (highly) expressed for only cells of this

specific cell type relative to other cells. These genes are typically

defined to have high sensitivity rather than high specificity. Usually,

marker genes are defined by other labs, consortiums, or the literature.

Once the marker genes of every cell type that may be in your experi-

ment are organized, a computational procedure scores each cell for its

enrichment for each set of marker genes to determine its likely cell

type. We will discuss how a clustering of your cells can go hand-

in-hand with this approach shortly.

This manual process of curating the marker genes of each cell

type is fantastic for its transparency but can also be quite laborious.

Hence, there are also computational methods to perform “label trans-
fer” also known as using an existing annotation reference to label your

cells. One advantage to label transfer is that these methods can facili-

tate the common labeling of both cell types and cell states in datasets

(Aran et al., 2019; Xu et al., 2021). We note that these methods some-

times fall under the broader category of “data integration” methods

and are sometimes repurposed to do batch correction. Our general

recommendation is to apply label correction, visualize the data

(as described before), and assess if the cell type labeling is satisfactory.

See Abdelaal et al. (2019) for a more general discussion.

As a word of caution, first, as you use more granular cell states,

the accuracy of these cell labels might not be as biologically meaning-

ful. After all, other researchers defined these cell states using a possi-

bly different experiment or biological model. Second, almost all the

procedures described so far will struggle to identify cell types that

exist in your dataset but not in the reference dataset. While most cur-

rent label-transfer methods provide a “confidence score” that helps

assess if there's a new cell type in your dataset, it is difficult to ascer-

tain how reliable these computational procedures are. We strongly

recommend that you spend time picking an appropriate reference

dataset. A good reference dataset should be on a similar biological

model, have a sequencing depth and sample size larger than your

experiment (and so often come from consortiums), and have cell types

labeled through procedures beyond single-cell RNA-seq data since

transcriptomics only offers a partial view of a cellular phenotype. See

Mölbert and Haghverdi (2023) for useful guidelines.

3.7 | Detecting differentially expressed
genes (DEG)

Differentially expressed genes allow the transition from computa-

tional analysis to new biological insight. Differentially expressed genes

are often calculated for two different purposes in an analysis. One is

to determine what genes separate different cell types/states, and the

second is to determine what genes have altered expression based on

sample source or treatment. We will discuss both of these steps and

how they differ in the next sections.

Detecting DEGs for clusters: This step enables identifying which

genes separate two groups of cells. Typically, the groups are based on

the clustering step discussed above. (In the next section, we will dis-

cuss how this differs from computing DEGs across different sources,

such as individuals or treatments).

The most important guideline we offer is that DEGs should be

identified using normalized but not batch-corrected/integrated gene

counts. Using these further manipulated values artificially manipulates

p-values and provides incorrect statistical inference. Some DEG algo-

rithms (e.g., DESeq2, NEBULA) provide their own normalization, so

starting from raw counts is most appropriate (He et al., 2021; Love

et al., 2014). Other algorithms (e.g., MAST) expect log-transformed

data, so normalized raw counts are appropriate (without further cor-

rection; Finak et al., 2015). If you use Seurat's SCTransform to normal-

ize your dataset, the residuals or the log normalized corrected raw

counts can be used for DEG analysis (Hafemeister & Satija, 2019). The

most important thing here is not to use batch-corrected, PCA,

denoised, imputed, or otherwise further transformed data in your

DEG analysis. This message is illustrated in Figure 4.

Statistically, the batch-corrected or denoised gene expression matrix

should not be used because most batch-corrected or denoised methods

purposefully combine information across multiple genes together. This

leads to interdependence of the gene expression because the genes are

combined and no longer represented by their individual count values.

This is the antithesis of an accurate DEG analysis since a truly differen-

tially expressed gene should not contaminate the signal in a truly non-

differentially expressed gene. This pitfall is well-documented and leads

to the so-called “Type-1 error inflation” (Agarwal et al., 2020). While

some methods have been developed to address such a scenario, we

would advise you to use multiple DEG analyses and keep only the genes

that multiple methods deem significant (Lin et al., 2024).

Most of the DEG analyses we mentioned so far are only valid for

the setting where the groups of cells are defined via experimental

design. For example, a dataset might consist of DEGs between cells in

differential experimental conditions or between cells that have under-

gone a treatment for differing lengths of time. This validity stems from

the fact that the groups of cells were defined independently from the

gene expression itself. The statistical validity of the p-value gets less

reliable when you begin to deviate from this rule. The most common

deviation occurs when you use the single-cell dataset to cluster the

cells into different sub-states and then use the same exact single-cell

dataset again to test for significant DEGs (Lähnemann et al., 2020).

Unsurprisingly, this produces extremely high levels of DEGs since the

clustering method partitioned the cells into different sub-states based

on the differences in gene expression (Zhang et al., 2019). This “dou-
ble-dipping” has been the focal point of many new statistical methods

(Vandenbon & Diez, 2020; Zhang et al., 2019). While it is possible to

use clusters defined by gene expression to then find DEGs with valid

p-values using sophisticated statistical methods, it is generally recom-

mended to use a reference dataset to cluster so that DEGs can be
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identified in the dataset in a more independent way (Lähnemann

et al., 2020). As mentioned above in the section on cell type labels, it

is quite important to identify a well-matched reference dataset from

which to define clusters, and one may not be available in all instances.

We anticipate that as the number of glial single-cell datasets grows

appropriate reference datasets for clustering will become more

available.

DEGs for group differences: If the scientific question involves

groups of donors (i.e., case vs. control, treated vs. untreated, young

vs. aged), then the previous DEG methods do not offer the most

insightful results. This is true generally, but especially for the human

population. This is because many DEG methods were designed for cell

lines and clonal mice but not for human donors, where there are con-

siderable donor covariates, such as age and sex. For instance, if you

were studying glial cells in Alzheimer's Disease (AD), you might com-

pare the donors with a high AD pathology burden to those with a low

AD pathology burden based on the single-nucleus RNA-seq data from

all the donors in the cohort.

It is important to understand why the typical DEG analysis we

mentioned previously might not be appropriate for cohort-level ana-

lyses. First, there is considerable human variation that a cohort-level

analysis needs to account for. For example, when analyzing data from

human cohorts where some donors were diagnosed clinically with

AD, it is common to find that almost every gene separates the AD

donors from control donors. However, some of these differences

might be driven by age or sex or other confounds that are not the bio-

logical aspect that you are studying. Second, when studying the

human population, the number of cells and the number of donors play

a different role. Consider two hypothetical datasets, each with one

million cells. One dataset sequenced two donors with half a million

cells each. The other dataset sequenced a 1000 donors with a 1000

cells each. While the former dataset offers a more thorough picture of

all the cells in two donors, the latter offers findings that generalize

better to the human population. Third, the previous DEG methods

would categorize the cells into two groups based on the phenotype of

the originating donor. These methods would not be able to account

for within-donor variation. This oversight could lead to inaccurate

results.

How should we analyze cohort-level data then? The most used

method is to “pseudobulk” the single-cell RNA-seq data based on the

donors. This means you compute the summed count expression

matrix among all the cells of a particular cell type for each donor, and

then you perform a DEG analysis originally designed for bulk RNA-seq

data. Typically, this is done using bioinformatics packages such as

DESeq2 or Limma (Love et al., 2014; Ritchie et al., 2015), which can

adjust for donor covariates. This procedure is often called “pseudo-
bulking” because we are computationally emulating sequencing bulk

data from each donor. Pseudobulking may be counter-intuitive since

you sequenced single-cell data only to analyze bulk-level data. How-

ever, the advantage of this procedure is that you first label your

single-cell dataset based on their cell types and then perform pseudo-

bulk analysis on cells of one cell type or cell state specifically. Using

your clusters provides the power of single-cell datasets to identify

subpopulations but pseudobulk statistically uses donor covariates

appropriately.

While pseudobulking is considered a “gold standard” in a cohort-

level analysis, it potentially has low power due to its failure to account

for within-donor gene expression variation. Furthermore, since tools

F IGURE 4 Workflow and example of DEG analysis. (a) A flowchart illustrating that batch-correcting and visualizing the cells often uses a
pipeline that is separate from computing the DEGs. (b) A volcano plot when analyzing DEG genes, where the input data did not denoise genes by
pooling information across the genes. We get a reasonable number of significant genes, marked by the horizontal dashed line denoting the
multiple-testing threshold. (c) A volcano plot when analyzing DEG genes, where the input data denoised the genes by pooling information across
all the genes. We erroneously get too many significant genes. Notice that the y-axis scale is also dramatically higher. It is unlikely for most
biological analyses that almost all the genes are contributing toward differences in the phenotype or treatment. The data here originates from the
SEA-AD consortium when analyzing oligodendrocytes based on the pseudoprogression of donor's AD (Gabitto et al., 2023).
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used to analyze psuedobulk were designed for bulk RNA-seq studies

where RNA input is matched, there is not always a built in control for

cell number. It can also yield false positives in certain cases where the

within-donor variation is large, relative to the between-donor varia-

tion. Specific methods have been developed to analyze cohort-level

data at the single-cell level (e.g., He et al., 2021; Lin et al., 2024). The

same warning that we mentioned previously about pooling informa-

tion across genes for DEGs still holds. Mixed-effect models adjust for

donor covariates when analyzing one gene at a time. The sparsity in

single-cell RNA-seq data creates challenges in this adjustment when

complex relationships exist between the donor covariates and the

gene expression. Embedding methods like eSVD-DE are better able to

provide reliable p-values while accounting for donor-level covariates.

Overall, note that increasing the number of cells for one donor

allows profiling all the different cell states present in that donor with

high fidelity, and increasing the number of donors allows the dataset

to generalize more readily to the human population. When planning

your experimental design to study a cohort of donors, it is important

to strike a good balance between the number of cells per donor, the

sequencing depth for each cell, and the number of donors. Suppose

an existing dataset of a similar cohort already exists. In that case, a

power calculation can be made to determine how many donors you

might need to recruit into your cohort (reviewed in Jeon et al., 2023).

Be aware that your own study might have a different number of cells

per donor or sequencing depth. There has yet to be a consensus on

how to perform cohort-level single-cell analyses, so it may be useful

to discuss an analysis plan with a fellow statistician.

3.8 | Biological function correlates

One of the most applied analysis tools after computing the DEGs is

pathway analysis. This is typically done as gene set analysis or gene set

enrichment analysis. There are significant differences between these

two approaches. Gene set analysis (GSA) is applied when a user takes a

list of significantly different genes and uses a tool like DAVID or

Panther to perform a Fisher's exact test to identify putative biological

pathways associated with that particular list of genes (Mi et al., 2019;

Sherman et al., 2022). You can interpret this analysis as asking which

biological pathways are most likely associated with the genes identi-

fied. Gene set enrichment analysis (GSEA), in contrast, takes a ranked

list by fold change of all genes present in the analysis, and utilizes the

directionality of their change in addition to the amount of change to

assess pathways where significant numbers of genes are changing in

the same direction. This analysis does not require the genes themselves

to be significantly altered, but if a large number are shifting together in

the same direction then a pathway will be called significant. You can

interpret the results of this analysis as providing biological pathways

that are changing in either a positive or negative direction based on

gene expression shifts as a result of the condition of interest. Since

each of these pathways analysis approaches utilizes gene expression in

a different way, the results are not perfectly aligned. Gene set enrich-

ment analysis provides the opportunity to identify pathways that are

shifting because of coordinated gene expression changes even if the

gene expression changes are not themselves significant, whereas GSA

only utilizes significantly expressed genes and does not take direction-

ality or magnitude into account.

Gene set analysis is a useful tool; however, interpretation of these

pathways and the links to genes can be less clear than GSEA, particu-

larly if the user does not separate their list of genes into those posi-

tively and negatively regulated by the condition of interest. Thus,

when applying GSA it is important to remember that only the signifi-

cantly different genes are taken into account, and directionality is only

taken into account so far as the user splits their lists apart. Magnitude

of change is also not assessed in this analysis. GSA is best used when

the list of genes is long. If a list of differential genes is on the shorter

side, for example having only 20 genes, the reliability is likely low.

Gene set enrichment analysis provides additional capability

beyond GSA because it utilizes both magnitude and directionality of

change to identify pathways that are altered in the dataset. Although

GSA is simpler because multiple websites exist where lists of gene

names can be supplied and pathways retrieved, we recommend the

use of GSEA because of the additional information that is utilized in

identifying the pathways.

When identifying biological pathway correlates, it is also good to

consider that each of the commonly utilized databases (e.g., GO, KEGG,

Reactome, Wikipathways) is based on a specific set of scientific papers

curated by one or a group of individuals (Agrawal et al., 2024;

Ashburner et al., 2000; Kanehisa, 1997; Milacic et al., 2024; The Gene

Ontology Consortium et al., 2023). These databases are biased by what

is known about biological pathways in certain fields with which the

curators are familiar and may not be accurate for all cell types or situa-

tions. One of the ways that scientists have attempted to overcome this

bias is to utilize multiple databases and then identify the common path-

ways across databases rather than selecting a single database from

which to draw results. Ideally, this makes the resulting pathways identi-

fied more reliable as they are shared beyond the bias of a single data-

base. While the databases themselves will continue to improve, they

will always be inherently biased by what is already known in science.

By combining the results of databases and reporting the common

themes, confidence is higher that the pathways identified represent

the biology seen in these gene expression shifts.

3.9 | Inferring gene regulatory networks or ligand-
receptor interactions and WGCNA

After one defines the differentially expressed genes in the dataset,

there are many optionally applicable downstream analysis options

depending on the scientific questions to be answered. This could

include inferring gene regulatory networks (Aibar et al., 2017; Badia-

i-Mompel et al., 2023; Yuan & Duren, 2024). Tools are also available

to detect sets of genes that change together (similar to the GSEA con-

cept described above) but then to correlate that coordinated shift in

expression with known transcription factors that drive gene expres-

sion. This allows the identification of gene regulatory networks. One
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tool commonly utilized in bulk RNA-seq publications is weighted gene

network correlation analysis (WGCNA; Langfelder & Horvath, 2008,

2012). Similar to GSEA, this method detects genes in the dataset that

move up or down in a correlated or coordinated manner. There are

methods that allow WGCNA to be applied to single-cell RNA-seq

datasets (Morabito et al., 2023), and other tools that expand the capa-

bility (Lu & Keleş, 2023; Su et al., 2023). Other tools utilize databases

that identify ligand-receptor interactions in different fields of biology

to infer the way cells may be communicating with each other based

on the gene expression in the dataset (Armingol et al., 2021; Jin

et al., 2021; Wilk et al., 2024; Xie et al., 2023). All of these methods

utilize the DEGs detected in the dataset and rely on databases that

already exist so the choice of database and the way DEGs are calcu-

lated are important inputs.

3.10 | Trajectory Analysis

Typically, when isolating the glial cells in your single-cell datasets, one

might care about how cells change over time. Moreover, one might

hypothesize that different glial cells undergo different transcriptomic

changes. For example, these changes might be due to experimental

perturbation in the wet lab or cellular response due to increasing neu-

rodegenerative burden. Whichever the case might be, a trajectory

analysis might provide insight into what exactly is changing with

respect to time. What makes this complicated in glial analyses, how-

ever, is that these methods are often designed for developmental sys-

tems where there is a clear development of vastly different cell types.

Hence, your glial analysis is less likely about “development” but more

likely about “responding” (i.e., how the glial cells gradually shift). This

distinction affects how likely it is that the trajectory analyses will pro-

vide meaningful insight.

Trajectory analyses, broadly speaking, fall into two categories.

The first category requires you to specify the “start” and/or “end” of

the trajectory. If you suspect multiple trajectory routes, some

methods require you to enumerate each route's start and end. Then,

these methods find paths through the transcriptome space (often the

PCA embedding of the normalized gene expression data) that go

through the high-density regions between each start and end (Street

et al., 2018; Trapnell et al., 2014). The second category instead uses a

molecular model to dictate how cells should change over time and

typically requires additional annotations of your gene expression

matrix (La Manno et al., 2018). Neither category is strictly preferable.

While the first category requires you to label the routes roughly, the

second requires you to trust that the molecular model is appropriate

for your biological system.

A few downstream analyses are commonplace once you've per-

formed a trajectory analysis. One is to compute the pseudotime of

each cell in the dataset. We use the word “pseudotime” since most

trajectory methods do not explicitly account for how time affects

gene expression. That is, there are no meaningful units to pseudotime.

Biologically, we typically interpret the pseudotime as a mathematical

proxy of how far along a cell is in responding to a perturbation or a

disease's burden. The second downstream analysis is to find the order

of cascading genes. These are genes that are highly expressed at dif-

ferent times along a trajectory. The third downstream analysis is to

identify the branch points. If a glial dataset has multiple trajectory

routes, one might be interested in which cell sub-state was the “last”
sub-state before the cells had to “make a decision” on which later

state would be its endpoint. Note that all three downstream analyses

are often specific to the trajectory analysis. The exact calculation for

each downstream analysis will likely change depending on the trajec-

tory inference applied.

Figure 5 demonstrates one common weakness of existing trajec-

tory methods when analyzing subtle glial shifts. While many trajectory

methods were designed for studying early embryonic development

where cells are changing their cell types, for example a stem cell

developing into a neuron, you might be instead studying how micro-

glia change their cell states. This means there is dramatically less dis-

tinction between the cell states than most trajectory methods require.

In Figure 5, we demonstrate this, where our suggestion is to down-

sample the number of cells, apply the trajectory method on the data-

set with less cells, and repeat this procedure multiple times to build a

consensus among the random subsetting of the dataset.

A final word of caution is that the vast majority of trajectory ana-

lyses are exploratory in nature. These analyses often do not claim any

causality of how cells are responding. In fact, many authors argue that

the regulatory network is a more meaningful biological representation

of a cell's identity (Kamimoto et al., 2023). Validation of trajectory

analysis findings is fruitful. The most common strategy is to find the

cascading genes along a trajectory and perform a GSA on those genes.

Another is to correlate the pseudotime with a biologically and inde-

pendently derived score of the cells. For example, if you are analyzing

cells from a human cohort studying a neurodegenerative disease, you

might separately construct a score for the neurodegenerative burden

in each glial cell. Then, you would assess how correlated pseudotime

is with this neurodegenerative burden score. Alternative methods of

validation include generating a dataset with samples taken at well

controlled time points to compute the actual DEGs at each time point

of interest, or using qPCR/in situ hybridization/spatial transcriptomics

or another orthogonal method on samples taken at multiple time

points to validate a small subset of the DEGs from the calculated

pseudotime of the single-cell RNA-seq dataset. These validations are

not always logistically feasible given certain tissue types or experi-

mental questions but would represent the best biological validation of

trajectory inference.

3.11 | Composition analysis

The last topic we will cover is composition analysis. After all, the ben-

efit of collecting single-cell data is that we can annotate individual

cells by their cell type. We can then compute the proportion of cells

across different treatment conditions in wet bench experiments or

across different donors with varying phenotypes. This allows us to ask

questions about the changing composition of cells. For example, we

466 PRATER and LIN

 10981136, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/glia.24633 by U

niversity O
f W

ashington, W
iley O

nline L
ibrary on [26/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



might hypothesize that certain microglia states become more preva-

lent as the AD burden increases. This hypothesis is fundamentally a

compositional question, as we are less interested in which pathways

or genes are being activated. Hence, the previous DEG methods are

not applicable.

While you might be tempted to compare the measured propor-

tion of cell types across the different conditions to answer this ques-

tion, we warn you of a few caveats. First, cell proportions sum up to

1, so an increase of one cell composition necessarily means the other

cell type proportions decrease if all other biological factors were held

fixed. This demonstrates the complex nature of a composition analy-

sis. You might wonder if activated astrocytes became more prevalent,

or if other astrocyte states died. While both scenarios might mathe-

matically yield the same compositional proportions, they have founda-

tionally different scientific meanings. Second, the cell types or states

are estimated, so you have a variable estimate of the cell type propor-

tion. This might result in your analysis being overly confident about a

change in proportion when, in reality, the estimate of proportion itself

is noisy.

Specific tools (scCODA and Cacoa) can help perform this compo-

sition analysis (Büttner et al., 2021; Petukhov et al., 2022). In short,

these methods often elect one cell type or cell state to the “reference
class,” and assume that two treatment conditions do not affect the

cells in this reference class. Investigators need to rely on the activated

genes of each cell type or cell state to biologically make a meaningful

choice on which one should be the reference class. Additionally, be

aware that the meaning of “samples” differs when doing a composi-

tion analysis. Whereas in the DEG or trajectory analysis, the more

cells sequenced yield more power, a composition analysis's power is

limited by how many donors or replicates there are. For example, a

perturbation experiment performed across two different conditions

on a cell line with only two replicates for each condition will only have

four samples (two in each of the two conditions). This design means

there might not be enough statistical power to detect significant

changes in cell composition.

We make one cautionary note for any composition analysis for

single-cell sequencing data. The composition analysis is only per-

formed on cells that pass QC, but not every cell type/state of interest

might pass QC. For instance, certain cell states might be harder to iso-

late during the sample production of single-cell suspension, or might

be erroneously deemed to be doublets or have primarily ambient

RNA. We advise keeping track of how many cells are discarded at

each stage of the entire scientific workflow, ideally of each cell type/

state if possible. Certain publications have found that changing the

QC criteria have uncovered biological insights that helped to explain

the discrepancies between different analyses (Xiong et al., 2023).

4 | CONCLUSION

Single-cell technologies and the analyses that can be applied to them

have rapidly evolved and now are widely available. Here we call out

common pitfalls in terms of batch analysis, dataset visualization, and

DEG detection. We also provide an outline of experimental design

and analysis considerations with a focus on how these decisions may

differ when working with glia.

Like all science, quality single-cell datasets begin with careful

experimental design. The ‘omics technology needed to answer the sci-

entific question as well as a careful consideration of batch effects that

may be introduced in the data are key. Glial biologists may also con-

sider whether to enrich for their cell type of interest to provide better

power in detecting cell states within the population, and the method

of dissociation of their tissue to account for artificially induced gene

expression states.

Once a dataset is collected, analysis begins with quality control,

which includes removing empty droplets, correcting for ambient RNA,

and detecting doublets. Following quality control, the downstream

analyses take two routes. In the first route, normalization is performed

to enhance the biological signal, followed by batch correction if

deemed necessary. After batch correction, the dataset can proceed

F IGURE 5 Trajectory analyses. (a) Analyzing the trajectories of microglia, where the lack of nuclei separation among the clusters yields overly
complex and likely irreproducible trajectories. (b) Analyzing the trajectories of the same dataset, but now downsampling the nuclei. By having less
nuclei, the trajectories are less complex, and this downsampling procedure is redone many times (not shown) to ensure that the trajectories do
not vary with the downsampling randomness. Both figures are analyzing the same data of microglia from Prater et al., 2023 using Monocle. The
nuclei are colored by their cell state cluster.
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down PCA dimension reduction to visualization using UMAP or t-SNE

to clustering, cluster annotation, composition analysis, and trajectory

analysis among other downstream analyses detailed above. The second

analysis route after quality control results in differential gene expres-

sion and analyses downstream of that detection. These analyses are

not appropriate to perform on batch corrected data, so are considered

a separate analysis stream. Some DEG detection algorithms require

normalized data to operate effectively, but the first thing to determine

is what form of data (normalized or raw counts) the algorithm expects.

When group-level questions are involved (how do two treatments dif-

fer, or do cases differ from controls), pseudobulking is the gold stan-

dard for DEG approaches. Once DEGs are defined, then biological

pathway enrichment, cell–cell communication, gene regulatory net-

works, and other downstream analyses can be added.

As we have mentioned throughout this review, we note that

single-cell analyses might differ quite dramatically from other forms of

biological data analyses. Single-cell analyses often require visualization

for informed decision-making, which is a unique difference, compared

to standard statistical approaches to data. Also, much care is needed

when thinking about the balance between the number of cells and

number of donors relative to the budgeted sequencing, the role of

technical replicates or biological replicates, and the statistical power

of the experiment. Furthermore, since many single-cell analysis pipe-

lines are primarily meant to discover associative, but not necessarily

causal, biological findings, it is worthwhile to plan the experiments to

validate your biological findings beforehand.

Together, we hope that the information provided will allow the

advance of glial biology in a rigorous way.
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