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Abstract

Accurate absolute pose regression is one of the key
challenges in robotics and computer vision. Exist-
ing direct regression methods suffer from two lim-
itations. First, some noisy scenarios such as poor
illumination conditions are likely to result in the un-
certainty of pose estimation. Second, the output n-
dimensional feature vector in the Euclidean space
Rn cannot be well mapped to SE(3) manifold. In
this work, we propose a deep dual quaternion net-
work that performs the absolute pose regression on
SE(3). We first develop an antipodally symmetric
probability distribution over the unit dual quater-
nion on SE(3) to model uncertainties and then
propose an intermediary differential representation
space to replace the final output pose, which avoids
the mapping problem from Rn to SE(3). In addi-
tion, we introduce a backpropagation method that
considers the continuousness and differentiability
of the proposed intermediary space. Extensive ex-
periments on the camera re-localization task on
the Cambridge Landmarks and 7-Scenes datasets
demonstrate that our method greatly improves the
accuracy of the pose as well as the robustness in
dealing with uncertainty and ambiguity, compared
to the state-of-the-art.

1 INTRODUCTION

The absolute pose estimation refers to inferring the object’s
pose (i.e., position and orientation) in 3D space from 2D
input images, which is an age-old problem in the fields of
robotics [Mur-Artal and Tardós, 2017, Wang et al., 2018,
Campos et al., 2021] and computer vision [Kendall et al.,
2015, Deng et al., 2019, Turkoglu et al., 2021]. Early re-
search focuses on geometry-based approaches due to their
reliability and accuracy in some static environments. How-

ever, the geometry-based approaches cannot function well
in some specific scenarios such as poor illumination and the
textureless case.

In recent years, the deep learning technique has provided us
with an alternative vehicle to regress the absolute pose. In
these approaches, a proper output for representing the pose
is particularly important when dealing with more compli-
cated environments. A number of deep models have been
presented to output an n-dimensional feature vector that is
used to directly denote the pose, where the rotation is mostly
represented by the Euler angle, unit quaternion, or rotation
matrix, and translation is substituted by a 3-dimensional
vector [Wang et al., 2018, Sattler et al., 2019].

In spite of some advancements, these learning-based tech-
niques suffer from one or two limitations. First, some work
cannot capture and model pose uncertainties in practical
scenarios, which affects the estimation accuracy. Second,
an n-dimensional feature vector on a Euclidean space Rn

is taken as the common output by existing work [Shotton
et al., 2013, Sattler et al., 2019, Xue et al., 2019], which
however cannot be well mapped to SE(3) manifold since
the pose in SE(3) is not homeomorphic to the Euclidean
space Rn [LaValle, 2006]. For example, the angle 0 and 2π
in Rn can map to the same rotation in SE(3), which fails to
satisfy the one-to-one mapping feature in homeomorphism
theory.

In this paper, we propose a probabilistic deep dual quater-
nion network that regresses the absolute pose on SE(3)
from a single RGB image. Compared to existing learning-
based approaches, our model has three advanced features.
First, we take pose uncertainties into consideration by intro-
ducing an antipodally symmetric distribution over the unit
dual quaternion on SE(3). In this way, the pose regression
problem can be converted into a deep probabilistic prob-
lem. Second, we propose to estimate the pose indirectly by
presenting an intermediary differential representation space
as the output of our deep probabilistic model. Afterward,
the rotation and translation can be derived from the inter-
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mediary representation space by modeling a quadratically-
constrained quadratic program (QCQP) problem and a Gaus-
sian process respectively, which avoids the issue of mapping
from Rn to SE(3). Third, we introduce a backpropaga-
tion method that considers the continuousness and differ-
entiability of the proposed intermediary space. Extensive
experiments on the camera re-localization task on the Cam-
bridge Landmarks and 7-Scenes datasets demonstrate that
our method outperforms the state-of-the-art, in terms of pose
accuracy and robustness.

In summary, our work makes the following contributions:

• We develop an antipodally symmetric probability dis-
tribution over the unit dual quaternion on SE(3) to
model the pose uncertainty, which is the key factor in
improving the accuracy of pose regression.

• We propose a deep dual quaternion model to regress
the pose indirectly, which effectively addresses the
mapping problem from Rn to SE(3). Additionally, a
backpropagation method is introduced to the proposed
model.

• We implement our deep probabilistic model on the
Cambridge Landmarks and 7-Scenes datasets. Exten-
sive experiment results show that our method greatly
improves the accuracy of the pose as well as the ability
in dealing with uncertainty and ambiguity, compared
to the state-of-the-art.

2 RELATED WORK

Absolute pose estimation combining with the deep learning
technique becomes a hot topic in robotics and computer
vision field. The related techniques roughly fall into two cat-
egories: direct pose regression and indirect pose regression.

Direct pose regression aims to directly regress the absolute
pose from sequential RGB images by utilizing various well-
designed end-to-end networks [Wang et al., 2018, Clark
et al., 2017, Kendall et al., 2015, Shotton et al., 2013, Chen
et al., 2021]. In these approaches, most of them follow the
same pipeline: features are extracted using a defined net-
work such as the PoseNet [Kendall et al., 2015], the Branch-
Net [Wu et al., 2017], which are then embedded into a
high-dimensional vector that lies in the Euclidean space Rn.
Then Sattler et al. [2019] pointed out that this embedding
layer typically corresponds to the output of the second-to-
last layer in direct pose regression methods. The last layer
performs a linear projection from the embedding space to
the space of poses. However, these methods commonly suf-
fer from one of two issues. First, the uncertainty of poses
may result in the degradation of the accuracy of predicted
poses since some of them are not robust enough to capture
uncertainties [Kendall and Cipolla, 2016]. Second, the out-
put n-dimensional feature vector lying on a Euclidean space
Rn may not be well mapped to SE(3) [LaValle, 2006].

A strategy to overcome these problems is to regress the ab-
solute pose indirectly, which is achieved by regressing an in-
termediary vector to replace the output feature vector [Deng
et al., 2020, Bui et al., 2020]. However, it is usually hard
to find such a representation space. Poursaeed et al. [2018]
introduced a Siamese model for uncalibrated cameras to
regress a fundamental matrix that serves as an intermedi-
ary representation of camera poses, but it fails to capture
uncertainties of poses. Recently, deep probabilistic models
have been developed by regressing essential parameters of
the probabilistic distribution. Gilitschenski et al. [2020] in-
troduced a deep Bingham model for the object orientation
estimation on SO(3) by regressing the orthogonal matrix
of the Bingham distribution, where pose uncertainties are
modeled as a Bingham distribution. Mohlin et al. [2020]
similarly developed a deep matrix Fisher distribution for
object rotation estimation on SO(3) by regressing the pa-
rameter matrix of the Fisher distribution. But it is generally
hard to find such statistic distributions on SE(3) manifold
to measure pose uncertainties.

To this point, we develop an antipodally symmetric proba-
bility distribution over the unit dual quaternion on SE(3) to
model pose uncertainties. Based thereon, we present a deep
probabilistic distribution to indirectly regress the absolute
pose on SE(3).

3 UNIT DUAL QUATERNION
DISTRIBUTION

This section gives the definition of the unit dual quaternion
distribution on SE(3). For this purpose, we first briefly
revisit the concept of dual quaternions and then give the
description of the unit dual quaternion distribution.

3.1 DUAL QUATERNION

In this work, a quaternion q is defined as q = q0 + q1i +
q2j + q3k, the {i, j,k} is the standard basis of the three-
dimensional Euclidean space R3. For convenience, we bring
the vector q = [q0,qvec] ∈ R4 to denote the quaternion.
The multiplication between two arbitrary quaternions can
be done with a matrix-vector form that is given by

p� q = Rqp =

[
q0 −qT

vec

qvec −q×vec + q0I3

]
p,

where [a]× denotes the skew-symmetric matrix formed from
the vector a, and I refers to the identity matrix.

The norm of a quaternion is defined as
√
q� q∗, with q∗ =

[q0,−qvec] being the conjugate of q. And quaternions with
a unit norm are called unit quaternions, which are used for
denoting the pure rotation on the unit hypersphere S3 ⊂ R4.

Dual quaternion consists of the real part quaternion and dual
part quaternion which is a convenient tool for encapsulating



the rotation and translation [Leclercq et al., 2013],

v = qr + εqd, ε 6= 0, ε2 = 0, (1)

where qr is the unit quaternion for indicating the rotation,
and qd is the dual part quaternion for representing the com-
position of the rotation quaternion and translation quaternion
qt = [0, tx, ty, tz]

T , with qd = 0.5qt � qr ∈ R4.

Since the dual part qd is orthogonal to the real part qr

on the hypersphere space S3, we further get the unit dual
quaternion manifold DH1 := {[qT

r ,q
T
d ]

T |‖qr‖ = 1,qr ∈
S3,qT

r qd = 0} ⊂ R8. Furthermore, the translation vector
t = [tx, ty, tz] can be recovered from DH1 according to [Li
et al., 2021], which can be written as

t = 2[Rqr]
T
1:3qd, (2)

where [Rqr]1:3 refers to the last three columns of the right
multiplication matrix Rqr.

3.2 EXPONENTIAL DISTRIBUTION OF UNIT
DUAL QUATERNION

Unit dual quaternions v and −v denote the same transfor-
mation because of the property of unit quaternions, namely
qr = −qr. We assume there exists an antipodally sym-
metric exponential distribution of unit dual quaternions
v ∈ DH1

1 . Previous work [Gilitschenski et al., 2014]
offered an exponential distribution for representing the ori-
entation and position on SE(2) manifold but failed to be
applied on SE(3). In this work, we bridge this gap by de-
veloping the unit dual quaternion distribution on SE(3).

Definition 1. A vector v ∈ DH1 ⊂ R8 can be modeled
as an antipodally symmetric distribution if its probability
density function has the following form

f(v) =
1

N(F)
exp(vTFv), (3)

where N(F) refers to the normalization constant of the
proposed distribution. And the real symmetric matrix F ∈
R8×8 is the parameter matrix.

We split the vector v = [qT
r ,q

T
d ]

T with qr ∈ S3 and qd ∈
R4. Meanwhile, we decompose the symmetric parameter
matrix F as follows,

F =

[
F1 F2

FT
2 F3

]
,Fi ∈ R4×4, i = 1, 2, 3.

1Generally, the distribution f on the space S is said to be
antipodally symmetric if f(−v) = f(v) for all v ∈ S, which
means the opposite points on S have equal probability.

Then the exponential distribution (3) can be rewritten as

f(v) =
1

N(F)
exp (qT

r (F1 − F2F
−1
3 FT

2 )qr︸ ︷︷ ︸
Bingham−like

+

(qd + F−13 FT
2 qr)

TF3(qd + F−13 FT
2 qr))︸ ︷︷ ︸

Gaussian−like

.
(4)

In this distribution, we have the following theorem for pa-
rameter matrix F, where the proof can be found in the
Supplementary Material.

Theorem 1. Considering the antipodally symmetric distri-
bution (4), the sub-block matrix F1 ∈ R4×4 is real symmet-
ric, and F3 ∈ R4×4 is real symmetric and negative definite.

4 SYMMETRIC MATRIX F ON SE(3)

This section gives a thorough analysis of the parameter
matrix F in the unit dual quaternion distribution on SE(3).

4.1 SYMMETRIC MATRIX F

As shown in Equation (4), F is decomposed into three sub-
matrices, which are significant components of the Bingham-
like distribution and the Gaussian-like distribution.

4.1.1 The Bingham-like Matrix

The Bingham distribution was introduced [Bingham, 1974]
as an extension of the Gaussian distribution, which lies on
the surface of the unit hypersphere,

f(q;M,Z) =
1

N(Z)
exp

(
qTMZMTq

)
, (5)

where Z ∈ R4×4 is a diagonal matrix with an ascending
entries z1 ≤ z2 ≤ z3 ≤ z4 ≤ 0, the matrix M ∈ R4×4

is an orthogonal matrix, and N(Z) is the normalization
constant. Usually, we enforce the last entry of Z as a zero
value using the property of the Bingham distribution, namely
f(qr;M,Z) = f(qr;M,Z+ cI), by setting c = −z4.

Here we show that the sub-vector qr ∈ S3 follows the
Bingham distribution, the essential matrix M ∈ R4×4 and
Z ∈ R4×4 can be computed according to the Theorem 2,
the proof can be found in the Supplementary Material.

Theorem 2. The parameter matrix F ∈ R8×8 is able to be
decomposed into an orthogonal matrix M ∈ R4×4 and a
diagonal matrix Z ∈ R4×4 via the eigendecomposition of
F1 − F2F

−1
3 FT

2 .



Figure 1: The differentiable QCQP for representing the
rotation.

4.1.2 The Gaussian-like Matrix

Similarly, the parameter matrix F is also critical in the
marginal distribution of qd which is the Gaussian distribu-
tion with the mean vector being−F−13 FT

2 qr and covariance
matrix being − 1

2F
−1
3 ,

f(qd|qr) ∝
exp

(
qd − (−F−13 FT

2 qr))
TF3(qd − (−F−13 FT

2 qr)
)
.

(6)

4.2 F AS THE INTERMEDIARY
REPRESENTATION SPACE

As F is an essential element of the developed unit dual
quaternion distribution, in this subsection, we show that it
can be considered as the intermediary representation space
for regressing the pose.

4.2.1 Rotation Representation

For convenience, we set the upper case B = F1 −
F2F

−1
3 FT

2 , which is taken as the representation for rota-
tion quaternions. According to the properties of matrix the-
ory, the matrix B ∈ R4×4 is real symmetric with a simple
minimum eigenvalue, which is written as

B =


b1 b2 b3 b4
b2 b5 b6 b7
b3 b6 b8 b9
b4 b7 b9 b10

 .
Then we regard the computation of the rotation quater-
nion qr as an optimization problem which is defined as a
quadratically-constrained quadratic program (QCQP) prob-
lem that arises in [Yang and Carlone, 2019].

Definition 2 (QCQP problem). Let matrix B ∈ R4×4 be
a symmetric matrix, which can be parameterized with the
vector b ∈ R10. The QCQP problem related to B is shown
in Figure 1, which is written as

min
qr∈S3

qT
r Bqr

s.t. qT
r qr = 1.

(7)

Figure 2: The Gaussian process for representing the transla-
tion.

Note that the solution to this problem in Figure 1 is to
calculate the eigenvector corresponding to the minimum
eigenvalue of B.

4.2.2 Translation Representation

The parameter matrix F also offers a new standpoint for
representing the translation vector. As known, the marginal
distribution of qd is a Gaussian distribution which is shown
in Equation (6). Hence, the qd can be represented by
m = −F−13 FT

2 qr, with the uncertainty being measured
by the covariance matrix G = − 1

2F
−1
3 , the related Gaus-

sian process is illustrated in Figure 2. Finally the translation
can be recovered from qd using Equation (2).

5 DEEP LEARNING AND F

In this section, we intend to develop a new probabilistic
dual quaternion network to indirectly regress the pose. First,
we show F is a smooth representation of the pose. Next,
we develop a backpropagation method using an implicit
function theorem. Subsequently, a new uncertainty metric
is proposed to measure uncertainties. Finally, we give the
structure of the proposed network.

5.1 SMOOTH FEATURE OF F

A smooth representation for SE(3) is important for
learning-based methods when concerning the backpropaga-
tion procedure. Here we mainly consider the smooth feature
of F on SO(3) manifold since the translation can be com-
puted after rotation quaternions are estimated.

We utilize the concept of continuous representation pre-
sented in [Zhou et al., 2019] to give a specific analysis
to it. Considering the surjective map between the represen-
tation space and original space which is shown in Figure
4, we set the matrix B as the representation space and the
rotation quaternions qr as the original space. Zhou et al.
[2019] demonstrated that the mapping function (f, h) is a
representation if f is a left inverse of h. Conversely, the
representation is continuous if h is continuous. From the so-
lution of QCQP problem, we show that the original space qr

can be computed via the eigendecomposition of B, namely



Figure 3: The proposed deep dual quaternion network structure. The letters (a), (b) correspond to the input image, and the
proposed deep dual quaternion network. We start from the current frame input It which is further fed into the proposed
network. The output of the network is a vector vec(F) with 36 elements which then consists of the matrix F. After learning
the parameter matrix F, the rotation quaternions qr and translation vector t are computed using the theory of dual quaternion
distribution. During training, an implicit function theorem is applied to the backpropagation procedure.

Figure 4: A surjective map between the representation space
and the original space.

qr = f(B). And the representation space can be reversely
deduced from the original space qr, namely B = h(qr).
Moreover, a continuous representation is possible if the di-
mension of the embedding space is greater than five. In this
context, the representation space B can be simplified with
the 10-dimensional vector b ∈ R10. Then we introduce the
Smooth Global Section Theorem to show that the represen-
tation space is a smooth and continuous mapping to SO(3),
where the proof can be found in [Peretroukhin et al., 2020].

Theorem 3 (Smooth Global Section). Consider the sur-
jective map f : R10 → SO(3) such that f(B) returns the
rotation matrix R defined by the two antipodal unit quater-
nions ±qr by minimizing the QCQP problem. There exists
a smooth and global mapping, or section, h: SO(3)→ R10

such that f(h(R)) = R.

5.2 GRADIENT COMPUTATION

The relationship of qr and data matrix B is defined in terms
of an objective and constraints in a mathematical optimiza-
tion problem. Importantly, the derivative of qr with respect
to data matrix B follows the implicit differentiation [Gould
et al., 2021].

Regarding the continuousness of the proposed intermedi-
ary representation space F, we in this paper introduce a
gradient computation method for the backpropagation pro-
cedure. Recall that the matrix B ∈ R4×4 is real symmet-
ric, which can be simplified with a 10-dimensional vector

b = vec(B). Magnus [1985] demonstrated that qr will be
differentiable at b provided that the minimum eigenvalue λ1
of B is simple2. Hence, the gradient is implemented using
the implicit function theorem,

∂qr

∂b
= qr ⊗ (λ1I−B)+, (8)

where ⊗ denotes the Kronecker product, (·)+ refers to the
Moore-Penrose pseudo-inverse.

5.3 UNCERTAINTY MEASUREMENT

The introduction of the uncertainty metric is of great signif-
icance to measure pose uncertainties. Intuitively, we con-
sider the proposed unit dual quaternion distribution as the
composition of the Bingham distribution B(qr;B) and the
Gaussian distribution G(qd;−F−13 FT

2 qr,− 1
2F
−1
3 ).

For the rotation uncertainty, the Bingham belief is a proper
choice [Peretroukhin et al., 2020]. According to the property
of the Bingham distribution in Equation (5), the rotation
uncertainty is written as

Uq(Z) =

4∑
i

zi = z1 + z2 + z3 − 3z4, (9)

where zi ≤ 0, i = 1, 2, 3, 4.

Likewise, we also use the Gaussian belief to measure the
translation uncertainty. Here we decompose the covariance
matrix G = − 1

2F
−1
3 using the eigendecomposition method,

and then the translation uncertainty can be written as

Ut(G) =

4∑
i

λi = λ1 + λ2 + λ3 + λ4, (10)

where λi, i = 1, 2, 3, 4 denotes eigenvalues of G.
2We find that the non-simple minimum eigenvalue occurs

rarely in our work.



Figure 5: The difference of the use of the normalization of
vec(F) during the learning phase. We take the ShopFacade
scene in the Cambridge Landmarks dataset for example. The
orange line indicates the pose error curves without normal-
izing the vec(F). While the blue line denotes the pose error
curves after normalizing the vec(F). o.vec(F)/w.vec(F):
without/with normalization of the vec(F).

5.4 NETWORK STRUCTURE

The structure of the proposed deep probabilistic dual quater-
nion network is shown in Figure 3. We set the ResNet-50
as the backbone network where the parameters are initial-
ized from pre-trained ImageNet weights. Then two fully
connected layer are appended to the ResNet’s activations to
regress the parameter matrix F. Since the parameter matrix
F is real symmetric, we can encode it with a 36-dimensional
feature vector. Subsequently, we decompose the F with two
branches, namely rotation branch and translation branch.
For the rotation branch, we estimate rotation quaternions
by solving the QCQP problem shown in Figure 1. For the
translation branch, we surprisingly find that directly using
the estimated rotation quaternions is not sufficient to get a
proper translation vector. In this case, a tiny trick is adopted
that we normalize the output vector vec(F) to generate a
pseudo matrix B′ which is shown in Figure 5. Then another
rotation quaternion is estimated to compose the mean vector
m = −F−13 FT

2 qr. During the training stage, an implicit
function theorem is applied to the backpropagation proce-
dure. Finally, the translation vector t can be recovered from
m.

Additionally, we adopt the similar loss function presented
in [Kendall et al., 2015] as our loss metric3,

L = ‖tg − te‖2 + α‖qg − qe‖2, (11)

where te and qe denote the inferred translation and rotation,
3Unit quaternions−q and q represent the same rotation. Hence

the difference between two unit quaternions is further detailed as
‖qg − qe‖2 = min(‖qg − qe‖2, ‖qg + qe‖2).

Figure 6: The rotation and translation error curves of each
scene during test stages on the 7-Scenes dataset.

while tg and qg are the labeled translation and rotation.
Moreover, we set the scale factor α = 100 on the 7-Scenes
dataset and α = 300 on the Cambridge Landmarks dataset.

6 EXPERIMENTS

In this section, we perform the absolute pose regression on
the task of camera re-localization on two public datasets,
namely Cambridge Landmarks [Kendall et al., 2015] and
7-Scenes datasets [Shotton et al., 2013], which consists of
RGB frames with associated ground truth camera poses and
provides training as well as test sequences. First, we give a
comparison with state-of-the-art pose regression methods
to demonstrate the inferred pose accuracy. Then we evalu-
ate our deep probabilistic model on the noisy Cambridge
Landmarks dataset to show its robustness in dealing with
uncertainty and ambiguity.

6.1 TRAINING DETAILS

We run our experiments in the Pytorch framework [Paszke
et al., 2019]. We use the Adam optimizer [Kingma and Ba,
2015] and begin with a learning rate of 10−4, and gradually
decrease the learning rate exponentially with the multiplica-
tive factor being 0.9. We use a batch size of 16 and train for
100 epochs for the 7-Scenes dataset and 200 epochs for the
Cambridge Landmarks dataset. All input frames are resized
to 224× 224.

6.2 RESULTS

6.2.1 Normal Scenes

7-Scenes Dataset. We test our model on all 7 scenes on the
7-Scenes dataset. Since the majority of the scenes do not



Table 1: Evaluation on the 7-Scenes dataset. The results are reported with the median translation error(m) and the median
rotation error(◦). The best results are in bold.

Scene Chess Fire Heads Office Pumpkin RedKitchen Stairs
PoseNet 0.32m/8.12◦ 0.47m/14.4◦ 0.29m/12.0◦ 0.48m/7.68◦ 0.47m/8.42◦ 0.59m/8.64◦ 0.47m/13.8◦

Dense PoseNet 0.32m/6.60◦ 0.47m/14.0◦ 0.30m/12.2◦ 0.48m/7.24◦ 0.49m/8.12◦ 0.58m/8.34◦ 0.48m/13.1◦

MapNet 0.08m/3.25◦ 0.27m/11.69◦ 0.18m/13.2◦ 0.17m/5.15◦ 0.22m/4.02◦ 0.23m/4.93◦ 0.30m/12.08◦

MapNet++ 0.10m/3.17◦ 0.20m/9.04◦ 0.13m/11.1◦ 0.18m/5.38◦ 0.19m/3.92◦ 0.20m/5.01◦ 0.30m/13.4◦

BPN 0.37m/7.24◦ 0.43m/13.7◦ 0.31m/12.0◦ 0.48m/8.04◦ 0.61m/7.54◦ 0.58m/7.54◦ 0.48m/13.1◦

VidLoc 0.18m/- 0.26m/- 0.14m/- 0.26m/- 0.36m/- 0.31m/- 0.26m/-
UBN 0.10m/4.97◦ 0.27m/12.87◦ 0.12m/14.05◦ 0.20m/7.52◦ 0.23m/7.11◦ 0.19m/8.25◦ 0.28m/13.1◦

MBN-MB 0.10m/4.35◦ 0.28m/11.86◦ 0.12m/12.76◦ 0.19m/6.55◦ 0.22m/6.9◦ 0.21m/8.08◦ 0.31m/9.98◦

Ours 0.20m/2.9◦ 0.30m/5.63◦ 0.19m/6.53◦ 0.30m/3.51◦ 0.28m/2.6◦ 0.40m/3.6◦ 0.42m/6.23◦

Figure 7: The rotation and translation error curves of each
scene during test stages on the Cambridge Landmarks
dataset.

show highly ambiguous environments, we regard them to
be non-ambiguous. The final test curves of 7 scenes can be
found in Figure 6. Clearly, the overall rotation error is less
than 7◦ and the overall translation error is less than 0.5m.

In order to demonstrate the pose accuracy of our model,
we make a comparison with other pose regression methods
including PoseNet and its variant Dense PoseNet [Kendall
et al., 2015], MapNet and its variant MapNet++ [Brahmbhatt
et al., 2018], BPN [Kendall and Cipolla, 2016], VidLoc
[Clark et al., 2017], UBN and MBN-MB [Deng et al., 2020].
The quantitative and qualitative results are listed in Table 1.

From Table 1, the evaluated results on the 7-Scenes dataset
show that our method outperforms state-of-the-art methods
on the rotation accuracy. But the translation accuracy per-
forms a bit worse than baselines since the translation part
is computed from the estimated rotation quaternion and the
intermediary space F, where the estimated rotation error can
directly affect the translation accuracy and further amplify
this error to the translation part. Despite this, our method
still has a competitive advantage in terms of translation ac-
curacy. A similar tendency also happens in the Cambridge

Landmarks dataset.

Cambridge Landmarks Dataset. To further demonstrate
the pose accuracy on different scenes, we also implement
our approach on the Cambridge Landmarks dataset. We
select the Kings College, Hospital, ShopFacade and St.Mary
Church as our evaluation scenes. Again, we plot the four
different test curves in Figure 7. The final converge results
show that the overall rotation error is less than 3◦ and overall
translation error is no more than about 3m.

Next, we also list our final pose accuracy in Table 2 to
make a comparison with state-of-the-art methods. Similar
pose accuracy is reported that our method can achieve a
more accurate pose in the Cambridge Landmarks dataset
especially for the rotation part.

6.2.2 Noisy Scenes

To further demonstrate the performance of our method in
dealing with uncertainty and ambiguity, we conduct our
model on four noisy scenarios, namely the Kings College,
Hospital, ShopFacade, and St.Mary Church, where these
scenes are processed by manually adding the Gaussian blur
kernel, randomly changing the brightness, contrast, satura-
tion of all frames, and both to simulate different ambiguous
environments.

Without retraining the proposed deep probabilistic dual
quaternion network, we directly feed the processed frames
into the trained model to predict the camera pose. The quan-
titative results are shown in Table 3. The results show that
the pose errors have some minor changes in noisy scenes
including the Kings College, Hospital, ShopFacade and
St.Mary Church.

Then we measure uncertainties of our model under normal
and noisy environments, which is shown in Figure 8. In-
tuitively, the pose errors in the blur environment denoted
by purple points have a similar distribution compared to
that in the original environment denoted by the red points
under the both rotation uncertainty and translation uncer-
tainty measurement. Nevertheless, the pose errors in the



Table 2: Evaluation on the Cambridge Landmarks dataset. The results are reported with the median translation error(m) and
the median rotation error(◦). The best results are in bold.

Scene Kings College Hospital ShopFacade St.Mary Church
PoseNet 1.92m/5.40◦ 2.31m/5.38◦ 1.46m/8.08◦ 2.65m/8.48◦

Dense PoseNet 1.66m/4.86◦ 2.62m/4.90◦ 1.41m/7.18◦ 2.45m/7.96◦

MapNet 1.07m/1.89◦ 1.94m/3.91◦ 1.49m/4.22◦ 2.0m/4.53◦

BPN 1.74m/4.06◦ 2.57m/5.12◦ 1.25m/7.54◦ 2.11m/8.38◦

UBN 0.88m/1.77◦ 1.93m/3.71◦ 0.8m/4.74◦ 1.84m/6.19◦

MBN-MB 0.83m/2.08◦ 2.16m/3.64◦ 0.92m/4.93◦ 1.37m/6.03◦

Ours 1.20m/0.84◦ 2.46m/1.72◦ 1.10m/2.51◦ 2.40m/2.63◦

Table 3: The quantitative results of the proposed deep probabilistic dual quaternion network in the noisy scenes on the
Cambridge Landmarks dataset.

Scene Kings College Hospital ShopFacade St.Mary Church
Normal 1.20m/0.84◦ 2.46m/1.72◦ 1.10m/2.51◦ 2.4m/2.63◦

Blur 1.42m/0.92◦ 2.59m/1.74◦ 1.12m/2.53◦ 2.60m/2.65◦

Brightness 1.55m/1.00◦ 3.07m/2.14◦ 1.30m/2.61◦ 3.00m/2.60◦

Blur & Brightness 1.76m/1.22◦ 3.29m/2.31◦ 1.38m/2.86◦ 3.13m/2.69◦

Figure 8: Uncertainty evaluation on the Cambridge Landmarks dataset. The left column shows the pose errors under the
pose uncertainty metric in the blur environment, where the radius of the Gaussian blur kernel is 3.8. The middle column
shows the pose errors under the pose uncertainty metric in the random brightness change environment, where the maximum
brightness factor is 0.6, the maximum contrast factor is 0.6 and the maximum saturation factor is 0.5. The right column
indicates pose errors under the both blur and brightness change environment. Note: we only plot the St.Mary Church scene,
full information can be found in the Supplementary Material.



brightness change environment denoted by blue points have
some minor differences especially for the rotation uncer-
tainty. Likewise, the pose errors in the blur and brightness
change environment denoted by the orange points have a
similar tendency, but we believe that it is reasonable in
noisy environments. More importantly, there are only a few
points out of the original distribution in aforementioned two
scenes which have limited effects to the overall pose accu-
racy. Furthermore, the pose accuracy of our method in noisy
environments still outperforms the state-of-the-arts that in
normal environments especially for the rotation accuracy.
As a result, the experiment results in noisy environments
suggest that our model is robust to deal with uncertainty and
ambiguity.

7 CONCLUSION

We design a deep probabilistic dual quaternion network that
addresses the absolute pose regression problem on SE(3).
Unlike existing work, we take pose uncertainties into con-
sideration by introducing an antipodally symmetric distribu-
tion over the unit dual quaternion on SE(3). To address the
mapping problem from the Euclidean space Rn to SE(3)
manifold, we present an intermediary differential representa-
tion space F as the output of our model to indirectly regress
poses. Additionally, we introduce a backpropagation method
for batch optimization. Experiment results on the camera re-
localization task on the 7-Scenes dataset and the Cambridge
Landmarks dataset show that our method outperforms state-
of-the-art methods on the pose accuracy. Moreover, exten-
sive experiments on the noisy scenes on the Cambridge
Landmarks dataset show that our method has the ability to
deal with uncertainty and ambiguity.

In the future, we will explore the absolute pose regression
problem leveraging our representation with a negative log-
likelihood loss function to improve the reliability and ro-
bustness of our model in real-world applications.
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