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ABSTRACT

Modern meta-learning approaches produce state-of-the-art performance by imitat-
ing the test condition for few-shot learning (FSL) using episodic training. How-
ever, overfitting and memorizing corrupted labels has been a long-standing issue.
Data cleansing offers a promising solution for dealing with noisy labels. Nev-
ertheless, in FSL, data cleansing exacerbates the severity of the problem as the
available training data becomes much more limited and the model is typically in-
adequately trained. In this work, we address the overfitting in a noisy setting by
exploiting auxiliary tasks to learn a better shared representation. Unsupervised
auxiliary tasks are designed with no extra labeling overhead and Wasserstein dis-
tance is leveraged to align the primary and auxiliary distributions that ensures the
learned knowledge is domain-invariant. Building upon the theoretical advances on
PAC-Bayesian analysis, we gain ground on deriving novel generalization bounds
of meta-learning with auxiliary tasks and under the effect of noisy corruptions.
Extensive experiments on FSL tasks with noisy labels are conducted to show the
effectiveness and robustness of our proposed method.

1 INTRODUCTION

A gospel for meta-learning is the shared common underlying structure across tasks and the imitation
of the test environment during training. The episodic meta-learning methods capture the statistical
dependence on the shared latent information by a bi-level optimization problem among a meta-
model θ shared across tasks and a set of task-specific models θi’s for individual tasks. Due to
the dependency, a task-specific model θi for a novel task can be adapted from θ via few training
examples in a few steps. Following the idea of MatchingNet in (Vinyals et al., 2016), an episode is
designed to include a support set and a query set to mimic the few-shot task by sub-sampling classes
as well as data points. In general, a task-specific model is learned and adapted from the meta-model
using the support set data, and the meta-model is updated by the knowledge accumulated from each
task and evaluated on the query set data.

While meta-learning models produce state-of-the-art performance for many FSL applications, over-
fitting and memorizing corrupted labels is an inevitable issue (Vinyals et al., 2016; Zhang et al.,
2021; Yao et al., 2021). Lack of training tasks may fail to cover the entire distribution causing rote
memorization of a smaller and distorted (training) distribution. Noisy labels can corrupt the shared
representation across tasks during meta-learning. Both situations may lead to poor adaptation to
new tasks, which hurts the generalization from meta-training to meta-testing. To counter corruption
from the noisy data, data cleansing has emerged as an effective means for handling noisy labels and
avoiding harmful overfitting (Jiang et al., 2018; Han et al., 2018; Yu et al., 2019). It guides model
training by selecting clean instances out of the noisy ones, and then either removes or relabels the
noisy ones before updating. The small loss technique is normally used to filter out the noisy sam-
ples, which tend to incur a bigger loss. Nevertheless, in FSL, data cleansing exacerbates the severity
of the problem as the available training data becomes much more limited and the model is typically
inadequately trained.

The ability to exploit more data from one problem that generalizes to another (Ajakan et al., 2014)
offers a promising direction to learn from noisy few-shot tasks. Trained alongside the primary task,
the auxiliary tasks make up for the limited training data. By choosing auxiliary tasks that are easy to
learn from and support the primary tasks, it is instrumental to construct meaningful representations
and avoid overfitting to spurious correlations caused by noisy labels. However, designing helpful
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auxiliaries for given primary tasks is challenging. For example, in image classification, popular
choices of auxiliary tasks include rotation (Gidaris et al., 2018), masking (Doersch et al., 2015), and
patch shuffling (Noroozi & Favaro, 2016), which require both domain expertise and additional anno-
tation efforts (Navon et al., 2021). We address the problem by designing an unsupervised auxiliary
counterpart, which completely removes the burden of an expensive labeling process (Khodadadeh
et al., 2019). One remaining concern is that using extra data from other domains may induce co-
variate shift due to the mismatch of the extra data and the current task. In this paper, we propose to
conduct novel Domain-Invariant Auxiliary Learning, referred to as DIAL, which integrates auxiliary
tasks in an adversarial way to ensure domain invariance during auxiliary learning.

To effectively transfer knowledge across the primary and auxiliary tasks while avoiding the covariate
shift, the learned representation should avoid domain-specific knowledge from the auxiliary tasks
while encouraging common domain-invariant knowledge distilled in this process (Ben-David et al.,
2010). According to this theory, unsupervised domain adaptation based on optimal transportation
learns representations from the source domain for discrimination in the target domain by measur-
ing and reducing the their disparity, such as Maximum Mean Discrepancy (MMD), Wasserstein
distance, or KL-divergence in an adversarial way (Courty et al., 2014; 2017; Shen et al., 2018).
Meta-learning shares the intuition of learning from the base classes during training and applying to
the novel unseen classes during testing whereas the the base classes and the novel classes are non-
overlapped. Therefore, it is intuitive to employ this idea for our primary and auxiliary tasks to make
their feature representations indistinguishable. To this end, we propose to minimize the discrepancy
between the primary and the auxiliary distributions using optimal transport. Specifically, instead
of directly minimizing domain discrepancy, we utilize a domain critic neural network to estimate
empirical Wasserstein distance between the primary and auxiliary samples and optimize the feature
extractor network to minimize the estimated Wasserstein distance in an adversarial manner (Ajakan
et al., 2014). By iterative adversarial training, we finally learn feature representations that are both
discriminative and domain-invariant.

Building upon the recent advances in PAC-Bayesian analysis of deep learning and meta learn-
ing (Amit & Meir, 2018; Rothfuss et al., 2021; Pentina & Lampert, 2014), we provide novel gen-
eralization bounds of meta-learning with key insights to quantify the contribution of auxiliary tasks
considering impacts of noisy corruptions. In particular, we theoretically prove that: (i) the auxiliary
information helps to tighten the gap between the true generalization risk and the empirical risk; and
(ii) the hazard of the noisy labels under the PAC-Bayesian framework. Our contribution is threefold:

• a simple yet effective DIAL framework using auxiliary tasks to learn a robust domain-invariant
representation for better generalization and adaptation in unseen few-shot tasks,

• a thorough theoretical analysis of the proposed auxiliary tasks under data cleansing to establish
novel PAC-Bayesian bounds that provide key insights on the contribution of the auxiliary tasks
and quantify the impact of label noise,

• a series of comprehensive experiments conducted on benchmark datasets with synthetic label
noises to demonstrate the effectiveness and robustness of the proposed DIAL framework.

2 RELATED WORKS

Few-shot learning. Liu et al. (2019b) first propose a transductive few-shot learning method by
utilizing the query set for transductive inference. Li et al. (2019) focus on the semi-supervised
few-shot learning which utilizes the unlabeled data by predicting their pseudo labels and iterative
self-training. Phoo & Hariharan (2021) propose to self-training the unlabeled data from the test
to deal with few-shot learning with extreme differences between the training and testing. Qiao
et al. (2019) integrates meta-learning with transductive inference by formulating a semi-definite
programming problem for the adaptation procedure. Unlike other related few-shot learning works
using unlabeled data such as Ren et al. (2018); Yu et al. (2020); Hou et al. (2019), we explicitly
minimize the domain discrepancy between the primary and auxiliary distribution by introducing a
regularization based on optimal transport, which guarantees the effectiveness of the auxiliary data
due to minimal domain shift. Other works (Han et al., 2021; Sahoo et al., 2018; Motiian et al., 2017)
use domain adaptation techniques in few-shot learning. Our work is essentially different since we
use unsupervised auxiliary data during training to update the meta-model for the compensation of
the lack of training data and utilize adversarial training as a regularizer to ensure that the knowledge
extracted from the auxiliary tasks are invariant to different distributions.
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Auxiliary learning. Auxiliary learning trains additional auxiliary tasks to improve the generaliza-
tion ability of the primary task. To better assist the primary task, the auxiliary tasks could be related
tasks, such as fine-grained classification of the primary task (Liu et al., 2019a). In (Zhu et al., 2020),
the primary task learns to navigate following natural language instructions, while the auxiliary tasks
provide additional training signals to help the agent acquire knowledge of semantic representations
in order to reason about its activity and build a thorough perception of the environment. In reinforce-
ment learning (RL) (Veeriah et al., 2019; Jaderberg et al., 2016), auxiliary tasks drive representation
learning to aid main task. In our work, we utilized unsupervised few-shot tasks to assist the primary
ones without introducing extra labeling effort.

Domain Adaptation and Optimal Transport. The optimal transportation (OT) cost is used to
measure the difference between distributions supported on high-dimensional space using SGD (Ar-
jovsky et al., 2017; Tolstikhin et al., 2017). For a constant ξ ≥ 1, the ξ-Wasserstein metric between
distributions PX and PX′ is defined as:

Wξ(PX ,PX′) =

(
inf

γ∈
∏

(PX ,PX′ )
Eγ(x,x′)[dξ(x,x′)]

) 1
ξ

(1)

where x,x′ denotes the random variable in which the distributions PX and PX′ are defined.∏
(PX ,PX′) is the set of all joint distributions (i.e., couplings) whose marginals are PX and PX′ ,

that is,
∫
γ(x,x′)dx = PX and

∫
γ(x,x′)dx′ = PX′ . d(x,x′) is cost function for moving from x to

x′. Eq. (1) is the primal form of the Wasserstein metric, particularly for the case of ξ = 1 (Arjovsky
et al., 2017). Some existing efforts propose domain adaptation algorithms using ideas from OT
theory, which aims to reduce the divergence between two domains by minimizing the Wasserstein
distance between their distributions (Courty et al., 2014; Flamary et al., 2016; Courty et al., 2017) .
In this paper, we propose to minimize the Wasserstein distance between the primary distribution and
the auxiliary distribution to ensure the learned knowledge are domain-invariant and discriminative
to future unseen tasks.

3 METHODOLOGY

Meta-learning Given the primary distribution Dpri over X × Y , a meta-model θ is trained in an
episodic way by sampling batches of the episodes (i.e., tasks) T . The episodic sampling process
of a N -way K-shot classification task includes two steps: first randomly samples N classes from
the base class CB and then randomly sample K images as the support set Ssup = {(xji , y

j
i )}Kj=1, Q

images as the query set Sque = {(xji , y
j
i )}

Q
j=1. The sampled tasks form the task distribution τ . The

objective of episodic meta-learning is a bi-level optimization formulated as a loss over an episode as
the outer-level:

min
θ
L(θ,D) =

∑
Ti∼τ

LTi(θi,S
sup
i ,Squei ) (2)

whereas in the inner-level of the optimization, the feature extractor of task Ti parameterized by θi
is first initialized as the meta-model θ then adapted to a specific task within a few steps: θi ← θ −
ι∇θLTi(θ,Ssup), where ι is the learning rate. The meta-test is perform similarly to the inner-level
except that the episodes are formed by unseen novel classes sampled from CN , and CB ∩ CN = ∅.

Episode Sampling To avoid the model being corrupted by the noisy labels, data cleansing tech-
nique is utilized to each episode. We call this episode sampling. For both tasks, each example in the
query set is re-weighted according to the loss. Taking the primary task as an example, the inner-loss
is reformulated as:

LTi(θi,Sque) =
1

|Squei |
∑

xji ,y
j
i∈S

que
i

wji `
j
i (x

j
i , y

j
i , θi) (3)

where `ji corresponds to the loss of j-th example in the i-th task, wji is the corresponding sample
weight given by: wji = 1(`i < γ) using a predefinded hyperparameter γ, where 1(·) is an indicator
function.

3.1 DOMAIN-INVARIANT AUXILIARY LEARNING

To introduce extra data without increasing the labeling effort, we use the unsupervised few-shot
tasks sampled from an auxiliary distribution Daux, which is defined over X . And its corresponding
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task distribution is defined as τ ′. With no category information provided, the unsupervised task T ′
is constructed by directly samples N images from the Daux and treat each image as its own class to
form the support set of a N -way 1-shot task: S ′supi = {(x′1i , ỹ′1i ), ..., (x′Ni , ỹ′Ni )}. The query set is
acquired by augmenting the images in the support set: S ′quei = {(A(x′Ni ), ỹ′Ni ), ..., (A(x′Ni ), ỹ′Ni )},
where A is an augmentation function, such as flipping the image, grayscale, rotation or a combina-
tion, and the query examples A(x′ji ) are the augmented images of the support example x′ji .

Using auxiliary learning, we can update the meta-model with both primary and auxiliary tasks in a
bi-level optimization manner as shown in Eq. (2). Consider the potential noise during label collection
of the primary task, and the randomness of choosing image as its class in the auxiliary task, we
applied episode sampling to each of the primary and auxiliary task. Eq. (2) is then reformulated as:

min
θ
L(θ,Dpri,Daux) =

∑
Ti∼τ

LTi(θi,S
sup
i , Ŝquei ) +

∑
T ′i ∼τ ′

LTi(θi,S
sup
i , Ŝ ′quei ) (4)

where Ŝquei and Ŝ ′quei denote the clean query set after episode sampling.

To avoid covariate shift between the prime and auxiliary distributions, the Wasserstein distance be-
tween them is incorporated to ensure that the learned feature representation are domain-invariant to
different distributions so that the classifier trained on the shared representations can better generalize
across domains. The overall objective of DIAL is therefore formulated as:

min
θ
α1L(θ,Dpri) + (1− α1)L(θ,Daux) + α2W1(Dpri,Daux) (5)

For simplification, we useL(θ,Dpri) andL(θ,Daux) to denote the loss of the primary tasks and aux-
iliary tasks and use the hyper-parameter α1 to balance the contribution of them. The third Wasser-
stein distance term reflects an optimal transport cost for moving one distribution to another, which
is defined in Eq. (1). A smaller transport cost means a better coverage of the distribution. α2 is a
hyper-parameter. By minimizing Eq. (5), we simultaneously minimize the empirical error for learn-
ing the primary tasks and the auxiliary tasks, and the Wasserstein-1 distance. The minimization
of the Wasserstein-1 distance encourages a better distribution matching of Dpri and Daux so that
the auxiliary data behave more similar to the training data and we essentially enlarge the effective
training data as there is minimal domain shift.

Since directly computing the Wasserstein-1 distance is computationally intractable, we recast the
objective into the Kantorovich-Rubinstein duality with a 1-Lipschitz neural network called a critic
parameterized by θd which estimates the supremum of Eq. (1), and the main model optimize:

min
θf

max
θd
R(θf ,Dpri,Daux) + α2E(θf , θd,Dpri,Daux) (6)

where R(·) is the prediction loss of the primary and auxiliary tasks and E(·) is the adversarial loss.
By representing the meta-model in a parametrized function h(θf ,x, y) = h(x, y) and the critic
model in function g(x,x′, θf , θd) = g(x) with restriction that g(x) being 1-Lipschitz, we formulate
the terms in Eq. (6) as

R(θf ,Dpri,Daux) = α1E(x,y)∼Dpri`(h(x, y)) + (1− α1)E(x,y)∼Daux`(h(x, y)) (7)

E(θf , θd,Dpri,Daux) = Ex∼Dpri [g(x)]− Ex∼Daux [g(x)] (8)

For simplification, we use (x, y) ∼ D to denote the two-step task sampling Di ∼ τ and (x, y) ∼ Di
in Eq. (7). In this duality, the critic works as an adversarial discriminator that distinguishes the origin
of the samples. The learning proceeds with minimizing the prediction loss to learn discriminative
features whereas matching the auxiliary to the primary for learning domain invariant representations.
The optimization of Eq. (6) is performed by alternatively updating the model parameters θf and the
critic parameters θd using SGD. During this process, θf follows as usual the opposite direction of
the gradient whereas θd follows gradient direction. To satisfy the 1-Lipschitz constraint, the critic
θd is implemented with gradient penalty (Gulrajani et al., 2017). The detailed training process is
shown in Algorithm 1 in the Appendix.

3.2 PAC-BAYESIAN ANALYSIS OF DIAL
The PAC-Bayesian theory combines the informative priors of Bayesian methods with the
distribution-free PAC-guarantees (McAllester, 1999). In general, it first introduces probability mea-
sures over the hypothesis space H, and assumes a prior P ∈ M(H) independent of the observed
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data and a posterior Q ∈ M(H) obtained after observing the data. In the context of meta-learning,
the meta-model is defined as P and the task-specific model is defined as Q(S, P ), meaning that the
task-specific model is adapted from P within a few steps. We use S = {Ssup,Sque} to denote the
training data for simplification. The meta-learning PAC-Bayesian framework presumes a distribu-
tion over the meta-model P , named hyper-prior P(P ) ∈ M(M(H)). Given n tasks S1, ..., Sn,
the hyper-prior is updated to a hyper-posterior Q(P ) ∈ M(M(H)). In this section, we utilize the
PAC-Bayesian framework to provide generalization guarantees for the proposed DIAL framework.

For DIAL, consider n primary tasks with datasets S1, ..., Sn and n auxiliary task with datasets
S′1, ..., S

′
n and n, the expected loss is formulated as:

L(P, τ, τ ′) = α1EDpri∼τES∼Dprim
L(Q,Dpri) + (1− α1)EDaux∼τ ′ES′∼Dauxm

L(Q,Daux) (9)

where m is the number of examples in each dataset S. The loss for the primary task is specified
as L(Q,D) = Eh∼QL(h,D) = Eh∼QEz∼D`(h, z), where h ∼ Q is a hypothesis sampled from
the posterior distribution Q and we use z = (x, y) to denote a input/output pair sampled from the
data distribution. The loss for auxiliary is similarly defined with data sampled from the auxiliary
distribution. The performance of the hyper-posterior Q on the task distribution τ , i.e., the primary
tasks, is measured by expected loss on new tasks using priors drawn fromQ, which is referred to as
the transfer error:

L(Q, τ, τ ′) = EP∼QL(P, τ, τ ′) (10)
The transfer error is intractable in practice. In PAC-Bayesian framework, it is approximated by the
empirical multi-task error as follows:

L̂(Q, Sni=1, S
′n
i=1) = EP∼Q

1

n

n∑
i=1

[α1L̂(Q(Si, P ), Si) + (1− α1)L̂(Q(S′i, P ), S′i)] (11)

where L̂(Q(Si, P ), Si) = Eh∼QL̂(h, Si) = Eh∼Q 1
m

∑m
j=1 `(h, zij) is the empirical error of each

primary task Ti with corresponding data Si given the prior P by averaging over the posterior dis-
tribution Q. And L̂(Q(S′i, P ), S′i) is similarly defined for the auxiliary task. Based on the above
definitions, we now present a novel bound for DIAL with extra auxiliaries in Theorem 1.
Theorem 1 (PAC-Bayes bound for vanilla DIAL) Given a hypothesis space H, a base learner Q :
Zm ×M(H)→M(H), a fixed hyper-prior P ∈M(M(H)), λ > 0, β > 0, a target environment
τ and observed environment τ ∪ τ ′ where Eτ∪τ ′ [D] ≥ Eτ [D], and Eτ∪τ ′ [m] = Eτ [m], then with
probability at least 1 − δ over samples S1 ∈ Dpri,m1 , ..., Sn ∈ Dpri,mn , S′1 ∈ D

aux,m
1 , ..., S′n ∈

Daux,mn , we have for all base learners Q and hyper-posterior Q, the following inequality holds:

L(Q, τ, τ ′) ≤ 1

n

n∑
i=1

EP∼QEh∼Q[L̂(h, Si)] + c1 + 2

2∑
j=1

%j(W1(D̂pri, D̂aux) + λpri + c2)


+

1

λ

(
DKL(Q||P) + log

2

δ
+ log

λ2

4n

)
(12)

where D̂pri = 1
Npri

∑Npri
i=1 δ{Dpri} and D̂aux = 1

Npri

∑Naux
i=1 δ{Daux} are the empirical dis-

tribution of the primary and auxiliary distribution, respectively, Npri and Naux are the num-
ber of examples in the datasets. %i is the weight of the domain, in DIAL, %1 = α1 and
%2 = 1 − α1. λpri = minh(L(h,Dpri) + L(h,Daux)), and c1 and c2 are defined in Eq. (20)

and Eq. (21). C(δ, n,m, λ, β) = 1
βΨ(β,m) + log 4n

δ + 1
λ

(
log 2

δ + log λ2

4n

)
, and Ψ(β,m) =

logEh∼PES∈Dm exp
[
β(L(h,D)− L̂(h, S))

]
. β and λ are hyperparameters with their popular

choices are β ∝ m and λ ∝ n. DKL(·||·) is the KL-divergence between two distributions.

Proof sketch. The detailed proof of Theorem 1 is given in Appendix C which includes three key
steps. First, we prove the task-specific generalization bound by directly applying multi-source do-
main adaptation guarantees from Theorem 3 (Redko et al., 2017) to a single task, since the gener-
alization bound for a single task accounts for the task-specific model’s ability to perform well on
unseen data. Second, for the task environment bound, whose responsibility is to learn an induc-
tive bias for generalizing to new tasks, we use Donsker-Varahan’s variational formula (Donsker &
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Varadhan, 1975) and Markov’s inequality to bound the task-level generalization error. Last, under
the assumption that the task-specific model utilizes the inductive bias learned by the meta-model
and adapt to a new task, we use a union bound to combine the task-specific and task environment
bounds to complete the proof. �

Remark. According to the choice of the hyperparameter λ, we can see that the term regrading
DKL(Q||P) in the RHS of the bound is reduced considerably since λ is increased as the the number
of total task increased. Intuitively, the DKL(Q||P) term measures the discrepancy between hyper-
prior and the hyper-posterior, the more data (i.e., tasks) we observed, the smaller the value of the
DKL(Q||P) will be since we get a richer hyper-posterior and close to the hyper-prior. DKL(Q||P)
is essentially a penalty term to capture overfitting, which accounts for the amount of knowledge we
learned from the data. Therefore, our bound in Theorem 1 has successfully proved that by introduc-
ing the auxiliary tasks we can reduce this term and decrease the potential risk of overfitting. As in
Eq. (5), the minimization ofW1(·) ensures small domain shift that makes the auxiliary data more ef-
fective.The slightly increment C(δ, n,m, λ, β) is caused by the side effect of the using of the union
bound, which can be compromised. In addition, with the learned domain-invariant representation,
the term ψ(β,m) can be further reduced.

In Theorem 1, we analyze the positive effect of introducing the auxiliary task without taking the
noisy data into account for simplicity. However, the theory stands on a shaky ground since we did
not consider the noise. In the next theorem, we take noise into consideration where we analyze their
negative effect and how our episode sampling takes care of it. According to episode sampling, we
remove the noisy samples in each task using data cleansing, which leads to Eτ∪τ ′ [D] ≥ Eτ [D], and
Eτ∪τ ′ [m] ≤ Eτ [m], i.e., the number of training samples in the meta-training tasks is smaller than
the one in the meta-testing tasks, which lead to the following Theorem 2.
Theorem 2 (PAC-Bayes bound for DIAL with sampling) Given a hypothesis space H, a base
learner Q : Zm ×M(H) →M(H), a fixed hyper-prior P ∈ M(M(H)), λ > 0, β > 0, a target
environment τ and observed environment τ ∪ τ ′ where Eτ∪τ ′ [D] ≥ Eτ [D], and Eτ∪τ ′ [m] ≤ Eτ [m],
then with probability at least 1− δ over samples S1 ∈ Dm1 , ..., Sn ∈ Dmn , S′1 ∈ D′m1 , ..., S′n ∈ D′mn ,
and clean datasets S̃1 ⊂ S1, ..., S̃n ⊂ Sn, S̃

′
1 ⊂ S′1, ..., S̃

′
n ⊂ S′n, where S̃i = {zij}m

′

j=1 and
m′ ≤ m, we have for all base learners Q and hyper-posterior Q, the following inequality holds:

L(Q, τ) ≤ 1

n

n∑
i=1

EP∼QEh∼Q[L̂(h, Si)] + c1 + 2

2∑
j=1

αj(W1(D̂pri, D̂aux) + λpri + c2)

+
1

λ

(
DKL(Q||P) + log

2

δ
+ Ψ(λ, 2n)

)
(13)

where C(δ, λ, n,m′) = 1
β

(
log 2n

δ + Ψ(β,m)
)

+ 1
λ

(
log 2

δ + Ψ(λ, 2n)
)

and ∆λ(P, τ, τ ′) =

1
λ logEP∼PES∼τ,S′∼τ ′

[
eλ(ES∼τ,S′∼τ′L(P,τ)−L(P,τ,τ

′)
]
.

Proof sketch. Detailed proof of Theorem 2 is provided in Appendix D, which includes three key
steps. The first and last steps are similar to the proof of Theorem 1. In the second step, we use
Markov’s inequality to measure the mismatch of task environments caused by the noise and episode
sampling and a penalty term ∆λ(P, τ, τ ′) is obtained due to the mismatch. �

Remark. In Eq. (13), the emergence of the penalty term ∆λ(P, τ, τ ′) is caused by the mismatch of
the training and testing environment by using the data sampling. This demonstrate that for alleviating
the negative impact of noisy labels, we inevitably lost some information and cause a lost in the
generalization gap as well. However, we manage to neutralize the penalty with clean data and avoid
overfitting. That is, with clean data which is close to the true data distribution, we can assure a
relatively smaller DKL(Q||P) to balance the generalization bound.

4 EXPERIMENTS

Datasets. We evaluate the effectiveness of the DIAL framework using the following benchmark
datasets for FSL:

• CUB contains 11,788 images of 200 bird species (Snell et al., 2017). The classes are split into
100, 50, and 50 for train, test, and validation, respectively.
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• mini-imageNet (mini) (Sun et al., 2019) contains 100 different classes with 600 images per class,
which are split into 64, 20, and 16 for train, test and validation, respectively.

• tieredImageNet (tiered) (Ren et al., 2018) has 34 high-level categories and 608 sub-categories,
with each sub-category consisting of around 1,300 images (Ren et al., 2018). These categories are
split into 20 (351 sub-categories), 8 (160 sub-categories), and 6 (97 sub-categories) for train, test,
and validation, respectively.

• CIFAR-FS (CF) (Bertinetto et al., 2019) includes 100 different classes with 600 images/class .
These classes are further grouped into 20 super-classes. The 100 classes are split into 64, 20, 16
for train, test, and validation, respectively.

• Cross-Domain (mini-C): where the training classes are from miniImageNet dataset and the vali-
dation and testing classes are from the CUB dataset.

Baselines. We compare DIAL with the following baselines: ProtoNet (Snell et al., 2017), and
other noise-robust methods including Weight Decay (Krogh & Hertz, 1991), SPL (Kumar et al.,
2010), MixUp (Zhang et al., 2017), CoTeaching (Han et al., 2018), CoTeaching+ (Yu et al., 2019)
and FSR-raw (Zhang & Pfister, 2021). For efficiency consideration, all methods are implemented
based on ProtoNet (Deleu et al., 2019) with default parameters given by (Medina et al., 2020). All
the experiments are conducted on a NVIDIA A100 GPU. A detailed discussion of the comparison
methods is presented in the Appendix.

Noise setting. We generate synthetic label noises with random flips. For a more realistic considera-
tion, different ratios of synthetic noises are applied to different classes randomly. The noise ratio in
the meta-train classes varies as follows:

• CUB: the number of noisy labels in each class varies from 0 to 20. The first 20 classes contain 20
noisy labels, the 21-40 classes contain 10 noisy labels and the 41-60 classes contain 5 noisy labels
in each class. The rest of 40 classes remain clean. The overall noise ratio is around 11.6%.

• miniImageNet: the number of noisy labels in each class varies from 0 to 200. The first 20 classes
contain 200 noisy labels, classes 21-30 contain 100 noisy labels, and classes 31-40 contain 50
noisy labels. The last 24 classes remain clean. The overall noise ratio is around 14%.

• tieredImageNet: the number of noisy labels in each class varies from 0 to 500. The first 100
classes contain 500 noisy labels, the 101-200 classes contain 300 noisy labels, and the 201-300
classes contain 100 noisy labels. The remaining 51 classes remain clean. The overall noise ratio
is around 20%.

• CIFAR-FS: each training class contains 60 noisy labels. The noise ratio is 10%.

Auxiliary data setting. For methods including DIAL, CoTeaching, CoTeaching+, we utilize the ex-
tra data during training. The choice of auxiliary data can be any datasets as long as they can benefit
the primary task. For convenience, we use their own test data as the auxiliary data if without partic-
ularly specified, which makes it similar to transductive learning or unsupervised learning. However,
our setting is essentially different since we only choose test data as auxiliary task for convenience,
any close data can be utilized. For example, in the cross-domain mini-CUB benchmarks, using the
images of novel classes from the CUB dataset as the auxiliary tasks seems to be a fairly reasonable
choice. And in the ablation studies, we also study the effect of using different auxiliary data.

4.1 EXPERIMENTAL RESULTS

Following the experiment design of (Vinyals et al., 2016), we report the average accuracy of 5 runs
of each 5-way 1-shot and 5-way 5-shots experiments in Tab. 1. In the experiments, we use α1 = 0.5,
α2 = 0.2, and γ = 50% for our methods in all datasets. As shown in Tab. 1, our proposed model
outperforms all the baselines, highlighting the effectiveness of the DIAL framework. Compared to
SPL and FSR, which use data cleansing techniques (i.e., the small loss strategy or max margin) to
remove data noise, our method compensates for the information loss with auxiliary tasks, obtaining
a superior performance. DIAL also outperforms methods like Co-teaching and Co-teaching+, which
also include extra data, indicating that the superiority of the domain-invariant representation. Other
methods, like MixUp, although works well in DNN with large amount of data, lose their power as
they limit the flexibility of fast adaptation in the inner-loop of meta-learning. The general-purpose
regularization method, such as weight decay, is non-trivial for controlling model complexities of
deep networks, since it would hurt the capability of memorizing not only noisy labels but also
complex and useful data samples.
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Table 1: Model performance with label noises
Methods 5-way 1-shot 5-way 5-shot

CUB mini mini-CUB tiered CF CUB mini mini-CUB tiered CF

ProtoNet 42.57 39.95 36.52 31.94 55.46 65.98 63.80 57.92 41.42 71.67
Weight Decay 36.67 26.82 31.07 34.91 52.75 52.32 35.67 37.86 51.46 68.10
SPL 48.55 43.44 37.06 42.11 55.20 68.47 58.67 54.94 59.62 70.93
MixUp 39.22 21.55 21.15 40.46 46.86 48.75 24.88 25.08 40.46 61.28
CoTeaching 49.10 44.44 36.48 40.36 52.51 65.42 59.57 56.90 55.10 66.89
CoTeaching+ 49.45 45.08 39.54 40.19 51.27 67.92 60.43 54.29 54.54 67.22
FSR 37.14 44.81 39.82 30.65 37.39 51.48 61.89 57.38 50.40 44.68
DIAL 54.83 51.74 41.75 47.19 61.82 70.52 66.52 58.55 60.78 75.30

4.2 ABLATION STUDY

In this section, we conduct an extensive ablation study to investigate the impact of key factors
on DIAL, including different noise ratios, choice of auxiliary data, values of hyperparameters for
auxiliary tasks and regularization term, and an implementation on another classic episodic meta-
learning method (i.e., FOMAML (Nichol et al., 2018)). Additional ablations about episode sampling
are presented in the Appendix due to space limit.

Impact of noise ratio. Fig. 1 shows the accuracy of different methods under noise ratios ranging
from 10% to 50% on the CIFAR-FS dataset. We observed that our model outperforms all other
methods under all noise ratios. Despite that all methods’ performance drops as the noise ratio
increase, our method decrease the slowest. For the 5-way 1-shot case, the performance decrease
15% and for the 5-way 5-shot classification task the performance decrease 17%. While for the data
cleansing method SPL the performance drops 23% and 28%. Even under the extremely 50% noise
ratio, our method still outperform the second best by 5% in the 5-way 1-shot classification task,
showing that our method is particularly effective with limited training data. As for the 5-way 5-shot
classification task, we only outperform the second best by nearly 2% since the data scarce situation
is alleviate by extra shots.

Figure 1: CF dataset with varied noise ratios. Figure 2: Effect of different auxiliary data.

Impact of auxiliary data. In this study, we test the impact of auxiliary data with the follow-
ing two experiments: First, we test the influence of auxiliary data on different methods including
Co-teaching, Co-teaching+ and DIAL. The experiment is conducted on miniImageNet with two dif-
ferent auxiliary datasets: CUB-test and mini-test. As shown in Fig. 2, for DIAL, two auxiliaries
show different performance, with more data available (i.e., 5w5s), the performance of using mini-
test is better than using cub-test. This demonstrates the fact that extra data helps during training.
While there are only 1 shot available, CUB-test provide a fine-grained classification task to help
improve the performance. Our method outperforms other methods in general, indicating that learn-
ing a domain-invariant representation is necessary when utilizing extra data. Second, in Fig. 3, we
train DIAL with to a various set of auxiliary datasets including CUB-train, CUB-test, CUB-val, and
mini-test, mini-val to train on the miniImagenet dataset, and use CUB-test, CUB-val, and mini-train,
mini-test, mini-val to train the model on the CUB dataset. We can draw similar conclusion as last
experiment, that is, when the data is scarce, the fine-grained classification can help train models with
better performance. In general, when choosing the auxiliary datasets, we should consider factors like
class relatedness, data size, or types of the training tasks (such as fine-grained vs. coarse-grained),
to make the most of the extra data.

8
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Figure 3: Impact of auxiliary data: 5-way 1-shot and 5-way 5-shot experiments on miniImageNet
(left two columns) and CUB (right two columns) using different auxiliary datasets for DIAL.

Impact of hyperparameter α1 and α2. In this experiment, we test the effect of α1 and α2 in used in
the objective Eq. (6) on CUB dataset. When we test the values of α1, we fix α2 = 0.2. In Fig. 4 the
value of α1 is set among 0.1 to 0.9. The results show that using relatively balanced hyperparameters,
specifically, setting α from 0.4 to 0.6, achieves higher performance, which means extra knowledge
from the auxiliary task indeed helps the generalization of the model with proper combination with
the primary data. Apparently, setting α to a very small value can not achieve desirable result since
we focus on the primary task and making little use of auxiliary data. In in Fig. 5, when we test the
impact of α2, we keep α1 fixed as 0.5 while setting the values of α2 are set as 0.002, and from 0.1
to 0.6. The results show that a very small α2 value doesn’t work as well as the relatively larger ones
considering the divergence between the primary and auxiliary distribution should be constrainted.
As for other values, the performance of 5-way 1-shot task are all over 50%, showing a consistently
high performance.

Figure 4: Impact of α1 on CUB. Figure 5: Impact of α2 on CUB.

Generalization to other meta-learning models. The implementations of above experiments are
based on one of the most classic meta-learning method ProtoNet (Snell et al., 2017), in which our
model has shown superior performance. Moreover, our framework is model agnostic and it can
be easily generalized to other types of meta-learning method. We provide a DIAL implementation
based on another classic few-shot learning method FOMAML (Nichol et al., 2018) and test on
different datasets with the same settings as mentioned before. The parameters of the base model
and our method are set the same as (Finn et al., 2017). From Tab. 2’s result, solid performance
and advantage over the baseline are observed, which confirms the generalization to other types of
meta-learning models.

Table 2: Accuracies (%) of implementations based on FOMAML
CUB mini mini-CUB tiered CF

METHOD 5-way 1-shot

FOMAML 45.11 33.94 31.93 25.95 48.49
DIAL 45.41 39.61 35.09 34.89 50.95

5-way 5-shot

FOMAML 51.06 37.52 37.15 26.11 58.53
DIAL 52.93 47.01 43.31 44.51 62.52

5 CONCLUSION

In this paper, we propose a novel meta-learning framework with auxiliary tasks that utilize extra
unlabeled data for FSL under noisy settings. An episode sampling process is designed to remove
noisy labels. The unsupervised auxiliary task is formed with no additional annotation cost. To better
aligned the auxiliary tasks with the primary ones, we propose a regularization term based on the
Wasserstein distance for learning a domain-invariant representation. We theoretically and experi-
mentally demonstrate that incorporating auxiliary tasks can be beneficial. Our novel PAC-Bayesian
bound also clearly demonstrate the negative impact of noisy labels. This work opens interesting
directions for future research. First, when training deep neural networks with the auxiliaries, we
observe better performance in terms of generalization bound, which can be further measured and
quantified. Second, when the noise is considered in the theoretical analysis, a natural question is
that what can be done to reduce the negative impact according to the theoretical insights.
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Appendix

In this appendix, we first provide the detail of the update of model θf and θd, and the optimization
process in Algorithm 1. Then we describe the comparison methods we used in the experiment sec-
tion, which covers different ranges in Appendix B. The detailed proof of Theorem 1 and Theorem 2
are provided in Appendix C and Appendix D. Additional ablation study about episode sampling is
conducted in Appendix E. The link to the source code is provided in Appendix F.

A OPTIMIZATION PROCESS

The optimization of Eq. (6) is conducted through an alternative training between the optimization
of the prediction model parameter θf and the critic model parameter θd while keeping the other
fixed. We first represent the two term in Eq. (6) with their empirical counterparts defined as follows
according to the observed data during training:

R̂(θf ,Dpri,Daux) =
α1

|Dpri|
∑

(x,y)∼Dpri
`(h(x, y)) +

1− α1

|Daux|
∑

(x,y)∼Daux
`(h(x, y)) (14)

Ê(θf , θd) =
1

|Dpri|
∑

x∼Dpri
[g(x)]− 1

|Daux|
∑

x∼Daux
[g(x)] (15)

Then the parameters of θf and θd are updated alternatively as follows:

θf ←θf − ηf
 α1

|Dpri|
∑

(x,y)∼Dpri

∂`(h(x, y))

∂θf
+

1− α1

|Dpri|
∑

(x,y)∼Daux

∂`(h(x, y))

∂θf


+

(
α2

|Dpri|
∑

x∼Dpri

∂g(x)

∂θf
− α2

|Daux|
∑

x∼Daux

∂g(x)

∂θf

)
(16)

θd ←θd + ηd

(
α2

|Dpri|
∑

x∼Dpri

∂g(x)

∂θd
− α2

|Daux|
∑

x∼Daux

∂g(x)

∂θd

)
(17)

where ηf , ηd are the learning rates. The detailed optimization process is shown in Algorithm 1.

Algorithm 1 DIAL Training
1: INPUT initialized meta-model θ, α1,α2, task distributions τ , τ ′, w
2: while not done do
3: Construct a batch of labelled tasks {Ti} ∼ τ
4: Construct a batch of unlabelled tasks {T ′i } ∼ τ ′
5: for a mini-batch of tasks Ti, T ′i do
6: Update primary task-specific model θi using data Ssupi

7: Update auxiliary task-specific model θ′i using data S ′supi

8: Use θi and θ′i for episode sampling query data from Squei and S ′quei , and obtain the clean
query set Ŝquei and Ŝ ′quei

9: end for
10: Fix w and update model parameter θf using Eq. (16)
11: Fix w and update critic parameter θd using Eq. (17)
12: Fix θf and θd and update sample weight w
13: end while

B DISCUSSION OF COMPARISON METHODS

In this work, we compare DIAL with the following baselines: ProtoNet (Snell et al., 2017), (i.e.,
training only using primary tasks), Weight Decay (Krogh & Hertz, 1991), SPL (Kumar et al., 2010),
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MixUp (Zhang et al., 2017), CoTeaching (Han et al., 2018), CoTeaching+ (Yu et al., 2019) and
FSR-raw (Zhang & Pfister, 2021). Weight decay and MixUp are typical noisy label methods. SPL,
CoTeaching, CoTeaching+ and FSR are methods designed according to data cleansing that focus on
removing the potential noisy data. Similar to our method, SPL, CoTeaching and CoTeaching+ use
the loss of the example for selecting noisy data. CoTeaching and CoTeaching+ train peer networks
that are trained simultaneously and teach each other. Traditional CoTeaching and CoTeaching+
train the peer networks using the same dataset. In this work, for fair comparison, the peer networks
are trained on the primary and auxiliary data, respectively. Therefore, extra data are utilized in
CoTeaching and CoTeaching+.

C PROOF OF THEOREM 1

In this proof, we first provide the following multi-source domain adaptation bound in Theorem 3, the
PAC-Bayesian generalization bound for single task in Theorem 4, and two useful lemmas Lemma 5
and Lemma 6. Then we deduce the detailed proof for Theorem 1 using these results.

We first introduce the multi-source domain adaptation results in Redko et al. (2017). Consider N
different source domains, and for each domain a labelled sample set Sj with nj examples are drawn
from the associated unknown distribution µSj and labelled by fj , the empirical weighted multi-
source error of a hypothesis h defined for some vector α = {α1, ..., αN} as follows:

ε̂α(h) =

N∑
j=1

αj ε̂Sj (h) (18)

where
∑N
j=1 αj = 1 and each αj represents the weights of the source domain Sj . nj = βjn,∑N

j=1 nj = n. The empirical source distribution is defined as µ̂Sj = 1
NSj

∑NSj
i=1 δxiSj

, which is a

uniformly weighted sum of NSj Diracs with mass at locations xiSj . The empirical target distribution

is defined as µ̂T = 1
NT

∑NT
i=1 δxiT accordingly. Denote the Wasserstein distance between source

domain µSj and µT as W1(µSj , µT ) and apply it in this multi-source domain adaptation problem,
the weighted multi-source error is bounded by the following Theorem 3:
Theorem 3 (Redko et al., 2017) Assume that the cost function d(x,y) = ||φ(x) − φ(y)||Hkl ,
whereHkl is a Reproducing Kernel Hilbert Space (RHKS) equipped with kernel kl and 0 ≤ kl ≤ R.
Denote ĥα as the empirical minimizer of ε̂α(h) and h∗T = minh εT (h) then for any fixed α and
δ ∈ (0, 1) with probability 1− δ,

εT (ĥα) ≤ εT (h∗T ) + c1 + 2

N∑
j=1

αj(W1(µ̂Sj , µ̂T ) + λj + c2) (19)

where

c1 = 2

√√√√2K
∑N
j=1

α2
j

βj
log(2/δ)

n
+ 2

√√√√ R∑
j=1

Rαj
βjn

(20)

c2 =

√
2 log(

1

δ
)/ς ′(

√
1

NSj
+

√
1

NT
) (21)

where λj = minh(εSj (h) + εT (h)) represents the joint error for each source domain j.

The following Theorem 4 is the PAC-Bayesian results for a single task.
Theorem 4 (Alquier et al., 2016; Rothfuss et al., 2021) Given a data distribution D, hypothesis
spaces H,F , a loss function ` : H × Z → R, a prior distribution π ∈ M(F), a confidence level
δ ∈ (0, 1] and a real number η > 0, with probability at least 1− δ over samples S ∼ Dm, we have
∀ρ ∈M(H):

L(ρ,D) ≤ L̂(ρ, S) +
1

η

[
DKL(Q||P ) + log

1

δ
+ Ψ(η,m)

]
where Ψ(η,m) = logEh∼πES∈Dm exp

[
η(L(h,D)− L̂(h, S))

]
.

14



Under review as a conference paper at ICLR 2023

where η is a hyper-parameter with common choice of η = m. And according to (Rothfuss et al.,
2021), Ψ(η,m) can be bounded as follows by making additional assumption on the loss function `.
Lemma 5 (Pentina & Lampert, 2014) For any fixed algorithm A and any λ the following holds:

EE1,...,En exp

(
λ(b− 1

n

n∑
i=1

g(Xi))

)
≤ exp(

λ2

2n
)

where b = er(A) and g : Xi → eri(A) with Xi = (Ei−1, Ei)

Lemma 6 (Amit & Meir, 2018) (Union bound) Let {Ei}ni=1 be a set of events, which satisfies
Pr(Ei) ≥ 1− δi, with some δi ≥ 0, i = 1, ..., n. Then

⋂n
i=1 Pr(Ei) ≥ 1−

∑n
i=1 δi.

The detailed proof of Theorem 1 is provided as follows, which contains three steps:
Proof: Step 1: Task-specific generalization. In this step, we can directly apply Theorem 3 for a
single task Ti and obtain with probability 1− δi:

L(Q,Dprii ,Dauxi ) ≤ EP∼QEh∼Q[L̂(h, Si)] + c1 + 2

2∑
j=1

αj(W1(D̂pri, D̂aux) + λpri + c2) (22)

where c1, c2 are defined in Eq. (20) and Eq. (21) with δ = δi. And λpri = minh(L(h,Dpri) +
L(h,Daux)).

Step 2: Task environment generalization. Define the expected multi-task error as

L̃(Q, τ, τ ′) =
1

n

n∑
i=1

L(Q,Dprii ,Dauxi ) (23)

By applying Donsker-Varahan’s variational fomula (Donsker & Varadhan, 1975), we have ,

L(Q, τ, τ ′)− L̃(Q, τ, τ ′) ≤ 1

λ
DKL(Q||P) +

1

λ

(
logEh∼P expλ(L(Q, τ, τ ′)− L̃(Q, τ, τ ′))

)
(24)

Using Lemma 5 and Markov’s inequality, we have with probability 1− δ0

Eh∼P expλ(L(Q, τ, τ ′)− L̃(Q, τ, τ ′)) ≤ 1

δ0
exp(

λ2

4n
) (25)

Therefore,

L(Q, τ, τ ′) ≤ L̃(Q, τ, τ ′) +
1

λ

(
DKL(Q||P) + log

1

δ0
+ log

λ2

4n

)
(26)

Step 3: Union bound. To combine the results from the first two steps, Eq. (22), Eq. (23), and
Eq. (26), we bound the intersection of the events in them using the union argument in Lemma 6 by
setting δi = δ

4n , and δ0 = δ
2 , we have with probability 1− δ,

L(Q, τ, τ ′) ≤ L̃(Q, τ, τ ′) +
1

λ

(
DKL(Q||P) + log

2

δ
+ log

λ2

4n

)
=

1

n

n∑
i=1

L(Q,Dprii ,Dauxi ) +
1

λ

(
DKL(Q||P) + log

2

δ
+ log

λ2

4n

)

≤ 1

n

n∑
i=1

EP∼QEh∼Q[L̂(h, Si)] + c1 + 2

2∑
j=1

αj(W1(D̂pri, D̂aux) + λpri + c2)


+

1

λ

(
DKL(Q||P) + log

2

δ
+ log

λ2

4n

)
�
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D PROOF OF THEOREM 2

There are three steps to prove Theorem 2:
Proof: Step 1: Task-specific generalization. The same rule is applied to task-specific generaliza-
tion bound for a single task as in step 1 in the proof of Theorem 1.

Step 2: Task environment generalization. Second, we bound the task-level generalization by
relating the transfer error L(Q, τ, τ ′) to expected multi-task error of primary tasks L̃(Q,Di), and
that of auxiliary tasks L̃′(Q,D′i). Rewrite the meta-training error of a given prior P on observed
tasks Di ∼ τ and D′i ∼ τ ′ as follows:

LS,S′(P ) = α1
1
n

∑n
i=1 L(Q(Si, P ),Di) + (1− α1) 1

n

∑n
i=1 L(Q(S′i, P ),D′i) (27)

= α1

n

∑n
i=1 Ezi∼DiEh∼Q`(hi, zi) + 1−α1

n

∑n
i=1 Ezi∼D′iEh∼Q`(hi, zi)

Similarly, the generalization error on the target task T is

L(P, τ) = E(D,m)∼τES∼DmEz∈DEh∼Q(h|P,S)`(h, z)

Using Markov’s Inequality, with probability at least 1− δ0:

EP∼P
[
eλ(L(P,τ)−LS,S′ (P )

]
≤ 1

δ0
EP∼PEi=1,...,2n

Di∼τ,Si∼D
mi
i ,Di∼τ ′,S′i∼D

′mi
i

[
eλ(L(P,τ)−LS,S′ (P )

]
(28)

The log of the left hand side can be lower bounded by:

logEP∼P
[
eλ(L(P,τ)−LS,S′ (P )

]
= logEP∼Q

P(P )

Q(P )

[
eλ(L(P,τ)−LS,S′ (P )

]
≤ EP∼Q log

P(P )

Q(P )
+ λEP∼Q [L(P, τ)− LS,S′(P )]

= −DKL(Q||P) + λ(L(Q, τ)− EP∼QLS,S′(P )) (29)

where we have EP∼QL(P, τ) = L(Q, τ). And the log of the right hand side can be upper bounded
by:

log
1

δ0
EP∼PEi=1,...,2n

Di∼τ,Si∼D
mi
i ,Di∼τ ′,S′i∼D

′mi
i

[
eλ(L(P,τ)−LS,S′ (P )

]
= log

1

δ0
+ logEP∼PEi=1,...,2n

Di∼τ,Si∼D
mi
i ,Di∼τ ′,S′i∼D

′mi
i

[
eλ(L(P,τ)−LS,S′ (P )

]
= log

1

δ0
+ logEP∼PES∼τ,S′∼τ ′

[
eλ(L(P,τ)−LS,S′ (P )

]
= log

1

δ0
+ logEP∼PES∼τ,S′∼τ ′

[
eλ(L(P,τ)−ES∼τ,S′∼τ′LS,S′ (P )

]
+ logEP∼PES∼τ,S′∼τ ′

[
eλ(ES∼τ,S′∼τ′LS,S′ (P )−LS,S′ (P )

]
≤ log

1

δ0
+ logEP∼PES∼τ,S′∼τ ′

[
eλ(ES∼τ,S′∼τ′L(P,τ)−L(P,τ,τ

′)
]

+ Ψ(λ, 2n) (30)

where

ES∼τ,S′∼τ ′LS,S′(P ) = ED∼τ,D′∼τ ′ES∼D,S′∼D′LS,S′(P )

=E(D,m)∼τES∼DmE(D′,m)∼τ ′ES′∼D′mEz∈DEh∼Q(h|P,S)`(h, z)

=L(P, τ, τ ′) (31)

Combining (29) and (30), we have

L(Q, τ) ≤EP∼QLS,S′(P ) + ∆λ(P, τ, τ ′) +
1

λ

(
DKL(Q||P) + log

1

δ0
+ Ψ(λ, 2n)

)
(32)

where
∆λ(P, τ, τ ′) =

1

λ
logEP∼PES∼τ,S′∼τ ′

[
eλ(ES∼τ,S′∼τ′L(P,τ)−L(P,τ,τ

′)
]
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Figure 6: Data cleansing effect on different tasks.

Step 3: Union bound. With the results of step 1&2, by applying the union bound in Lemma 6, and
setting δi = δ

2n , δ0 = δ
2 , we have for any δ > 0,

L(Q, τ) ≤EP∼QLS,S′(P ) +
1

λ

(
DKL(Q||P) + log

2

δ
+ Ψ(λ, 2n)

)
+ ∆λ(P, τ, τ ′)

=
1

n

n∑
i=1

L(Q,Dprii ,Dauxi ) +
1

λ

(
DKL(Q||P) + log

2

δ
+ Ψ(λ, 2n)

)
+ ∆λ(P, τ, τ ′)

≤ 1

n

n∑
i=1

EP∼QEh∼Q[L̂(h, Si)] + c1 + 2

2∑
j=1

αj(W1(D̂pri, D̂aux) + λpri + c2)

+
1

λ

(
DKL(Q||P) + log

2

δ
+ Ψ(λ, 2n)

)
(33)

E ADDITIONAL ABLATION STUDY

Impact of episode sampling. In Fig. 6, we show the impact of sampling in the DIAL framework
by applying it to different tasks, including primary, auxiliary, primary+auxiliary (Both), and vanilla
(None). In most cases, applying sampling to both tasks achieves the best performance while vanilla
DIAL is the worst, which confirms the effectiveness of our proposed sampling method. This shows
that, with additional auxiliary tasks introduced, the potential issue caused by using data cleansing
for noisy labels no longer exists.

Impact of threshold γ. In this experiment, we test the effect of the hyperparameter threhold γ in
the weight assignment rule on CUB and miniImageNet dataset with synthetic noise, respectively.
For simplicity, we set the value of γ by the percentage of noisy examples removed and its value
range from 0% to 80%, which is a common practice of self-paced learning approaches. As shown in
Fig. 7, for CUB dataset, γ = 30% achieves the highest performance for 5-way 1-shot experiment,
and γ = 60% achieves the highest performance for the 5-shot one. For miniImageNet dataset, λ =
10% achieves the highest performance for both 5-way 1-shot and 5-way 5-shot cases. The general
trend shows that removing too many examples harms the model’s performance, which confirms the
hypothesis of information loss over self-paced sampling.

F SOURCE CODE

For source code, click here.
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Figure 7: Impact of threshold γ: 5-way 1-shot and 5-way 5-shot experiments on miniImageNet (left
two columns) and CUB (right two columns) using different threshold values γ.
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