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Abstract

aSparse subspace clustering methods with sparsity
induced by ℓ0-norm, such as ℓ0-Sparse Subspace
Clustering (ℓ0-SSC) [Yang et al., 2018], are demon-
strated to be more effective than its ℓ1 counterpart
such as Sparse Subspace Clustering (SSC) [Elham-
ifar and Vidal, 2013]. However, the theoretical anal-
ysis of ℓ0-SSC is restricted to clean data that lie
exactly in subspaces. Real data often suffer from
noise and they may lie close to subspaces. In this
paper, we show that an optimal solution to the op-
timization problem of noisy ℓ0-SSC achieves sub-
space detection property (SDP), a key element with
which data from different subspaces are separated,
under deterministic and semi-random model. Our
results provide theoretical guarantee on the correct-
ness of noisy ℓ0-SSC in terms of SDP on noisy data
for the first time, which reveals the advantage of
noisy ℓ0-SSC in terms of much less restrictive con-
dition on subspace affinity. In order to improve the
efficiency of noisy ℓ0-SSC, we propose Noisy-DR-
ℓ0-SSC which provably recovers the subspaces on
dimensionality reduced data. Noisy-DR-ℓ0-SSC
first projects the data onto a lower dimensional
space by random projection, then performs noisy
ℓ0-SSC on the projected data for improved effi-
ciency. Experimental results demonstrate the effec-
tiveness of Noisy-DR-ℓ0-SSC.

aYingzhen Yang’s work was conducted as a consult-
ing researcher at Baidu Research - Bellevue, WA, USA.

1 INTRODUCTION
Clustering is an important unsupervised learning proce-
dure for analyzing a broad class of scientific data. High-
dimensional data, such as facial images and gene expres-
sion data, often lie in low-dimensional subspaces in many
cases, and clustering in accordance to the underlying sub-
space structure is particularly important. Among various

subspace clustering algorithms, the ones that employ spar-
sity prior, such as Sparse Subspace Clustering (SSC) [El-
hamifar and Vidal, 2013] and ℓ0-Sparse Subspace Clustering
(ℓ0-SSC) [Yang et al., 2018], have been proven to be effec-
tive in separating the data in accordance with the subspaces
that the data lie in under certain assumptions. Furthermore,
Sparse Additive Subspace Clustering [Yuan and Li, 2014]
considers a nonlinear transformation of each data point such
that the transformed point can be linearly represented by
data in the same subspace as that point, extending the usual
linear representation by SSC.

Sparse subspace clustering methods construct the sparse sim-
ilarity matrix by sparse representation of the data. Subspace
detection property (SDP) defined in Section 2 ensures that
the similarity between data from different subspaces van-
ishes in the sparse similarity matrix, and applying spectral
clustering [Ng et al., 2001] on such sparse similarity ma-
trix leads to compelling clustering performance. Elhamifar
and Vidal [Elhamifar and Vidal, 2013] prove that when the
subspaces are independent or disjoint, SDP can be satisuy-
fied by solving the canonical sparse linear representation
problem using data as the dictionary, under certain con-
ditions on the rank, or singular value of the data matrix
and the principle angle between the subspaces. Under the
independence assumption on the subspaces, low rank repre-
sentation [Liu et al., 2013, Liu and Li, 2014, 2016] is also
proposed to recover the subspace structures. Relaxing the
assumptions on the subspaces to allowing overlapping sub-
spaces, the Greedy Subspace Clustering [Park et al., 2014]
and the Low-Rank Sparse Subspace Clustering [Wang et al.,
2013] achieve subspace detection property with high proba-
bility. The geometric analysis in Soltanolkotabi and Candés
[2012] shows the theoretical results on subspace recovery
by SSC. In the following, we use the term SSC or ℓ1-SSC
exchangeably to indicate the Sparse Subspace Clustering
method in Elhamifar and Vidal [2013].

Real data often suffer from noise. The correctness of noisy
SSC is analyzed in Wang and Xu [2013] which handles
noisy data that lie close to disjoint or overlapping subspaces,
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Table 1: Comparison between Different Subspace Clustering Methods in terms of Conditions Required under the Semi-Random Model.
Please refer to Section 1.2 for the definition of notations.

Methods or Assumptions Allowing Overlapping Subspaces Subspace Affinity

Greedy Subspace Clustering (GSC) [Park et al., 2014] Yes maxk,l∈[K] aff(Sk, Sl) <
C2 log n/K

log (d0Lδ−1)·log (nd0δ−1)

d0→∞
−→ 0

ℓ1-SSC [Elhamifar and Vidal, 2011], Noisy SSC [Wang and Xu, 2013] Yes maxk,l∈[K] aff(Sk, Sl) <
√
d0 · c̄

√
log ρ

8
√

2 log n

d0→∞
−→ 0

Affine Sparse Subspace Clustering (ASSC) [Li et al., 2018, You et al., 2019] No NA

Noisy ℓ0-SSC [Yang et al., 2018] Yes maxk,l∈[K] aff(Sk, Sl) <
σ′2
min

r0−1 > 0 for sufficiently large d0

and the original optimization problem of noisy SSC is pro-
posed in Elhamifar and Vidal [2013]. While Yang et al.
[2016], Yang [2018] prove the correctness of ℓ0-SSC or its
dimensionality reduced variant on clean data based on a
constrained ℓ0-minimization problem, it empirically solves
an unconstrained ℓ0-regularized problem to handle noise in
data, and they lack theoretical analysis on the correctness
of ℓ0-SSC on noisy data. fhandles noisy data that lie close
to disjoint or overlapping subspaces. While ℓ0-SSC [Yang
et al., 2018] has guaranteed clustering correctness via sub-
space detection property under much milder assumptions
than previous subspace clustering methods including SSC,
it assumes that the observed data lie in exactly in the sub-
spaces and does not handle noisy data. In this paper, we
present noisy ℓ0-SSC, which enhances ℓ0-SSC by theoret-
ical guarantee on the correctness of clustering on noisy
data. It should be emphasized that while ℓ0-SSC on clean
data [Yang et al., 2018] empirically adopts a form of opti-
mization problem robust to noise, it lacks theoretical analy-
sis on the correctness of ℓ0-SSC on noisy data. In this paper,
the correctness of noisy ℓ0-SSC on noisy data in terms of
the subspace detection property is established. Our anal-
ysis is under both deterministic model and semi-random
model, which are the models employed in the geometric
analysis of SSC [Soltanolkotabi and Candés, 2012]. Our
randomized analysis demonstrates the advantage of noisy
ℓ0-SSC over its ℓ1 counterpart as more general assumption
on data distribution can be adopted. Moreover, we present
Noisy Dimensionality Reduced ℓ0-Sparse Subspace Clus-
tering (Noisy-DR-ℓ0-SSC), an efficient version of noisy
ℓ0-SSC which also enjoys robustness to noise. Noisy-DR-
ℓ0-SSC first projects the data onto a lower dimensional space
by random projection, then performs noisy ℓ0-SSC on the
dimensionality reduced data. Noisy-DR-ℓ0-SSC provably re-
covers the underlying subspace structure in the original data
from the projected data under deterministic model. Experi-
mental results show the effectiveness of both noisy ℓ0-SSC
and Noisy-DR-ℓ0-SSC.

1.1 NOTATIONS

We use bold letters for matrices and vectors, and regular
lower letter for scalars throughout this paper. The bold letter
with superscript indicates the corresponding column of a
matrix, e.g. Ai is the i-th column of matrix A, and the bold
letter with subscript indicates the corresponding element of
a matrix or vector. ∥ · ∥F and ∥ · ∥p denote the Frobenius

norm and the vector ℓp-norm or the matrix p-norm, and ∥·∥0
is the ℓ0-norm, that is, the number of nonzero elements of a
vector. diag(·) indicates the diagonal elements of a matrix.
HT ⊆ Rd indicates the subspace spanned by the columns
of T, and AI denotes a submatrix of A whose columns
correspond to the nonzero elements of I (or with indices in
I without confusion). σt(·) denotes the t-th largest singular
value of a matrix, and σmin(·) indicates the smallest singular
value of a matrix. supp(·) is the support of a vector, PS′

is the operator of orthogonal projection onto the subspace
S ′. [n] represents all the natural numbers between 1 and
n inclusively. Sd−1 denotes the unit sphere in Rd. Θ(a)
denotes a number such that there exists two constants c1 and
c2 such that Θ(a) ∈ [c1a, c2a].

1.2 CONTRIBUTIONS

First, the correctness of noisy ℓ0-SSC on noisy data in terms
of the subspace detection property is established for the
first time, which is presented in Section 3 of this paper. Our
analysis is under both deterministic model and semi-random
model, which are also the models employed by the geomet-
ric analysis of SSC [Soltanolkotabi2012]. Our randomized
analysis demonstrates the significant advantage of noisy
ℓ0-SSC over its ℓ1 counterpart and other competing sub-
space clustering methods in terms of much less restrictive
condition on the subspace affinity. Table 1 below demon-
strates the conditions under which SDP holds for represen-
tative subspace clustering methods under the semi-random
model, including Greedy Subspace Clustering (GSC) [Park
et al., 2014], ℓ1-SSC [Elhamifar and Vidal, 2011], Noisy
SSC [Wang and Xu, 2013], Affine Sparse Subspace Clus-
tering (ASSC) [Li et al., 2018, You et al., 2019], Noisy
ℓ0-SSC [Yang et al., 2018]. When the size of data n grows
exponentially in terms of the common subspace dimension
d0 (the dimension of every subspace is d0), in particular,
n = Θ(ed

τ
0 ) for τ ∈ (0.5, 0.9), then all the competing sub-

space clustering methods other than Noisy ℓ0-SSC either do
not allow overlapping subspaces, or require the maximum
pairwise subspace affinity goes to 0 when d0 → ∞, which
means that these methods require all the subspaces to be
almost pairwise orthogonal when the common subspace
dimension d0 is very large. Instead, Noisy ℓ0-SSC allows
subspace affinity to be lower bounded from 0, suggesting
that Noisy ℓ0-SSC is still able to recover subspaces which
are not orthogonal when d0 is very large. σ′

min in Table 1 is
defined in Theorem 3.6.



In Table 1, it is preferred that a subspace clustering method
requires milder conditions, which are allowing overlap-
ping subspaces and larger upper bound for the maximum
subspace affinity, denoted by maxk,l∈[K] aff(Sk, Sl) where
{Sk}Kk=1 are K subspaces, so that the underlying subspaces
can be recovered for overlapping subspaces and for sub-
spaces which are closer to each other (larger subspace affin-
ity). Here aff denotes subspace affinity, d0 is the common
subspace dimension, δ is a small positive constant (see [Park
et al., 2014]). r0 > 1 is an upper bound for the support of
an optimal solution to the noisy ℓ0-SSC problem for all
data points. In this table, n = Θ(ed

τ
0 ) for τ ∈ (0.5, 0.9)

when d0 → ∞. Note that two subspaces are overlapping
subspaces if the dimension of their intersection is larger than
1. When a subspace clustering method does not allow over-
lapping subspaces, then no condition on subspace affinity is
presented in the subspace clustering literature.

Second, we propose Noisy Dimensionality Reduced ℓ0-
Sparse Subspace Clustering (Noisy-DR-ℓ0-SSC) to acceler-
ate noisy ℓ0-SSC with provable robustness to noise. Noisy-
DR-ℓ0-SSC first projects the data onto a lower dimensional
space by random projection, then performs noisy ℓ0-SSC
on the dimensionality reduced data. Two types of random
projections are used in Noisy-DR-ℓ0-SSC, which are the
random projection induced by randomized low-rank ap-
proximation and the sparse random projection, particular
"Count-Sketch (SC) Projections”.

It should be emphasized that Yang [2018] also studies di-
mensionality reduced ℓ0-SSC. However, the analysis of
this work is performed on the following constrained ℓ0-
minimization problem and only for clean data without noise,
On the other hand, the actual optimization problem [Yang,
2018] solves a unconstrained ℓ0-regularized problem. In
contrast, we analyze noisy ℓ0-SSC on the unconstrained
ℓ0-regularized problem with noisy data which reveals the
advantage of noisy ℓ0 SSC over ℓ1-SSC. Our analysis also
suggests that a larger λ tends to guarantee the subspace
detection property (Remark 3.5), verified by experiments.
Throughout the paper, we refer to ℓ0-SSC for noisy data with
the unconstrained ℓ0-regularized problem as noisy ℓ0-SSC.

2 PROBLEM SETUP

Sparse Subspace Clustering (SSC) methods, such as [El-
hamifar and Vidal, 2011, Soltanolkotabi and Candés, 2012,
Wang and Xu, 2013, Yuan and Li, 2014], construct a sparse
similarity matrix by sparse representation of the data, and
then perform clustering on the sparse similarity matrix.

We hereby introduce the notations for subspace clustering
on noisy data considered in this paper. The uncorrupted
data matrix is denoted by Y = [y1, . . . ,yn] ∈ Rd×n,
where d is the dimensionality and n is the size of the
data. The uncorrupted data Y lie in a union of K distinct

subspaces {Sk}Kk=1 of dimensions {dk}Kk=1 with dmax :=
maxk∈[K] dk and dmin := mink∈[K] dk. The observed noisy
data is X = Y +N, where N = [n1, . . . ,nn] ∈ Rd×n is
the additive noise. xi = yi + ni is the noisy data point
that is corrupted by the noise ni. We let Y(k) ∈ Rd×nk

denote the data belonging to subspace Sk with
K∑

k=1

nk = n,

and denote the corresponding columns in X by X(k). Let
U(k) ∈ Rd×dk be the orthogonal basis of Sk for all k ∈ [K].
The data X are normalized such that each column has
unit ℓ2-norm in our deterministic analysis. We consider
deterministic noise model where the noise N is fixed and
maxi∈[n] ∥ni∥2 ≤ δ.

Formally, given observed data X ∈ Rd×n,X =
[x1, . . . ,xn], where xi ∈ Rd, SSC solves the following
optimization problem for each i ∈ [n]:

min
β∈Rn

∥β∥1 s.t. xi = Xβ,βi = 0. (1)

In order to handle noisy data, noisy SSC [Wang and Xu,
2013] was proposed to solve the ℓ1 regularized problem:

min
β∈Rn

||xi −Xβ||2 + λ∥β∥1, s.t. βi = 0. (2)

The sparse code β of the data point xi is obtained by solv-
ing (1) or (2) for SSC or noisy SSC. A coefficient matrix
Z ∈ Rn×n is then formed by concatenating the sparse codes
of all the data points, and the i-th column of Z is the sparse
code of xi. The sparse similarity matrix is then computed by
W = |Z|+|Z⊤|

2 . Subspace detection property (SDP, formally
defined later) ensures that the similarity between data from
different subspaces vanishes in the sparse similarity matrix.
If SDP holds, then similarity between data points from dif-
ferent clusters vanish in W. As a result, performing spectral
clustering on W leads to compelling clustering results.

Under the independence assumption on the subspaces, low
rank representation [Liu et al., 2013] is proposed to recover
the subspace structures. Relaxing the assumptions on the
subspaces to allowing overlapping subspaces, the Greedy
Subspace Clustering [Park et al., 2014] and the Low-Rank
Sparse Subspace Clustering [Liu et al., 2013] achieve sub-
space detection property with high probability. The geomet-
ric analysis in Soltanolkotabi and Candés [2012] shows the
theoretical results on subspace recovery by SSC. In the fol-
lowing text, we use SSC or ℓ1-SSC exchangeably to indicate
the Sparse Subspace Clustering method in Soltanolkotabi
and Candés [2012], Elhamifar and Vidal [2013].

ℓ0-SSC [Yang et al., 2018] proposes to solve the following
ℓ0 sparse representation problem

min
Z∈Rn×n

∥Z∥0 s.t. X = XZ, diag(Z) = 0, (3)

and it proves that SDP is satisfied with an globally optimal
solution to problem (3). In Yang et al. [2018], the ℓ0 regu-
larized sparse approximation problem below is solved so as



to handle noisy data for ℓ0-SSC, which is the optimization
problem of noisy ℓ0-SSC:

min
Z∈Rn×n,diag(Z)=0

L(Z) = ∥X−XZ∥2F + λ∥Z∥0, . (4)

The optimization problem of noisy ℓ0-SSC (4) is separable.
For each i ∈ [n], the optimization problem with respect to
the sparse code β of i-th data point is

min
β∈Rn,βi=0

L(β) = ∥xi −Xβ∥22 + λ∥β∥0. (5)

The sparse similarity matrix W is then computed in the
same way as ℓ1-SSC by W = |Z|+|Z⊤|

2 , and the subspace
clustering result of noisy ℓ0-SSC is achieved by performing
spectral clustering on W.

In the following text, we always use β∗ to denote an optimal
solution to (5), and define r∗ := ∥β∗∥0.

The definition of subspace detection property for noisy ℓ0-
SSC and noiseless ℓ0-SSC, i.e. ℓ0-SSC on noiseless data, is
defined in Definition 2.1 below.

Definition 2.1. (Subspace detection property for noisy and
noiseless ℓ0-SSC) Let Z∗ be an optimal solution to (4).
The subspaces {Sk}Kk=1 and the data X satisfy the Sub-
space Detection Property (SDP) for noisy ℓ0-SSC if Zi is
a nonzero vector, and nonzero elements of Zi correspond
to the columns of X from the same subspace as yi for all
1 ≤ i ≤ n. We say that SDP holds for xi if nonzero ele-
ments of Z∗i, which is β∗ for problem (5), correspond to
the data that lie in the same subspace as yi, for either noisy
ℓ0-SSC or noiseless ℓ0-SSC.

3 ANALYSIS FOR NOISY ℓ0-SSC

Similar to Soltanolkotabi and Candés [2012], we introduce
the deterministic and the semi-random model for the analy-
sis of noisy ℓ0-SSC.

• Deterministic Model: the subspaces and the data in each
subspace are fixed.

• Semi-Random Model: the subspaces are fixed but the
data are independent and identically distributed in each of
the subspaces.

The data in the above definitions refer to clean data with-
out noise. Both the deterministic model and the semi-
random model are extensively employed to analyze the
subspace detection property in the subspace learning litera-
ture [Soltanolkotabi and Candés, 2012, Wang et al., 2013,
Wang and Xu, 2013, Acharyya and Ghosh, 2015].

3.1 NOISY ℓ0-SSC: DETERMINISTIC ANALYSIS

We first introduce the definition of general position and
external subspace before our analysis on noisy ℓ0-SSC.

Definition 3.1. (General position) For any 1 ≤ k ≤ K, the
data Y(k) are in general position if any subset of L ≤ dk
data points (columns) of Y(k) are linearly independent. Y
are in general position if Y(k) are in general position for
1 ≤ k ≤ K.

The assumption of general condition is rather mild. In fact,
if the data points in X(k) are independently distributed ac-
cording to any continuous distribution, then they almost
surely in general position.

Let the distance between a point x ∈ Rd and a subspace
S ⊆ Rd be defined as d(x,S) = infy∈S ∥x − y∥2, the
definition of external subspaces is presented as follows.

Definition 3.2. (External subspace of limited dimension)
For a point y ∈ Y(k), a subspace H{yij

}L
j=1

spanned by a

set of linear independent points {yij}Lj=1 ⊆ Y is defined
to be an external subspace of y if {yij}Lj=1 ̸⊆ Y(k) and
y /∈ {yij}Lj=1. The set of all external subspaces of y of
dimension no greater than r with r ≥ 1 for y is denoted
by Hy,r, that is, Hy,r = {H : H = H{yij

}L
j=1

,dim[H] =

L,L ≤ r, {yij}Lj=1 ̸⊆ Y(k),y /∈ {yij}Lj=1}. The point y
is said to be away from its external subspaces of dimension
r if minH∈Hy,r d(y,H) > 0. All the data points in Y(k)

are said to be away from the external subspaces if each of
them is away from the its associated external spaces.

We also need the definitions related to the spectrum of X and
Y, which are defined as follows. In the following analysis,
we employ β to denote the sparse code of datum xi so that
a simpler notation other than Zi is dedicated to our analysis.

Definition 3.3. The minimum restricted eigenvalue of the
uncorrupted data is defined as

σY,r := min
β:∥β∥0=r,rank(Yβ)=∥β∥0

σmin(Yβ)

for r ≥ 1. In addition, the normalized minimum restricted
eigenvalue of the uncorrupted data is defined by

σ̄Y,r :=
σY,r√

r
.

Moreover, the following quantities are defined for our anal-
ysis. We define

τ0 :=
2δ
√
r∗

σ∗
X

+ τ1, (6)

where

τ1 :=
δ

σ̄∗
Y − δ

, σ∗
X := σmin(Xβ∗), (7)

with δ < σ̄∗
Y, and σ̄∗

Y is defined as

σ̄∗
Y := min

1≤r<r∗
σ̄Y,r. (8)

Now we present our main result on noisy ℓ0-SSC.



Theorem 3.1. (Subspace detection property holds for noisy
ℓ0-SSC) Let nonzero vector β∗ be an optimal solution to
the noisy ℓ0-SSC problem (5) for point xi with ∥β∗∥0 =
r∗ ≥ 1, and c∗ := ∥xi −Xβ∗∥2. Suppose Y is in general
position, yi ∈ Sk for some 1 ≤ k ≤ K, δ < σ̄∗

Y, λ > τ0,
B(yi, δ+ c∗ + 2δ

√
r∗

σ∗
X

)∩H = ∅ for any H ∈ Hyi,r∗ . Then
the subspace detection property holds for xi with β∗. Here
τ0, τ1, σ̄∗

Y and σ∗
X are defined in (6), (7) and (8).

Remark 3.2. When δ = 0 and there is no noise in the data
X, the conditions for the correctness of noisy ℓ0-SSC in
Theorem 3.1 almost reduce to that for noiseless ℓ0-SSC. To
see this, the conditions are reduced to B(yi, c

∗) ∩H = ∅,
which are exactly the conditions required by noiseless ℓ0-
SSC in Lemma 1.1 in the supplementary, namely data are
away from the external subspaces by choosing λ → 0 and it
follows that c∗ = 0.

While Theorem 3.1 establishes geometric conditions under
which the subspace detection property holds for noisy ℓ0-
SSC, it can be seen that these conditions are often coupled
with an optimal solution β∗ to the noisy ℓ0-SSC problem (5).
In the following theorem, the correctness of noisy ℓ0-SSC is
guaranteed in terms of λ, the weight for the ℓ0 regularization
term in (5), and the geometric conditions independent of an
optimal solution to (5).

Let Mi > 0 be the minimum distance between yi ∈ Sk

and its external subspaces when yi is away from its external
subspaces of dimension r, that is,

Mi := min{d(yi,H) : H ∈ Hyi,dk
}, (9)

The following two quantities related to the spectrum of clean
and noisy data, µr and σX,r, are defined as follows with
r > 1 for the analysis in Theorem 3.3.

µr :=
δ

min1≤r′<r σ̄Y,r − δ
, (10)

σX,r := min{σmin(Xβ) : 1 ≤ ∥β∥0 ≤ r} (11)

Theorem 3.3. (Subspace detection property holds for noisy
ℓ0-SSC under deterministic model with conditions in terms
of λ) Let nonzero vector β∗ be an optimal solution to the
noisy ℓ0-SSC problem (5) for point xi with ∥β∗∥0 = r∗ >
1, nk ≥ dk+1 for every k ∈ [K], and there exists 1 < r0 ≤
⌊ 1
λ⌋ such that r∗ ≤ r0. Suppose Y is in general position,

yi ∈ Sk for some 1 ≤ k ≤ K, δ < σ̄∗
Y, and Mi,δ := Mi−δ.

Suppose

Mi,δ >
2δ

σX,r0

, (12)

and

µr0 < 1− 2δ

σX,r0

. (13)

Then if

λ0 < λ < 1, (14)

where λ0 := max{λ1, λ2} and

λ1 := inf{0 < λ < 1:
√
1− λ+

2δ

σX,r0

√
λ
< Mi,δ},

(15)

λ2 := inf{0 < λ < 1: λ− 2δ

σX,r0

1√
λ
> µr0}, (16)

the subspace detection property holds for xi with β∗. Here
Mi, µr0 , σX,r0 are defined in (9), (10), (11) respectively.

Remark 3.4. The two conditions (12) and (13) are induced
by two conditions, B(yi, δ + c∗ + 2δ

√
r∗

σ∗
X

)∩H = ∅ for any
H ∈ Hyi,dk

and λ > τ0 respectively, which are required by
Theorem 3.1. Note that when (12) and (13) hold, λ1 and λ2

can always be chosen in accordance with (15) and (16).

Remark 3.5. It can be observed from condition (14) that
noisy ℓ0-SSC encourages sparse solution by a relatively
large λ so as to guarantee the subspace detection property.
This theoretical finding is consistent with the empirical study
shown in the experimental results.

3.2 NOISY ℓ0-SSC: RANDOMIZED ANALYSIS

The correctness of noisy ℓ0-SSC is analyzed under the semi-
random model that the data in subspace S(k) are i.i.d. accord-
ing to the uniform distribution on the unit sphere, Sdk−1,
of Rdk centered at the origin for all k ∈ [K]. This set-
ting is employed extensively in the subspace learning litera-
ture [Soltanolkotabi and Candés, 2012, Wang et al., 2013,
Wang and Xu, 2013, Acharyya and Ghosh, 2015]. We then
have the major theorem below stating the theoretical guar-
antee of the subspace detection property of noisy ℓ0-SSC
under the semi-random model. Before stating this theorem,
we introduce the following definition of subspace affinity,
which is widely used in the analysis of semi-random model
in the sparse subspace clustering literature.

Definition 3.4. (Subspace affinity) The affinity between
two subspaces, Sk and Sl with k, l ∈ [K], is defined by

aff(Sk,Sl) =

√√√√min{k,l}∑
t=1

cos2 θ
(t)
kl ,

where cos θ(t)kl is the t-th canonical angle between Sk and Sl

defined in Soltanolkotabi and Candés [2012]. Let U(k) and
U(l) be the orthonormal basis for Sk and Sl respectively,
then

cos θ
(t)
kl = sup

u∈Sk,v∈Sl

u⊤v

∥u∥2∥v∥2
=

ut⊤vt

∥ut∥2∥vt∥2
,

with orthogonality: u⊤uj = 0, v⊤vj = 0, j = 1, . . . , t−1.
It can be verified that aff(Sk,Sl) = ∥U(k)⊤U(l)∥F .



Theorem 3.6. (Subspace detection property holds for noisy
ℓ0-SSC under semi-random model with conditions in terms
of λ) Under the semi-random model, let nonzero vector
β∗ be an optimal solution to the noisy ℓ0-SSC problem
(5) for point xi with ∥β∗∥0 = r∗ > 1, nk ≥ dk + 1
for every 1 ≤ k ≤ K, and there exists 1 < r0 ≤ ⌊ 1

λ⌋
such that r∗ ≤ r0. Suppose c1 > 0 is an arbitrary small
constant, ε0, ε1 > 0 be small constants, and dk is large
enough such that dk ≥ ⌊ 1

λ⌋, 2d−0.05
k + 2d−0.1

k ≤ ε0 and√
1

λdk
+
√

2
λdk

log enk

r0
≤ ε1 hold for all k ∈ [K]. Define

σ′
min :=

1

1 + ε0
(1−

√
c1 − ε1) , (17)

c :=
√

σ′2
min−(r0−1)aff(St1

,St2
)

r0
. For t > 0 such that 1

dmax
−

2t
√
1− 1

dmax
− t2 > 0, suppose

max
t1,t1∈[K],t1 ̸=t2

aff(St1 ,St2) <
σ′2
min

r0 − 1
, (18)

δ < c, (19)

δ +
2δ

√
r0(c− δ)

≤ 1

dmax
− 2t

√
1− 1

dmax
− t2, (20)

δ

c− δ
+

2δ
√
r0(c− δ)

< 1, (21)

λ′
0 < λ < 1, (22)

where M := sup0≤t<1
2t3 arccos t

π < 1, λ′
0 :=

max{λ′
1, λ

′
2},

λ′
1 := inf{0 < λ < 1:

√
1− λ+

2δ
√
r0(c− δ)

√
λ

<
1

dmax
− 2t

√
1− 1

dmax
− t2 − δ},

λ′
2 := inf{0 < λ < 1: λ− 2δ

√
r0(c− δ)

1√
λ
>

δ

c− δ
}.

When the conditions in Lemma 1.5 of the sup-
plementary hold for all k ∈ [K] and every
point y ∈ Y(k), then with probability at least
1 −

∑K
k=1

(
exp(−c1dk) + 2nk exp

(
−d0.9k

))
−

8
K∑

k=1

nk exp(−dkt
2

2 ), the subspace detection property

holds for xi with β∗ for all i ∈ [n].

Remark 3.7 (Advantage of Noisy ℓ0-SSC in terms of Sub-
space Affinity). It is well known that the difficulty of achiev-
ing the subspace detection property increases with larger
affinity between subspaces, that is, the subspace are closer
to each other. Our analysis reveals the significant advantage
of noisy ℓ0-SSC over ℓ1-SSC in terms of the maximum
subspace affinity. To the best of our knowledge, the best
theoretical result of ℓ1-SSC, including its geometrical anal-
ysis [Soltanolkotabi and Candés, 2012] and the subsequent
works on noisy or dimensionality-reduced data [Wang and

Xu, 2013, Wang et al., 2015], requires that the maximum
subspace affinity satisfies

max
t1,t1∈[K],t1 ̸=t2

aff(St1 ,St2) <
√
d0 ·

c̄
√
log ρ

8
√
2 logn

, (23)

under the setting in Soltanolkotabi and Candés [2012] that
dk = d0 and nk = ρd0 + 1 for all k ∈ [K], so that n =
K(ρd0 + 1). When n > exp (dτ0) for τ ∈ (0.5, 0.9), then
(23) requires maxt1,t1∈[K],t1 ̸=t2 aff(St1 ,St2) → 0 when
d0 → ∞, while the condition of noisy ℓ0-SSC, (18), only
requires that maxt1,t1∈[K],t1 ̸=t2 aff(St1 ,St2) <

σ′2
min

r0−1 when
d0 is sufficiently large. Such less restive condition on the
maximum subspace affinity reveals the theoretical advantage
of noisy ℓ0-SSC over ℓ1-SSC.

4 NOISY ℓ0-SSC ON DIMENSIONALITY
REDUCED DATA: NOISY-DR-ℓ0-SSC

Albeit the theoretical guarantee and compelling empirical
performance of noisy ℓ0-SSC to be shown in the experimen-
tal results, the computational cost of noisy ℓ0-SSC is high
with the high dimensionality of the data. In this section, we
propose Noisy Dimensionality Reduced ℓ0-SSC (Noisy-DR-
ℓ0-SSC) which performs noisy ℓ0-SSC on dimensionality
reduced data. The theoretical guarantee on the correctness
of Noisy-DR-ℓ0-SSC under the deterministic model as well
as its empirical performance are presented.

4.1 METHOD

Noisy-DR-ℓ0-SSC performs subspace clustering by the fol-
lowing two steps: 1) obtain the dimension reduced data
X̃ = PX with a linear transformation P ∈ Rp×d (p < d).
2) perform noisy ℓ0-SSC on the compressed data X̃:

min
β̃∈Rn,β̃i=0

L(β̃) = ∥x̃i − X̃β∥22 + λ̃∥β̃∥0. (24)

If p < d, Noisy-DR-ℓ0-SSC operates on the compressed
data X̃ rather than on the original data, so that the efficiency
is improved. We introduce two types of random projection
for Noisy-DR-ℓ0-SSC in the following two subsections.

4.2 RANDOMIZED LOW-RANK
APPROXIMATION

High-dimensional data often exhibits low-dimensional struc-
tures, which often leads to low-rankness of the data matrix.
Intuitively, if the data is low rank, then it could be safe to
perform noisy ℓ0-SSC on its dimensionality reduced version
by the linear projection P, and it is expected that P can
preserve the information of the subspaces contained in the
original data as much as possible, while effectively remov-
ing uninformative dimensions. To this end, we propose to



choose P as a random projection induced by randomized
low-rank approximation of the data.

The merit of random projection (RP) is highlighted by the
celebrated Johnson-Lindenstrauss Lemma [Johnson and Lin-
denstrauss, 1984]. In the past 20 years or more, RP has
been used extensively in dimension reduction, approximate
near neighbor search, compressed sensing, computational
biology, etc [Dasgupta, 2000, Bingham and Mannila, 2001,
Buhler, 2001, Achlioptas, 2003, Fern and Brodley, 2003,
Datar et al., 2004, Candès et al., 2006, Donoho, 2006, Fre-
und et al., 2007, Li, 2007, 2017, 2019]. In particular, RP has
been employed to accelerate numerical matrix computation
and matrix optimization problems, including matrix decom-
position [Frieze et al., 2004, Drineas et al., 2004, Sarlós,
2006, Drineas et al., 2006, 2008, Mahoney and Drineas,
2009, Drineas et al., 2011, Lu et al., 2013].

Formally, a random matrix T ∈ Rn×p is generated such that
each element Tij is sampled independently according to the
Gaussian distribution N (0, 1). QR decomposition is then
performed on XT to obtain the basis of its column space,
namely XT = QR where Q ∈ Rd×p is an orthogonal
matrix of rank p and R ∈ Rp×p is an upper triangle matrix.
The columns of Q form the orthogonal basis for the sample
matrix XT. An approximation of X is then obtained by
projecting X onto the column space of XT: QQ⊤X =
QW = X̂ where W = Q⊤X ∈ Rp×n. In this manner, a
randomized low-rank decomposition of X is achieved by

X̂ = QW.

It is proved that the low rank approximation X̄ is close to X
in spectral norm [Halko et al., 2011]. We present probabilis-
tic result in Theorem 4.1 on the correctness of Noisy-DR-ℓ0-
SSC using the random projection induced by randomized
low-rank decomposition of the data X, namely P = Q⊤. In
the sequel, x̃ = Px for any x ∈ Rn. To guarantee the sub-
space detection property on the dimensionality-reduced data
X̃, it is crucial to ensure that the conditions, such as (12)
(13) in Theorem 3.3, still hold after linear transformation.

Each subspace Sk is transformed into S̃k = P(Sk) with
dimension d̃k. We denote by β̃∗ an optimal solution to
(24), and define Cp,p0

:=
(
1 + 17

√
1 + p0

p−p0

)
σp0+1 +

8
√
p

p−p0+1 (
∑

j>p0

σ2
j )

1
2 with p0 ≥ 2. We also define the fol-

lowing quantities for the convenience of our analysis, which
correspond to Mi, σ̄Y,r, σX,r and µr used in the analysis
on the original data:

M̃i := min{d(ỹi,H) : H ∈ Hỹi,d̃k
}, (25)

where Hỹi,d̃k
is all the external subspaces of ỹi with dimen-

sion no greater than d̃k in the transformed space by P,

σ̄Ỹ,r := min
β:∥β∥0=r,rank(Ỹβ)=∥β∥0

σmin(Ỹβ), (26)

σX̃,r := min{σmin(X̃β) : 1 ≤ ∥β∥0 ≤ r}, (27)

µ̃r :=
δ

min1≤r′<r σ̄Ỹ,r − δ
. (28)

Theorem 4.1. (Subspace detection property holds for
Noisy-DR-ℓ0-SSC under deterministic model) Let nonzero
vector β∗ be an optimal solution to the noisy ℓ0-SSC prob-
lem (5) for point xi with ∥β∗∥0 = r∗ > 1, nk ≥ dk + 1
for every 1 ≤ k ≤ K, and there exists 1 < r0 ≤ dk such
that r∗ ≤ r0 ≤ ⌊ 1

λ⌋. Suppose Y is in general position,
δ < min1≤r<r0 σ̄Y,r, and M̃i,δ := M̃i − δ. Furthermore,
suppose the following conditions hold:

(i) Cp,p0
+ 2δ

√
d̃max < mink=1,...,K σ

(k)
Y ,

where d̃max := maxk d̃k, σ(k)
Y := min{σmin(A) : A ⊆

Y(k),A ∈ Rd×n′
, n′ ≤ d̃k},

(ii) δ(1 + 2
√
r0) < min1≤r<r0 σ̄Y,r − Cp,p0

,

(iii) min1≤r≤d̃k
σY,r > Cp,p0

− 2δ
√

d̃k and

Mi − Cp,p0
(1 +

1

min1≤r≤d̃k
σY,r − Cp,p0 − 2δ

√
d̃k

)

> δ +
2δ

σX,r0 − Cp,p0

,

for all yi ∈ Sk and 1 ≤ k ≤ K,

(iv) min1≤r<r0 σ̄Y,r0 > Cp,p0
− 2δ

√
r0 − δ and

δ

min1≤r<r0 σ̄Y,r0 − Cp,p0
− 2δ

√
r0 − δ

< 1− 2δ

σX,r0 − Cp,p0

.

If λ̃0 < λ̃ < 1, where λ̃0 = max{λ̃1, λ̃2} and

λ̃1 = inf{0 < λ̃ < 1:

√
1− λ̃+

2δ

σX̃,r0

√
λ̃
< M̃i,δ},

(29)

λ̃2 = inf{0 < λ̃ < 1: λ̃− 2δ

σX,r0

1√
λ̃
> µ̃r0}, (30)

then with probability at least 1− 6e−p, the subspace detec-
tion property holds for x̃i with β̃∗. Here M̃i, µ̃r and σ̃X̃,r0
are defined in (25), (28) and (27) respectively.

4.3 VERY SPARSE RANDOM PROJECTIONS

In this subsection, we study the case when the linear trans-
formation P for the dimensionality reduced ℓ0-SSC prob-
lem (24) is a sparse matrix [Charikar et al., 2004, Cormode
and Muthukrishnan, 2005, Li, 2007, Weinberger et al., 2009,
Gilbert and Indyk, 2010, Li et al., 2011, Nelson and Nguyen,
2013, Li and Zhao, 2022]. In particular, we choose P such



that each column of P only has 1 nonzero element, in a
fashion known as “count-sketch” [Charikar et al., 2004].
Weinberger et al. [2009] applied count-sketch as a dimen-
sion reduction tool for machine learning. The work of [Li
et al., 2011], in addition to developing hash learning algo-
rithm based on minwise hashing, also provided the thor-
ough theoretical analysis for count-sketch in the context
of estimating inner products. The conclusion from Li et al.
[2011] is that, to estimate inner products, we should use
count-sketch (or very sparse random projections [Li, 2007])
instead of the original (dense) random projections, because
count-sketch is not only computationally much more effi-
cient but also (slightly) more accurate, as far as the task of
similarity estimation is concerned.

Using those nice theoretical properties of count-sketch pro-
jections, we have the following theorem about the correct-
ness of Noisy-DR-ℓ0-SSC when P has only 1 nonzero ele-
ment in each column. For breveity, we name such a projec-
tion matrix to be “CSP".

Theorem 4.2. (Subspace detection property holds for
Noisy-DR-ℓ0-SSC under deterministic model with P be-
ing the CSP) Let nonzero vector β∗ be the optimal solu-
tion to the noisy ℓ0-SSC problem (5) for point xi with
∥β∗∥0 = r∗, nk ≥ dk + 1 for every 1 ≤ k ≤ K, and
there exists 1 < r0 ≤ ⌊ 1

λ⌋ such that 1 < r∗ ≤ r0. Suppose
Y is in general position, yi ∈ Sk for some 1 ≤ k ≤ K,
δ < min1≤r<r0 σ̄Y,r. Let Mi,δ := Mi − δ, ε be a positive
number such that 0 < ε ≤ 1. Suppose

Mi,δ >
2(1 + ε)3δ

σX,r0

, (31)

µr,ε :=
δ

min1≤r′<r σ̄Y,r

(1+ε)2 − δ
< 1− 2(1 + ε)2δ

σX,r0

. (32)

Then if λ̃0 < λ̃ < 1, where λ̃0 := max{λ1, λ2} and

λ1 := inf{0 < λ̃ < 1:

√
1 + ε− λ̃+

2δ

σX̃,r0

√
λ̃
< Mi,δ},

(33)

λ2 := inf{0 < λ < 1: λ− 2δ

σX̃,r0

1√
λ
> µ̃r0}, (34)

then with probability at least 1−Kδ′ for all δ′ ∈ (0, 1
K ), the

subspace detection property holds for x̃i with β̃∗. Here µ̃r0

and σX̃,r0
are defined in (28) and (27) respectively. β̃∗ is

the optimal solution to (24) with P being the CSP described
in the beginning of this subsection with p ≥ d2

max+dmax

δ′(2ε−ε2)2 .

4.4 THE ALGORITHM OF NOISY-DR-ℓ0-SSC

We denote by Noisy-DR-ℓ0-SSC-LR the Noisy-DR-ℓ0-SSC
with random projection induced by randomized low-rank

approximation in Section 4.2, and denote by Noisy-DR-ℓ0-
SSC-CSP the Noisy-DR-ℓ0-SSC with CSP serving as the
random projection in Section 4.3.

Algorithm 1 Noisy Dimensionality Reduced ℓ0-Sparse Subspace
Clustering by Randomized Low-Rank Approximation (Noisy-DR-
ℓ0-SSC-LR)

1: Generate a Gaussian random matrix T ∈ Rn×p where each el-
ement Tij is sampled independently according to the standard
Gaussian distribution N (0, 1)

2: Perform QR decomposition on XT, XT = QR where Q ∈
Rd×p

3: Set the linear transformation P = Q⊤, and obtain the dimen-
sionality reduced data X̃ = PX

4: Perform noisy ℓ0-SSC on X̃ using Algorithm 1

Noisy-DR-ℓ0-SSC-LR is described by Algorithm 1. The al-
gorithm of Noisy-DR-ℓ0-SSC-CSP is similar to Algorithm 1
except that CSP serves as the random projection P. Algo-
rithm 1 in Section 4 of the supplementary describes how to
solve the noisy ℓ0-SSC problem (5).

5 EXPERIMENTS

We demonstrate the performance of Noisy-DR-ℓ0-SSC-LR
and Noisy-DR-ℓ0-SSC-CSP, with comparison to other com-
peting clustering methods including K-means (KM), Spec-
tral Clustering (SC), noisy SSC, Sparse Manifold Clustering
and Embedding (SMCE) [Elhamifar and Vidal, 2011] and
SSC-OMP [Dyer et al., 2013] in this section. We will use
Noisy-DR-ℓ0-SSC to refer to its two variants. With the co-
efficient matrix Z obtained by the optimization of noisy
ℓ0-SSC or Noisy-DR-ℓ0-SSC, a sparse similarity matrix
is built by W = |Z|+|Z⊤|

2 , and spectral clustering is per-
formed on W to obtain the clustering results. Two measures
are used to evaluate the performance of different clustering
methods, i.e. the Accuracy (AC) and the Normalized Mutual
Information (NMI) [Zheng et al., 2004].

We use randomized rank-p decomposition of the data ma-
trix in Noisy-DR-ℓ0-SSC-LR with p = min{d,n}

10 . It can
be observed that noisy ℓ0-SSC and Noisy-DR-ℓ0-SSC al-
ways achieve better performance than other methods in
Table 2, including the noisy SSC on dimensionality reduced
data (Noisy DR-SSC) [Wang et al., 2015]. Note that noisy
ℓ0-SSC has the same performance as ℓ0-SSC [Yang et al.,
2018]. Throughout all the experiments we find that the best
clustering accuracy is achieved whenever λ is chosen by
0.5 < λ < 0.95, justifying our theoretical finding claimed
in Remark 3.5 and (14) in Theorem 3.3. For all the methods
that involve random projection, we conduct the experiments
for 30 times and report the average performance. Note that
the cluster accuracy of SSC-OMP on the extended Yale-B
data set is reported according to You et al. [2016]. We ran-
domly sample 1000 images from each class of the MNIST
data set so as to collect a total number of 10000 images on



Table 2: Clustering results on various data sets, with the best three results in bold.

Data Set Measure KM SC Noisy SSC Noisy DR-SSC SMCE SSC-OMP Noisy ℓ0-SSC Noisy-DR-ℓ0-SSC-LR Noisy-DR-ℓ0-SSC-CSP

COIL-20 AC 0.6554 0.4278 0.7854 0.7764 0.7549 0.3389 0.8472 ± 0.0031 0.8479 ± 0.0023 0.8472 ± 0.0019
NMI 0.7630 0.6217 0.9148 0.9219 0.8754 0.4853 0.9428 ± 0.0082 0.9433 ± 0.0063 0.9429 ± 0.0037

COIL-100 AC 0.4996 0.2835 0.5275 0.5013 0.5639 0.1667 0.7683 ± 0.0020 0.7039 ± 0.0087 0.7046 ± 0.0083
NMI 0.7539 0.5923 0.8041 0.8019 0.8064 0.3757 0.9182 ± 0.0096 0.8706 ± 0.0109 0.8708 ± 0.0117

Yale-B AC 0.0954 0.1077 0.7850 0.7255 0.3293 0.7789 0.8480 ± 0.0091 0.8231 ± 0.0173 0.8318 ± 0.0112
NMI 0.1258 0.1485 0.7760 0.7311 0.3812 0.7024 0.8612 ± 0.0072 0.8533 ± 0.0294 0.8593 ± 0.0133

MPIE S1 AC 0.1164 0.1285 0.5892 0.3588 0.1721 0.1695 0.6741± 0.0413 0.6741± 0.0938 0.6744± 0.0662
NMI 0.5049 0.5292 0.7653 0.6806 0.5514 0.3395 0.8622± 0.0533 0.8622± 0.0834 0.8548± 0.0931

MPIE S2 AC 0.1315 0.1410 0.6994 0.4611 0.1898 0.2093 0.7527± 0.0115 0.7533± 0.0596 0.7517± 0.0813
NMI 0.4834 0.5128 0.8149 0.7086 0.5293 0.4292 0.8939± 0.0389 0.8926 ± 0.0742 0.8910 ± 0.0454

MPIE S3 AC 0.1291 0.1459 0.6316 0.4841 0.1856 0.1787 0.7050± 0.0277 0.7123± 0.0812 0.7184± 0.1045
NMI 0.4811 0.5185 0.7858 0.7340 0.5155 0.3415 0.8750± 0.0157 0.8455± 0.0693 0.8457± 0.0913

MPIE S4 AC 0.1308 0.1463 0.6803 0.5511 0.1823 0.1680 0.7246± 0.0147 0.7137± 0.0605 0.7250± 0.0443
NMI 0.4866 0.5280 0.8063 0.7955 0.5294 0.3345 0.8837± 0.0212 0.8847± 0.0781 0.8834± 0.0517

MNIST AC 0.5236 0.3504 0.5714 0.5123 0.6542 0.5561 0.6259 ± 0.0249 0.6296 ± 0.1522 0.6310 ± 0.1031
NMI 0.4770 0.3607 0.6091 0.5026 0.6796 0.5986 0.6501 ± 0.0196 0.6440 ± 0.0259 0.6497 ± 0.0313

which clustering is performed, and the average performance
of 10 random sampling is reported for this data set. The time
complexity of noisy ℓ0-SSC and the two variants of Noisy-
DR-ℓ0-SSC are analyzed in Section 3 of the supplementary.
The actual running time of both algorithms confirms such
time complexity, and we observe that Noisy-DR-ℓ0-SSC-
LR is always 8.7 times faster than noisy ℓ0-SSC with the
same number of iterations, and the acceleration is boosted to
9.6 times by Noisy-DR-ℓ0-SSC-CSP due to sparse random
projections.

We further demonstrate the practical implication of our the-
oretical analysis for noisy ℓ0-SSC. As mentioned in Re-
mark 3.5, a relatively large λ tends to preserve the subspace
detection property. This theoretical finding is consistent with
the empirical study shown in this subsection. We add Gaus-
sian noise of zero mean and different choices of variance σ2

to the extended Yale-B data set. In Section 5 of the supple-
mentary, Figure 2a to Figure 2f illustrate SDP violation with
respect to λ for different noise levels with σ2 ranging over
10, 20, 30, 40, 50, 60. The SDP violation is defined in Wang
and Xu [2013] which is the percentage of pairs of data points
which are mistakenly put in the same subspace by the sim-
ilarity matrix W, namely the percentage of pairs (xi,xj)
with nonzero Wij while they are in fact not in the same
subspace. We observe that increasing λ effectively reduces
SDP violation for noisy ℓ0-SSC, Noisy-DR-ℓ0-SSC-LR and
Noisy-DR-ℓ0-CSP, confirming our theoretical prediction.

6 CONCLUSION

In this paper, we prove that noisy ℓ0-SSC recovers sub-
spaces from noisy data through ℓ0-induced sparsity. Our
results for the first time reveal the theoretical advantage of
noisy ℓ0-SSC over its ℓ1 counterpart and other competing
subspace clustering methods in terms of much less restric-
tive condition on the subspace affinity, when the size of
data grows exponentially in the subspace dimension. We
then propose Noisy-DR-ℓ0-SSC to improve the efficiency of
noisy ℓ0-SSC, which performs noisy ℓ0-SSC on dimension-
ality reduced data and still provably recovers the underlying

subspaces. Experiments evidence the findings of our theoret-
ical results in the robustness of noisy ℓ0-SSC against noise
as well as the effectiveness of Noisy-DR-ℓ0-SSC.
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