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ABSTRACT

Inference with transformer models begins with a prompt processing step. This
prompt processing step can be computationally expensive, taking up to 10s of sec-
onds for billion-parameter models on edge devices. This introduces significant la-
tency for the end user. To reduce the time spent producing the first output (known
as the “time to first token”, or TTFT) of a pretrained model, we introduce a novel
method called KV Prediction. In our method, a small auxiliary model is used to
process the prompt and produce an approximation of the KV cache used by a base
model. This approximated KV cache is then used with the base model for au-
toregressive generation without the need to query the auxiliary model again. Our
method produces a pareto-optimal efficiency-accuracy trade-off when compared
to baselines. On TriviaQA, we demonstrate relative accuracy improvements in the
range of 15%−50% across a range of TTFT FLOPs budgets. We also demonstrate
accuracy improvements of up to 30% on HumanEval python code completion.
Additionally, we benchmark models on an Apple M2 Pro CPU and demonstrate
that our improvement in FLOPs translates to a TTFT speedup on hardware. We re-
lease our code at https://github.com/apple/corenet/tree/main/
projects/kv-prediction.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities on many downstream
tasks (Gunter et al., 2024; Achiam et al., 2023; Chowdhery et al., 2022; Abdin et al., 2024). How-
ever, the high computational cost of running large language models results in limited capabilities for
on-device inference. On-device inference is essential for privacy, latency, energy efficiency, and per-
formance in limited-connectivity areas (Frantar et al., 2022; Alizadeh-Vahid et al., 2023; Stojkovic
et al., 2024). For these reasons, LLM efficiency remains an important and active area of research.

LLM inference with the popular transformer (Vaswani et al., 2017) architecture begins with a prompt
processing phase, after which the model can begin streaming output tokens. The “time to first token”
(TTFT) refers to the time taken to process the prompt and emit the first output token. In scenarios
such as chatting with a user, the TTFT may be a more important runtime experience metric than
autoregressive generation time, since the user can begin consuming outputs after the first token is
produced. For on-device models, prompt processing times can be intolerably slow (up to 10s of
seconds, Fig. 1). Reducing TTFT in these cases enables a better user experience.

We present a method to improve TTFT by processing the prompt with a small auxiliary transformer
model. Our method runs the auxiliary model and stores its KV cache. It then uses a learned linear
projection to predict the KV cache of another transformer model (the base model) using only the
KV cache of the auxiliary model as input. Our method improves upon the efficiency-accuracy trade-
off achievable by our baselines. For example, we demonstrate accuracy improvements of 15% −
50% on question answering with TriviaQA (Joshi et al., 2017), and up to 30% on code completion
with HumanEval (Chen et al., 2021) at fixed TTFT FLOP counts. We provide on-device timing
experiments to demonstrate that our FLOPs gains translate to on-device runtime improvements.

∗Correspondence to mchorton@apple.com.
†Work done at Apple. Now at Meta.
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Figure 1: TTFT and ratio of TTFT to the time for a step of generation for an OpenELM 3B model
on an M2 Pro CPU (EveryMac, 2024) with 32GB of RAM. We evaluate at batch sizes 1, 4, and 8.

Our contributions are as follows: (1) We develop a novel method called KV Prediction for improv-
ing on-device TTFT. (2) Our method produces a stronger efficiency-accuracy trade-off than base-
lines. (3) We analyze the runtime characteristics of KV Prediction models on-device. Additionally,
we release our code for reproducibility at https://github.com/apple/corenet/tree/
main/projects/kv-prediction.

2 RELATED WORK

On-Device TTFT Efficiency: Few works have explored our problem domain of improving on-
device TTFT. LazyLLM (Fu et al., 2024) uses an attention-based token dropping strategy to drop
unneeded tokens at inference time. These tokens can be revived later during the generation phase.
Random token dropping (Yao et al., 2022) and static token pruning are both studied in Fu et al.
(2024) as methods for improving TTFT. These methods are our baselines.

Server-Side TTFT Efficiency: Cachegen (Liu et al., 2023) compresses KV caches for faster TTFT,
but their setup assumes that a precomputed, pre-compressed KV cache is stored on a server that
is available over network. Other related works explore techniques for server-side TTFT efficiency
(Agrawal et al., 2023; Lv et al., 2024; Agrawal et al., 2024) or long-context execution (which is
currently not feasible on edge devices) (Gao et al., 2024; Jiang et al., 2024; Xiong et al., 2023). Our
investigation differs from these in that we focus on on-device TTFT improvements.

Context Compression: Previous works have investigated compressing the KV cache for improving
generation efficiency. PyramidKV (Cai et al., 2024), StreamingLLM (Xiao et al., 2023), SnapKV
(Li et al., 2024), and Model Tells You What To Discard (Ge et al., 2023) all compress the KV cache
along the token dimension by observing attention scores and pruning irrelevant tokens. However,
their methods compute a forward pass before pruning. Thus, they improve generation time, but not
TTFT. Layer-Condensed KV Cache (Wu & Tu, 2024) compresses an N -layer KV cache into a 1-
layer KV cache, but requires 9 prompt processing steps and negatively impacts TTFT. Other works
such as KIVI (Liu et al., 2024) and GEAR (Kang et al., 2024) have explored quantizing the KV
cache, but do not improve TTFT.

General Techniques for Efficiency: Many works have explored quantization (Lin et al., 2023;
Tseng et al., 2024; Frantar et al., 2022; Dettmers et al., 2023; Shao et al., 2023; Egiazarian et al.,
2024), pruning (Alizadeh-Vahid et al., 2023; Ma et al., 2023; Zheng et al., 2024), and efficient
design (Mehta et al., 2024; Zhang et al., 2024; Abdin et al., 2024) to improve LLM efficiency.
These techniques are orthogonal to ours, as they can be combined with our method or our baselines.

3 KV PREDICTION

Recent work has shown that the KV cache can be compressed with little or no loss in accuracy at
generation time (Cai et al., 2024; Li et al., 2024; Xiao et al., 2023; Ge et al., 2023). We hypothesize
that the KV cache for a model can be approximated efficiently to reduce on-device TTFT. We use a
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(a)

KV Prediction Inference

Input: base B, auxA, predictorP , inputs I
# RunA to obtain logits and cache.
a,KVA ← A(I)
# Predict the KV cache.
ˆKVB ← P(KVA)

# Run the base model on only the last token.
b← B(I[−1], ˆKVB)
# Update inputs.
I ← I + sample(b)
while generation not finished do

b, p← B(I[−1], ˆKVB)
I ← I + argmax(b)
# Update KV cache.
ˆKVB ← ˆKVB + p

end while

(b)

KV Prediction Training (One Iteration)

Input: base B, auxA, predictor P , inputs I,
targets T , loss functionL
# RunA to obtain logits and KV cache.
a,KVA ← A(I)
# Predict the KV cache.
ˆKVB ← P(KVA)

# Run the base model with the predicted KV
cache.
b← B(I, ˆKVB)
# Run the base model again to get the ground-
truth KV cache.
KVB ← B(I)
# Compute loss
l← L(b, a,T , ˆKVB,KVB)
# Use l to updateA,P . Move to next iteration.

(c)

Figure 2: (a) An overview of our method. (b) Our inference method. (c) Our training method.

smaller auxiliary transformer to process the prompt. Then, a set of learned linear projections is used
to predict the base model’s KV cache using the auxiliary model’s KV cache (Fig. 2a).

3.1 PREDICTING KV CACHES

Our model contains a frozen pretrained base network B, a learned auxiliary network A, and a learned
KV predictor P . The auxiliary and predictor networks are used to generate the predicted KV cache
efficiently. Afterwards, inference proceeds with only the base model.

Inference: During inference (Fig. 2b) the prompt is passed to the auxiliary model and the auxiliary
KV cache KVA is computed. Then, the predicted base KV cache ˆKVB = P(KVA) is computed.
At this point, A and P are no longer required to continue inference. To generate the first token,
a single-token generation step of B is run, but with ˆKVB being used as the keys and values in the
attention operations (instead of using the base model’s QKV projections). The logits produced from
this step are used to produce the first token. Afterwards, standard autoregressive inference is used.

Training: During training (Fig. 2c), a sequence of tokens I are fed to the auxiliary model A to
produce output logits A(I) and a KV cache KVA. Then, the predicted KV cache ˆKVB = P(KVA)

is computed. Finally, a forward pass of B is computed using the predicted KV cache ˆKVB (instead
of using the keys and values from the base model’s QKV projections) to produce output logits B(I).
See Appendix A for details on our loss function.

3.2 ARCHITECTURAL DETAILS

Our KV Prediction models are fully specified by our base, auxiliary, and predictor networks. Our
base network always consists of a standard pretrained frozen transformer network.

Auxiliary Networks: We use two different methods for choosing an auxiliary network. In the first
method, referred to as KVP-C (KV Prediction with a Canonical model), we choose the auxiliary net-
work to be a smaller model in the same family as the base model. In the second method for choosing
an auxiliary network, referred to as KVP-LP (KV Prediction with a Layer-Pruned model), our
auxiliary network consists of a copy of the base network with some of the layers removed.

Predictor Networks: For our predictor network, we use a set of learned linear transforms to predict
each layer of the base model’s KV cache independently. Each transform takes in one layer of the
auxiliary KV cache and predicts one layer of the base KV cache. See Appendix C for details.

Model Specification: When experimenting with KV Prediction, we use OpenELM (Mehta et al.,
2024) models. For KVP-C experiments, we use smaller models from the OpenELM family as the
auxiliary models. For KVP-LP experiments, we define a set of layer-pruned OpenELM models in
Appendix B, which we use as the auxiliary model. When referring to a KV prediction architecture,
we specify its base network, followed by either KVP-C or KVP-LP, followed by its auxiliary network
(e.g. OE1.1B-KVP-C-450M). See Appendix C for a detailed table listing the base, auxiliary, and
predictor settings for all models used for experimentation.
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Figure 3: TriviaQA results. The x-axis shows the relative reduction in FLOPs compared to the base
network, and the y-axis shows the relative accuracy retention compared to the base network. For
KV Prediction models (green), points are annotated with the auxiliary network used. For OpenELM
baselines (blue), points are annotated with the OpenELM variant used. (Left): Using a base network
of OpenELM 1.1B for KV Prediction. (Right): Using a base network of OpenELM 3B.

3.3 RUNTIME ANALYSIS

FLOPs: We analyze the improvement in TTFT of our method. The FLOPs-per-token compute cost
of transformers inference can be estimated as 2P , where P is the number of parameters in the model
(Kaplan et al., 2020). The total FLOPs required for prompt processing for N tokens is NP . Thus,
the ratio of the FLOPs of prompt processing to the ratio of FLOPs for a single generation step is N .

Let tN (N) denote the forward pass FLOPs of network N with N input tokens. As described
in Section 3, producing the first output token using KV Prediction requires an N-token forward
pass of A, followed by an N-token forward pass of P , then a single-token forward pass of B (to
generate the first output token using the predicted KV cache). The FLOPs taken to process the
prompt and generate the first token is tA(N) + tP(N) + tB(1) = NtA(1) + tP(N) + tB(1). The
computational cost of tP(N) is negligible compared to NtA(1), as it contains only a linear layer of
smaller dimensionality than the transformer’s FFN layers (corresponding to an overhead of roughly
1% of the FLOPs of the auxiliary network). For sufficient N , NtA(1) ≫ tB(1), and the FLOPs of
a single inference are dominated by NtA(1). Thus, the relative improvement in prompt processing
FLOPs over the standard inference setup can be approximated as tA(1)/tB(1).

Memory Usage: Our method requires deploying an auxiliary and predictor network in addition to
the base network. The predictor is much smaller than a single transformer block, thus occupies
negligible memory. The auxiliary network is generally a fraction of the size of the base network.
Additionally, the auxiliary network can be unloaded from memory after prompt processing, as it is
not needed during generation. To avoid cold starts on the next query, the auxiliary model can be
reloaded into memory after inference. We do not employ this optimization in timing experiments.

4 EXPERIMENTAL SETUP

We experiment with KV Prediction using OpenELM (Mehta et al., 2024). To train our models,
we reload the base and auxiliary model weights from pretrained OpenELM models. We follow
the training hyperparameters of OpenELM, training on RefinedWeb (Penedo et al., 2023), ArXiv
(Clement et al., 2019), and Wikipedia (Foundation, 2024). For code completion experiments, we
train on The Stack (Kocetkov et al., 2022). See Appendix D for additional details.

Baselines: Our first set of baselines uses token dropping. We use random token pruning (RP) and
static token pruning (SP) at various token retention rates. Our LazyLLM (Fu et al., 2024) baselines
have a starting retention rate of 0.75 (L0.75) and 0.50 (L0.50). We sweep across ending retention
rates to produce an efficiency-accuracy trade-off. See Appendix E for more details.

Our second set of baselines sweeps across model sizes in the OpenELM family. Our OE baseline
consists of OpenELM 1.1B, OpenELM450M, and OpenELM270M. Our OE-LP baseline consists
of OpenELM layer-pruned models, fine-tuned with the same settings as our KV Prediction models.
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Figure 4: Efficiency-accuracy trade-off of our KV Prediction method (KVP-C, KVP-LP) compared
to baselines on HumanEval python code completion. The x-axis shows the relative speedup in
FLOPs compared to OpenELM 1.1B, and the y-axis shows the relative accuracy retention compared
to OpenELM 1.1B. (Left): HumanEval Pass@1. (Right): HumanEval Pass@10.

5 RESULTS

Here, we empirically analyze our method. In Section 5.1, we demonstrate that our model improves
the pareto-optimal efficiency-accuracy trade-off on TriviaQA (Joshi et al., 2017). In Section 5.2, we
demonstrate that our model also achieves the pareto-optimal efficiency-accuracy tradeoff on python
code completion with HumanEval (Chen et al., 2021). In Section 5.3, we analyze the on-device
runtime improvement in TTFT, demonstrating that our theoretical FLOPs reduction translates to
runtime improvement on real hardware.

5.1 QUESTION-ANSWERING ON TRIVIAQA

We investigate our method’s efficiency-accuracy trade-off for OpenELM 1.1B and OpenELM 3B
in Fig. 3 (we also present these results in table format in Appendix F). We measure accuracy on
TriviaQA using LLMEvalHarness (Gao et al., 2021). Our method produces the strongest efficiency-
accuracy trade-off, tracing a pareto-optimal curve. The KVP-C strategy outperforms the KVP-LP
method, but the KVP-LP method can achieve higher accuracy retention.

Our OE baselines correspond to only using the auxiliary model architecture from the KVP-C ex-
periment (but with different weights). Directly comparing our KVP-C method to these baselines,
we see that our method strongly increases accuracy. The same observation holds for OE-LP base-
lines and KVP-LP models. Random pruning (RP) and static pruning (SP) do not perform well. We
conjecture that these methods are better suited to long-context scenarios with redundant tokens. For
example, in Fu et al. (2024), these methods are shown to perform well on long-context problems
such as multi-document question answering.

5.2 CODE COMPLETION RESULTS

We investigate our method’s efficacy for code completion with a base model of OpenELM 1.1B in
Fig. 4 (we also present these results in table format in Appendix F). We train our models on the
Stack and measure performance on HumanEval’s python code completion benchmark.

We find that our model produces the strongest efficiency-accuracy trade-off, tracing a pareto-optimal
curve. As in the case of TriviaQA, our KVP-C strategy outperforms the KVP-LP method, but the
KVP-LP method is able to achieve a higher accuracy retention because larger models can be chosen.

Our method obtains a much stronger efficiency-accuracy trade-off than OE and OE-LP baselines.
Our KV prediction method also improves over token-pruning baselines (RP, SP, L0.75, and L0.50)
in terms of efficiency and accuracy. We find that random pruning and static pruning do not perform
well on HumanEval, which has queries of ∼ 100 tokens. In Fu et al. (2024), these baselines are
shown to be more competitive on longer code samples.
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Figure 5: (Fig. 5a): Accuracy on the TriviaQA dataset compared to benchmarked time to first token
on CPU. (Fig. 5b): The time to first token of our KVP prediction model OE1.1B-KVP-C-450M
compared to OpenELM 1.1B and OpenELM450M.

5.3 TIMING EXPERIMENTS

We perform timing experiments to analyze the TTFT improvement of our method. See Appendix G
for experimental details. We plot the relative TTFT reduction and the accuracy retention in Fig. 5a.
Our method traces the pareto-optimal frontier. See Appendix F for results in table format.

Next, we measure the TTFT of a KV Prediction model (OE1.1B-KVP-C-450M) compared to its
base (OpenELM 1.1B) and auxiliary (OpenELM 450M) models (Fig. 5b). The TTFT of OE1.1B-
KVP-C-450M nearly matches the TTFT of its auxiliary model, demonstrating that KV prediction
has a small overhead on-device relative to only running the auxiliary model (while demonstrating
strong accuracy advantages over only running the auxiliary model, as discussed in Section 5.1 and
Section 5.2).

6 ANALYSIS

We present additional analysis in Appendix H. We analyze the performance on multiple-choice
question-answering, as well as the error in cache predictions made by the predictor network.

7 CONCLUSION

We present a method for improving time to first token (TTFT) called KV Prediction. Our method
uses a small auxiliary model to efficiently predict the KV cache needed by a larger base model. We
analyze the theoretical and actual speedup of our model, as well as the accuracy retention. We find
that our model maintains a strong efficiency-accuracy trade-off, creating a pareto-optimal trade-off
in terms of accuracy retention and TTFT.
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λC Acc
0 8.95

1/28 17.38
1 15.96

Table 1: Ablation on TriviaQA (1-shot) of our choice of consistency loss coefficient λC with OpenELM1.1B-
KVP-LP-0.50.1

Model Layers Retained From OpenELM1.1B
OpenELM1.1B-0.75 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26
OpenELM1.1B-0.50 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26
OpenELM1.1B-0.25 0, 4, 8, 12, 16, 20, 24

(a) Specification of layer-pruned OpenELM 1.1B architectures.
Model Layers Retained From OpenELM3B

OpenELM3B-0.75 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34
OpenELM3B-0.50 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34
OpenELM3B-0.25 0, 4, 8, 12, 16, 20, 24, 28, 32

(b) Specification of layer-pruned OpenELM 3B architectures.

Table 2: Specification of layer-pruned OpenELM architectures.

A LOSS FUNCTION

Our training loss consists of three components: the base loss LB , the auxiliary loss LA, and the
consistency loss LC . The base loss LB = CB(B(I), T ) is the cross-entropy loss between the base
model’s outputs and the ground-truth labels T . This loss helps ensure that the predicted KV cache
is compatible with the base model. The auxiliary loss LA = CA(A(I), T ) is the cross-entropy
loss between the auxiliary model’s outputs and the ground-truth labels. We find that LA slightly
improves the convergence of the training. The consistency loss LC = L1( ˆKVB,KVB) is used to
align the predicted KV caches with the base model’s KV caches. The consistency loss is necessary
to ensure that the predicted KV cache is compatible with the base model. To illustrate this point, we
present an ablation in Table 1 showing a model trained with the consistency loss coefficient set to 0
(λC = 0). Without the consistency loss, the predicted KV cache performs poorly.

Our final loss is a simple weighted sum of the individual losses:

L(B(I),A(I), T , ˆKVB,KVB) = λBLB + λALA + λCLC (1)

= λBCA(B(I), T ) + λACA(A(I), T ) + λCL1( ˆKVB,KVB) (2)

We found that the loss terms LB and LA were balanced by simply setting λB = λA = 1. To choose
λC , we perform an ablation between summing the loss across layers (λC = 1) and averaging the
loss across layers (λC = 1/nB) in Table 1. We found that λC = 1/nB performed better.

B LAYER-PRUNED ARCHITECTURES

We provide details of our layer-pruned architectures here. Each architecture is defined by pruning
layers at regular intervals from an existing OpenELM architecture. We specify the retained layers in
Table 2.

C ADDITIONAL ARCHITECTURAL DETAILS

C.1 PREDICTOR NETWORKS

Here we formally describe the Predictor networks introduced in Section 3.2.
1Results differ slightly from other tables, as training hyperparameters were not finalized during this ablation.
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Model Aux j0 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 j23 j24 j25 j26 j27
OE1.1B-KVP-C-450M OE450M 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19
OE1.1B-KVP-C-270M OE270M 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 13 14 15
OE1.1B-KVP-LP-0.75 OE-LP-0.75 0 1 2 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 17 18 19 20 20
OE1.1B-KVP-LP-0.50 OE-LP-0.50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13
OE1.1B-KVP-LP-0.25 OE-LP-0.25 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

(a) KV Prediction models using a base model of OpenELM 1.1B.
Model Aux j0 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 j23 j24 j25 j26 j27 j28 j29 j30 j31 j32 j33 j34 j35

OE3B-KVP-C-1.1B OE1.1B 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
OE3B-KVP-C-450M OE450M 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 17 18 19
OE3B-KVP-C-270M OE270M 0 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15
OE3B-KVP-LP-0.75 OE-LP-0.75 0 1 2 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 17 18 19 20 20 21 22 23 23 24 25 26 26
OE3B-KVP-LP-0.50 OE-LP-0.50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17
OE3B-KVP-LP-0.25 OE-LP-0.25 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8

(b) KV Prediction models using a base model of OpenELM 3B.

Table 3: KV Prediction models. Each model is specified by a base network, an auxiliary network,
and the mapping of input auxiliary layers ji to base layers i. (Table 3a): models using a base network
of OpenELM 1.1B. (Table 3b): models using a base network of OpenELM 3B.

When choosing the auxiliary KV cache layer ji to predict the base KV cache layer i, we build on top
of the observation in Brandon et al. (2024) that neighboring transformer layers will have KV caches
that are more similar than distant layers. Thus, we use the first layer of KVA as input to predict the
first several layers of KVB, and the second layer of KVA as input to predict the next several layers
of KVB, and so forth. When nA does not divide evenly into nB, we perform rounding.

More formally, we need to choose which layer of the auxiliary cache to use to predict each layer
of the base cache. To do this, we define a mapping from auxiliary cache layers j to base cache
layers i. Let nB be the number of transformer layers in the base network, and nA be the number
of transformer layers in the auxiliary network. For each i ∈ [0, ..., nB − 1], let ji ∈ [0, ..., nA − 1]
denote the jith layer of the auxiliary cache KVAji . We will use KVAji as input to a linear function
to predict the layer of the base cache ˆKVBi.

Now that we have defined our mapping ji, we define our set of linear functions. Our linear functions
are defined as Fi(KVAji) : R

dKVAji → RdKVBi , where dKVAji
, dKVBi

are the feature dimensions
of the auxiliary and base KV caches at layers ji and i, respectively. We use these linear functions to
compute each layer of the base KV cache, ˆKVBi = Fi(KVAji). Once each layer ˆKVBi is predicted,
we concatenate them to produce ˆKVB.

C.2 KV PREDICTION MODELS

Our KV Prediction models are specified by a base network, an auxiliary network, and the mapping
of input auxiliary layers ji used to predict base KV cache layer i. Full details are presented in
Table 3.

D ADDITIONAL TRAINING DETAILS

To train our models, we reload the base and auxiliary model weights from pretrained OpenELM
models (in the case of KVP-LP experiments, we only reload the unpruned layers into the auxiliary
model). We follow the training hyperparameters of OpenELM, training on RefinedWeb (Penedo
et al., 2023), ArXiv (Clement et al., 2019), and Wikipedia (Foundation, 2024). For code completion
experiments, we train on The Stack (Kocetkov et al., 2022).

We shorten the training regime to 70k iterations on 64 H100 GPUs at a token length of 2048 and a
batch size of 16. For code completion experiments, our training setup is the same, but we instead
train on The Stack (Kocetkov et al., 2022) and divide the learning rate by 10. A complete list of
configs appears in our code release for reproducibility.

E ADDITIONAL BASELINE DETAILS

Here, we describe our token pruning baselines in more detail. Our implementations follow Fu et al.
(2024).
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Model FLOPs Reduction (Rel) ↑ TTFT (s) ↓ TTFT Reduction (Rel) ↑ TQA ↑ TQA (Rel) ↑
OE1.1B 1.00 5.59 1.00 23.57 1.00
OE450M 2.36 2.58 2.17 10.97 0.41
OE270M 3.98 1.67 3.34 7.04 0.27

OE1.1B-LP-0.75 1.34 4.08 1.37 15.04 0.57
OE1.1B-LP-0.50 1.93 2.78 2.01 10.13 0.38
OE1.1B-LP-0.25 3.60 1.46 3.82 4.21 0.16

OE1.1B-KVP-C-450M 2.36 3.17 1.76 16.09 0.61
OE1.1B-KVP-C-270M 3.98 2.24 2.50 11.71 0.44
OE1.1B-KVP-LP-0.75 1.34 4.63 1.21 20.73 0.78
OE1.1B-KVP-LP-0.50 1.93 3.33 1.68 17.59 0.66
OE1.1B-KVP-LP-0.25 3.60 2.05 2.73 10.38 0.39

RP-0.75 1.33 4.31 1.30 2.61 0.10
RP-0.50 2.00 2.94 1.90 0.08 0.00
RP-0.25 4.00 4.31 1.30 0.01 0.00
SP-0.50 1.33 3.73 1.50 4.29 0.16
SP-0.25 2.00 2.51 2.22 0.38 0.01

L0.75-0.75 1.21 4.47 1.25 19.33 0.73
L0.75-0.50 1.38 4.09 1.37 18.78 0.71
L0.75-0.25 1.60 3.69 1.51 17.89 0.67
L0.75-0.10 1.89 3.18 1.76 14.63 0.55
L0.75-0.05 1.83 3.24 1.72 15.70 0.59
L0.75-0.01 1.77 3.36 1.66 16.25 0.61
L0.50-0.50 1.54 3.38 1.65 8.69 0.33
L0.50-0.25 1.82 3.19 1.75 7.36 0.28
L0.50-0.10 2.04 2.79 2.00 6.21 0.23
L0.50-0.05 2.13 2.68 2.09 5.56 0.21
L0.50-0.01 2.20 2.65 2.11 5.06 0.19

Table 4: Relative FLOPs, runtime and accuracy values for OpenELM 1.1B on TriviaQA. Values are
used to produce Fig. 3 (Left) and Fig. 5a.

Our RP baseline consists of randomly pruning tokens from the input, sweeping across token reten-
tion ratios of [0.25, 0.50, 0.75]. Our SP baseline consists of probing the first 25% of network layers
to obtain attention weights, then pruning tokens that have low attention scores and rerunning on the
pruned tokens. We use token retention rates of [0.25, 0.50], omitting the higher retention rate of
0.75 since the overhead of processing 25% of the query with the unpruned input means that lower
retention ratios are needed to obtain a similar speedup to random pruning. Our L baseline consists
of LazyLLM (Fu et al., 2024). LazyLLM prunes at progressively higher rates through the network,
from an initial higher retention rate (or low pruning rate) to a final lower retention rate (or higher
pruning rate). We adopt the standard configuration suggested by the authors of beginning pruning
30% of the way into the network and ending pruning 90% of the way into the network. For L0.75,
our beginning retention rate (which is active 30% of the way into the network) is 75%, and we
sweep across ending retention rates of [0.75, 0.50, 0.25, 0.10, 0.05, 0.01]. For L0.50, our beginning
retention rate is 0.50, and we sweep across end retention rates [0.50, 0.25, 0.10, 0.05, 0.01].

F ACCURACY VALUES

We give values used to produce plots. In Table 4, we give accuracies and timing results for
OpenELM 1.1B on TriviaQA. In Table 5, we give accuracies for OpenELM 3B on TriviaQA. In
Table 6, we give accuracies for OpenELM 1.1B on HumanEval.
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Model FLOPs Reduction (Rel) ↑ TQA ↑ TQA (Rel) ↑
OE3B 1.00 40.87 1.00

OE1.1B 2.81 23.57 0.58
OE450M 6.64 10.97 0.27
OE270M 11.18 7.04 0.17

OE3B-LP-0.75 1.34 33.31 0.81
OE3B-LP-0.50 1.97 23.94 0.59
OE3B-LP-0.25 3.84 9.43 0.23

OE3B-KVP-C-1.1B 2.81 28.83 0.71
OE3B-KVP-C-450M 6.64 15.64 0.38
OE3B-KVP-C-270M 11.18 16.70 0.41
OE3B-KVP-LP-0.75 1.34 35.43 0.87
OE3B-KVP-LP-0.50 1.97 30.41 0.74
OE3B-KVP-LP-0.25 3.84 13.11 0.32

RP 0.75 1.33 5.09 0.12
RP 0.50 2.00 0.22 0.01
RP0.25 4.00 0.02 0.00
SP 0.50 1.33 9.45 0.23
SP 0.25 2.00 1.04 0.03

L0.75-0.75 1.21 19.90 0.49
L0.75-0.50 1.38 19.93 0.49
L0.75-0.25 1.60 19.68 0.48
L0.75-0.10 1.89 18.35 0.45
L0.75-0.05 1.83 18.58 0.45
L0.75-0.01 1.77 18.95 0.46
L0.50-0.50 1.54 4.04 0.10
L0.50-0.25 1.82 3.95 0.10
L0.50-0.10 2.04 3.81 0.09
L0.50-0.05 2.13 3.72 0.09
L0.50-0.01 2.20 3.66 0.09

Table 5: Relative FLOPs and accuracy values of OpenELM 3B on TriviaQA. Values are used to
produce Fig. 3 (Right).
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Model FLOPs Reduction (Rel) ↑ Pass@1 ↑ Pass@1 (Rel) ↑ Pass@10 ↑ Pass@10 (Rel) ↑
OE1.1B 1.00 15.79 1.00 23.07 1.00
OE450M 2.36 8.85 0.56 14.33 0.62
OE270M 3.98 7.41 0.47 11.51 0.50

OE1.1B-LP-0.75 1.34 1.30 0.72 17.85 0.77
OE1.1B-LP-0.50 1.93 10.46 0.66 14.36 0.62
OE1.1B-LP-0.25 3.60 3.37 0.21 6.94 0.30

OE1.1B-KVP-C-450M 2.36 10.12 0.64 14.37 0.62
OE1.1B-KVP-C-270M 3.98 7.20 0.46 11.68 0.51
OE1.1B-KVP-LP-0.75 1.34 13.82 0.88 19.83 0.86
OE1.1B-KVP-LP-0.50 1.93 11.51 0.73 19.03 0.82
OE1.1B-KVP-LP-0.25 3.60 6.24 0.39 10.73 0.47

RP-0.75 1.33 1.90 0.12 6.71 0.29
RP-0.50 2.00 0.08 0.01 0.61 0.03
RP-0.25 4.00 0.00 0.00 0.00 0.00
SP-0.50 1.33 0.01 0.00 0.06 0.00
SP-0.25 2.00 0.00 0.00 0.00 0.00

L0.75-0.75 1.21 9.81 0.62 15.43 0.67
L0.75-0.50 1.38 10.46 0.66 15.85 0.69
L0.75-0.25 1.60 10.97 0.69 16.08 0.70
L0.75-0.10 1.77 10.63 0.67 15.00 0.65
L0.75-0.05 1.83 10.56 0.67 14.62 0.63
L0.75-0.01 1.89 6.44 0.41 12.46 0.54
L0.50-0.50 1.54 2.63 0.17 5.71 0.25
L0.50-0.25 1.82 2.50 0.16 5.37 0.23
L0.50-0.10 2.04 1.97 0.12 4.91 0.21
L0.50-0.05 2.13 2.19 0.14 5.77 0.25
L0.50-0.01 2.20 0.77 0.05 3.42 0.15

Table 6: Relative FLOPs and accuracy values of OpenELM 1.1B on HumanEval. Values are used to
produce Fig. 4.
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Figure 6: Distribution of the delta between KV cache predictions and targets in 7 different layers of
OpenELM-1.1B-KVP-C-450M. The distributions of deltas for keys (blue) and values (orange) are
shown separately.

Model arc-c arc-e boolq hellaswag piqa sciq winogrande Avg TTFT Reduction

OE 1.1B 32.34 55.43 63.58 64.81 75.57 90.60 61.72 63.43 1.0

OE1.1B-KVP-LP-0.75 30.97 54.42 59.79 62.91 74.92 90.40 62.04 62.21 1.34
OE 1.1B-0.75 29.52 51.81 57.52 58.38 73.88 87.70 60.46 59.90 1.34

OE1.1B-KVP-LP-0.50 30.80 53.75 58.17 60.35 74.32 88.90 58.96 60.75 1.93
OE 1.1B-0.50 26.28 48.15 59.79 53.74 71.33 86.10 57.46 57.55 1.93

OE1.1B-KVP-C-450M 29.01 52.53 57.95 59.20 73.01 88.00 59.43 59.88 2.36
OE 450M 27.56 48.06 55.78 53.97 72.31 87.20 58.01 57.56 2.36

OE1.1B-KVP-LP-0.25 27.65 46.68 56.88 54.34 72.09 85.00 55.33 56.85 3.59
OE 1.1B-0.25 24.15 41.84 60.49 43.08 68.61 82.60 52.41 53.31 3.59

OE1.1B-KVP-C-270M 28.41 48.70 53.67 55.35 71.98 87.30 57.38 57.54 3.98
OE 270M 26.45 45.08 53.98 46.71 69.75 84.70 53.91 54.37 3.98

Table 7: Comparison of OpenELM 1.1B KV Prediction models with using only the auxiliary model
or only the base model for Multiple-Choice Question Answering. We de-emphasize “TTFT Reduc-
tion” since the concept doesn’t apply to multiple-choice question-answering evaluations.

G TIMING EXPERIMENTS DETAILS

We measure the reduction in TTFT on an M2 Pro CPU (EveryMac, 2024) with 32GB of RAM using
the average query length of TriviaQA 1-shot (59 tokens) and a batch size of 64.

For Fig. 5b, we set the batch size to 8 and sweep across prompt lengths.

Model arc-c arc-e boolq hellaswag piqa sciq winogrande Avg TTFT Reduction

OE 3B 35.58 59.89 67.40 72.44 78.24 92.70 65.51 67.39 1.0

OE3B-KVP-LP-0.75 34.04 57.28 66.73 69.94 77.58 92.00 63.30 65.84 1.34
OE 3B-0.75 33.53 59.89 65.14 67.60 76.71 92.00 62.75 65.37 1.34

OE3B-KVP-L-0.50 33.87 56.65 64.50 67.06 76.77 90.00 59.67 64.07 1.97
OE 3B-0.50 31.06 54.67 63.36 62.43 75.95 89.50 60.54 62.50 1.97

OE3B-KVP-C-OE1.1B 33.96 57.66 64.50 66.66 76.71 90.30 61.64 64.49 2.81
OE1.1B 32.34 55.43 63.58 64.81 75.57 90.60 61.72 63.43 2.81

OE3B-KVP-LP-0.25 29.27 51.39 62.63 58.87 74.59 85.30 56.27 59.76 3.84
OE3B-0.25 26.88 47.10 59.69 49.89 71.33 86.00 58.56 57.06 3.84

OE3B-KVP-LP-450M 30.97 54.00 62.84 61.94 74.76 88.50 57.46 61.50 6.64
OE450M 27.56 48.06 55.78 53.97 72.31 87.20 58.01 57.56 6.64

OE3B-KVP-C-270M 29.27 49.87 59.48 59.09 73.50 87.50 56.35 59.30 11.18
OE 270M 26.45 45.08 53.98 46.71 69.75 84.70 53.91 54.37 11.18

Table 8: Comparison of OpenELM 3B model variants on Multiple-Choice Question Answering.
We de-emphasize “TTFT Reduction” since the concept of TTFT doesn’t apply to multiple-choice
question-answering evaluations.
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Figure 7: L1 error of predicted keys (Fig. 7a) and values (Fig. 7b) across the layer and sequence
dimensions of OpenELM-1.1B-KVP-C-450M.

H ADDITIONAL ANALYSIS

To better understand the performance of our KV cache prediction method, and to motivate future
optimizations to improve performance, we analyze the quality of the KV cache predictions.

L1 Error Across Sequences and Layers: We analyze the distribution of the L1 loss across layers
and sequence indexes in Fig. 7. The errors are relatively stable across sequence index, with a few
outliers. Across layers, the magnitude of key error is stable due to OpenELM’s usage of key norm
(Henry et al., 2020). Value error generally increases with depth due to propagation of errors.

Multiple-Choice Question Answering: We analyze the quality of KV cache predictions by running
multiple-choice question answering (MCQA) evaluations using the predicted cache as the keys and
values for the base model. Since these MCQA evaluations don’t produce output tokens, there is
no notion of TTFT, and our method doesn’t provide a speedup. The purpose of these evaluations
is to measure the consistency of the predicted KV cache with the base KV cache through accuracy
retention on MCQA.

In Table 7, we present results for 7 MCQA tasks on OpenELM 1.1B and KV Prediction models.
We directly compare each KV Prediction model to the results obtained by using only the auxiliary
model. In all cases, the KV Prediction model obtains higher average accuracy. We present additional
results on OpenELM 3B in Table 8.

Density of Differences: In Fig. 6, we analyze the distribution of the differences between the pre-
dicted KV cache and the target KV cache (e.g. similar to the LC introduced in Appendix A, but
without the absolute value being computed). We pass a batch of data through our KV prediction
model (to produce predictions ˆKVB) and through the base model (to produce targets KVB), and
compute the delta between the predictions and targets at every layer.

We observe that the delta for keys is stable, ranging roughly from -1 to 1 and centered at 0 at all
layers. This is due to the fact that OpenELM uses normalized keys, so the distribution of the deltas
is relatively consistent. By contrast, the error in predicted values increases with network depth. The
distribution remains centered at 0, indicating that our cache prediction method is unbiased.
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