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ABSTRACT

In recent years, end-to-end solutions for Weakly Supervised Semantic Segmen-
tation (WSSS) with image-level labels have been developed rapidly. Previous
end-to-end methods usually rely on segmentation branches or decoders to pre-
dict segmentation masks, bringing additional parameter numbers and consumption
time. In this paper, we propose a decoder-free Representation Mutual Learning
(RML) framework to directly predict segmentation masks, which leverages col-
laborative learning and mutual teaching among multi-level feature representations
to improve segmentation performance. Our RML is a straightforward and efficient
end-to-end WSSS framework, which incorporates the instance-level, feature-level
and pixel-level representation mutual learning strategies to improve segmentation
quality. To enhance the Class Activation Map (CAM) representations, we pro-
pose a CAM-driven Instance-leave Mutual Learning strategy that preserves the
equivariance of CAMs and expands the distance between different classes of se-
mantic prototypes. Besides, we design a Multi-scale Feature-leave Mutual Learn-
ing strategy, which can align aggregated contextual representations and facilitate
the representation capability of contextual representations. Furthermore, we also
provide an Affinity-aware Pixel-level Mutual Learning strategy to learn semantic
affinity representations. Experiments validate that our RML yields a significant
performance improvement over recent end-to-end methods on the Pascal VOC
2012 dataset and the MS COCO 2014 dataset. The release code is available at
supplementary material.

1 INTRODUCTION

Fully supervised semantic segmentation models require a large number of labor-intensive pixel-
level labels to annotate images Chen et al. (2017). To alleviate the dependence on pixel-level labels,
weakly supervised semantic segmentation (WSSS) methods use weak labels that are cheaper to
acquire for semantic segmentation, usually taking the form of image-level labels Lee et al. (2021b);
Ru et al. (2022), scribbles Lin et al. (2016), or bounding boxes Dai et al. (2015); Lee et al. (2021c).
This paper focuses on using only image-level labels, as they are the cheapest and most challenging
option for weakly supervised semantic segmentation.

Most WSSS methods with image-level labels are usually done in a multi-stage process. These
multi-stage methods require at least three stages that are complex and time-consuming. To solve
the problem of complex training pipeline and time-consuming computation of multi-stage methods,
some end-to-end methods Zhang et al. (2020a; 2021b); Araslanov & Roth (2020); Ru et al. (2022)
have been proposed recently. These end-to-end methods first directly generate Class Activation
Maps (CAM) Zhou et al. (2016) as initial pseudo-labels. The refinement module then refines the
initial pseudo-labels concurrently during training. Finally, current end-to-end methods typically use
fine-grained pseudo-labels to supervise the segmentation branch or decoder for segmentation mask
prediction. For example, Araslanov & Roth (2020) uses refined pseudo-labels as the supervision for
the semantic segmentation branch. Araslanov & Roth (2020) and Ru et al. (2022) employ pixel-
adaptive refinement modules PAMR and PAR respectively to improve pseudo-labels, and finally use
a decoder to predict segmentation results, as shown in Fig. 1 (a). However, we found that the seg-
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mentation branch or decoder is not indispensable for WSSS, we can directly predict the segmentation
masks and achieve high segmentation accuracy via mutual learning between feature representations.
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Figure 1: Previous Works vs. Representation Mutual
Learning, and illustration of our multi-level RML.

For WSSS, the generation quality of
CAM, global context information, and
semantic affinity have been verified
to be critical for segmentation per-
formance Araslanov & Roth (2020);
Ru et al. (2022). Therefore, we de-
sign a decoder-free Representation Mu-
tual Learning (RML) framework in-
cludes the instance-level, feature-level
and pixel-level mutual learning strate-
gies, which improve the segmentation
performance of the network by en-
hancing CAM representations, contex-
tual representations and semantic affin-
ity representations in a self-supervised
manner, respectively. Unlike model dis-
tillation Hinton et al. (2015); Adriana
et al. (2015), which usually allows the
student network to learn the class prob-
ability of the teacher network, deep mutual learning Zhang et al. (2018b) does not distinguish the
network as a teacher or student network, and allows the outputs of different networks to learn from
each other, and achieves excellent performance, as shown in Fig. 1 (d). Inspired by this, we propose
a Representation Mutual Learning (RML) framework, which aims to enable multi-level represen-
tations to learn from each other in a self-supervised manner, as shown in Fig. 1 (e). Our RML
can enhance the feature representation capability of the network to improve segmentation accu-
racy, not just through mutual learning of class probabilities. For instance-level mutual learning,
we present a CAM-driven Instance-leave Mutual Learning strategy to improve the generation qual-
ity of CAM representations by maintaining the equivariance of CAMs and expanding the distance
between semantic prototypes (obtained by CAM aggregation) of different categories. As contex-
tual information is crucial for the performance improvement of semantic segmentation models, we
design the Multi-scale Feature-leave Mutual Learning strategy to facilitate contextual information
learning by aligning aggregated contextual representations. Furthermore, inspired by Ahn & Kwak
(2018) and Ru et al. (2022) predicting semantic affinity to facilitate segmentation performance, we
provide the Affinity-aware Pixel-level Mutual Learning strategy for pixel-level mutual learning of
semantic affinity representations by introducing mutual information and contrastive learning.

Specifically, our contributions are summarized as follows:

• We propose an efficient decoder-free Representation Mutual Learning (RML) framework
that exploits the mutual promotion between feature representations via multi-level strate-
gies to improve network performance, achieving SOTA performance on WSSS tasks.

• We present a CAM-driven Instance-leave Mutual Learning strategy to improve segmenta-
tion performance by improving the generation quality of of instance-leave CAM represen-
tations.

• We design a Multi-scale Feature-leave Mutual Learning strategy to facilitate the learning
of feature-leave contextual representations.

• We give an Affinity-aware Pixel-level Mutual Learning strategy for mutual learning of
pixel-level semantic affinity representations to improve segmentation accuracy.

2 RELATED WORK

2.1 WEAKLY-SUPERVISED SEMANTIC SEGMENTATION

Multi-stage methods. Prevailing Weakly Supervised Semantic Segmentation (WSSS) methods with
image-level labels usually employ a multi-stage framework. To generate the initial seed masks,
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multi-stage methods first use the trained classification model to extract the class activation map
(CAM) Zhou et al. (2016). The initial seed masks are then refined by some refinement strategies.
Lovasz et al. Lovász (1993) employ random walks to propagate seed regions of object classes. The
boundary refinement strategies PSA Ahn & Kwak (2018) and IRN Ahn et al. (2019) refine the
obtained initial seeds by learning semantic affinity. Erasure strategies Hou et al. (2018); Zhang
et al. (2018a) prevent the classifier from focusing only on discriminative parts by erasing the most
discriminative regions. Wu et al. proposed EDAM Wu et al. (2021) to integrate activation map
generation into classification models for refinement. Some recent methods improve segmentation
performance from the perspective of generating CAM, such as ReCAM Chen et al. (2022) inserting
softmax cross-entropy loss into BCE-based model to reactivate CAM. Lee et al. Lee et al. (2021a)
propose a method to reduce the information bottleneck in weakly supervised semantic segmentation.
Finally, a fully supervised semantic segmentation model is trained using the refined pseudo-labels.

End-to-End methods. Unlike multi-stage methods that require training multiple models, end-to-
end methods simplify the training pipeline. Pinheiro et al. Pinheiro & Collobert (2015) treat WSSS
as a multi-instance learning problem and propose a CNN-based model to segment objects with
only weak supervision. 1Stage Araslanov & Roth (2020) employs a normalized global weighted
pooling, a local pixel-adaptive mask refinement module, and a stochastic gate to improve segmen-
tation accuracy. Zhang et al. Zhang et al. (2020a) proposed Reliable Region Mining (RRM) uses
CRF Krähenbühl & Koltun (2011) to refine the initial pseudo-labels as segmentation supervision.
Ru et al. Ru et al. (2022) propose an Affinity from Attention (AFA) module to learn semantic affinity
from transformers, and design a pixel-adaptive module to refine pseudo-labels. The above methods
either use the refined pseudo-labels as supervision for the semantic segmentation branch or as su-
pervision for the segmentation decoder. In contrast, our RML directly learns segmentation masks
using a representation mutual learning framework.

2.2 DEEP MUTUAL LEARNING

Unlike collaborative learning He et al. (2016) where different models learn different tasks, or coop-
erative learning Batra & Parikh (2017) where multiple models are learned in different domains of the
same task, in recent years, mutual learning Zhang et al. (2018b) has been proposed where all models
deal with the same task and domain. Zhang et al. Zhang et al. (2021a) proposed robust mutual learn-
ing to effectively suppress noise in pseudo-labels in semi-supervised semantic segmentation tasks.
Zhou et al. Zhou et al. (2021) proposed binocular mutual learning to improve few-shot classification
through intra-view and cross-view modeling. Different from the mutual learning methods above
which utilize the output of each sub-network for supervision, our representational mutual learning
utilizes the feature representations within each sub-network for mutual supervision.

3 METHOD

Our model consists of a multi-level representation mutual learning framework. Specifically, we
propose instance-level, feature-level, and pixel-level mutual learning strategies for representation
enhancement in WSSS. Our overall network architecture is shown in Fig. 2.

3.1 PRELIMINARY

First we review the generation of class activation maps (CAMs) Zhou et al. (2016). Class scores
are usually computed by global average pooling (GAP), and we denote the weight matrix in the
classification layer by W . For a given specific class c and a given feature map f ∈ RH×W×D, an
activation map Mc is generated by weighting the feature maps and their contributions to class c:

Mc = Relu(

D∑
i

Wc,ifi,:). (1)

where we scale Mc to [0, 1] using min-max normalization.
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Figure 2: Schematic of Representation Mutual Learning (RML) for end-to-end WSSS. Our RML
framework contains instance-level, feature-level, and pixel-level mutual learning strategies for rep-
resentation enhancement. CIML: CAM-driven Instance-leave Mutual Learning strategy; MFML:
Multi-scale Feature-leave Mutual Learning strategy; APML: Affinity-aware Pixel-level Mutual
Learning strategy. We adopt PAR Ru et al. (2022) as the refinement module.

3.2 CAM-DRIVEN INSTANCE-LEAVE MUTUAL LEARNING

To enhance the feature representation capability of the network by constructing a representation
mutual learning framework, we first apply an affine transformation to the original image, and input
the original image and the transformed image into network N and network N ′, respectively. Here
both the segmentation networks share the same parameters.

For instance-level representation mutual learning, we propose a CAM-driven Instance-leave Mutual
Learning (CIML) strategy. CIML aims to enhance the representation capability of CAM repre-
sentations by maintaining the equivariance of extracted CAMs and extending the distance between
semantic prototypes of different categories. Specifically, given a affine transformation A and an
input image I , the segmentation network N prefers to extract features that are equivariant, that is,
N(A(I)) = A(N(I)). In this study, we constrain the CAM features (M,M ′) extracted by the
two shared parameter segmentation networks (N,N ′) to be as equivariant as possible, defining the
equivariance distance with Dequ:

Dequ = ∥A(M)−M ′∥1 = ∥A(N(I))−N ′(A(I))∥1 . (2)

Besides, as CAM representations are sparsely distributed in high-dimensional spaces, we apply an
average pooling layer to aggregate the CAM representations to obtain semantic prototypes. We
define the semantic prototype as the representative embedding of a class, which is estimated by the
CAM representation. Here we obtain two semantic prototypes sets (P, P ′) by aggregating (M,M ′).
For the same set of semantic prototypes, the difference between semantic prototypes of different
categories should be large, while their similarity is low. We use the cosine distance to measure the
similarity of semantic prototypes of different classes:

D(pi, pj) =
pi · pj

∥pi∥ × ∥pj∥
,D(p′i, p

′
j) =

p′i · p′j
∥p′i∥ ×

∥∥p′j∥∥ (3)

where pi and pj represent the semantic prototype vectors belonging to the i-th class and the j-th
class in P = {p1, p2, . . . pC}, respectively. p′i and p′j represent the semantic prototype vectors
belonging to the i-th class and the j-th class in P ′ = {p′1, p′2, . . . p′C}, respectively. C means number
of categories.
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In our CIML strategy, we keep the equivariance of the extracted CAMs and push aside those se-
mantic prototypes that belong to different categories to improve the generation quality of CAM
representations. Specifically, we take the weighted sum of the equivariant distance and semantic
prototype similarity defined in Eq. 2 and Eq. 3. The CAM-driven Instance-leave Mutual Learning
loss is defined as:

LCIML = α(
1

C2

C∑
i=1

C∑
j=1

D(pi, pj) +
1

C2

C∑
i=1

C∑
j=1

D(p′i, p
′
j)) +Dequ. (4)

where α balances different distance metrics.

3.3 MULTI-SCALE FEATURE-LEAVE MUTUAL LEARNING

The Multi-scale Feature-leave Mutual Learning (MFML) strategy aims to facilitate the learning
of contextual information in the network, which includes a multi-scale context fusion module and
feature-leave mutual learning loss. The multi-scale context fusion module extracts multi-scale con-
text representations, and the feature-leave mutual learning loss is given to align the aggregated con-
text representations.

Multi-scale context fusion module. The multi-scale context fusion module is shown in Fig. 2. To
extract the multi-scale context representation, we linearly interpolate the outputs of each layer of
the backbone to the same scale to obtain (f1, f2, f3, f4), and then concatenate them together. Be-
cause high-resolution low-level features provide valuable low-level concepts for semantic segmen-
tation, high-level features provide deep semantic structure information, which are both important
contextual information. For cascaded multi-scale features, we perform channel adjustment via 1×1
convolutions to obtain aggregated contextual representations Rc:

Rc = Conv(Concat(f1, f2, f3, f4)). (5)

Feature-leave mutual learning loss. We apply a multi-scale context fusion module to network
N and network N ′ to obtain context representations Rc and R′

c, respectively. The feature-leave
mutual learning loss aims to align the aggregated context representations (Rc, R′

c), and we use the
L1 distance to define the absolute distance between Rc and R′

c:

Lalign = ∥Rc −R′
c∥1 . (6)

However, such strict alignment may lead to the loss of specific information in the two complemen-
tary contextual representations. Therefore we introduce mutual information Hjelm et al. (2018)
to preserve the specific information of the representation. Mutual information is a measure of the
amount of information shared between two random variables. Here, we measure the mutual infor-
mation between two representations (Rc, R′

c) as:

I(Rc;R
′
c) = Ep(Rc,R′

c)
[log

p(Rc, R
′
c)

p(Rc)p(R′
c)
] (7)

where p(Rc) and p(R′
c) are the marginals of Rc and R′

c, and p(Rc, R
′
c) is the joint probability

distribution between them.

To preserve the specificity information of the representations to some extent, we minimize the mu-
tual information of the two representations while aligning the two contextual representations. There-
fore we define the feature-leave mutual learning loss as:

LMFML = Lalign + β1 · I(Rc;R
′
c) (8)

where β1 balances different losses.

3.4 AFFINITY-AWARE PIXEL-LEVEL MUTUAL LEARNING

PSA Ahn & Kwak (2018) achieved semantic propagation by predicting the semantic affinity be-
tween a pair of adjacent image coordinates. AFA Ru et al. (2022) learns semantic affinity from
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self-attention. This suggests that extracting effective semantic affinity representations can boost
segmentation accuracy. Based on this observation, we propose an Affinity-aware Pixel-level Mu-
tual Learning (APML) strategy to learn efficient semantic affinity representations. Specifically, our
pixel-level mutual learning strategy includes pixel-level mutual information loss and affinity-aware
contrastive learning loss.

Pixel-level mutual information loss. In this study, we use the mutual information Hjelm et al.
(2018) to measure the semantic affinity between the network’s self-attention representations and
pseudo-labels. First, we cascade the last two layers of self-attention maps of the two segmentation
networks (N , and N ′) together to construct initial semantic affinity representations Ra and R′

a. Then
we use the segmentation mask refined by the pixel-adaptive module as the task-related pseudo-label
y. To learn the efficient semantic affinity representation Ra, our main objective can be formulated
as:

maxI(y;Ra|R′
a) (9)

where y denotes pseudo-labels, and I(y;Ra|R′
a) represents the amount of information related to

the semantic segmentation task in Ra, excluding the information from the representation R′
a. And

I(y;Ra|R′
a) can be decomposed into:

I(y;Ra|R′
a) = I(y;Ra)− I(Ra;R

′
a) + I(Ra;R

′
a|y) ≈ I(y;Ra)− I(y;R′

a) (10)
where I(Ra;R

′
a|y) measures task-irrelevant information in representations Ra and R′

a, I(Ra;R
′
a)

indicates the relevance between the two representations, and I(y;Ra) represents the dependence
between the pseudo-labels y and representation Ra. Due to the difficulty of conditional mutual
information computation in neural networks Tian et al. (2021), we simplify it further. Intuitively, we
can assume that task-related information will have an overwhelming presence over task-irrelevant
information in training. Therefore, I(Ra;R

′
a|y) is negligible in efficient training.

In parallel, the goal of learning an efficient semantic affinity representation R′
a can also be simplified

as:

I(y;R′
a|Ra) = I(y;R′

a)− I(R′
a;Ra) + I(R′

a;Ra|y) ≈ I(y;R′
a)− I(y;Ra). (11)

Therefore, our pixel-level mutual information loss can be formulated as:

Lmi = I(y;R′
a)− I(y;Ra)− I(y;R′

a) + I(y;Ra). (12)

Affinity-aware contrastive learning loss. Furthermore, we also enhance the representation of affin-
ity representations by exploiting the intrinsic consistency of self-attention and semantic affinity in
the network Ru et al. (2022). The affinity-aware contrastive learning loss utilizes the pseudo-affinity
label generated by the pseudo-label y to supervise affinity maps generated by self-attention maps.
The affinity loss term Laff is constructed as:

Laff =
1

N−

∑
S−

(1− 1

1 + e−Ra
) +

1

N+

∑
S+

(
1

1 + e−Ra
) (13)

where S− and S+ denote the set of negative and positive samples in the pseudo-affinity label, and
N− and N+ represent the number of S− and S− respectively. For the learning of semantic affinity
representation, the Affinity-aware Pixel-level Mutual Learning loss is formulated as:

LAPML = Laff + β2 · Lmi (14)
where β2 balances different losses.

3.5 INTEGRATED OBJECTIVE

As shown in Fig. 2, our framework consists of four loss terms: CAM-driven Instance-leave Mutual
Learning loss LCIML, Multi-scale Feature-leave Mutual Learning loss LMFML, Affinity-aware
Pixel-level Mutual Learning loss LAPML and classification loss Lcls.
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For the classification loss, we follow the common practice and adopt the multi-label soft-margin loss
as the classification loss function:

Lcls =
1

C

C∑
c=1

(zclog(pc) + (1− zc)log(1− pc) (15)

where pc is the class probability vector for the classification layer, z is the ground truth image-level
label, and C is the total number of classes.

The overall loss is the weighted sum of LCIML, LMFML, LAPML and Lcls, which is formulated
as:

L = λ1LCIML + λ2LMFML + λ3LAPML + Lcls (16)
where λ1, λ2 and λ3 balance the contributions of different losses. In this paper, they are all set to
0.1.

3.6 NETWORK ARCHITECTURE CONFIGURATION

For the network architecture of the backbone, we utilize the Mix Transformer (MiT) Xie et al. (2021)
framework, in which we simplify it’s self-attention to speed up computation, and use FFN with
convolution instead of positional embedding. For the refinement module of the initial pseudo-labels,
we adopt PAR Ru et al. (2022). Besides, we initialize the backbone parameters with ImageNet-
1k Deng et al. (2009) pre-trained weights and randomly initialize other parameters.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

We evaluate our method on the PASCAL VOC 2012 dataset Everingham et al. (2010) and the MS
COCO 2014 dataset Lin et al. (2014), which are standard benchmarks for WSSS. The PASCAL VOC
2012 dataset consists of 20 foreground object classes and 1 background class, which is typically
augmented with the SBD dataset Hariharan et al. (2011) for the training set. The augmented dataset
has 10,582 images for training, 1,449 for validation, and 1,464 for testing, respectively. The MS
COCO 2014 dataset consists of 80 foreground object classes and 1 background class. The dataset
includes 82,081 training set images and 40,137 validation set images. Both PASCAL VOC 2012
and MS COCO 2014 datasets only use image-level labels as supervision.

Our RML is implemented with PyTorch. For the input image, we employ random rescaling in
the range [0.5, 2.0], random cropping and random horizontal flipping for data augmentation. The
AdamW optimizer Loshchilov & Hutter (2018) is adopted to train our network with a weight decay
factor of 0.01. The initial learning rate of the backbone parameter is set to 6× 10−5, and the initial
learning rate of other parameters is set to 6 × 10−4. Following the common practice, we warm
up the classification branch for 2,000 iterations on the Pascal VOC dataset and 5,000 iterations on
the MS COCO dataset. The total number of iterations for the VOC dataset and COCO dataset are
18,000 and 75,000, respectively. The weight factors in Eq. 4, Eq. 8 and Eq. 14 are 0.1, 100, and
100, respectively. The consumption time of our RML on the VOC dataset on a single NVIDIA 3090
GPU is about 3 hours, which is 3/4 of AFA Ru et al. (2022) and 1/60 of AdvCAM Lee et al. (2021b).
See the appendix for more comparisons of the consumption time.

Table 1: Ablation studies of our proposed RML
on the Pascal VOC 2012 val set.

Methods CIML MFML APML CRF val

Our Baseline 50.3

RML (Ours)

" 58.8
" " 61.7
" " " 64.9
" " " " 67.2

Table 2: Ablation studies of components in repre-
sentation mutual learning strategies.

Methods val

(a) w/o CIML 61.9
(b) w/o Multi-scale context fusion module 63.2
(c) w/o Feature-leave mutual learning loss 62.6
(d) w/o Pixel-level mutual information loss 63.0
(e) w/o Affinity-aware contrastive learning loss 62.4
RML 64.9
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(a) (b) (c) (d) (e) (f) 

Figure 3: Visualization of CAMs. (a) Original images. (b) Ground truth. (c) CAMs generated by
our baseline. (d) CAMs after applying our CIML. (e) CAMs after applying our CIML and MFML.
(f) CAMs after applying our CIML, MFML and APML. The white box shows the difference.

4.2 ABLATION STUDIES

We first evaluate the contribution of each strategy of RML to the overall performance in Tab. 1. The
results show that the network using the proposed CIML improves by 16.9% compared to the base-
line. The performance of the network is significantly improved by 4.9% after applying our MFML.
Besides, our APML further improves the mIoU significantly to 64.9%. The final CRF Krähenbühl
& Koltun (2011) post-processing improves the final performance to a mIoU of 67.2%. Briefly, the
results in Tab. 1 demonstrate the effectiveness of our proposed instance-level, feature-level, and
pixel-level mutual learning strategies. The generation quality of CAMs directly affects segmenta-
tion accuracy, so we also show the effect of mutual learning strategies on CAMs in Fig. 3, and it can
be observed that our RML can generate more complete activation coverage.

Table 3: Performance comparisons on PASCAL VOC
2012 dataset. F means full supervision. I means image-
level labels. S means saliency maps.

Method Sup Backbone val test
Fully-supervised methods
DeepLab Chen et al. (2017) F R101 77.6 79.7
Segformer Xie et al. (2021) MiT-B1 78.7 -

Multi-Stage weakly-supervised methods
MCISECCV ′2020 Sun et al. (2020)

I + S
R101 66.2 66.9

AuxSegNetICCV ′2021 Xu et al. (2021) WR38 69.0 68.6
EPSCV PR′2021 Lee et al. (2021d) R101 70.9 70.8

SEAMCV PR′2020 Wang et al. (2020)

I

WR38 64.5 65.7
SC-CAMCV PR′2020 Chang et al. (2020) R101 66.1 65.9
CDAICCV ′2021 Su et al. (2021) WR38 66.1 66.8
AdvCAMCV PR′2021 Lee et al. (2021b) R101 68.1 68.0
RIBNeurIPS′2021 Lee et al. (2021a) R101 68.3 68.6

End-to-End weakly-supervised methods
EMICCV ′2015 Papandreou et al. (2015)

I

VGG16 38.2 39.6
MILCV PR′2015 Pinheiro & Collobert (2015) - 42.0 40.6
CRF-RNNCV PR′2017 Roy & Todorovic (2017) VGG16 52.8 53.7
RRMAAAI′2020 Zhang et al. (2020a) WR38 62.6 62.9
RRM+AAAI′2020 Zhang et al. (2020a) MiT-B1 63.5 -
1StageCV PR′2020 Araslanov & Roth (2020) WR38 62.7 64.3
AA&LRACMMM ′2021 Zhang et al. (2021b) WR38 63.9 64.8
AFACV PR′2022 Ru et al. (2022) MiT-B1 63.8 -
AFA+ CRFCV PR′2022 Ru et al. (2022) MiT-B1 66.0 66.3
RML (Ours) I MiT-B1 64.9 65.4
RML + CRF (Ours) MiT-B1 67.2 67.5

Ground Truth AFA Ours

Figure 4: Qualitative segmentation re-
sults of AFA Ru et al. (2022) and our
RML on PASCAL VOC benchmark.

To reveal the benefits of the components in each strategy, we further performed the ablation exper-
iments in Tab. 2. Experiments (b) and (e) demonstrate the importance of learning contextual repre-
sentations and affinity representations. Experiments (a), (c) and (d) demonstrate that instance-level,
feature-level, and pixel-level representation mutual learning is crucial for segmentation network per-
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formance. Removing any of these components significantly reduces the segmentation accuracy. In
addition, we also provide the sensitivity analysis of α, β1, β2 and comparisons of consumption time
in the appendix.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

Segmentation performance on PASCAL VOC 2012. Tab. 3 provides a comparative overview of
the current state-of-the-art on the PASCAL VOC 2012 val and test sets. In the image-level super-
vised setting, our method even achieves competitive performance with recent multi-stage methods.
RIB Lee et al. (2021a) is trained on at least three stages and ends up only achieving 1.6% more
mIoU than our method. Benefiting from our reinforcement and mutual learning of CAM repre-
sentations, contextual representations and semantic affinity representations at multiple levels, the
proposed RML significantly outperforms previous state-of-the-art end-to-end methods. Our method
achieves a mIoU of 67.2% on VOC val set, which achieves 85.4% of the fully supervised counterpart
Segformer Xie et al. (2021). The results in Tab. 3 illustrate that our method achieves state-of-the-art
performance on the PASCAL VOC 2012 benchmark.

Table 4: Performance comparisons on MS COCO dataset.

Method Sup Backbone mIoU(%)

Multi-Stage weakly-supervised methods
AuxSegNetICCV ′2021 Xu et al. (2021) I + S WR38 33.9
EPSCV PR′2021 Lee et al. (2021d) R101 35.7

SEAMCV PR′2020 Wang et al. (2020)

I

WR38 31.9
CONTANeurIPS′2020 Zhang et al. (2020b) WR38 32.8
CDAICCV ′2021 Su et al. (2021) WR38 31.7
CGNetICCV ′2021 Kweon et al. (2021) WR38 36.4
RIBNeurIPS′2021 Lee et al. (2021a) R101 43.8
End-to-End weakly-supervised methods
AFACV PR′2022 Ru et al. (2022) I MiT-B1 38.0
AFA + CRFCV PR′2022 Ru et al. (2022) MiT-B1 38.9
RML (Ours) I MiT-B1 39.1
RML + CRF (Ours) MiT-B1 40.0

Ground Truth AFA Ours

Figure 5: Qualitative segmentation re-
sults on MS COCO 2014 benchmark.

Segmentation performance on MS COCO 2014. In Tab. 4 we report the performance compar-
isons of our method with state-of-the-art methods on the MS COCO 2014 dataset. Our RML can
achieve 40.0% mIoU on the COCO val set, significantly outperforming recent end-to-end methods
and achieving competitive results among multi-stage methods. Our performance improvement does
not come from a larger network structure, but mainly from the enhancement of multiple represen-
tations by our multi-level representation mutual learning strategies, which directly produces better
segmentation masks for the WSSS task.

Qualitative analysis. We present qualitative results for PASCAL VOC and MS COCO in Fig. 4
and Fig. 5, respectively. On the PASCAL VOC dataset, we observe that our method outperforms
AFA Ru et al. (2022), successfully segmenting fine-grained details with high fidelity. On the MS
COCO dataset, our model produces segmentation masks that align well with object boundaries. See
support materials for more qualitative results.

5 CONCLUSION

In this paper, we propose a direct and efficient Representation Mutual Learning (RML) framework
that exploits the mutual promotion between multi-level feature representations to improve segmen-
tation accuracy on WSSS tasks. Our RML does not require additional segmentation branches or
decoders used by previous methods and directly predicts segmentation masks. RML mainly con-
sists of a CAM-driven Instance-leave Mutual Learning strategy aimed at improving the quality of
CAM representations, a Multi-scale Feature-leave Mutual Learning strategy to facilitate contextual
representations, and an Affinity-aware Pixel-level Mutual Learning aimed at learning semantic affin-
ity representations. Extensive experiments validate that our RML achieves significant improvements
over previous state-of-the-art end-to-end techniques on the Pascal VOC dataset and the MS COCO
dataset.
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