
Under review as a conference paper at ICLR 2021

MAXIMUM REWARD FORMULATION IN REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) algorithms typically deal with maximizing the ex-
pected cumulative return (discounted or undiscounted, finite or infinite horizon).
However, several crucial applications in the real world, such as drug discovery, do
not fit within this framework because an RL agent only needs to identify states
(molecules) that achieve the highest reward within a trajectory and does not need
to optimize for the expected cumulative return. In this work, we formulate an
objective function to maximize the expected maximum reward along a trajectory,
propose a novel functional form of the Bellman equation, introduce the correspond-
ing Bellman operators, and provide a proof of convergence. Using this formulation,
we achieve state-of-the-art results on the task of synthesizable molecule generation
that mimics a real-world drug discovery pipeline.

1 INTRODUCTION

Reinforcement learning (RL) algorithms typically try to maximize the cumulative finite horizon
undiscounted return, R(τ) =

∑T
t=0 rt, or the infinite horizon discounted return, R(τ) =

∑∞
t=0 γ

trt.
rt is the reward obtained at time step t, γ is the discount factor in the range [0, 1), and τ is the agent’s
trajectory. τ consists of actions (a) sampled from the policy (π(· | s)) and states (s′) sampled from
the probability transition function P (s′|s, a) of the underlying Markov Decision Process (MDP).

The action-value function Qπ(s, a) for a policy π is given by

Qπ(s, a) = E
τ∼π

[R(τ)|(s0, a0) = (s, a)]

The corresponding Bellman equation for Qπ(s, a) with the expected return defined as R(τ) =∑∞
t=0 γ

trt is
Qπ(st, at) = Est+1∼P (·|st,at)

at+1∼π(·|st+1)

[r(st, at) + γQπ (st+1, at+1)]

This Bellman equation has formed the foundation of RL. However, we argue that optimizing for
only the maximum reward achieved in an episode is also an important goal. Reformulating the RL
problem to achieve the largest reward in an episode is the focus of this paper, along with empirical
demonstrations in one toy and one real-world domain.

In the de novo drug design pipeline, molecule generation tries to maximize a given reward function.
Existing methods either optimize for the expected cumulative return, or for the reward at the end of
the episode, and thus fail to optimize for the very high reward molecules that may be encountered in
the middle of an episode. This limits the potential of several of these reinforcement learning based
drug design algorithms. We overcome this limitation by proposing a novel functional formulation of
the Bellman equation:

Qπmax(st, at) = Est+1∼P (·|st,at)
at+1∼π(·|st+1)

[max (r(st, at), γQ
π
max(st+1, at+1))] (1)

Other use cases of this formulation (i.e., situations where the single best reward found, rather than the
total rewards, are important) are - symbolic regression (Petersen (2020), Udrescu & Tegmark (2020))
which is interested in finding the single best model, active localization (Chaplot et al. (2018)) must
find the robot’s one most likely pose, green chemistry (Koch et al. (2019)) wants to identify the one
best product formulation, and other domains that use RL for generative purposes.

1

Under review as a conference paper at ICLR 2021

This paper’s contributions are to:

• Derive a novel functional form of the Bellman equation, called max-Bellman, to optimize
for the maximum reward in an episode.

• Introduce the corresponding evaluation and optimality operators, and prove the convergence
of Q-learning with the max-Bellman formulation.

• Test on a toy environment and draw further insights with a comparison between Q-learning
and Q-learning with our max-Bellman formulation.

• Use this max-Bellman formulation to generate synthesizable molecules in an environment
that mimics the real drug discovery pipeline, and demonstrate significant improvements over
the existing state-of-the-art methods.

2 RELATED WORK

This section briefly introduces fundamental RL concepts and the paper’s main application domain.

2.1 REINFORCEMENT LEARNING

Bellman’s dynamic programming paper (Bellman, 1954) introduced the notions of optimality and
convergence of functional equations. This has been applied in many domains, from control theory to
economics. The concept of an MDP was proposed in the book Dynamic Programming and Markov
Processes (Howard, 1960) (although some variants of this formulation already existed in the 1950s).
These two concepts of Bellman equation and MDP are the foundations of modern RL. Q-learning was
formally introduced in (Watkins & Dayan, 1992) and different convergence guarantees were further
developed in (Jaakkola et al., 1993) and (Szepesvári, 1997). Q-learning convergence to the optimal
Q-value (Q?) has been proved under several important assumptions. One fundamental assumption is
that the environment has finite (and discrete) state and action spaces and each of the states and actions
can be visited infinitely often. The learning rate assumption is the second important assumption,
where the sum of learning rates over infinite episodes is assumed to go to infinity in the limit, whereas
the sum of squares of the learning rates are assumed to be a finite value (Tsitsiklis, 1994; Kamihigashi
& Le Van, 2015). Under similar sets of assumptions, the on-policy version of Q-learning, known as
Sarsa, has also been proven to converge to the optimal Q-value in the limit (Singh et al., 2000).

Recently, RL algorithms have seen large empirical successes as neural networks started being used
as function approximators (Mnih et al., 2016). Tabular methods cannot be applied to large state
and action spaces as these methods are linear in the state space and polynomial in the action spaces
in both time and memory. Deep reinforcement learning (DRL) methods on the other hand, can
approximate the Q-function or the policy using neural networks, parameterized by the weights of the
corresponding neural networks. In this case, RL algorithms easily generalize across states, which
improves the learning speed (time complexity) and sample efficiency of the algorithm. Some popular
Deep RL algorithms include DQN (Mnih et al., 2015), PPO (Schulman et al., 2017), A2C (Mnih
et al., 2016), SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018b), etc.

2.2 DE NOVO DRUG DESIGN

De novo drug design is a well-studied problem and has been tackled by several methods, including
evolutionary algorithms (Brown et al. (2004); Jensen (2019); Ahn et al. (2020)), generative models
(Simonovsky & Komodakis (2018); Gómez-Bombarelli et al. (2018); Winter et al. (2019); Jin
et al. (2018); Popova et al. (2018); Griffiths & Hernández-Lobato (2020); Olivecrona et al. (2017)),
and reinforcement learning based approaches (You et al. (2018a); Zhou et al. (2018)). While the
effectiveness of the generated molecules using these approaches has been demonstrated on standard
benchmarks such as Guacamol (Brown et al. (2019)), the issue of synthesizability remains a problem.
While all the above approaches generate molecules that optimize a given reward function, they do
not account for whether the molecules can actually be effectively synthesized, an important practical
consideration. Gao & Coley (2020) further highlighted this issue of synthesizability by using a
synthesis planning program to quantify how often the molecules generated using these existing
approaches can be readily synthesized. To attempt to solve this issue, Bradshaw et al. (2019) used a

2

Under review as a conference paper at ICLR 2021

variational auto-encoders based approach to optimize the reward function with single-step reactions.
Korovina et al. (2019) employed a random selection of reactants and reaction conditions at every
time step of a multi-step process. PGFS (policy gradient for forward synthesis) from Gottipati et al.
(2020) generates molecules via multi-step chemical synthesis and simultaneously optimized for the
given reward function. PGFS leveraged TD3 algorithm (Fujimoto et al. (2018a)), and like existing
approaches, optimizes for the usual objective of total expected discounted return.

3 METHOD

This section briefly describes the previous attempts at optimizing for the maximum reward in an
episode, defines the Q-function and new functional form of the Bellman equation, defines the
corresponding max-Bellman operators, and proves its convergence properties.

Quah & Quek (2006) also try to formulate a maximum reward objective function. They define the
Q-function and derive the max-Bellman equation in the following way (rephrased according to this
paper’s notation):

Qπmax(st, at) , E
[
max
t′≥t

(
γt

′−tr(st′ , at′)
)
| (st, at), π

]
,∀(st, at) ∈ S ×A (2)

Then, the corresponding functional form of Bellman equation (i.e., the max-Bellman formulation)
was derived as follows:

Qπmax(st, at) = E
[
max
t′≥t

(
γt

′−tr(st′ , at′)
)
| (st, at), π

]
= Est+1∼P (·|st,at)

at+1∼π(·|st′)
max

(
r(st, at),E

[
max
t′≥t+1

(
γt

′−tr(st′ , at′)
)
| (st+1, at+1), π

])
= Est+1∼P (·|st,at)

at+1∼π(·|st+1)

max (r(st, at), γQ
π
max(st+1, at+1))

(3)

However, the second equality is incorrect, which can be shown with a counter example. Consider
an MDP with four states and a zero-reward absorbing state. Assume a fixed deterministic policy
and γ close to 1. Let s1 be the start state, with deterministic reward r(s1) = 1. With probability
1, s1 goes to s2. Let r(s2) = 0, and with equal probability 0.5 it transitions to either s3 or s4.
The immediate reward r(s3) = 2 and r(s4) = 0, after that it always goes to the absorbing state
with 0 rewards thereafter. Since there can be only 2 trajectories, one with a maximum reward of
2 and the other with a maximum reward of 1, we have Qπmax(s1) = 1.5, but Qπmax(s2) = 1, and
max(r(s1), Qπmax(s2)) = 1 6= 1.5. This is because the expectation and max operators are not
interchangeable.

While the counter example above is not applicable in the current setting of PGFS (as it has a
deterministic environment and uses a deterministic policy gradient algorithm (TD3)), the definition
of the Q-function given in equation-2 does not generalize to stochastic environments. Moreover,
in order to be able to accommodate multiple possible products of a chemical reaction and to truly
leverage a stochastic environment (and stochastic policy gradient algorithms), the Q-function should
be able to recursively optimize for the expectation of maximum of reward at the current time step and
future expectations. Therefore, we define the Q-function as:

Qπmax(st, at) = Est+1∼P (·|st,at)
at+1∼π(·|st+1)

[
max

(
r(st, at), γEst+2∼P (·|st+1,at+1)

at+2∼π(·|st+2)

[max (r(st+1, at+1), ...)]

)]
(4)

Then, the corresponding functional form of Bellman equation (i.e., max-Bellman formulation) can be
obtained as follows:

Qπmax(st, at) = Est+1∼P (·|st,at)
at+1∼π(·|st+1)

max (r(st, at), γQ
π
max(st+1, at+1)) (5)

While the work of Quah & Quek (2006) is focused on deriving the various forms of the max-Bellman
equations, the major contributions of our paper are to 1) propose the max-Bellman equation with

3

Under review as a conference paper at ICLR 2021

a particular motivation towards drug discovery, 2) define the corresponding operators, 3) provide
their convergence proofs, and 4) validate the performance on a toy domain and a real world domain
(de-novo drug design). Other related ideas and formulations are described in Appendix section-B.

Based on Equation 5, we can now define the max-Bellman evaluation operator and the max-Bellman
optimality operator. For any function Q : S ×A→ R and for any state-action pair (s, a),

(MπQ)(s, a) , max

(
r(s, a), γEs′∼P (·|s,a)

a′∼π(·|s′)
[Q(s′, a′)]

)

(M?Q)(s, a) , max

(
r(s, a), γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

])
M? and Mπ : (S ×A → R)→ (S ×A → R) are operators that takes in a Q function and returns
another modified Q function by assigning the Q value of the state s, action a, to be the maximum of
the reward obtained at the same state and action (s, a) and the discounted future expected Q value.

Proposition 1. The operators have the following properties.

• Monotonicity: let Q1, Q2 : S ×A → R such that Q1 ≥ Q2 element-wise. Then,

MπQ1 ≥MπQ2 and M?Q1 ≥M?Q2

• Contraction: both operators are γ-contraction in supremum norm i.e., for any Q1, Q2 :
S ×A → R,

‖MπQ1 −MπQ2‖∞ ≤ γ‖Q1 −Q2‖∞ (6)
‖M?Q1 −M?Q2‖∞ ≤ γ‖Q1 −Q2‖∞ (7)

Proof. We will provide a proof only for M?. The proof of Mπ is similar and is provided in Section
A of the Appendix.

Monotonicity: Let Q1 and Q2 be two functions such that Q1(s, a) ≥ Q2(s, a) for any state-action
pair (s, a) ∈ S ×A. We then have:

max
a′∈A

Q1(s, a′) ≥ Q2(s, a),∀(s, a)

By the definition of max, we obtain:

max
a′∈A

Q1(s, a′) ≥ max
a′∈A

Q2(s, a′),∀s

and by linearity of expectation, we have:

γEs′∼P (·|s,a)

[
max
a′∈A

Q1(s′, a′)

]
≥ γEs′∼P (·|s,a)

[
max
a′∈A

Q2(s′, a′)

]
,∀(s, a)

Since,

M?Q1(s, a) ≥ γEs′∼P (·|s,a)

[
max
a′∈A

Q1(s′, a′)

]
we get:

M?Q1(s, a) ≥ γEs′∼P (·|s,a)

[
max
a′∈A

Q2(s′, a′)

]
Moreover, because M?Q1(s, a) ≥ r(s, a), we obtain :

M?Q1(s, a) ≥ max

(
r(s, a), γEs′∼P (·|s,a)

[
max
a′∈A

Q2(s′, a′)

])
= M?Q2(s, a)

which is the desired result.

4

Under review as a conference paper at ICLR 2021

Contraction: Denote fi(s, a) = γEs′∼P (·|s,a) [maxa′∈AQi(s
′, a′)], the expected action-value

function of the next state. By using the fact that max(x, y) = 0.5(x+ y + |x− y|),∀(x, y) ∈ R2,
we obtain:

max(r, f1)−max(r, f2) = 0.5 (r + f1 + |r − f1|)− 0.5 (r + f2 + |r − f2|)
= 0.5 (f1 − f2 + |r − f1| − |r − f2|)
≤ 0.5 (f1 − f2 + |r − f1 − (r − f2)|)
= 0.5 (f1 − f2 + |f1 − f2|)
≤ |f1 − f2|

Therefore

‖M?Q1 −M?Q2‖∞ = ‖max(r, f1)−max(r, f2)‖∞
≤ ‖f1 − f2‖∞
≤ γ‖max

a′
Q1(·, a′)−max

a′
Q2(·, a′)‖∞

≤ γ‖Q1 −Q2‖∞ (max is a non-expansion)

The left hand side of this equation represents the largest difference between the two Q-functions.
Recall that γ lies in the range [0, 1) and hence all differences are guaranteed go to zero in the limit.
The Banach fixed point theorem then lets us conclude that the operator M? admits a fixed point.

We denote the fixed point of M? by Q?max. Based on equation 5, we see that Qπmax is the fixed point
of Mπ. In the next proposition, we will prove that Q?max corresponds to the optimal action-value
function in the sense that Q?max = maxπ Q

π
max.

Proposition 2 (Optimal policy). The deterministic policy π? is defined as π?(s) =
arg maxa∈AQ

?
max(s, a). π?, the greedy policy with respect to Q?max, is the optimal policy and

for any stationary policy π, Qπ
?

max = Q?max ≥ Qπmax.

Proof. By the definition of greediness and the fact that Q? is the fixed point of M?, we have:
π?(s) = arg maxa∈AQ

?
max(s, a) ⇒ Mπ?

Q? = M?Q?max = Q?max. This proves that Q?max is the
fixed point of the evaluation operator Mπ?

, which implies that Q?max is the action-value function of
π?.

For any function Q : S × A → R and any policy π, we have M?Q ≥ MπQ. Using monotonicity,
we have

(M?)2Q = M?(M?Q) ≥M?(MπQ) ≥Mπ(MπQ) = (Mπ)2Q. (8)

We then use induction to show that for any n ≥ 1, (M?)nQ ≥ (Mπ)nQ. As both operators
are contractions, by the fixed-point theorem, (M?)nQ and (Mπ)nQ converge to Q?max and Qπmax,
respectively, when n goes to infinity. We conclude then that Q?max ≥ Qπmax.

Thus, we have shown that and optimality operator defined based on our novel formulation of
Bellman equation converges to a fixed point (Proposition 1) and that fixed point is the optimal policy
(Proposition 2).

4 EXPERIMENTS

This section shows the benefits of using max-Bellman in a simple grid world and in the real-world
domain of drug discovery.

5

Under review as a conference paper at ICLR 2021

4.1 TOY EXAMPLE - GOLD MINING ENVIRONMENT

Our first demonstration is on a toy domain with multiple goldmines in a 3 × 12 grid 1. The agent
starts in the bottom left corner and at each time step, can choose from among the four cardinal actions:
up, down, left and right. The environment is deterministic with respect to the action transitions
and the agent cannot leave the grid. All states in the grid that are labeled with values other than -1
represent goldmines and each value represents the reward that the agent will collect upon reaching
that particular state. Transitions into a non-goldmine state results in a reward of -1. A goldmine’s
reward can be accessed only once and after it has been mined, its goldmine status is revoked, and
the reward received upon further visitation is -1. The episode terminates after 11 time steps and the
discount factor is γ = 0.99. The observation is a single integer denoting the state number of the agent.
Thus, this is a non-Markovian setting since the environment observation does not communicate which
goldmines have already been visited, and also because the time step information is not included in
the state observation.

The environment is shown in Figure 1. If the agent goes up to the top row and continues to move
right, it will only get a cumulative return of 26.8. If it instead traverses the bottom row to the right,
it can receive a cumulative return of 27.5, which is the highest cumulative return possible in this
environment.

Figure 1: A visualization of the gold-mining toy example. The bottom left state, shown in green,
denotes the starting state. States with values other than -1 denote the goldmines and the values denote
their respective rewards.

We test both Q-learning and Max-Q (i.e. Q-learning based on our proposed max-Bellman formulation),
on this environment. As usual, the one step TD update rule for Q-learning is:

Q(st, at) = Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at))

The one step TD update rule for Max-Q is:

Q(st, at) = Q(st, at) + α(max(rt, γmax
a

Q(st+1, a))−Q(st, at))

For both algorithms, we use learning rate α = 0.001, and decay epsilon from 0.2 to 0.0 linearly over
50000 episodes, after which ε remains fixed at 0. Figure 2 shows the learned Q-values and Figure 3
shows a difference in the final behavior learned by the two algorithms. Q-learning seems to prefer the
path with highest cumulative return (along the bottom row) while Max-Q prefers the path with highest
maximum reward (reward of +9 in the top row). The learned policies consistently reflect this behavior.
Over 10 independent runs of each algorithm, Q-learning’s policy always converges to moving along
the bottom row and achieves expected cumulative return of 27.5. On the other hand, Max-Q always
prefers the top row and achieves expected cumulative return of 26.8, but accomplishes its goal of
maximizing the expected maximum reward in an episode (i.e., reaching the highest rewarding state).
Also, Max-Q has worse initial learning performance in terms of the cumulative return, which can be
explained by the agent wanting to move from the bottom row to the top row, despite the -8 penalty.
This desire to move upwards at any cost is because the agent is pulled towards the +9, and does not
care about any intermediate negative rewards that it may encounter.

Figure 4 shows a quantitative comparison between Q-learning and Max-Q. Figure 4a shows a
comparison in terms of the average episodic return. Q-learning achieved optimal performance in
terms of cumulative return and therefore has no incentive to direct the agent towards the maximum

1The environment and algorithm code is submitted as supplementary material and will be open sourced after
acceptance for replication purposes.

6

Under review as a conference paper at ICLR 2021

(a)

(b)

Figure 2: The learned q-values for (a) Q-learning (b) Max-Q

reward of +9. Max-Q on the other hand, converges to the path of following the top row to reach the
highest reward of +9. This can be seen more clearly in Figure 4b, which shows a comparison of the
maximum reward obtained in each episode. Each curve is averaged over 10 runs, and the shaded
region represents 1 standard deviation. We also perform experiments in a fully Markovian setting for
a similar environment. These results are shown in the Appendix section-C.

4.2 DRUG DISCOVERY

We give a brief summary of PGFS (Gottipati et al. (2020)) for de novo drug design here and then
incorporate the max-Bellman formulation derived above. PGFS operates in the realm of off-policy
continuous action space algorithms. The actor module Π that consists of f and π networks predicts a
continuous action a (that is in the space defined by the feature representations of all second reactants).
Specifically, the f network takes in the current state s (reactant-1 R(1)) as input and outputs the best
reaction template T . The π network takes in both R(1) and T as inputs and outputs the continuous
action a. The environment then takes in a and computes k closest valid second reactants (R(2)). For
each of these R(2)s, we compute the corresponding product of the chemical reaction between R(1)

and R(2), compute the reward for the obtained produce and choose the product (next state, st+1) that
corresponds to the highest reward. All these quantities are stored in the replay buffer. The authors
leveraged TD3 (Fujimoto et al., 2018a) algorithm for updating actor (f , π) and critic (Q) networks.
More specifically, the following steps are followed after sampling a random minibatch from the buffer
(replay memory):

First, the actions for the next time step (Ti+1 and ai+1) are computed by passing the state input
(R(1)

i+1) through the target actor network (i.e., the parameters of the actor networks are not updated in
this process). Then, the one step TD target is computed:

yi = ri + γ min
j=1,2

Critic-target({R(1)
i+1, Ti+1}, ai+1)

In the proposed approach “MB (max-Bellman) + PGFS", we compute the one-step TD target as

yi = max[ri, γ min
j=1,2

Critic-target({R(1)
i+1, Ti+1}, ai+1)]

The critic loss and the policy loss are defined as:

Lcritic =
∑
i

|yi −Q({R(1)
i , Ti}, ai)|2

7

Under review as a conference paper at ICLR 2021

Lpolicy = −
∑
i

Critic(R
(1)
i ,Actor(R(1)

i))

Only a few reaction templates (about 8 percent) are valid for a given state (reactant-1). Thus, when
the actor networks were randomly initialized, they choose an invalid template most of the time during
initial phases of training. Thus, minimizing a cross entropy loss between the template predicted by the
f-network and the actual valid template chosen enables faster training i.e., like the PGFS algorithm,
we also minimize an auxiliary loss to enable stronger gradient updates during the initial phases of
training.

Lauxil = −
∑
i

(T
(1)
ic , log(f(R

(1)
ic)))

and, the total actor loss Lactor is a summation of the policy loss Lpolicy and auxiliary loss Lauxil.

Lactor = Lpolicy + Lauxil

The parameters θQ of the Q-network are updated by minimizing the critic loss Lcritic, and the
parameters θf and θπ of the actor networks f and π are updated my minimizing the actor loss Lactor.
A more detailed description of the algorithm, pseudo code and hyper parameters used in given in
Section D of the Appendix.

We compared the performance of the proposed formulation “MB (max-Bellman) + PGFS” with
PGFS, and random search (RS) where reaction templates and reactants are chosen randomly at every
time step, starting from initial reactant randomly sampled from ENAMINE dataset (which contains a
set of roughly 150,000 reactants). We evaluated the approach on five rewards: QED (that measures
the drug like-ness: Bickerton et al. (2012)), clogP (that measures lipophilicity: You et al. (2018b))
and activity predictions against three targets (Gottipati et al. (2020)): HIV-RT, HIV-INT, HIV-CCR5.
While PGFS demonstrated state-of-the-art performance on all these rewards across different metrics
(maximum reward achieved, mean of top-100 rewards, performance on validation set, etc.) when
compared to the existing de novo drug design approaches (including the ones that do not implicitly
or explicitly account for synthesizability and just optimize directly for the given reward function),
we show that the proposed approach (PGFS+MB) performed better than PGFS (i.e., better than the
existing state-of-the-art methods) on all the five rewards across all the metrics. For a fairness in
comparison, like PGFS, we only performed hyper parameter tuning over policy noise and noise clip
and trained only for 400,000 time steps. However, in the proposed formulation, we noticed that the
performance is sensitive to the discount factor γ and the optimal γ is different for each reward.

Table 3 compares the maximum reward achieved during the entire course of training of 400,000
time steps. We notice that the proposed approach PGFS+MB achieved highest reward compared to
existing state-of-the-art approaches. Table 4 compares the mean (and standard deviation) of top 100
rewards (i.e., molecules) achieved by each of the methods over the entire course of training with
and without applicability domain (AD) (Tropsha (2010), Gottipati et al. (2020)). We again note that
the proposed formulation performed better than existing methods on all three rewards both with and
without AD. In Figure 5, we compare the performance based on the rewards achieved starting from
a fixed validation set of 2000 initial reactants. For all the three HIV reward functions, we notice
that PGFS+MB performed better than existing reaction-based RL approaches (i.e., PGFS and RS) in
terms of reward achieved at every time step of the episode (Figure 5a), and in terms of maximum
reward achieved in each episode (Figure 5b). Further experimental details and results are provided in
Section E of the Appendix.

Table 1: Performance comparison of reaction based de novo drug design algorithms in terms of
maximum reward achieved

Method QED clogP RT INT CCR5

ENAMINEBB 0.948 5.51 7.49 6.71 8.63
RS 0.948 8.86 7.65 7.25 8.79 (8.86)

PGFS 0.948 27.22 7.89 7.55 9.05
PGFS+MB 0.948 27.60 7.97 7.67 9.20 (9.26)

8

Under review as a conference paper at ICLR 2021

Table 2: Statistics of the top-100 produced molecules with highest predicted HIV scores for every
reaction-based method used and Enamine’s building blocks

NO AD AD

Scoring RT INT CCR5 RT INT CCR5

ENAMINEBB 6.87± 0.11 6.32± 0.12 7.10± 0.27 6.87± 0.11 6.32± 0.12 6.89± 0.32
RS 7.39± 0.10 6.87± 0.13 8.65± 0.06 7.31± 0.11 6.87± 0.13 8.56± 0.08

PGFS 7.81± 0.03 7.16± 0.09 8.96± 0.04 7.63± 0.09 7.15± 0.08 8.93± 0.05
PGFS+MB 7.81± 0.01 7.51± 0.02 9.06± 0.01 7.75± 0.04 7.51± 0.04 9.01± 0.05

(a)

(b)

Figure 5: Comparison of the three methods: RS (blue), PGFS (orange) and PGFS+MB (green) based
on the rewards achieved starting with the 2000 initial reactants from a fixed validation set.

5 CONCLUSION

In this paper, we introduced a novel functional form of the Bellman equation to optimize for the
maximum reward achieved at any time step in an episode. We introduced the corresponding evaluation
and optimality operators and proved the convergence ofQ-learning algorithm. We further showed that
the proposed max-Bellman formulation can be applied to deep reinforcement learning algorithms by
demonstrating state-of-the-results on the task of de novo drug design across several reward functions
and metrics.

REFERENCES

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration, 2020.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping, 2020.

Richard Bellman. Some applications of the theory of dynamic programming - A review. Oper. Res.,
2(3):275–288, 1954.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler, and José Miguel Hernández-
Lobato. A model to search for synthesizable molecules. CoRR, abs/1906.05221, 2019.

Nathan Brown, Ben McKay, François Gilardoni, and Johann Gasteiger. A graph-based genetic
algorithm and its application to the multiobjective evolution of median molecules. Journal of
chemical information and computer sciences, 44(3):1079–1087, 2004.

9

Under review as a conference paper at ICLR 2021

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Alexander Button, Daniel Merk, Jan A Hiss, and Gisbert Schneider. Automated de novo molecular
design by hybrid machine intelligence and rule-driven chemical synthesis. Nature machine
intelligence, 1(7):307–315, 2019.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford. Learning
to search better than your teacher. CoRR, abs/1502.02206, 2015. URL http://arxiv.org/
abs/1502.02206.

Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural localization. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ry6-G_66b.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32, pp. 6281–6292. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
131f383b434fdf48079bff1e44e2d9a5-Paper.pdf.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. CoRR, abs/1802.09477, 2018a.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Wenhao Gao and Connor W. Coley. The synthesizability of molecules proposed by generative
models. Journal of Chemical Information and Modeling, Apr 2020. ISSN 1549-960X. doi:
10.1021/acs.jcim.0c00174.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Karam M. J. Thomas, Simon Blackburn, Connor W. Coley, Jian Tang, Sarath Chandar, and Yoshua
Bengio. Learning to navigate the synthetically accessible chemical space using reinforcement
learning. In Proceedings of the 37th International Conference on International Conference on
Machine Learning, ICML’20, 2020.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chem. Sci., 11:577–586, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA, 1960.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Convergence of stochastic iterative
dynamic programming algorithms. In Proceedings of the 6th International Conference on Neural
Information Processing Systems, NIPS’93, pp. 703–710, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2323–2332, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

10

http://arxiv.org/abs/1502.02206
http://arxiv.org/abs/1502.02206
https://openreview.net/forum?id=ry6-G_66b
https://openreview.net/forum?id=ry6-G_66b
https://proceedings.neurips.cc/paper/2019/file/131f383b434fdf48079bff1e44e2d9a5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/131f383b434fdf48079bff1e44e2d9a5-Paper.pdf

Under review as a conference paper at ICLR 2021

Takashi Kamihigashi and Cuong Le Van. Necessary and sufficient conditions for a solution of the
bellman equation to be the value function: A general principle. 2015.

Mathilde Koch, Thomas Duigou, and Jean-Loup Faulon. Reinforcement learning for bio-
retrosynthesis. bioRxiv, 2019.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric P. Xing. ChemBO: Bayesian Optimization of Small Organic Molecules
with Synthesizable Recommendations. arXiv:1908.01425 [physics, stat], August 2019. arXiv:
1908.01425.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

Giseung Park, Whiyoung Jung, Sungho Choi, and Youngchul Sung. Model ensemble-based intrinsic
reward for sparse reward reinforcement learning, 2020. URL https://openreview.net/
forum?id=SyxJU64twr.

Brenden K. Petersen. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients, 2020.

Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo
drug design. Science advances, 4(7):eaap7885, 2018.

K.H. Quah and Chai Quek. Maximum reward reinforcement learning: A non-cumulative re-
ward criterion. Expert Systems with Applications, 31(2):351 – 359, 2006. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2005.09.054. URL http://www.sciencedirect.com/
science/article/pii/S0957417405002228.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. volume 80 of Proceedings of Machine Learning Research,
pp. 4344–4353, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/riedmiller18a.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graph{af}:
a flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pp. 412–422.
Springer, 2018.

Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine learning, 38(3):287–308, 2000.

Csaba Szepesvári. The asymptotic convergence-rate of q-learning. In NIPS, pp. 1064–1070, 1997.

Alexander Tropsha. Best practices for qsar model development, validation, and exploitation. Molecu-
lar informatics, 29(6-7):476–488, 2010.

11

https://openreview.net/forum?id=SyxJU64twr
https://openreview.net/forum?id=SyxJU64twr
http://www.sciencedirect.com/science/article/pii/S0957417405002228
http://www.sciencedirect.com/science/article/pii/S0957417405002228
http://proceedings.mlr.press/v80/riedmiller18a.html
http://proceedings.mlr.press/v80/riedmiller18a.html

Under review as a conference paper at ICLR 2021

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your dis-
tance: Solving sparse reward tasks using self-balancing shaped rewards. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32, pp. 10376–10386. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
64c26b2a2dcf068c49894bd07e0e6389-Paper.pdf.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16(3):
185–202, 1994.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16), 2020.

Christopher J. C. H. Watkins and Peter Dayan. Technical note: q -learning. Mach. Learn., 8(3–4):
279–292, May 1992.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné Clevert.
Efficient multi-objective molecular optimization in a continuous latent space. Chemical science,
10(34):8016–8024, 2019.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay S. Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. CoRR, abs/1806.02473, 2018a.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in neural information
processing systems, pp. 6410–6421, 2018b.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31, pp. 4644–4654. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
51de85ddd068f0bc787691d356176df9-Paper.pdf.

Zhenpeng Zhou, Steven M. Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. CoRR, abs/1810.08678, 2018.

12

https://proceedings.neurips.cc/paper/2019/file/64c26b2a2dcf068c49894bd07e0e6389-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/64c26b2a2dcf068c49894bd07e0e6389-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/51de85ddd068f0bc787691d356176df9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/51de85ddd068f0bc787691d356176df9-Paper.pdf

Under review as a conference paper at ICLR 2021

A PROOF - MONOTONICITY AND CONTRACTION PROPERTIES OF Mπ

Proof. Monotonicity: Let Q1 and Q2 be two functions such that Q1(s, a) ≥ Q2(s, a) for any state-
action pair (s, a) ∈ S × A. By linearity of expectation, we have γEs′∼P (·|s,a) [Q1(s′, a′)] ≥
γEs′∼P (·|s,a) [Q2(s′, a′)] ,∀(s, a). As MπQ1(s, a) ≥ γEs′∼P (·|s,a) [Q1(s′, a′)], we get
MπQ1(s, a) ≥ γEs′∼P (·|s,a) [Q2(s′, a′)]. Moreover, because MπQ1(s, a) ≥ r(s, a), we obtain

MπQ1(s, a) ≥ max
(
r(s, a), γEs′∼P (·|s,a) [Q2(s′, a′)]

)
= MπQ2(s, a)

which is the desired result.

Contraction: Let us denote the expected action-value function of the next state by fi(s, a), obtaining
the following equation:

fi(s, a) = γEs′∼P (·|s,a)
a′∼π(·|s′)

[Qi(s
′, a′)])

By using the fact that max(x, y) = 0.5(x+ y + |x− y|),∀(x, y) ∈ R2, we obtain

max(r, f1)−max(r, f2) = 0.5 (r + f1 + |r − f1|)− 0.5 (r + f2 + |r − f2|)
= 0.5 (f1 − f2 + |r − f1| − |r − f2|)
≤ 0.5 (f1 − f2 + |r − f1 − (r − f2)|)
= 0.5 (f1 − f2 + |f1 − f2|)
≤ |f1 − f2|

Therefore

‖MπQ1 −MπQ2‖∞ = ‖max(r, f1)−max(r, f2)‖∞
≤ ‖f1 − f2‖∞
≤ γ‖Ea′Q1(·, a′)− Ea′Q2(·, a′)‖∞
= γ‖Ea′(Q1(·, a′)−Q2(·, a′))‖∞
≤ γ‖max

a′
(Q1(·, a′)−Q2(·, a′))‖∞

≤ γmax
a′
‖(Q1(·, a′)−Q2(·, a′))‖∞

= γ‖Q1 −Q2‖∞

B OTHER RELATED IDEAS

While the discussion so far has been focused on formulating a novel functional form of the Bellman
equation for optimizing for the expected maximum reward in an episode (and proving its convergence
properties and applying it on a toy domain and a more complex de-novo drug design environment),
there are potentially other possible ways to approach this problem, some of which were tried by us.

A possible alternate approach is to just try optimizing for reward at the final time step (You et al.
(2018a), Shi* et al. (2020)). This leads to a sparse reward problem and the training becomes harder. It
is still an active research area and several approaches were introduced to address this issue of sparse
rewards. For example, shaping the rewards (Trott et al. (2019)), learning auxiliary tasks (Riedmiller
et al. (2018)), learning intrinsic rewards (Zheng et al. (2018)), using ensemble of models to learn
intrinsic rewards (Park et al. (2020)). However, these approaches optimize only for the reward at
the end of the episode, whereas, the maximum reward can occur at any time step in the episode.
Optimal stopping based approaches (Becker et al. (2020)) learns to stop the stream of rewards they
receive but to the best of our knowledge, there isn’t any approach with a thorough theoretical proof
that simultaneously learns to stop the episode and to optimize for the reward at the end of episode
in a reinforcement learning framework. Nonetheless, we tried to have a policy network that can
choose an additional ‘stop’ action. The rewards did not converge as the policy network got biased

13

Under review as a conference paper at ICLR 2021

towards choosing ‘stop’ action most of the time. We tried other tricks like shaping the reward in the
range [0,1] (instead of [-1, 1]), using unshaped rewards (range [0,∞)), using difference of rewards
(Chen & Tian (2019)) and adding a penalty for choosing the stop action. Even though these ideas are
interesting, they do not have a thorough theoretical foundation relating to the objective of maximum
reward optimization and they performed worse than PGFS. An interesting future work would be
to combine the optimal stopping framework with the actor-critic framework to solve the maximum
objective problem. This is outside the scope of our current work. Chang et al. (2015) is potentially
another way to search in the policy space on which our max-Bellman formulation could be tried.

C MARKOVIAN GOLDMINING TOY EXAMPLE

We also run a comparison between Q-learning and Max-Q on a fully Markovian setting on a similar
goldmining environment. The Markovian property is enforced by not removing the rewards once the
goldmines have been visited, and by also including the timestep information in the state observation.
From the learning perspective, the latter is enforced simply by making the Q-value table 3 dimensional
with the first dimension referencing the timestep.

The markovian setting is on a similar toy domain with multiple goldmines in a 3 × 6 grid. The agent
starts in the bottom left corner and at each time step, can choose from among the four cardinal actions:
up, down, left and right. The environment is deterministic with respect to the action transitions
and the agent cannot leave the grid. All states in the grid that are labeled with values other than -1
represent goldmines and each value represents the reward that the agent will collect upon reaching
that particular state. Transitions into a non-goldmine state results in a reward of -1. The episode
terminates after 5 time steps and the discount factor is γ = 0.99. The observation is a tuple consisting
of an integer denoting the state number of the agent and an integer denoting the current time step.

The environment is shown in Figure 6. If the agent goes up to the top row and continues to move
right, it will only get a cumulative return of 6. If it instead traverses the bottom row to the right, it can
receive a cumulative return of 9, which is the highest cumulative return possible in this environment.

Figure 6: A visualization of the gold-mining toy example. The bottom left state, shown in green,
denotes the starting state. States with values other than -1 denote the goldmines and the values denote
their respective rewards.

A comparison of cumulative return and maximum reward is shown in Figure 8. Q-learning learns the
optimal policy while Max-Q learning the policy to reach the highest rewarding state. Thus, consistent
results are obtained for the Markovian setting as well. The exploration schedule and hyperparameters
are the same as those used for the non-Markovian setting.

For the Markovian setting, the grid was made smaller and the number of goldmines were reduced.
These changes were made only to make the task easier to solve. Since the rewards do not vanish in
this setting, not applying these minor changes meant that it was a much harder exploration problem
and it was observed that the agent simply oscillated between states and took much longer to converge
to the optimal policy. The increased variance in the average return for Max-Q in Figure 8a is as
expected, since there is no incentive for the Max-Q agent to avoid the -8 penalties. This high variance
is not observed in the non-Markovian toy example only because the rewards guide the agent around
the negative reward filled middle row.

It should be noted that in the Markovian setting, since the Q-value table has 3 dimensions, there is no
straightforward way to visualize the learned policy. Figure 7 has been obtained by plotting the greedy
action for each state after applying the mean across the time axis of the Q-value table.

14

Under review as a conference paper at ICLR 2021

D PSEUDO CODE - PGFS+MB

In this section, we explain the PGFS+MB algorithm in detail and provide the pseudo code.

The actor module Π consists of two networks f and π. The role of the actor module is to compute
the action a for a given state s. In this case, the state is the reactant R(1), and the action outputs
are reaction template T and a tensor a in the space defined by feature representation of all second
reactants. We use ECFP feature representation (Morgan circular molecular fingerprint bit vector
of size 1024 and radius 2) for state inputs (reactant-1) and RLV2 feature representation (a custom
feature representation) for action outputs (reactant-2). We used the following features in RLV2:
MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, QED, MolWt, FpDensityMorgan1, Bal-
abanJ, PEOE-VSA10, PEOE-VSA11, PEOE-VSA6, PEOE-VSA7, PEOE-VSA8, PEOE-VSA9,
SMR-VSA7, SlogP-VSA3, SlogP-VSA5, EState-VSA2, EState-VSA3, EState-VSA4, EState-VSA5,
EState-VSA6, FractionCSP3, MolLogP, Kappa2, PEOE- VSA2, SMR-VSA5, SMR-VSA6, EState-
VSA7, Chi4v, SMR-VSA10, SlogP-VSA4, SlogP-VSA6, EState-VSA8, EState-VSA9, VSA-EState9.

First, the reactantR(1) is passed through the f -network to compute the template tensor T that contains
the probability of each of the reaction templates.

T = f(R(1))

For a given reactantR(1), only few reaction templates are eligible to participate in a reaction involving
R(1). Thus, all the invalid reaction templates are masked off by multiplying element-wise with a
template mask Tmask, which is a binary tensor with value 1 if its a valid template, 0 otherwise.

T = T � Tmask
Finally, the reaction template T in one-hot tensor format is obtained by applying Gumbel softmax
operation to the masked off template T . It is parameterized by a temperature parameter τ that is
slowly decayed from 1.0 to 0.1

T = GumbelSoftmax(T, τ)

The one-hot template along with the reactant R(1) is passed through the π network to obtain the
action a in the space defined by feature representation of all second reactants.

a = π(R(1), T)

The critic module consists of the Q-network and computes the Q(s, a) values. In this case, it takes in
the reactant R(1), reaction template T , action a and compute its Q value: Q(R(1), T, a).

For the fairness in comparison, we used the exact same network sizes as described in the PGFS
paper i.e., The f -network has four fully connected layers with 256, 128, 128 neurons in the hidden
layers. The π network has four fully connected layers with 256, 256, 167 neurons in the hidden
layers. All the hidden layers use ReLU activation whereas the final layer uses tanh activation. The
Q-network also has four fully connected layers with 256, 64, 16 neurons in the hidden layers, with
ReLU activation for all the hidden layers and linear activation for the final layer.

The environment takes in the current state s and action a and computes the next state and reward.
First, it computes the set of second reactants that are eligible to participate in a reaction involving
chosen reaction template T

R(2) = GetValidReactants(T)

15

Under review as a conference paper at ICLR 2021

The k valid reactants closest to the action a are then obtained by passing the action a and set of valid
second reactants R(2) through the k nearest neighbours module.

A = kNN(a,R(2))

For each of these k second reactants, we compute the corresponding productsR(1)
t+1 obtained involving

the reactant R(1) and reaction template T by passing them through a forward reaction predictor
module, and then compute the corresponding rewards by passing the obtained products through a
scoring function prediction module.

R
(1)
t+1 = ForwardReaction(R(1), T,A)

Rewards = ScoringFunction(R
(1)
t+1)

Then, the product and the reward corresponding to the maximum reward are chosen and returned by
the environment. In all our experiments, we use k = 1.

During the optimization (“backward”) phase, we compute the actions for next time step Ti+1, ai+1

using target actor network on a randomly sampled mini-batch.

Ti+1, ai+1 = Actor-target(R(1)
i+1)

We then compute one-step TD (temporal difference) target yi (using the proposed max-Bellman
formulation) as the maximum of reward at the current time step and discounted Q value (computed
by critic-target) for the next state, next action pair. To incorporate the clipped double Q-learning
formulation used in TD3 (Fujimoto et al. (2018a)) to prevent over-estimation bias, we use two critics
and only take the minimum of the two critics.

yi = max[ri, γ min
j=1,2

Critic-target({R(1)
i+1, Ti+1}, ai+1)]

Note that this is different from PGFS (Gottipati et al. (2020)) where the authors compute the TD target
using the standard Bellman formulation: yi = ri + γminj=1,2 Critic-target({R(1)

i+1, Ti+1}, ai+1).
We then compute the critic loss Lcritic as the mean squared error between the one-step TD target yi
and the Q-value (computed by critic) of the current state, action pair.

Lcritic =
∑
i

|yi − CRITIC(R
(1)
i , Ti, ai)|2

The policy loss Lpolicy is negative of the critic value of the state, action pair where the actions are
computed by the current version of the actor network

Lpolicy = −
∑
i

CRITIC(R
(1)
i ,ACTOR(R

(1)
i))

Like in PGFS, to enable faster learning during initial phases of the training, we also minimize an
auxiliary loss which is the cross entropy loss between the predicted template and the actual valid
template

Lauxil = −
∑
i

(T
(1)
i , log(f(R

(1)
i)))

Thus, the total actor loss is the sum of policy loss and the auxiliary loss

Lactor = Lpolicy + Lauxil

The parameters of all the actor and critic networks (f , π, Q) are updated by minimizing the actor and
critic losses respectively.

minLactor,Lcritic

16

Under review as a conference paper at ICLR 2021

Algorithm 1 PGFS+MB

1: procedure ACTOR(R(1))
2: T ← f(R(1))
3: T ← T � Tmask
4: T ← GumbelSoftmax(T, τ)
5: a← π(R(1), T)
6: return T, a
7: procedure CRITIC(R(1), T , a)
8: return Q(R(1), T, a)

9: procedure ENV.STEP(R(1), T, a)
10: R(2) ← GetValidReactants(T)
11: A← kNN(a,R(2))

12: R
(1)
t+1 ← ForwardReaction(R(1), T,A)

13: Rewards← ScoringFunction(R
(1)
t+1)

14: rt, R
(1)
t+1, done← arg maxRewards

15: return R(1)
t+1, rt, done

16: procedure BACKWARD(buffer minibatch)
17: Ti+1, ai+1 ← Actor-target(R(1)

i+1)

18: yi ← max[ri, γminj=1,2 Critic-target({R(1)
i+1, Ti+1}, ai+1)]

19: Lcritic ←
∑
i |yi − CRITIC(R

(1)
i , Ti, ai)|2

20: Lpolicy ← −
∑
i CRITIC(R

(1)
i ,ACTOR(R

(1)
i))

21: Lauxil ← −
∑
i(T

(1)
i , log(f(R

(1)
i)))

22: Lactor ← Lpolicy + Lauxil
23: minLactor,Lcritic

24: procedure MAIN(f , π, Q)
25: for episode = 1, M do
26: sample R(1)

0
27: for t = 0, N do
28: Tt, at ← Actor(R(1)

t)
29: R

(1)
t+1, rt, done← env.step(R

(1)
t , Tt, at)

30: store (R
(1)
t , Tt, at, R

(1)
t+1, rt, done) in buffer

31: sample a random minibatch from buffer
32: Backward(minibatch)

E EXPERIMENTAL SETUP AND RESULTS

Our experimental setup is same as that of PGFS but we include it here for the sake of completeness.
The set of 150,560 reactants used in this study were taken from the Enamine Building Block catalogue
Global stock and are represented as Simplified molecular-input line-entry system(SMILES) Weininger
(1988). The 97 reaction templates were taken from Button et al. (2019) and are represented as SMILES
arbitrary target specification (SMARTS). For a given class of reaction the template contains the
pattern of reactive centres and the product across unimolecular and bimolecular reactions.

We test the performance of our model on five different rewards which are estimated from the molecular
structure of the compound. One of the most used measure for drug-likeliness is quantitative estimate
of drug-likeliness (QED) Bickerton et al. (2012). Octanol-water partition coefficient (clogP) You
et al. (2018b) measures the lipophilicity or the aliphatic nature of the molecule which determines the
solubility of the molecule in aqueous phase and increases with the size of the molecule. The other
three rewards are related specifically to the Human Immunodeficiency Virus (HIV), which extends
the applicability of our method to biological targets, C-C chemokine receptor type 5 (CCR5), HIV
Integrase (INT), HIV Reverse Transcriptase (RT).

17

Under review as a conference paper at ICLR 2021

Even though the main motivation of this work is to build on existing reaction-based methods (PGFS)
to ensure that the molecules generated are synthesizable, we also include the comparison with other
non-reaction based methods that were believed to achieve state-of-the-art results in the last few years.
These methods include junction-tree variational auto encoder (JTVAE) (Jin et al. (2018)), Graph
Convolutional Policy Network (GCPN) (You et al. (2018b)), Molecule Swarm Optimization (MSO)
(Winter et al. (2019)).

Table 3: Performance comparison of de novo drug design algorithms in terms of maximum reward
achieved

Method QED clogP RT INT CCR5

ENAMINEBB 0.948 5.51 7.49 6.71 8.63
RS 0.948 8.86 7.65 7.25 8.79 (8.86)

GCPN 0.948 7.98 7.42(7.45) 6.45 8.20(8.62)
JT-VAE 0.925 5.30 7.58 7.25 8.15 (8.23)
MSO 0.948 26.10 7.76 7.28 8.68 (8.77)
PGFS 0.948 27.22 7.89 7.55 9.05

PGFS+MB 0.948 27.60 7.97 7.67 9.20 (9.26)

Table 4: Statistics of the top-100 produced molecules with highest predicted HIV scores of de novo
drug design algorithms and Enamine’s building blocks

NO AD AD

Scoring RT INT CCR5 RT INT CCR5

ENAMINEBB 6.87± 0.11 6.32± 0.12 7.10± 0.27 6.87± 0.11 6.32± 0.12 6.89± 0.32
RS 7.39± 0.10 6.87± 0.13 8.65± 0.06 7.31± 0.11 6.87± 0.13 8.56± 0.08

GCPN 7.07± 0.10 6.18± 0.09 7.99± 0.12 6.90± 0.13 6.16± 0.09 6.95*± 0.05
JTVAE 7.20± 0.12 6.75± 0.14 7.60± 0.16 7.20± 0.12 6.75± 0.14 7.44± 0.17
MSO 7.46± 0.12 6.85± 0.10 8.23± 0.24 7.36± 0.15 6.84± 0.10 7.92*± 0.61
PGFS 7.81± 0.03 7.16± 0.09 8.96± 0.04 7.63± 0.09 7.15± 0.08 8.93± 0.05

PGFS+MB 7.81± 0.01 7.51± 0.02 9.06± 0.01 7.75± 0.04 7.51± 0.04 9.01± 0.05

Figure 7: Comparison of the PGFS (blue) and PGFS+MB (orange) based on the maximum reward
achieved in each episode during the course of training

Figure 8: A visualization of synthesis path for generating highest reward molecule (obtained using
PGFS+MB) against HIV-RT target

18

Under review as a conference paper at ICLR 2021

Figure 9: A visualization of synthesis path for generating highest reward molecule (obtained using
PGFS+MB) against HIV-INT target

Figure 10: A visualization of synthesis path for generating highest reward molecule (obtained using
PGFS+MB) against HIV-CCR5 target

19

Under review as a conference paper at ICLR 2021

Figure 11: A visualization of synthesis path for generating highest reward clogp molecule (obtained
using PGFS+MB)

20

	Introduction
	Related work
	Reinforcement Learning
	De novo drug design

	Method
	Experiments
	Toy example - Gold mining environment
	Drug Discovery

	Conclusion
	Proof - Monotonicity and Contraction properties of M
	Other related ideas
	Markovian goldmining toy example
	Pseudo code - PGFS+MB
	Experimental setup and results

