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ABSTRACT

We study self-supervised representation learning with data augmentation, such as
contrastive learning and masked image/language modeling. Our main result is that a
sufficiently good data augmentation technique alone can lead to good generalization,
for which we prove generalization bounds for an arbitrary encoder with a model-
free analysis. Our results model the upstream stage as RKHS approximation and
the downstream stage as RKHS regression, where the RKHS is fully determined
by the augmentation. We identify augmentation complexity as a key ingredient
that replaces the model complexity and additionally use it to quantitatively analyze
augmentations on real datasets. For the full paper, see Zhai et al. (2024).

1 A MODEL-FREE APPROACH TO WHY FOUNDATION MODELS GENERALIZE

One of the most important and classic open problems in machine learning is why big models
generalize. However, long before the advent of foundation models, classical generalization bounds
have been well-known to be vacuous in deep learning. Yet, generalization guarantees remain relevant,
perhaps even more so as we look for reliable and responsible deployment on test data. Over the
years, there have been a number of hypotheses about what factor helps big models generalize, such as
spectral normalization (Bartlett et al., 2017; Neyshabur et al., 2018), model overparameterization (Du
& Lee, 2018; Arora et al., 2019b), linearization or kernalization (Jacot et al., 2018; Lee et al., 2019),
interpolation induced benign overfitting (Belkin et al., 2018; Bartlett et al., 2020), and the implicit
bias of optimization, especially GD or SGD (Arora et al., 2019a; Damian et al., 2022).

However, there are two major caveats. First, some assumptions in these papers have been reported
to be at odds with empirical observations (Nagarajan & Kolter, 2019; Chizat et al., 2019), thereby
questioning the relevance of their results in practice. Second, most of these works either require
or suggest constraining the model, such as simplified architectures, lazy training, bounded norms,
freezing a layer at training, etc. This seems to contradict with the modern practitioners’ guideline
that bigger and more complex models come with better generalization.

In contrast, we use a model-free approach to show that a good data augmentation alone can lead to
good generalization. We present two sets of results, the first permitting an arbitrary encoder, and the
second focusing on a near-optimal encoder. By decoupling the effect of the model and the augmenta-
tion, our approach allows us to better understand the role of data augmentation in self-supervised
learning without worrying about the complexity of foundation models. A limitation, however, is that
we cannot leverage the model inductive bias, which is also important for generalization. Consequently,
our generalization bounds are still far from being realistic, but we believe that this work can shed
light on how data augmentation contributes to pretraining a good foundation model.

2 THE AUGMENTATION INDUCED RKHS AND THE ISOMETRY PROPERTY

Let X ⊂ RdX denote the data and PX the distribution. Let f∗ ∈ L2(PX ) be the target function.
Denote ⟨f1, f2⟩PX =

∫
f1f2dPX , and ∥f∥2PX

= ⟨f, f⟩PX . Our task is the regression problem:

Problem. Given unlabeled samples x1, · · · , xN and labeled samples x̃1, · · · , x̃n i.i.d. sampled
from PX , and labels ỹk = f∗(x̃k) + νk for k ∈ [n] and random noise νk, find a predictor
f̂ ∈ L2(PX ) with a low prediction error err(f̂ , f∗) := ∥f̂ − f∗∥2PX

= EPX [(f̂(X)− f∗(X))2].
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L2(PX ): Large space of L2 bounded functions, containing the target function f∗

Induced RKHS HΓ: Functions with soft invariance to augmentation, f∗ ∈ HΓ

Empirical RKHS ĤΓ : Obtained with N samples to approximate inaccessible HΓ

Empirical top-d RKHS Ĥd : Induced by the pretrained d-dimensional encoder
Approximation error ∥f∗ − fΨ̂∥ : Distance from f∗ to Ĥd

Estimation error ∥fΨ̂ − f̂∥: Entailed by downstream regression

Figure 1: Overall RKHS approximation/regression framework illustration and commentary.

We study how data augmentation helps with self-supervised pretraining of a good encoder. Let A
be the space of augmented samples, and PAX be a joint distribution with marginals PA and PX .
Define the augmentation operator Γ = Γx→a : L2(PX ) → L2(PA) as (Γx→af)(a) = E[f(X)|a].
Denote its adjoint by Γ∗ = Γa→x : L2(PA) → L2(PX ) with (Γa→xg)(x) = E[g(A)|x], such that
⟨Γx→af, g⟩PA =

∫∫
f(x)g(a)p(a, x)dadx = ⟨f,Γa→xg⟩PX for all f, g.

Example: Consider BERT with 15% random masking. Then, X is the space of original sentences, and
A is the space of 15% masked sentences; PX is the distribution over original sentences, A ∼ p(·|x) is
the 15% randomly masked version of an original sentence x, and PAX (a, x) = PX (x)p(a|x). Thus,
(Γa→xg)(x) is essentially the mean of g over all 15% randomly masked sentences of x.

For ϵ > 0, we say f∗ is ϵ-coherent with augmentation Γ, if ∃g∗ ∈ L2(PA), such that f∗ =
Γa→xg

∗ = E[g∗(A)|·] and 1
2EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
≤ ϵ∥g∗∥2PA

. It has an
additional ∥g∗∥2PA

term on the right compared to Assumption 1.1 in Johnson et al. (2023), so it is
homogeneous. We assume f∗ ∈ FB(Γ; ϵ), where FB(Γ; ϵ) contains all f that are ϵ-coherent and
satisfy ∥f∥PX ≤ B. This condition can be shown to be equivalent to the isometry property:

(1− ϵ)∥f∗∥2HΓ
≤ ∥f∗∥2PX

≤ ∥f∗∥2HΓ
, (1)

where HΓ is the (augmentation) induced RKHS, which depends on the augmentation only and nothing
else. To define HΓ, let the positive-pair kernel KA on A×A (Johnson et al., 2023) be

KA(a1, a2) :=
dP+

A

d(PA ⊗ PA)
=

P+
A (a1, a2)

PA(a1)PA(a2)
, P+

A (a1, a2) :=

∫
p(a1|x)p(a2|x)dPX (x),

which uses the augmentation graph (HaoChen et al., 2021). Then, define a dual kernel on X × X as

KX(x1, x2) :=
dP+

X

d(PX ⊗ PX )
=

P+
X (x1, x2)

PX (x1)PX (x2)
=

∫
p(a|x1)p(a|x2)

PA(a)
da.

In fact, (ΓΓ∗g)(a) =
∫
KA(a, a

′)g(a′)PA(a
′)da′, i.e. ΓΓ∗ is the integral operator of KA. Likewise,

Γ∗Γ is the integral operator of KX ; and HΓ is defined as the RKHS associated with KX . Let
ψ1, ψ2, · · · be eigenfunctions of Γ∗Γ with decreasing eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0, such that
Γ∗Γψi = λiψi. Suppose

∫
KX(x, x′)2dPX (x)dPX (x′) < ∞. By Hilbert-Schmidt theorem, we

can choose ψ1, ψ2, · · · that form an orthonormal basis of L2(PX ), such that ⟨ψi, ψj⟩PX = δi,j , and
any f ∈ L2(PX ) can be written as f =

∑
i uiψi for some ui. Then, we can show the following

properties:

(i) Operators ΓΓ∗ and Γ∗Γ share the same non-zero eigenvalues, and there exist eigenfunctions
{ϕi} of ΓΓ∗ that form an orthonormal basis of L2(PA), such that for any λi > 0,

ψi = λ
−1/2
i Γ∗ϕi = λ

−1/2
i Γa→xϕi and ϕi = λ

−1/2
i Γψi = λ

−1/2
i Γx→aψi.

(ii) Range R(Γ∗) =
{
f = Γa→xg

∣∣ g ∈ L2(PA)
}

is the induced RKHS HΓ associated with KX .

With these, we can show that ϵ-coherence is the same as the isometry property Eqn. (1), which
essentially says that Γ∗Γ preserves most variance of target function f∗. Thus, the optimal d-
dimensional encoder should keep the most variance, which we will show consists of the top-d
eigenfunctions. This is analogous to PCA for a finite-dimensional vector space, where the top-d
eigenvectors of a linear transformation keeps the most variance.

3 GENERALIZATION BOUNDS

Our general proof framework is illustrated in Figure 1. The upstream stage pretrains a d-dimensional
encoder Ψ̂, which we model as learning a d-dimensional subspace Ĥd that approximates the induced
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RKHS HΓ and incurs an approximation error. The downstream stage fits a linear layer (linear probe)
on top of the encoder, which we model as RKHS regression on Ĥd and entails an estimation error.
By Eqn. (1) and ∥f∗∥PX ≤ B, we have ∥f∗∥HΓ

≤ B√
1−ϵ

. Given Ψ̂, we use the following predictor:

f̂ := argmin
f :f=w⊤Ψ̂∈Ĥd,∥f∥HΓ

≤ B√
1−ϵ

{
1

n

n∑
k=1

(ỹk − f(x̃k))
2

}
, (2)

where Ĥd is the linear span of Ψ̂ = [ψ̂1, · · · , ψ̂d]. In practice though, Ψ̂ is likely not directly obtained
from pretraining, as people often first pretrain an encoder Φ̂ = [ϕ̂1, · · · , ϕ̂d] on A, and then convert it
into Ψ̂. For example, BERT is pretrained on masked sentences but used on unmasked ones. While in
practice the pretrained encoder is usually directly applied to downstream, theoretical analyses require
explicitly writing out the relationship between Φ̂ and Ψ̂. We use the average encoder

Ψ̂(x) = E[Φ̂(A)|x] =
∫

Φ̂(a)p(a|x)da, (3)

which is equivalent to Ψ̂ = Γ∗Φ̂, and thus ψ̂i ∈ R(Γ∗) = HΓ for all i ∈ [d]. The average encoder has
been widely studied in prior art, such as Saunshi et al. (2022, Eqn. (4)). We now derive generalization
bounds for two cases: (i) Φ̂ is an arbitrary function; (ii) Φ̂ is a near optimal d-dimensional encoder.

3.1 CASE I: ARBITRARY ENCODER

There are two critical ingredients: (i) Augmentation complexity κ := ∥KX∥1/2∞ , which replaces the
model complexity in our bounds and make them model-free; (ii) Trace gap τ2, which is smaller for
“better” Φ̂; see definitions in Appendix A. Denote Sλ(d) := λ1 + · · ·+ λd. Then, we have:

Theorem 1. Let ν1, · · · , νn be i.i.d. N (0, σ2) variates, and f̂ be given by Eqn. (2). If Φ̂ has d
dimensions (d can be ∞) and τ < 1, then there are universal constants c0, c1, c2 such that with

probability at least 1− c1 exp

(
− c2

√
2nSλ(d+1)

κ

)
− exp

(
−
√

2nκ2B2

1−ϵ

)
, there is

∥f̂ − f∗∥2PX
≤ 9τ2(τ + ϵ)B2

(1− τ2)(1− ϵ)
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n
for all f∗ ∈ FB(Γ; ϵ). (4)

Note that this bound does not constrain the form and dimension that Φ̂ takes. The first term in the
bound controls the approximation error, and the second controls the estimation error. While the
second term vanishes as the number of unlabeled and labeled samples N,n→ ∞, the first term may
not: With d output dimensions, if λd+1 > 0, then the first term won’t vanish since τ2 ≥ λd+1. This
could happen, for example, when d is so small that Φ̂ doesn’t have enough capacity to represent f∗.

3.2 CASE II: NEAR OPTIMAL D-DIMENSIONAL ENCODER

We define the optimal encoder in a minimax sense. It minimizes the worst-case approximation
error over FB(Γ; ϵ), defined as err(Ψ̂;FB(Γ; ϵ)) := supf∈FB(Γ;ϵ) minw∈Rd ∥w⊤Ψ̂ − f∥2PX

. We
now show that Ψ̂ is optimal if it spans the top-d eigenspace, i.e. the linear span of ψ1, · · · , ψd:

Proposition 1 (Approximation error, lower bound). For any Ψ̂ = [ψ̂1, · · · , ψ̂d] where ψ̂i ∈ L2(PX ),

err(Ψ̂;FB(Γ; ϵ)) ≥
λd+1

1− λd+1

ϵ

1− ϵ
B2 given that

λd+1

1− λd+1

ϵ

1− ϵ
≤ 1

2
. (5)

To attain equality, it is sufficient for Ψ̂ to span the top-d eigenspace, and also necessary if λd+1 < λd.

The optimal d-dimensional Ψ̂ achieves the smallest trace gap τ2 = λd+1. We consider its Monte-
Carlo approximation as we only have access to finite samples. Given unlabeled samples x1, · · · , xN ,
we define the empirical augmentation operator as (Γ̄f)(a) = 1

N

∑N
k=1

f(xk)p(a|xk)

P̂A(a)
, where P̂A(a) =

3
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Figure 2: Plots for Section 4. In (a), log κ2 is estimated on wikipedia-simple.

1
N

∑N
k=1 p(a|xk). The adjoint of Γ̄ is still Γ∗. Let {(λ̄i, ψ̄i)} be the eigenvalues and eigenfunctions of

Γ∗Γ̄, and ϕ̄i the eigenfunctions of Γ̄Γ∗. We consider the empirical top-d eigenfunctions [ϕ̄1, · · · , ϕ̄d],
which is a Monte-Carlo approximation of the real top-d eigenfunctions. We have:

Theorem 2. Let ϕ̂i = ϕ̄i for i ∈ [d]. Define covariance matrix G as G(i, j) = ⟨ϕ̂i, ϕ̂j⟩PA for
i, j ∈ [d]. Let γG := λmax(G)/λmin(G) be the condition number of G. Then, for any δ > 0, it
holds with probability at least 1− δ that

τ2 ≤ λd+1 +

(
2 +

√
2 log

2

δ

)
(λ−1

d + λ̄−1
d γ

1/2
G + 2)κ2√
N

d.

Combining Theorem 1 and 2 leads to the bound for this near optimal encoder. We can see that this
bound is near tight by comparing the upper bound in Theorem 2 to the lower bound in Proposition 1;
the only difference is τ+ϵ

1−ϵ instead of ϵ
1−ϵ in Eqn. (4). Note also that τ2 can be arbitrarily close to

λd+1, and Theorem 2 does not require a gap between λd and λd+1 unlike prior work.

4 ESTIMATING AND EXPLOITING THE AUGMENTATION COMPLEXITY

In our model-free bounds, the augmentation complexity κ completely replaces the model complexity.
In fact, κ can be a practical tool for analyzing augmentations. As a demonstration, in Figure 2a,
we plot the size of κ for four types of random masking augmentations w.r.t. different mask ratios
on wikipedia-simple. Our bounds suggest that a smaller κ leads to good generalization, and
one natural way to reduce κ is via a stronger augmentation, which has indeed been helpful in
practice (Chen et al., 2020; Wettig et al., 2023).

We also study how the mask ratio α affects the downstream performance using QNLI (Wang et al.,
2018) and SST-2 (Socher et al., 2013). For pretraining, we train roberta-large models with
random masking, using different mask ratios following the fast pretraining recipe in Wettig et al.
(2023). For downstream, we fine-tune the encoder together with the linear head following common
practice. We use the average encoder (Eqn. (3)) estimated by sampling 16 augmentations a per x.

We evaluate the train/test accuracies of the models, and plot the test accuracy (blue solid) and the
train-test accuracy gap (green dashed) in Figure 2b. The highest test accuracy is achieved at α = 0.15
on QNLI and at α = 0.40 on SST-2 (marked in red). The test accuracy is low when α is too small
due to the large generalization gap, and also low when α is too large due to low training accuracy.
Regarding the train-test gap, QNLI shows a monotonic decrease in the gap as the mask ratio grows,
but the gap on SST-2 is U-shaped, with the lowest point at α = 0.40. This is likely because with
α > 0.40 is too strong an augmentation for SST-2 that breaks the isometry property, in which case our
theoretical results will not hold. Thus, these results align with our theory that while augmentations
should be sufficiently robust, they must not be so strong that breaks isometry property. This suggests
the presence of a “sweet spot”, which is also supported by evidence in prior work (Tian et al., 2020).

Discussions: In this work, we showed that a sufficiently good augmentation alone leads to good
generalization. However, “sufficiently good” is a strong constraint hardly realizable in practice, hence
our bounds are yet to be made more practical. Indeed, in Figure 2a, log κ2 can be as large as 300.
We suspect this to be a manifestation of the typical curse of dimensionality in high-dimensional
statistics in the absence of strong inductive bias (Bengio et al., 2013). Moreover, we postulate that
even though our worst-case bounds come with an exponential dependency on data dimension, the
empirical success of existing augmentation-based self-supervised learning suggest that they implicitly
adapt to the inherent low-dimensional manifold structure in real-world data. We conjecture that the
curse can be evaded if the augmentation captures such a low-dimensional structure.
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A AUGMENTATION COMPLEXITY AND TRACE GAP

Definition 1. Define the augmentation complexity as κ := ∥KX∥1/2∞ , i.e. for PX -almost all x,

KX(x, x) =
∑
i

λiψi(x)
2 =

∫
p(a|x)2

PA(a)
da = Dχ2(PA(·|x) ∥ PA) + 1 ≤ κ2.

Here, Dχ2(P ∥ Q) :=
∫
( dPdQ − 1)2dQ is the χ2-divergence. It is non-negative, so κ ≥ 1. Next, to

define the trace gap, we first define the ratio trace for a given encoder Φ̂.

Definition 2. Define covariance matrices F ,G as F (i, j) = ⟨ψ̂i, ψ̂j⟩PX = ⟨Γ∗ϕ̂i,Γ
∗ϕ̂j⟩PX and

G(i, j) = ⟨ϕ̂i, ϕ̂j⟩PA . Then, the ratio trace is defined as Tr(G−1F ), if G−1 is well-defined.

Ratio trace is a classical quantity in linear discriminant analysis (LDA) (Wang et al., 2007) and, as
we will show, controls the approximation error. The largest ratio trace of any d-dimensional Φ̂ is
λ1+ · · ·+λd, and can be achieved by the top-d eigenspace of HΓ. Then, define the learned kernel as

K̂Ψ̂(x, x
′) = ⟨Γ∗(G−1/2Φ̂)(x),Γ∗(G−1/2Φ̂)(x′)⟩,
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which is the reproducing kernel of HΨ̂ = span(ψ̂1, ψ̂2, · · · ), a subspace of HΓ. Here G−1/2 is used
for normalization. The ratio trace can be viewed as the trace of HΨ̂. Then, define the trace gap as:

τ2 := inf
d′≤d

inf
h1,··· ,hd′

Sλ(d
′ + 1)− Tr(G−1

h Fh),

where τ ≥ 0, hi = w⊤
i Φ̂, Gh = (⟨hi, hj⟩PA)i,j∈[d′], and Fh = (⟨Γ∗hi,Γ

∗hj⟩PX )i,j∈[d′]. Note that
for any d′ ≤ d there is Tr(G−1

h Fh) ≤ Sλ(d
′), so τ2 is always lower bounded by λd+1. And by

choosing hi = ϕ̂i for i ∈ [d], we can see that τ2 ≤ Sλ(d+ 1)− Tr(G−1F ).

B PROOF OF THE ISOMETRY PROPERTY

Γ∗Γ and ΓΓ∗ are integral operators.{
(Γa→xΓx→af)(x) = (Γ∗Γf)(x) =

∫
KX(x, x′)f(x′)p(x′)dx′;

(Γx→aΓa→xg)(a) = (ΓΓ∗g)(a) =
∫
KA(a, a

′)g(a′)p(a′)da′.
(6)

Proof. We only show the first equation, and the second one can be proved in the same way.

(Γ∗Γf)(x) = Γ∗
(∫

f(x′)p(x′|a)dx′
)

=

∫ (∫
f(x′)p(x′|a)dx′

)
p(a|x)da

=

∫∫
f(x′)p(a|x)p(x′|a)dadx′ =

∫∫
f(x′)

p(a|x)p(a|x′)
p(a)

p(x′)dadx′

=

∫
KX(x, x′)f(x′)p(x′)dx′.

Duality. ΓΓ∗ shares the same non-zero eigenvalues as Γ∗Γ, and there exist eigenfunctions {ϕi} of
ΓΓ∗ that form an orthonormal basis of L2(PA), such that for any λi > 0,

ψi = λ
−1/2
i Γ∗ϕi and ϕi = λ

−1/2
i Γψi, (7)

and we also have the following spectral decomposition of the Radon-Nikodym derivative:

dPAX

d(PA ⊗ PX )
=

p(a, x)

p(a)p(x)
=
∑
i

λ
1/2
i ϕi(a)ψi(x). (8)

Proof. Suppose λi, ψi(x) is a pair of eigenvalue and eigenfunction of Γ∗Γ, and λi > 0. Then, we
have ΓΓ∗Γψi = λiΓψi, which means that Γψi is an eigenfunction of ΓΓ∗ with eigenvalue λi. The
λ
−1/2
i is used for normalization. To see this, let ϕi = λ

−1/2
i Γψi. Then, we have

⟨ϕi, ϕj⟩PA = λ
−1/2
i λ

−1/2
j ⟨Γψi,Γψj⟩PA

= λ
−1/2
i λ

−1/2
j ⟨Γ∗Γψi, ψj⟩PX

= λ
−1/2
i λ

−1/2
j ⟨λiψi, ψj⟩PX = δi,j .

We can prove the reverse direction similarly. And for any fixed x, there is〈
p(a, x)

p(a)p(x)
, ϕi

〉
PA

=

∫
p(a, x)

p(a)p(x)
ϕi(a)p(a)da =

∫
p(a|x)ϕi(a)da =

√
λiψi(x). (9)

which implies Eqn. (8).
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Basic properties of HΓ.

(i) KX is the reproducing kernel of HΓ, such that for all f ∈ HΓ, f(x) = ⟨f,KX(x, ·)⟩HΓ
.

(ii) HΓ = R(Γ∗).

(iii) HΓ is isometric to span({ϕi}λi>0), a subspace of L2(PA), and ∥f∥HΓ
= infg:f=Γ∗g ∥g∥PA .

(iv) For any f∗ ∈ FB(Γ; ϵ) ⊂ R(Γ∗), let f∗ =
∑

i uiψi. Define g0 :=
∑

i λ
−1/2
i uiϕi. Then, we

can choose g∗ = g0, in which case ϵ-coherence is equivalent to:

⟨g∗, (I − ΓΓ∗)g∗⟩PA ≤ ϵ∥g∗∥2PA
⇔
∑
i

1− λi
λi

u2i ≤ ϵ
∑
i

1

λi
u2i , (10)

and this is equivalent to Eqn. (1).

Proof. (i) First, note that HΓ =
{∑

i:λi>0 aiei
∣∣ ∑

i a
2
i <∞

}
where ei = λ

−1/2
i ψi, so it is

isomorphic to ℓ2((ai)i:λi>0) and is thus a Hilbert space. Then,KX(x, x′) =
∑

i λiψi(x)ψi(x
′).

For any f ∈ HΓ, let f =
∑

i uiψi, then

⟨f(x′),KX(x, x′)⟩HΓ
=
∑
i

1

λi
ui(λiψi(x)) =

∑
i

uiψi(x) = f(x).

(ii) For any f =
∑

i uiψi ∈ HΓ, there is
∑

i λ
−1
i u2i <∞ by definition. So for any λi = 0, there

must be ui = 0. Let g =
∑

i λ
−1/2
i uiψi. Then, ∥g∥2PA

=
∑

i λ
−1
i u2i <∞, meaning that g ∈

L2(PA). And there is f = Γ∗g, so f ∈ R(Γ∗), which implies that HΓ ⊆ R(Γ∗). Meanwhile,
for any f = Γ∗g ∈ R(Γ∗), let g =

∑
i viϕi, then

∑
i v

2
i < ∞. Then, f =

∑
i λ

1/2
i viψi by

duality, so
∑

i λ
−1
i (λ

1/2
i vi)

2 <∞, meaning that f ∈ HΓ, so R(Γ∗) ⊆ HΓ.

(iii) For any f =
∑

i uiψi ∈ HΓ, let g =
∑

i λ
−1/2
i uiψi. By the proof of (ii) we know that f 7→ g

is bijective, and ∥f∥HΓ
= ∥g∥PA . Moreover, g ∈ span({ϕi}λi>0).

(iv) Let g∗ =
∑

i viϕi. Then, since we have f∗ = Γ∗g∗ =
∑

i λ
1/2
i viψi, for any λi > 0,

there is vi = λ−1/2ui; and for any λi = 0, there is ui = 0. Let g∗ = g0 + g1, where
g0 =

∑
i λ

−1/2
i uiϕi, and g1 ⊥ g0 and Γ∗g1 = 0. By duality, ΓΓ∗g0 belongs to the linear span

of {ϕi}λi>0, so g1 ⊥ ΓΓ∗g0. Later we will show the equivalence between ϵ-coherence and
Eqn. (10), which is the random walk normalized Laplacian over the augmentation graph (Chung,
1997, Section 1.2). This is equivalent to ⟨g∗, (I − ΓΓ∗)g∗⟩PA ≤ ϵ∥g∗∥2PA

, which is further
equivalent to ⟨g0, (I − ΓΓ∗)g0⟩PA + ∥g1∥2PA

≤ ϵ(∥g0∥2PA
+ ∥g1∥2PA

) (note that ΓΓ∗g1 = 0).
This implies that ⟨g0, (I − ΓΓ∗)g0⟩PA ≤ ϵ∥g0∥2PA

, i.e. g0 satisfies ϵ-coherence. Since we also
have f∗ = Γ∗g0, we can choose g∗ = g0.

Next, to show the equivalence to Eqn. (10), We just need to show that ⟨g∗, (I − ΓΓ∗)g∗⟩PA =
1
2EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
. And indeed, we have:

⟨g∗, (I − ΓΓ∗)g∗⟩PA =

〈
g∗, g∗ −

∫
g∗(a′)KA(·, a′)p(a′)da′

〉
PA

= ∥g∗∥2PA
−
∫∫

g(a)g(a′)

∫
p(a|x)p(a′|x)p(x)dx

p(a)p(a′)
p(a′)p(a)dada′

=
1

2
E[g∗(A)2] +

1

2
E[g∗(A′)2]− 1

2
EX∼PXEA,A′∼p(·|X)[2g

∗(A)g∗(A′)]

=
1

2
EX∼PXEA,A′∼p(·|X)

[
(g∗(A)− g∗(A′))2

]
,

as desired.
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C PROOF OF THEOREM 1

C.1 LOCAL GAUSSIAN COMPLEXITY AND LOCALIZED RADEMACHER COMPLEXITY

We first provide the definition of the two complexities we will use in our analysis. For a function f ,
let ∥f∥2n := 1

n

∑n
i=1 f(x̃i)

2 be its mean on the downstream samples.
Definition 3. (Wainwright, 2019, Eqns. (13.16) & (14.3)) For any B, ϵ > 0, define

F0 :=

{
f1 − f2

∣∣∣∣ fi ∈ HΨ̂, ∥fi∥HΓ
≤ B√

1− ϵ

}
=

{
f ∈ HΨ̂

∣∣∣∣ ∥f∥HΓ
≤ 2B√

1− ϵ

}
. (11)

Then, the local Gaussian complexity around fΨ̂ at scale δ > 0 is given by

Gn(δ;F0) := E
ω1,··· ,ωn

[
sup

f∈F0,∥f∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ωif(x̃i)

∣∣∣∣∣
]
, (12)

where ω1, · · · , ωn are i.i.d. N (0, 1) variates. And define

F∗ :=

{
f = f1 + αf∗

∣∣∣∣ α ∈ [−1, 1], f1 ∈ HΨ̂, ∥f1∥HΓ
≤ B√

1− ϵ

}
. (13)

Then, the localized population Rademacher complexity of radius δ > 0 is given by

R̄n(δ;F∗) := E
σ1,··· ,σn,x1,··· ,xn

[
sup

f∈F∗,∥f∥PX ≤δ

∣∣∣∣∣ 1n
n∑

i=1

σif(xi)

∣∣∣∣∣
]
, (14)

where σ1, · · · , σn are i.i.d. Rademacher variables taking values in {−1,+1} equiprobably.

Our master plan is to apply Theorems 13.13 and 14.1 of Wainwright (2019) to fΨ̂ = Γ∗(ΠΦ̂g
∗),

where ΠΦ̂ is the projection operator onto Φ̂ in L2(PX ), and fΨ̂ is the projection of f∗ onto HΨ̂ w.r.t.
⟨·, ·⟩HΓ

. Therefore, we need to bound Gn(δ;F0) and R̄n(δ;F∗). We start with the following uniform
bound:
Proposition 2. If f = Γ∗g, and ∥g∥PA ≤ T , then |f(x)| ≤ κT for all x.

Proof. By Eqn. (8), we have p(a|x) =
∑

i

√
λiϕi(a)ψi(x)p(a). For any g =

∑
i uiϕi ∈ L2(PA)

such that ∥g∥PA ≤ T , (Γ∗g)(x) =
∫
g(a)p(a|x)da =

∑
i

√
λiuiψi(x). Then, by Cauchy-Schwarz

inequality, we have for all x, f(x)2 = (Γ∗g)(x)2 ≤ (
∑

i λiψi(x)
2)(
∑

i u
2
i ) ≤ κ2T 2.

This proposition immediately implies that f∗ and fΨ̂ are uniformly bounded:

Corollary 3. For any f∗ ∈ FB(Γ; ϵ), Eqn. (1) ensures that ∥g∗∥2PA
≤ B2

1−ϵ , so |f∗(x)| ≤ κB√
1−ϵ

for

all x. Moreover, ∥ΠΦ̂g
∗∥PA ≤ ∥g∗∥PA implies that ∥fΨ̂∥HΓ

≤ B√
1−ϵ

, and |fΨ̂(x)| ≤
κB√
1−ϵ

for all
x.

We will also use the following simple result in linear algebra:
Lemma 4. Let Dλ = diag(λ1, λ2, · · · ) where λ1 ≥ λ2 ≥ · · · ≥ 0 and λi → 0. Let Q be a matrix
with d rows that are unit vectors. Then, Tr(QDλQ

⊤) ≤ λ1 + · · ·+ λd.

Proof. Let qi be the i-th column of Q. Then for all j ∈ [d], there is
∑j

i=1 q
⊤
i qi ≤ j. And for j > d,∑j

i=1 q
⊤
i qi ≤ d. Thus, using Abel transformation, we have

Tr(QDλQ
⊤) = Tr(DλQ

⊤Q) =

∞∑
i=1

λiq
⊤
i qi =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)
(λj − λj+1) ≤

d∑
i=1

λi,

which proves the assertion.

This result has many implications. For instance, for any rank-d subspace of HΓ, its trace (the sum of
its eigenvalues) is at most Sλ(d).

Now, let us bound Gn(δ;F0) with the following result:

9
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Lemma 5. (Application of Wainwright (2019, Lemma 13.22)) Let H be an RKHS with reproducing
kernel K. Given samples x̃1, · · · , x̃n, let K be the normalized kernel matrix with entries K(i, j) =
K(x̃i, x̃j)/n. Let µ1 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of K. Then for all δ > 0, we have

E

[
sup

∥f∥H≤T,∥f∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ωif(x̃i)

∣∣∣∣∣
]
≤
√

2

n

√√√√ n∑
j=1

min{δ2, µjT 2}, (15)

where ω1, · · · , ωn are i.i.d. N (0, 1) variates. We apply this result to K = KX . By Definition 1, all
elements on the diagonal of K are at most κ2/n, so

∑
j µj = Tr(K) ≤ κ2. Thus, we have

Gn(δ;F0) ≤

√
8κ2B2

n(1− ϵ)
for any HΨ̂. (16)

Regarding R̄n(δ;F∗), F∗ is also a subset of RKHS Ĥ∗, which is the linear span of Ψ̂ and f∗, and
is a subspace of HΓ whose rank is at most (d+ 1). By Lemma 4, the sum of eigenvalues of Ĥ∗ is
at most Sλ(d + 1). Since ∥f∗∥HΓ

≤ B√
1−ϵ

, all f ∈ F∗ satisfy ∥f∥HΓ
≤ 2B√

1−ϵ
. So we have the

following bound for R̄n(δ;F∗):

Lemma 6. (Application of Wainwright (2019, Corollary 14.5)) Let µ1, µ2, · · · be the eigenvalues of
the RKHS Ĥ∗. Since rank(Ĥ∗) ≤ rank(HΨ̂) + 1, we have

R̄n(δ;F∗) ≤
√

2

n

√√√√ ∞∑
j=1

min

{
δ2,

4µjB2

1− ϵ

}
≤

√
8B2

n(1− ϵ)
Sλ(d+ 1) if rank(HΨ̂) ≤ d, (17)

and for an arbitrary HΨ̂, we can simply replace Sλ(d+ 1) with Sλ.

C.2 PROOFS

Lemma 7. Suppose ν1, · · · , νn are i.i.d. N (0, σ2) variates. If Φ̂ has d dimensions (d can be ∞),
then we have the following uniform bound over all f∗ = Γ∗g∗ ∈ FB(Γ; ϵ):

P
x̃i,νi

[
∀f∗ ∈ FB(Γ; ϵ), ∥f̂ − f∗∥2PX

≤ 9∥fΨ̂ − f∗∥2PX
+
c0κ(B

2 + σB)

1− ϵ

√
Sλ(d+ 1)

n

]

≥ 1− c1 exp

(
−
c2
√
2nSλ(d+ 1)

κ

)
− exp

(
−
√

2nκ2B2

1− ϵ

)
,

where fΨ̂ = Γ∗(ΠΦ̂g
∗) is the projection of f∗ onto HΨ̂ w.r.t. ⟨·, ·⟩HΓ , and c0, c1, c2 are universal

constants. Moreover, Sλ(d+ 1) ≤ min
{
d+ 1, κ2

}
.

Proof. By Proposition 2, all functions in F∗ are b-uniformly bounded, with b = 2κB√
1−ϵ

. And
obviously F∗ is star-shaped, meaning that for all f ∈ F∗ and all β ∈ [0, 1], βf ∈ F∗. Let

t2 = b ·
√

8B2

n(1−ϵ)Sλ(d+ 1) ≥ bR̄n(δ;F∗). Then, by Wainwright (2019, Theorem 14.1), we have

P
[∣∣∥f∥2n − ∥f∥2PX

∣∣ ≥ 1

2
∥f∥2PX

+
t2

2

]
≤ c1 exp

(
−c2

nt2

b2

)
for all f ∈ F∗ (18)

for universal constant c1, c2. We know that f̂ − f∗ ∈ F∗ and fΨ̂ − f∗ ∈ F∗, which means that

P
[(

∥f̂ − f∗∥2PX
≥ 2∥f̂ − f∗∥2n + t2

)
∨
(
∥fΨ̂ − f∗∥2n ≥ 3

2
∥fΨ̂ − f∗∥2PX

+
t2

2

)]
≤ c1 exp

(
−c2

nt2

b2

)
.

(19)
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Let δ2n = 2σ
√

8κ2B2

n(1−ϵ) . By Lemma 5, we have δ2n ≥ 2σGn(δn;F0). And F0 is also star-shaped. Thus,

by setting γ = 1/2 in Wainwright (2019, Theorem 13.13), we have*

P
[
∥f̂ − f∗∥2n ≥ 3∥fΨ̂ − f∗∥2n + 32δ2n

]
≤ exp

(
−nδ

2
n

2σ2

)
. (20)

Combining the two inequalities above with the union bound, we obtain the result.

Now we prove Lemma 9. Without loss of generality, suppose h1, · · · , hd′ are linearly independent.
Let Ĥd′ := span{h1, · · · , hd′}. Let g∗ = g0 + βg1, where g0 = ΠĤd′

g∗, g1 ⊥ g0, and ∥g1∥PA = 1.
So by Lemma 4, we have:

Proposition 8. ∥Γ∗(G
−1/2
h h1)∥2PX

+ · · ·+ ∥Γ∗(G
−1/2
h hd′)∥2PX

+ ∥Γ∗g1∥2PX
≤ λ1 + · · ·+ λd′+1.

Proof. Let
[
G

−1/2
h h1, · · · ,G−1/2

h hd′ , g1

]
= QΦ∗, where Q is a matrix with (d′ + 1) orthonormal

rows. Then,
[
Γ∗(G

−1/2
h h1), · · · ,Γ∗(G

−1/2
h hd′),Γ∗g1

]
= QDλ

1/2Φ∗. Thus, we have

∥Γ∗(G
−1/2
h h1)∥2PX

+ · · ·+ ∥Γ∗(G
−1/2
h hd′)∥2PX

+ ∥Γ∗g1∥2PX
= Tr(QDλQ

⊤).

Then, applying Lemma 4 completes the proof.

Remark. This proposition is the functional version of Fan (1949, Theorem 1).

Notice that ∥Γ∗(G
−1/2
h h1)∥2PX

+· · ·+∥Γ∗(G
−1/2
h hd′)∥2PX

= Tr(G
−1/2
h FhG

−1/2
h ) = Tr(G−1

h Fh).
With this, we can prove the following:

Lemma 9. For any f∗ ∈ FB(Γ; ϵ), there is

∥fΨ̂ − f∗∥2PX
≤ τ2

1− τ2
τ + ϵ

1− ϵ
B2.

Proof. Let α2 = ∥g0∥2PA
, and β2 = ∥g0− g∗∥2PA

. By Corollary 3, α2+β2 ≤ B2

1−ϵ . Eqn. (1) implies
that

(1− ϵ)(α2 + β2) ≤ ∥Γ∗(g0 + βg1)∥2PX
≤ α2 + β2τ2 + 2αβτ,

since ∥Γ∗g0∥2PX
≤ ∥g0∥2PA

= α2, and ∥Γ∗g1∥2PX
≤ τ2 by Proposition 8. Thus,

(1− τ2)β2 ≤ ϵ(α2 + β2) + 2αβτ ≤ (ϵ+ τ)(α2 + β2) ≤ (ϵ+ τ)
B2

1− ϵ
.

Thus, we have ∥fΨ̂ − f∗∥2PX
= ∥Γ∗(g0 − g∗)∥2PX

= β2∥Γ∗g1∥2PX
≤ β2τ2, which leads to the

inequality we need to prove. Finally, by setting hi = ϕ̂i, we can see that τ2 ≤ Sλ(d+1)−Tr(G−1F ).
And for all d′ ≤ d, Tr(G−1

h Fh) ≤ Sλ(d
′), so τ2 ≥ λd+1.

D PROOF OF THEOREM 2

Proposition 10. For any Ψ̂ = [ψ̂1, · · · , ψ̂d] where ψ̂i ∈ L2(PX ), it holds that

err(Ψ̂;FB(Γ; ϵ)) ≥
λd+1

1− λd+1

ϵ

1− ϵ
B2 given that

λd+1

1− λd+1

ϵ

1− ϵ
≤ 1

2
. (21)

To attain equality, it is sufficient for Ψ̂ to span the top-d eigenspace, and also necessary if λd+1 < λd.

*Please refer to the proof of Wainwright (2019, Theorem 13.13) for removing the universal constants in this
theorem.

11



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Proof. Necessity: Since Ψ̂ is at most rank-d, there must be a function in span{ψ1, · · · , ψd+1}
that is orthogonal to Ψ̂. Thus, we can find two functions f1, f2 ∈ span{ψ1, · · · , ψd+1} such that:
∥f1∥PX = ∥f2∥PX = 1, f1 is orthogonal to Ψ̂, f2 = u⊤Ψ̂ (which means that f2 ⊥ f1), and
ψ1 ∈ span{f1, f2}. Recall that λ1 = 1, and ψ1 ≡ 1. Let ψ1 = α1f1 + α2f2, then α2

1 + α2
2 = 1.

Without loss of generality, suppose α1, α2 ∈ [0, 1]. Let f0 = α2f1 − α1f2. Then, ∥f0∥PX = 1,
f0 ⊥ ψ1. Note that we also have ⟨ψ1, f0⟩HΓ = 0 by duality. Let β1, β2 ∈ [0, 1] be any value such
that f = β1ψ1 + β2f0 satisfies ∥f∥2PX

= β2
1 + β2

2 = 1, and ∥f∥2HΓ
≤ 1

1−ϵ . This is satisfied as long

as β2
2 ≤ ϵ

1−ϵ
λd+1

1−λd+1
, because ∥f∥2HΓ

≤ β2
1 +

β2
2

λd+1
= 1 + 1−λd+1

λd+1
β2
2 ≤ 1

1−ϵ . Moreover, we have
Bf ∈ FB(Γ; ϵ).

It is easy to show that F (α1) = α1β1 + α2β2 = α1β1 +
√

1− α2
1β2 (α1 ∈ [0, 1]) first increases

then decreases, so F (α1)
2 ≥ min

{
F (0)2, F (1)2

}
= min

{
β2
1 , β

2
2

}
, which can be ϵ

1−ϵ
λd+1

1−λd+1
in

the worst case given that it is at most 1
2 , in which case the prediction error of Bf is ∥B(α1β1 +

α2β2)f1∥2PX
= F (α1)

2B2 = ϵ
1−ϵ

λd+1

1−λd+1
B2. Thus, for any Ψ̂, we can find a function Bf ∈

FB(Γ; ϵ) such that minw err(w⊤Ψ̂, Bf) ≥ ϵ
1−ϵ

λd+1

1−λd+1
B2.

When λd > λd+1, to attain equality, we need α1 = 0, and ∥f∥2HΓ
= β2

1 +
β2
2

λd+1
, which means that

f0 = ψd+1. Thus, only f1 = f0 = ψd+1 is orthogonal to Ψ̂, so Ψ̂ must span the top-d eigenspace.

Sufficiency: Suppose Ψ̂ spans the top-d eigenspace. For any f ∈ FB(Γ; ϵ) such that f =
∑

i uiψi,
we have

∑
i u

2
i ≤ B2, and

∑
i
1−ϵ−λi

λi
u2i ≤ 0. Let a =

∑
i≥d+1 u

2
i and b =

∑d
i=1 u

2
i . Then,

a = minw err(w⊤Ψ̂, f), and a+ b ≤ B2. So we have

0 ≥
∑
i

1− ϵ− λi
λi

u2i ≥ −ϵb+ 1− ϵ− λd+1

λd+1
a

(
since

1− ϵ− λ

λ
decreases with λ

)
≥ −ϵ(B2 − a) +

1− ϵ− λd+1

λd+1
a

= −ϵB2 + (1− ϵ)
1− λd+1

λd+1
a,

which combined with the necessity part implies that err(Ψ̂;FB(Γ; ϵ)) =
ϵ

1−ϵ
λd+1

1−λd+1
B2.

Lemma 11. Suppose there exists a constant C > 0 such that EPA [g
4] ≤ C2∥g∥2PA

, for all g = w⊤Φ̂
where ∥g∥PA ≤ 1. Then, for any δ > 0, it holds with probability at least 1− δ that

|Tr(Ĝ−1F̂ )− Tr(G−1F )| ≤

(
2 +

√
2 log

2

δ

)
Cκ+ κ2√

N
d. (22)

Proof. Since multiplying an invertible d × d matrix to Φ̂ does not change either Tr(Ĝ−1F̂ ) or
Tr(G−1F ), for simplicity let us multiply G−1/2 to Φ̂, so that ⟨ϕ̂i, ϕ̂j⟩PA = δi,j for all i, j ∈ [d] (i.e.
G = I). Define F1 = {f ∈ HΓ | ∥f∥HΓ

≤ 1}. Its Rademacher complexity is given by

RN (F1) = E
x1,··· ,xN

E
σ1,··· ,σN

[
sup
f∈F1

1

N

N∑
k=1

σkf(xk)

]
. (23)

By Mohri et al. (2018, Theorem 6.12), we have RN (F1) ≤ κN−1/2. Moreover, by Proposition 2, all
f ∈ F1 satisfy |f(x)| ≤ κ for all x. Thus, by Wainwright (2019, Theorem 4.10), for any δ > 0, with
probability at least 1− δ/2, it holds for all f ∈ F1 that∣∣∣∣∣ 1N

N∑
k=1

f(xk)− E[f(X)]

∣∣∣∣∣ ≤ 2RN (F1) + κ

√
2

N
log

2

δ
≤

(
2 +

√
2 log

2

δ

)
κ√
N
. (24)

12
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Define matrix M = Ĝ−1/2F̂ Ĝ−1/2 = (mi,j)i,j∈[d]. ∥M∥2 ≤ 1, so
∑d

i=1m
2
i,j ≤ 1 for all j ∈ [d].

Consider Tr((I − Ĝ)M). For any j ∈ [d], we have

((I − Ĝ)M)(j, j) =

〈
ϕ̂j ,

d∑
i=1

mi,j ϕ̂i

〉
P̂A

−

〈
ϕ̂j ,

d∑
i=1

mi,j ϕ̂i

〉
PA

.

Note that
∥∥∥∑d

i=1mi,j ϕ̂i

∥∥∥
PA

≤ 1, so
∥∥∥ϕ̂j (∑d

i=1mi,j ϕ̂i

)∥∥∥2
PA

≤

√
E[ϕ̂4j ]E

[(∑d
i=1mi,j ϕ̂i

)4]
≤

C2, which means that C−1Γ∗
(
ϕ̂j

(∑d
i=1mi,j ϕ̂i

))
∈ F1. So if Eqn. (24) holds, then for all j ∈ [d],

we have

((I − Ĝ)M)(j, j) =

∣∣∣∣∣ 1N
N∑

k=1

Γ∗

(
ϕ̂j

(
d∑

i=1

mi,j ϕ̂i

))
(xk)− E

[
Γ∗

(
ϕ̂j

(
d∑

i=1

mi,j ϕ̂i

))
(X)

]∣∣∣∣∣
≤

(
2 +

√
2 log

2

δ

)
Cκ√
N
,

which implies that

Tr
(
Ĝ−1F̂ − F̂

)
= Tr

(
Ĝ−1/2(I − Ĝ)Ĝ−1/2F̂

)
= Tr

(
(I − Ĝ)M

)
≤

(
2 +

√
2 log

2

δ

)
Cκd√
N
.

Next, define F2 = {f1f2 | f1, f2 ∈ HΓ, ∥f1∥HΓ ≤ 1, ∥f2∥HΓ ≤ 1}. By Proposition 12 (proved
after this lemma), we have RN (F2) ≤ κ2N−1/2. And all f ∈ F2 satisfy |f(x)| ≤ κ2 for all x by
Proposition 2. So with probability at least 1− δ/2, we have for all f ∈ F2,∣∣∣∣∣ 1N

N∑
k=1

f(xk)− E[f(X)]

∣∣∣∣∣ ≤ 2RN (F2) + κ2
√

2

N
log

2

δ
≤

(
2 +

√
2 log

2

δ

)
κ2√
N
. (25)

Note that ∥ψ̂i∥HΓ ≤ 1. So under Eqn. (25), we have for all i, j ∈ [d],

∣∣∣⟨ψ̂i, ψ̂j⟩P̂X
− ⟨ψ̂i, ψ̂j⟩PX

∣∣∣ = ∣∣∣∣∣ 1N
N∑

k=1

ψ̂i(xk)ψ̂j(xk)− E[ψ̂iψ̂j ]

∣∣∣∣∣ ≤
(
2 +

√
2 log

2

δ

)
κ2√
N
,

which implies that Tr
(
F̂ −G−1F

)
= Tr

(
F̂ − F

)
≤
(
2 +

√
2 log 2

δ

)
κ2d√
N

.

Finally, applying the union bound completes the proof.

Proposition 12. Let F2 = {f1f2 | f1, f2 ∈ HΓ, ∥f1∥HΓ
≤ 1, ∥f2∥HΓ

≤ 1}. Then, RN (F2) ≤ κ2
√
N

.

Proof. For any h(x) = f1(x)f2(x) ∈ F2, let f1 = Γ∗g1 and f2 = Γ∗g2, where ∥g1∥PA ≤ 1 and
∥g2∥PA ≤ 1. Let g1 =

∑
i uiϕi and g2 =

∑
i viϕi. Let u = [u1, u2, · · · ] and v = [v1, v2, · · · ].

Then, ∥u∥2 ≤ 1 and ∥v∥2 ≤ 1. And we have f1 =
∑

i λ
1/2
i uiψi, and f2 =

∑
i λ

1/2
i viψi.

For any x ∈ X , let Ψ(x) = [λ
1/2
1 ψ1(x), λ

1/2
2 ψ2(x), · · · ]. Then, f1(x) = u⊤Ψ(x) and f2(x) =

v⊤Ψ(x). Denote Ψk = Ψ(xk). Then, Ψ⊤
k Ψk ≤ κ2 for all k ∈ [N ]. So for any S = {x1, · · · , xN},

13
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the empirical Rademacher complexity satisfies

R̂S(F2) ≤ E
σ

[
sup

∥u∥2≤1,∥v∥2≤1

∣∣∣∣∣ 1N
N∑

k=1

σku
⊤ΨkΨ

⊤
k v

∣∣∣∣∣
]

≤ 1

N
E
σ

[∥∥∥∥∥
N∑

k=1

σkΨkΨ
⊤
k

∥∥∥∥∥
2

]

≤ 1

N
E
σ

[∥∥∥∥∥
N∑

k=1

σkΨkΨ
⊤
k

∥∥∥∥∥
F

]

=
1

N
E
σ

Tr
( N∑

k=1

σkΨkΨ
⊤
k

)⊤( N∑
l=1

σlΨlΨ
⊤
l

)1/2


≤ 1

N

√√√√√E
σ

Tr
 N∑

k,l=1

σkσlΨkΨ⊤
k ΨlΨ⊤

l

 (Jensen)

=
1

N

√√√√√Tr

 N∑
k,l=1

E[σkσl]ΨkΨ⊤
k ΨlΨ⊤

l


=

1

N

√√√√Tr

(
N∑

k=1

ΨkΨ⊤
k ΨkΨ⊤

k

)

≤ 1

N

√
Nκ4 =

κ2√
N
.

Then, since RN (F2) = ES [R̂S(F2)], we obtain the result.

Lemma 13. Suppose ϕ̂i = ϕ̄i for i ∈ [d]. Let γG := λmax(G)/λmin(G), which is the condition
number of G. Then, for any δ > 0, both

d∑
j=1

λ̄j ≥
d∑

i=1

λi −

(
2 +

√
2 log

2

δ

)
(λ−1

d + 1)κ2√
N

d

and Eqn. (22) with C = κλ̄−1
d γ

1/2
G hold simultaneously for HΨ̂ = Ĥd with probability at least 1− δ.

Proof. Denote Φ∗
d = [ϕ1, · · · , ϕd] and Φ̄∗

d = [ϕ̄1, · · · , ϕ̄d]. Let Φ̄∗
d = PΦ∗, where P is a

matrix with d rows. Observe that for any g =
∑

i uiϕ̄i such that ∥g∥PA ≤ 1, we have g =

Γ̄Γ∗ (∑
i λ̄

−1
i uiϕ̄i

)
. Let u = (u1, · · · , ud), then there is g = u⊤Φ̄∗

d = u⊤PΦ∗, so ∥P⊤u∥2 ≤ 1.
Thus, we have ∥

∑
i λ̄

−1
i uiϕ̄i∥PA = ∥P⊤D−1

λ̄d u∥2 = ∥P⊤D−1
λ̄d (PP⊤)−1PP⊤u∥2.

So we just need to show that ∥P⊤D−1
λ̄d (PP⊤)−1P ∥2 ≤ λ̄−1

d γ
1/2
G . ∥P⊤D−1

λ̄d (PP⊤)−1P ∥2 is
equal to the square root of the largest eigenvalue of P⊤D−1

λ̄d (PP⊤)−1D−1
λ̄d P , and by using two

simple linear algebra exercises: (i) λmax(AB) ≤ λmax(A)λmax(B) for positive definite matrices
A and B, and (ii) AB and BA share the same non-zero eigenvalues (Sylvester’s Theorem), and the
fact that G = PP⊤, we can show that the largest eigenvalue of this matrix is at most λ̄−2

d γG.

Therefore, we have ∥P⊤D−1
λ̄d (PP⊤)−1P ∥2 ≤ λ̄−1

d γ
1/2
G , which combined with ∥P⊤u∥2 ≤ 1

implies that ∥
∑

i λ̄
−1
i uiϕ̄i∥PA ≤ λ̄−1

d γ
1/2
G . By Proposition 2, |Γ∗ (∑

i λ̄
−1
i uiϕ̄i

)
(x)| ≤ κλ̄−1

d γ
1/2
G

for all x, so we have |Γ̄Γ∗ (∑
i λ̄

−1
i uiϕ̄i

)
(a)| = |

∫
Γ∗ (∑

i λ̄
−1
i uiϕ̄i

)
(x)p(x|a)dx| ≤ κλ̄−1

d γ
1/2
G

for all a. This means that with C = κλ̄−1
d γ

1/2
G , g satisfies the condition of Lemma 11. Therefore,

with probability at least 1− δ, both Eqn. (24) and Eqn. (25) hold and they lead to Eqn. (22).
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Now let Φ∗
d = QΦ̄∗, where Q is a matrix with d rows. Consider two matrices QQ⊤,QDλ̄Q

⊤ ∈
Rd×d where Dλ̄ = diag(λ̄1, λ̄2, · · · ), for which we have

(QQ⊤)(i, j) = ⟨ϕi, ϕj⟩P̂A
and (QDλ̄Q

⊤)(i, j) = ⟨Γ∗ϕi,Γ
∗ϕj⟩P̂X

.

We have (⟨ϕi, ϕj⟩PA)i,j∈[d] = I and (⟨Γ∗ϕi,Γ
∗ϕj⟩PX )i,j∈[d] = Dλd := diag(λ1, · · · , λd). More-

over, for any g = u⊤Φ∗
d such that ∥g∥PA ≤ 1, there is g = ΓΓ∗ (∑

i λ
−1
i uiϕi

)
, and obviously

∥
∑

i λ
−1
i uiϕi∥PA ≤ λ−1

d . Thus, we can show that for all a, |g(a)| ≤ κλ−1
d , which means that Φ∗

d

satisfies the fourth-moment control assumption in Lemma 11 with C ′ = κλ−1
d . So similar to the

proof of Lemma 11, for all u ∈ Rd such that ∥u∥2 ≤ 1, we can show that

∣∣u⊤(QQ⊤ − I)u
∣∣ = ∣∣∣〈u⊤Φ∗

d,u
⊤Φ∗

d

〉
P̂A

−
〈
u⊤Φ∗

d,u
⊤Φ∗

d

〉
PA

∣∣∣ ≤ (2 +√2 log
2

δ

)
κ2λ−1

d√
N

,

which implies that ∥QQ⊤∥2 ≤ 1 +
(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

. It is easy to show that all non-zero

eigenvalues of Q⊤Q are also eigenvalues of QQ⊤, so ∥Q⊤Q∥2 ≤ 1 +
(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

.
Moreover, similar to the proof of Lemma 11, we can show that for all i, j ∈ [d],

∣∣(QQ⊤ − I
)
(i, j)

∣∣ ≤ (2 +√2 log
2

δ

)
κ2λ−1

d√
N

; (26)

∣∣(QDλ̄Q
⊤ −Dλd

)
(i, j)

∣∣ ≤ (2 +√2 log
2

δ

)
κ2√
N
. (27)

Let qi be the i-th column of Q. Then for all i ∈ [d], q⊤
i qi ≤ 1 +

(
2 +

√
2 log 2

δ

)
κ2λ−1

d√
N

. And we

also have
∑∞

i=1 q
⊤
i qi = Tr(Q⊤Q) = Tr(QQ⊤) ≤ d+

(
2 +

√
2 log 2

δ

)
κ2λ−1

d d√
N

. Thus, we have

d∑
i=1

λi −

(
2 +

√
2 log

2

δ

)
κ2√
N
d ≤ Tr(QDλ̄Q

⊤) = Tr(Dλ̄Q
⊤Q)

=

∞∑
i=1

λ̄iq
⊤
i qi =

∞∑
j=1

(
j∑

i=1

q⊤
i qi

)
(λ̄j − λ̄j+1)

≤
d∑

i=1

λ̄i

[
1 +

(
2 +

√
2 log

2

δ

)
κ2λ−1

d√
N

]
≤

d∑
i=1

λ̄i +

(
2 +

√
2 log

2

δ

)
κ2λ−1

d d√
N

,

which proves the assertion.
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