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Figure 1. Any4D is a feed-forward model capable of producing dense 4D reconstructions of dynamic scenes. Any4D is flexible in
accommodating diverse sensor inputs to improve performance, can produce predictions upto 72% faster than existing methods. Note that
while Any4D produces both dense 3D tracking vectors, the figure above only visualizes the sparse motion tracks.

Abstract

We present Any4D, a framework for feed-forward metric-
scale dense 4D reconstruction. Compared to other recent
methods for feedforward 4D reconstruction from monocu-
lar RGB videos, Any4D is multimodal due to its focus on
diverse camera setups, allowing it to process additional
modalities and sensors when available, such as RGB-D
frames, IMU-based egomotion and Doppler measurements
from Radar. Moreoever, Any4D can directly generate dense
feedforward predictions for N frames, in contrast to prior
work that typically focuses on either 2-view dense scene
flow or sparse 3D point tracking. One of the innovations
that allow for such flexible input modalities is a modular
approach to representing the 4D scene; specifically, 4D

predictions are encoded using a variety of egocentric fac-
tors (such as depthmaps and camera intrinsics) represented
in local camera coordinates, as well as allocentric factors
(such as camera extrinsics and scene flow) represented in
global world coordinates. We show that Any4D achieves
superior performance over existing methods across diverse
sensor setups - both in terms of accuracy and compute ef-
ficiency, opening up avenues for real-time deployment in
downstream robotics applications.

1. Introduction

Reconstructing the 4D (3D + t) world from sensor obser-
vations has been a long-standing goal of computer vision.
Such a technology can unlock transformative capabilities


https://jaykarhade.github.io/
https://nik-v9.github.io/
https://www.linkedin.com/in/tanisha-gupta-2a1934221
https://infinity1096.github.io/
https://akashsharma02.github.io/
https://theairlab.org/team/sebastian/
https://www.cs.cmu.edu/~deva/
https://www.ri.cmu.edu/

View 1

Optional inputs

B s

Rays

Depth

Pose Doppler

v

View encoder

L&

Ray
depth

Pose
Rotation

Translation
direction

Image encoder
(DINOv2)

Ray
directions

izl e |

Scale token View 1 Patch tokens

Reference view token

O OO0 OOOBO

View 2 Optional inputs

l =« I

Shared weights

RGB Rays Pose Depth Doppler
View encoder
[Image encoder] [ Ray ] [ Ray } [ Translation ] [ Pose ]
(DINOv2) directions depth direction Rotation
View 2 Patch tokens

[

Self-attention transformer

© O0COOCOCOOO

SCOOCOCOCOCOO

/ & DPT (Scene flow & Motion) /

\Scale MLP / \ Pose head / & DPT (Geometry)

]

Ray direction maps

Metric scale
factor

Camera poses

Scene Flow

Predicted Depth maps

Figure 2. Any4D produces dense 4D metric-scale 4D reconstruction of a scene in the form of factorised outputs consisting of ego-centric
factors such scale factor, depth maps, ray directions and allo-centric factors such as normalized forward scene flow and camera poses. Note
that while we show only 2 views for simplicity, Any4D can take arbitrary number of views at test time.

across a wide range of downstream tasks. In generative Al,
for instance, 4D reconstruction can improve dynamic video
synthesis, video editing and understanding, as well as the
creation of interactive dynamic assets such as VR avatars.
In robotics, 4D reconstruction can improve predictive con-
trol (MPC) for robot navigation and manipulation[16].

While there has been tremendous progress in recent his-
tory on 4D reconstruction [9, 17, 20, 26], dynamic recon-
struction remains challenging for many reasons. First, 4D
reconstruction is severely under-constrained, requiring en-
vironment simplifying assumptions such as rigid motion,
smoothness priors, or a mostly-static world. Second, be-
cause 4D reconstruction and tracking is such a challeng-
ing problem, marked progress has been achieved by treat-
ing dynamic attribute prediction as independent sub tasks
(i.e., 2D/3D tracking [5, 6, 15, 23, 25], video-consistent
depth estimation[7, 10, 21, 26], scene flow estimation
[11, 14, 18, 22] in dynamic scenes). Third, this focus on
sub-tasks has led to fragmented datasets and benchmarks
that lack consistent and coherent 4D annotations.

In this work, we focus on 4D reconstruction for the mo-
tivating task of autonomous robots. This in turn motivates
us to seek a solution with following desiderata: a) met-

ric scale outputs: while most existing 4D reconstruction
methods produce outputs in a normalized coordinate frame,
physical agents undeniably operate in the metric-scale phys-
ical world; b) multimodal inputs: Many robotic platforms
make use of additional sensors[2, 4? ], but most prior work
fails to exploit such diverse configurations. c) efficiency:
much prior work often makes use of iterative optimization-
based methods that maybe too slow for real-time deploy-
ment.

We present Any4D, a unified framework for feed-
forward metric-scale, multimodal, and dense 4D recon-
struction from arbitrary image sequences, whilst being up
to 72% faster than baselines. Concretely, we propose the
following 3 contributions:

* Dense metric-scale 4D reconstruction: Any4D predicts
the dense geometry and motion of the scene in metric
coordinates, unlike existing methods that can reconstruct
only up-to-scale or sparse tracks. To do so, we exploit our
factored 4D representation and train on diverse datasets
with partial annotations, including metric-scale 3D recon-
struction datasets without motion annotations as well as
non-metric datasets with motion annotations.

* Multi-modal conditioning: When available, Any4D im-



Method Scale PStudio Dynamic Replica Drive Track
absrel | | EPE] Inlierst Outliers| | EPE| Inlierst Outliers| | EPE| Inlierst Outliers |

Monst3R + CoTracker3 - 0.6561  0.2641 0.6789 0.8108  0.3577 0.5208 11.0635  0.1363 0.7163
VGGT + CoTracker3 0.4405  0.3630 0.3124 0.7465  0.4336 0.4918 6.2421 0.5281 0.3356
SpaTrackv2 0.3215  0.5957 0.1765 0.6879  0.6062 0.2313 47475  0.6239 0.2812

| Any4D Image-Only | 15% [04129 05298 03320 | 0.0803 09513  0.0282 | 3.9670  0.7008 ~ 0.1800 |
Any4D Images + Geometry + Doppler 0.3352  0.6092 0.2675 0.07219  0.9576 0.0206 3.598 0.7031 0.1458

| Any4D-SpaTrackv2 Image-Only | 1.5% [ 03398 07202 ~ 0.1549 [ 07009 ~0.5791 024110 | 3.683 0738  0.1534 |
Any4D-SpaTrackv2 Images + Geometry + Doppler - 0.1911  0.7846 0.1156 0.6908  0.5651 0.238 3.435 0.752 0.1367

Table 1. Any4D achieves state-of-the-art performance on all methods, while also predicting geometry and motion in metric scale unlike
other baselines which produce upto-scale tracking and reconstruction.

proves 4D reconstruction by exploiting modalities like
depth, poses, and Doppler from additional sensors.

* Efficient feed-forward reconstruction: Any4D infers
both geometry and motion from images in a single feed-
forward pass, while also being a strong front-end model
that improves joint-optimization based methods.

2. Any4D

Any4D is a framework for producing dense metric-scale 4D

reconstruction in a feed-forward manner exploiting multi-

modal sensor inputs usually forming the sensing package
in robots, including RGB cameras, and optionally depth,

IMU based depth, and doppler measurements from radar.

Any4D takes as input, a set of RGB images I = {I;}¥,

and optional auxiliary multi-modal sensor inputs denoted as

O 2 (0;)N.,. Any4D is a function that maps these inputs

to a factored output representation:

AnydD(L,0) = (3, {R;, Di. T, YLy, (1)
where specifically the optional inputs O can contain infor-
mation such as depth maps, calibrated camera intrinsics,
camera poses from IMUs and measured doppler velocity
from RADAR. The output on the other hand represented
with ~ is a factored representation of the 4D scene, con-
sisting of a global metric scaling factor s € R, egocentric
quantities predicted in the camera coordinate frame, namely
« Predicted Ray directions per view R; € R3*#xW
* Normalized predicted depths along the rays per view

Di c RIXHXW

and allocentric quantities predicted in a world coordinate

frame chosen as the first view camera coordinate frame,

* Normalized forward scene flow from the first view to all
other views, denoted as F; € R3*HxW,

* Camera pose of each view in the coordinate system of the
first view T} £ [pi, q;] € R” represented using a transla-
tion vector and quaternion.

From this factorized representation, one can recover the pre-

dicted metric-scale geometry G and scene motion as M;

as:

Gi=3 R, Dy, M;=s-F, R>HxW
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Figure 3. Unlike prior methods, Any4D can produce compara-
ble results with just one single feed-forward pass. Note that in
the batched setting, Any4D processes multiple input views at once
demonstrating inference generalization to multiple input views.

3. Benchmarking

Benchmarks: There is a lack of standard and unified
benchmarks for evaluating 4D reconstruction in existing lit-
erature. On one hand, there are datasets for benchmark-
ing dynamic depth, while on the other hand there exist
benchmarks for egocentric 3D point-tracking and egocen-
tric scene-flow [1, 8, 12, 13]. Unfortunately, there exists no
standard benchmark for allocentric tracking or reconstruc-
tion. Hence, we take insipration from concurrent work [3]
and repurpose existing datasets to form an allocentric 4D
reconstruction benchmark. Unlike [3] we choose to drop
ADT due to the lack of motion in this dataset. We use
Parallel-Studio and Drive-Track datasets, and add Dynamic
Replica, which contains camera motion along with 3D point
tracking labels. The final benchmark contains 192 total se-
quences uniformly spread across the 3 datasets, and consist
of 50-64 frames sampled from each of the sequences.
Baselines and Metrics: We compare Any4D against
state-of-art dynamic 3D reconstruction reconstruction
methods with state of the art 2D point tracking algo-
rithms, including Monst3R [26](pairwise feedforward +
post-optimization) VGGT [19](N-view feedforward) with
CoTracker3[5] as 2D tracker, and SpatialTrackerv2 [24].



Figure 4. Qualitative Visualization of Any4D estimating 3D geometry and point tracking on diverse scenes

We evaluate these methods using predicted 3D points af-
ter motion in allocentric coordinates on end-point-error, in-
liers within 10 percent relative error, and outliers greater
than 15 percent relative error.

Results As we see from Table 1. , Any4D achieves
stronger results on all datasets compared to the feed-
forward baselines Monst3R and VGGT with CoTrackerv3
and can achieve over 20% higher inlier performance and 10-
15% lesser outliers across all datasets. Furthermore, while
SpaTrackv2 which is a recurrent joint-optimization method
indeed beats the feed-forward only model, Any4D shows
a strong boost when coupled with the recurrent joint opti-
mization, beating SpaTrackv2 by nearly 2x on EPE and upto
5-10% inlier rates. Any4D performance is further boosted
when conditioned with geometry and doppler resulting in
10% lower EPE and outliers.

4. Conclusion

In this paper, we presented Any4D, a unified model that en-
ables metric 4D reconstruction of dynamic scenes from both
monocular and multimodal setups. We chose a factorized
output representation of 4D scenes, which allows for using
diverse data with partial supervision for auxiliary sub-tasks
in addition to the target task of dense scene flow estima-
tion. Finally, due to the feed-forward nature of Any4D, we
showed that during inference one can obtain dynamic scene
estimates an order of magnitude faster than existing meth-
ods. Any4D generalizes to many different scenarios and can
be improved with more availability of large-scale 4D data.
We believe Any4D can serve as a foundation model prior,
enabling real-time 4D scene reconstruction for applications
such as Generative AI, AR/VR and Robotics.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual kitti 2. arXiv preprint arXiv:2001.10773, 2020. 3
Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Ben-
jamin Burchfiel, Siyuan Feng, Russ Tedrake, and Shu-
ran Song. Universal manipulation interface: In-the-wild
robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024. 2

Haiwen Feng, Junyi Zhang, Qianqgian Wang, Yufei Ye,
Pengcheng Yu, Michael J Black, Trevor Darrell, and Angjoo
Kanazawa. Stdrtrack: Simultaneous 4d reconstruction and
tracking in the world. arXiv preprint arXiv:2504.13152,
2025. 3

Tianshu Huang, Akarsh Prabhakara, Chuhan Chen, Jay
Karhade, Deva Ramanan, Matthew O’Toole, and Anthony
Rowe. Towards foundational models for single-chip radar.
arXiv preprint arXiv:2509.12482, 2025. 2

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker3: Simpler and better point tracking by pseudo-
labelling real videos. In arxiv, 2024. 2, 3

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together. In Proc. ECCV, 2024.
2

Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Ro-
bust consistent video depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1611-1621, 2021. 2

Skanda Koppula, Ignacio Rocco, Yi Yang, Joe Heyward,
Jodo Carreira, Andrew Zisserman, Gabriel Brostow, and Carl
Doersch. Tapvid-3d: A benchmark for tracking any point in
3d, 2024. 3

Jiahui Lei, Yijia Weng, Adam W Harley, Leonidas Guibas,
and Kostas Daniilidis. Mosca: Dynamic gaussian fusion
from casual videos via 4d motion scaffolds. In Proceedings
of the Computer Vision and Pattern Recognition Conference,
pages 6165-6177,2025. 2

Zhengqi Li, Richard Tucker, Forrester Cole, Qiangian Wang,
Linyi Jin, Vickie Ye, Angjoo Kanazawa, Aleksander Holyn-
ski, and Noah Snavely. Megasam: Accurate, fast, and ro-
bust structure and motion from casual dynamic videos. arXiv
preprint arXiv:2412.04463, 2024. 2

Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 529-537,2019. 2

Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nali-
vayko, and Andrés Bruhn. Spring: A high-resolution high-
detail dataset and benchmark for scene flow, optical flow
and stereo. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4981—
4991, 2023. 3

Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015. 3

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

Himangi Mittal, Brian Okorn, and David Held. Just go with
the flow: Self-supervised scene flow estimation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11177-11185, 2020. 2

Tuan Duc Ngo, Peiye Zhuang, Chuang Gan, Evange-
los Kalogerakis, Sergey Tulyakov, Hsin-Ying Lee, and
Chaoyang Wang. Delta: Dense efficient long-range 3d track-
ing for any video. arXiv preprint arXiv:2410.24211, 2024.
2

Dantong Niu, Yuvan Sharma, Haoru Xue, Giscard Biamby,
Junyi Zhang, Ziteng Ji, Trevor Darrell, and Roei Herzig. Pre-
training auto-regressive robotic models with 4d representa-
tions. arXiv preprint arXiv:2502.13142, 2025. 2

Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xi-
aohui Zeng, Karsten Kreis, Ziwei Liu, Antonio Torralba,
Sanja Fidler, Seung Wook Kim, and Huan Ling. L4gm:
Large 4d gaussian reconstruction model. In Advances in
Neural Information Processing Systems, 2024. 2

Zachary Teed and Jia Deng. Raft-3d: Scene flow using
rigid-motion embeddings. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. 2

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea
Vedaldi, Christian Rupprecht, and David Novotny. Vggt:
Visual geometry grounded transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2025. 3

Qiangian Wang, Vickie Ye, Hang Gao, Weijia Zeng, Jake
Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of mo-
tion: 4d reconstruction from a single video. In International
Conference on Computer Vision (ICCV), 2025. 2

Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi
Zheng, Jonathan T Barron, and Aleksander Holynski. Cat4d:
Create anything in 4d with multi-view video diffusion mod-
els. arXiv preprint arXiv:2411.18613,2024. 2

Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-)
supervised scene flow estimation. In European Conference
on Computer Vision, pages 88—-107. Springer, 2020. 2

Yuxi Xiao, Qiangian Wang, Shangzhan Zhang, Nan Xue,
Sida Peng, Yujun Shen, and Xiaowei Zhou. Spatialtracker:
Tracking any 2d pixels in 3d space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20406-20417, 2024. 2

Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, lurii
Makarov, Bingyi Kang, Xin Zhu, Hujun Bao, Yujun Shen,
and Xiaowei Zhou. Spatialtrackerv2: 3d point tracking made
easy. In ICCV, 2025. 3

Bowei Zhang, Lei Ke, Adam W Harley, and Katerina Fragki-
adaki. Tapip3d: Tracking any point in persistent 3d geome-
try. arXiv preprint arXiv:2504.14717, 2025. 2

Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jam-
pani, Trevor Darrell, Forrester Cole, Deqing Sun, and Ming-
Hsuan Yang. Monst3r: A simple approach for estimat-
ing geometry in the presence of motion. arXiv preprint
arXiv:2410.03825,2024. 2,3



	. Introduction
	. Any4D
	. Benchmarking
	. Conclusion

