
Published at Neural Compression Workshop @ ICLR 2021

GRAPH AUTOENCODER FOR GRAPH COMPRESSION
AND REPRESENTATION LEARNING

Yunhao Ge∗, Yunkui Pang∗, Linwei Li & Laurent Itti
Department of Computer Science, University of Southern California
{yunhaoge,yunkuipa,lli06371,itti}@usc.edu

ABSTRACT

We consider the problem of graph data compression and representation. Recent de-
velopments in graph neural networks (GNNs) focus on generalizing convolutional
neural networks (CNNs) to graph data, which includes redesigning convolution
and pooling operations for graphs. However, few methods focus on effective graph
compression to obtain a smaller graph, which can reconstruct the original full
graph with less storage and can provide useful latent representations to improve
downstream task performance. To fill this gap, we propose Multi-kernel Induc-
tive Attention Graph Autoencoder (MIAGAE), which, instead of compressing
nodes/edges separately, utilizes the node similarity and graph structure to compress
all nodes and edges as a whole. Similarity attention graph pooling selects the
most representative nodes with the most information by using the similarity and
topology among nodes. Our multi-kernel Inductive-Convolution layer can focus on
different aspects and learn more general node representations in evolving graphs.
We demonstrate that MIAGAE outperforms state-of-the-art methods for graph
compression and few-shot graph classification, with superior graph representation
learning. (The code is released at this URL*)

1 INTRODUCTION AND RELATED WORKS

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Kipf & Welling, 2016a; Gilmer et al., 2017)
extend the idea of using convolution on grid-structure data (images) in Convolutional neural networks
(CNNs) (LeCun et al., 2012) to graph data. They achieve great success on many tasks, such as node
classification and link prediction (Veličković et al., 2017; Hamilton et al., 2017a). The size of graphs
presents a big obstacle to understanding the essential information they contain. Graph compression
(Navlakha et al., 2008) can solve this problem and be used to improve visualization, to understand the
graph’s high-level structure, or as a pre-processing step for other data mining methods (Zhou, 2015).

However, few methods focus on graph compression and reconstruction with GNNs. Although CNN
autoencoders are an efficient compression framework for images, research on Graph autoencoder
(GAE) structure methods is rare. Variational Graph Autoencoder (Kipf & Welling, 2016b) focuses on
link representation while it cannot obtain a compressed graph. Graph Unet (Gao & Ji, 2019) achieves
a graph autoencoder structure with gPool but needs extra skip feature connections between encoder
and decoder, which have high storage cost. Here, we fill this gap and propose Multi-kernel Inductive
Attention Graph Autoencoder (MIAGAE), a GAE structure with GNN for graph compression and
graph representation learning (Hamilton et al., 2017b; Goyal & Ferrara, 2018) (Fig. 1). MIAGAE
can be used in graph compression and latent graph inference, high-level structure mining, and other
unsupervised learning or self-supervised learning (Table 1). The biggest challenge for GAE design
is graph pooling (Dhillon et al., 2007; Defferrard et al., 2016). DiffPool (Ying et al., 2019) is a

Figure 1: Multi-kernel Inductive Attention Graph Autoencoder (MIAGAE), which consists of an
encoder E and a decoder D. E consists of pairs (gray) of Multi-kernel Inductive Graph convolution
layer and Similarity Attention Graph Pooling layer. D consists of inductive Un-pooling layers.

*Yunhao Ge and Yunkui Pang contributed equally to this work. Code: https://github.com/Pangyk/Graph_AE.

1

https://github.com/Pangyk/Graph_AE
https://github.com/Pangyk/Graph_AE


Published at Neural Compression Workshop @ ICLR 2021

differentiable pooling method by learning an assignment matrix. SAGPool (Lee et al., 2019) uses
self-attention to achieve SOTA performance on various tasks. However, these pooling methods need
extra trainable parameters and are not designed for graph compression tasks.

Our contributions are: We propose Multi-kernel Inductive Attention Graph Autoencoder (MIAGAE),
with (1) Similarity Attention Graph Pooling (SimAGPool) keeps representative nodes with a high
contribution for graph compression and needs no extra trainable parameter. (2) Multi-kernel Inductive
Graph convolution layer (MI-Conv) to suitable for learning in evolving graphs; (3) State-of-the-art
graph compression and representation learning performance, with best storage-efficient; (4) A new
image to scene graph pipeline* and synthesized scene graph dataset, Img2SceneGraph-ACSG, which
allow rapid idea prototyping for graph compression and representation learning.

Table 1: Comparision of CNN-based Image autoencoder and GCN-based graph autoencoder

CNN Autoencoder Variational Graph AE Graph Unet MIAGAE (Ours)

Compressed latent inference " % " "

Multi-kernel " % % "

Pooling layer " % " "

Un-Pooling layer " % " "

Skip connections between E and D not needed " " % "

Compatible with graph data % " " "

2 MULTI-KERNEL INDUCTIVE ATTENTION GRAPH AUTOENCODER

2.1 MULTI-KERNEL INDUCTIVE CONVOLUTIONAL LAYER

Our MIAGAE consists of an encoder network E and a decoder network D (Fig. 1). To obtain graph
compression and reconstruction ability, E first learns to eliminate graph nodes and edges to get a
compressed smaller graph, then D learns to add new nodes and reconstruct the original graph. Since,
during learning, compressed graphs assume dynamic node and edge numbers, we use inductive GCN
layers (Hamilton et al., 2017a) instead of transductive layers (Kipf & Welling, 2016a). On the one
hand, the node representations are influenced when adding and eliminating nodes, which makes
it hard to learn individual representations for each node; on the other hand, learning an inductive
method to summarize the representation of new nodes by aggregating their neighbors’ feature is
more general and easier to generalize across graphs and even datasets (Sec. 3.2). Our single-kernel
Inductive-Conv layer is inspired by GraphSAGE (Hamilton et al., 2017a), which is:

f ik+1 =W1f
i
k +W2 ·meanj∈N (i)f

j
k (1)

where mean is the aggregation function, f ik denotes the feature of node vi in layer k, W1 and
W2 denote the shared linear transformation parameter for center node vi and neighbor node vj
respectively, N (i) denotes the neighboring node sets connected to node i. Inspired by CNN layers in
the image domain, which have multiple convolution kernels, and each kernel may extract different
aspects of a feature, we propose the Multi-kernel Inductive-Conv layer (MI-Conv). Instead of using a
single set of transformation weights W1 and W2, MI-Conv uses multiple kernels, and each kernel has
its corresponding W1 and W2. Features extracted by the first kernel and final features aggregating all
m kernels become:

f ik+1,1 =W 1
1 f

i
k +W 1

2 ·meanj∈N (i)f
j
k (2)

f ik+1 = Aggre(σ(f ik+1,1), σ(f
i
k+1,2), ..., σ(f

i
k+1,m)) (3)

where m is the number of kernels; σ represents a non-linear activation function (we use ReLU);
Aggre represents an aggregate function to combine the multi-kernel results (we use addition).

2.2 SIMILARITY ATTENTION GRAPH POOLING

Figure 2: Similarity Attention
Graph Pooling.

We propose a Similarity Attention Graph Pooling (SimAGPool) layer (Fig. 2) to achieve down-
sampling on graph data and to adaptively select a subset of nodes/edges to form a new but smaller
graph. We define Representativeness and Contribution Score (RCS) to help SimAGPool select the

*http://ilab.usc.edu/datasets/i2sg

2

http://ilab.usc.edu/datasets/i2sg


Published at Neural Compression Workshop @ ICLR 2021

most representative (higher RCS) nodes which contain the majority of the graph’s information, while
eliminating the less representative (lower RCS) nodes and their corresponding edges. RCS is related
to both the similarity between node features and the structure of the graph. To calculate RCS, we first
calculate the inter product vTi vj as similarity score, which captures the similarity of node features
between nodes ni and nj . For each node ni, the value of RCS is the sum of all similarity scores
between ni and its neighbor nodes nj , if there exist a directed edge eij form ni to nj .

RCSni
=

∑
j∈N (i)

(vTi vj) s.t. ∃eij (4)

The intuition behind SimAGPool and RCS is to keep the nodes with majority graph information,
according to two properties: (1) More representative: higher RCS means node ni is more similar to
all the neighbors which represent the majority feature representation in a local subgraph. (2) More
contribution: the higher the RCS that ni has, the more information ni contributes to its neighbor
nodes during message passing in MI-Conv through directed edges eij . The pooling ratio p ∈ (0; 1] is
a hyperparameter that determines the number of nodes to keep (keep top p percent of nodes by RCS).

Un-Pooling layer formsD, aiming to reconstruct the original graph given the connection information
of missing nodes. D and E have a symmetric structure where the number of Inductive Un-pooling
layers is the same as the number of SimAGPool layers. The inductive Un-pooling layer has two
inputs: the output graph from the previous layer and the edges information of new nodes, which is the
same as the eliminated edges in the corresponding pooling layer in E. The inductive Un-pooling layer
has the same parameter settings as the Inductive-Conv layer. (More architecture details in Appendix).

3 EXPERIMENTS
We evaluate our SimAGPool and MI-Conv layers based on the MIAGAE proposed in Sec. 2 on two
tasks: (1) Graph compression and reconstruction; (2) Few-shot graph classification to test graph
representation learning performance. We compare our networks with previous state-of-the-art GAE
models and graph pooling methods that GAE models can use. Table. 2 summarizes the datasets
used for envaluation: COLORS-3 (Knyazev et al., 2019), FRANKENSTEIN (Orsini et al., 2015),
Visual Genome (kri) and Img2SceneGraph-ACSG, new dataset we contribute. (See Appendix).

Table 2: Dataset information

COLORS-3 FRANKENSTEIN Visual Genome Img2SceneGraph-ACSG

Number of graphs 10,500 4377 10,000 7,000
Number of classes 11 2 No label 80

Node feature dimension 5 780 500 500

3.1 GRAPH COMPRESSION AND RECONSTRUCTION

We use the graphs from all four datasets in Table. 2 to evaluate graph compression and reconstruction
performance. Table. 3 compares MIAGAE and five baseline methods on three main dimensions:
Compression ratio represents the ratio between the uncompressed size and compressed size. A higher
ratio represents a more powerful compression ability. MSE represents the reconstruction mean square
error between the original graph and the reconstructed graph by GAE. A smaller value means less
information loss during compression. Storage represents the storage size that reconstruction needs
(except for the latent space, which is the same for all methods), including the decoder network’s
size and extra information (skip connection features, edge information); smaller is better. Compared
with the baseline method Graph Unet under the same compression ratio setting, we obtain better
reconstruction MSE while using much less storage for reconstruction, likely mostly because we do
not need skip connection feature communication between E and D. Compared with the other four
baselines (which can be treated as ablation studies), our MIAGAE outperforms all of them in terms
of requiring the smallest storage; On MSE, we perform better than gPool-GAE, GCN-GAE, and
GAT-GAE on all four datasets. For SAGPool-GAE, we have smaller MSE on most datasets except
COLORS-3 (0.026 vs. 0.028). (More training and architecture details in Appendix).

3.2 GRAPH REPRESENTATION LEARNING AND FEW-SHOT GRAPH CLASSIFICATION

In this section, we evaluate graph representation learning performance. GAE structure networks can
be used as an unsupervised or self-supervised learning framework to learn useful graph representations
on an unlabeled dataset, and then transfer the representation knowledge to downstream tasks. We use
few-shot graph classification with only a small amount of labeled data as a challenging downstream
task. Especially when the graph size to be classified is large. A conflict occurs because the large

3



Published at Neural Compression Workshop @ ICLR 2021

Table 3: Graph compression performance comparison on test set. We have seven total methods
(including five baselines): the first one is graph Unet (Gao & Ji, 2019), the following two are graph
pooling methods gPool (Gao & Ji, 2019) and SAGPool (Lee et al., 2019), we use them to substitute
our SimAGPool in MIAGAE and form gPool-GAE and SAGPool-GAE, the following two are graph
convolution layers GCN (Kipf & Welling, 2016a) and GAT (Veličković et al., 2017), we use them to
substitute our MI-Conv and form GCN-GAE and GAT-GAE. The last two are our methods MIAGAE
with single and two kernels. Note: we can treat the last four baselines as an ablation study.

Dataset FRANKENSTEIN Visual Genome Img2SceneGraph-ACSG COLORS-3

Compression ratio 21.6 : 1 14.86 : 1 14.86 : 1 1.9 : 1

Attribute MSE Storage M S M S M S

Graph Unet (Gao & Ji, 2019) 0.028 62.81 Mb 0.86 583.28Mb 0.85 238.88 Mb 0.058 646.55Mb
gPool-GAE (Gao & Ji, 2019) 0.021 14.90Mb 0.71 280.86Mb 0.71 112.18Mb 0.031 287.35Mb

SAGPool-GAE (Lee et al., 2019) 0.018 7.12Mb 0.54 124.30 Mb 0.51 54.36 Mb 0.026 64.85Mb
GCN-GAE (Kipf & Welling, 2016a) 0.046 8.13Mb 0.92 140.56Mb 0.92 48.87Mb 0.096 136.80Mb
GAT-GAE (Veličković et al., 2017) 0.037 5.50Mb 0.81 126.67Mb 0.81 48.70Mb 0.108 91.46Mb

MIAGAE 1 kernel (Ours) 0.016 5.32 Mb 0.53 93.72 Mb 0.50 43.73Mb 0.029 42.16Mb
MIAGAE 2 kernel (Ours) 0.016 5.77 Mb 0.51 139.72 Mb 0.48 58.99Mb 0.028 55.65Mb

graph sample requires a large classifier with more parameters. At the same time, limited labeled data
can not support the training. So a compressed latent graph representation may alleviate this conflict.
We first randomly divide the FRANKENSTEIN dataset into two datasets: unlabeled dataset U to
pretrain the graph compression model and labeled dataset L for a few-shot graph classification task
(L consists of 100 training and 100 test graphs). After training the graph compression models with
U , we use them to compress the graphs in L, and then train a GCN classifier on 100 training graphs
and test it on 100 test graphs. One of our baselines is directly using the original training graphs
of L to train a GCN classifier without compression. The other baselines have the same settings as
Sec. 3.1. Table. 4 shows classification accuracy for the downstream GCNs. (More training details in
Appendix). Our method outperforms all baselines.

Table 4: Few shot graph classification performance on FRANKENSTEIN dataset. ”No compression”
classifier cannot use unlabeled data U , hence marked N/A.

Compression method GCN classifier parameters Unlabeled pretrain dataset size Training set Test set Accuracy (2 classes)

No compression 52.1k N/A 100 100 62 %
Graph Unet 2.1k 4000 100 100 53 %
gPool GAE 2.1k 4000 100 100 57 %

SAGPool GAE 2.1k 4000 100 100 51 %
MIAGAE (Ours) 2.1k 4000 100 100 65 %

Generalizing across datasets. To evaluate the graph representation learning performance across
datasets, we pretrain the graph compression model on an unlabeled scene graph dataset (Visual
Genome), and then directly use the pretrained graph compression model to compress the graphs in
our contributed Img2SceneGraph-ACSG (where we use 1000 graphs for training and 1000 for test).
Table. 5 shows classification accuracy for the downstream GCNs. (More details in Appendix).

Table 5: Few shot graph classification performance on AI scene graph dataset with transfer learning
Compression method GCN classifier parameters Unlabeled pretrain dataset size Training set Test set Accuracy (80 classes)

No compression 56.9k N/A 1000 1000 11 %
Graph Unet 6.3k 5000 1000 1000 5 %
gPool GAE 6.3k 5000 1000 1000 16 %

SAGPool GAE 6.3k 5000 1000 1000 19 %
MIAGAE (Ours) 6.3k 5000 1000 1000 25 %

4 CONCLUSION
We proposed a novel Graph Autoencoder structure, Multi-kernel Inductive Attention Graph Autoen-
coder (MIAGAE), which achieves state-of-the-art performance on graph compression and representa-
tion learning tasks. The proposed pooling method, SimAGPool, uses nodes similarity and topology to
select the most representative nodes with no extra trainable parameters. Multi-kernel Inductive-Conv
helps to learn general node representation in an autoencoder structure. We show that MIAGAE can
be a general graph representation learning framework for downstream tasks. We hope that researchers
find our Graph autoencoder useful and extend it for their applications.

Acknowledgments This work was supported by C-BRIC (one of six centers in JUMP, a Semicon-
ductor Research Corporation (SRC) program sponsored by DARPA), the Army Research Office
(W911NF2020053), and the Intel and CISCO Corporations.

4



Published at Neural Compression Workshop @ ICLR 2021

REFERENCES

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375, 2016.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):
1944–1957, 2007.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017b.

KOUASSI Konan Jean-Claude. Ai-challenger-scene-classification dataset. https://www.
kaggle.com/kjeanclaude/ai-challenger-scene-classification.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Boris Knyazev, Graham W Taylor, and Mohamed R Amer. Understanding attention and generalization
in graph neural networks. arXiv preprint arXiv:1905.02850, 2019.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, pp. 3734–3743. PMLR, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013.

Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with bounded error.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp.
419–432, 2008.

Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In Proceedings of the
twenty-fourth international joint conference on artificial intelligence, volume 2015, pp. 3756–3762.
IJCAI-INT JOINT CONF ARTIF INTELL, 2015.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Kaihua Tang. A scene graph generation codebase in pytorch, 2020. https://github.com/
KaihuaTang/Scene-Graph-Benchmark.pytorch.

Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo, and Wei Liu. Learning to compose
dynamic tree structures for visual contexts. In Conference on Computer Vision and Pattern
Recognition, 2019.

5

https://www.kaggle.com/kjeanclaude/ai-challenger-scene-classification
https://www.kaggle.com/kjeanclaude/ai-challenger-scene-classification
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch


Published at Neural Compression Workshop @ ICLR 2021

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. Unbiased scene graph
generation from biased training. In Conference on Computer Vision and Pattern Recognition, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling, 2019.

Fang Zhou. Graph compression. Department of Computer Science and Helsinki Institute for
Information Technology HIIT, pp. 1–12, 2015.

6



Published at Neural Compression Workshop @ ICLR 2021

APPENDIX

A DATASET

A.1 IMAGE TO SCENE GRAPH PIPELINE

Img2SceneGraph provides a pipeline that transfers images to scene graphs with node attributes. Here
is a typical workflow:

1. For each image, we used the pre-trained model from Scene-Graph-Benchmark (Tang, 2020;
Tang et al., 2019; 2020) to synthesis the following outputs: 79 bounding boxes (b-boxes)
labeled by a single word and over 6,000 relationship pairs (rel-pairs) between b-boxes, both
of them are sorted by their corresponding confidence scores.

2. To form a scene graph, we provide multiple methods to select edges and nodes.
Select edges first
(a) Select the top n% rel-pairs as edges and corresponding b-boxes as nodes.
(b) Select rel-pairs with confidence score higher than k as edges and corresponding b-boxes

as nodes.
(c) Select top m rel-pairs as the edges and corresponding b-boxes as nodes.

Select nodes first
(d) Select the top n% b-boxes as nodes and corresponding rel-pairs as edges.
(e) Select the b-boxes with confidence score higher than k as nodes and corresponding

rel-pairs as edges.
(f) Select the top m b-boxes as nodes and corresponding rel-pairs as edges.

3. For each node, we generate a d-dimension word embedding using (Mikolov et al., 2013)
from the label of b-box, which is considered as our initial node feature. For each edge, we
can use a one-hot vector or word embedding to obtain the edge label/feature. If the image
has a label, it will be the graph label as well.

Our primary motive for creating Img2SceneGraph and corresponding datasets (described below) is
that it allows rapid idea prototyping for graph compression and representation learning.

A.2 IMG2SCENEGRAPH-ACSG

Img2SceneGraph-ACSG is a scene graph dataset with graph labels. We created it by using our
Img2SceneGraph pipeline on AI Challenger Scene Graph dataset (Jean-Claude). It is a labeled image
dataset that contains 7,120 images with 80 classes. We used method (a) described above with n = 10.
The word embedding dimension d is 500.

A.3 VISUAL GENOME

Visual Genome (kri) is an image dataset that contains over 108K images without labels. We chose
a small split of it (9987) and use Img2Scenegraph with the same setting (described in Sec. A.2) to
generate the scene graph dataset (Img2Scenegraph-VisualGenome). It is used for both graph compres-
sion and compression models pretrained to evaluate the graph representation learning performance
across datasets.

You can download the source code of Img2SceneGraph pipeline and synthesized dataset
(Image2Scenegraph-ACSG and Image2Scenegraph-VisualGenome) from: http://ilab.usc.
edu/datasets/i2sg , which we plan to keep up-to-date with contributions from ourselves and
the community.

B NETWORK ARCHITECTURE

The network architectures of our Multi-kernel Inductive Attention Graph Autoencoder (MIAGAE) is
shown in Table. 6, which is used in the experiments of two main tasks: graph compression (main
paper Sec. 3.1) and few shot graph classification (main paper Sec. 3.2).

7

http://ilab.usc.edu/datasets/i2sg
http://ilab.usc.edu/datasets/i2sg


Published at Neural Compression Workshop @ ICLR 2021

Figure 3: Illustrations on scene graph synthesis with Img2SceneGraph from scratch. All three
samples are from Img2SceneGraph-ACSG. Here we use method (f) and n = 7

For compression task, we chose Graph Unet (Gao & Ji, 2019) as the baseline model. Besides, we
create 4 other baseline models serving for our ablation study. Here are the settings:

• gPool-GAE: we replaced our pooling method with gPool (Gao & Ji, 2019);

• SAGPool-GAE: we replaced our pooling method with SAG Pool (Lee et al., 2019);

• GCN-GAE: we used GCN (Kipf & Welling, 2016a) to substitute our MI-Conv;

• GAT-GAE: we used GAT (Veličković et al., 2017) to substitute our MI-Conv;

GCN classification models used in the main paper Sec. 3.2 is composed of two graph convolutional
layers with node feature dimension 64, followed by l layers MLP to output the final classification
result. Specifically, the GCN classifiers used in the FRANKENSTEIN dataset use l=2 without batch
normalization. The GCN classifiers used in the Img2SceneGraph-ACSG dataset use l=4 with batch
normalization.

C TRAINING DETAILS

We mentioned the high-level training instructions in the main paper Sec. 3. Here are the details.

C.1 GRAPH COMPRESSION

We trained MIAGAE and all the baselines on all the datasets using Adam (Kingma & Ba, 2017)
with β1=0.9 and β2=0.999, learning rate=0.001, for 500 epochs. For COLORS-3, we chose the data
labeled from 0 to 7 as the training set, which contains 7,996 samples. For FRANKENSTEIN, the size
of the training set is 4,000. For Img2SceneGraph-ACSG and Visual Genome, the size of the training
set is 2,000 and 5,000, respectively.

8



Published at Neural Compression Workshop @ ICLR 2021

Table 6: Multi-kernel Inductive Attention Graph Autoencoder (MIAGAE) with 3 pairs of Multi-
kernel Inductive Graph convolution layer (MI-Conv) and Similarity Attention Graph Pooling layer
(SimAGPool) in Encoder. Decoder is formed by 3 Inductive Un-pooling layers. Some notation: d0:
number of dimensions of input node feature; n0: number of nodes of input data; nq: number of nodes
after qth pooling; k: number of kernels in MI-Conv; p: pooling ratio p ∈ (0; 1].

Layer Input → Output Shape Layer Information

Encoder

(n0, d0) → (n0, 64) MI-Conv (in=d0, out=64, k), Leaky ReLU
(n0, 64) → (n1, 64) SimAGpool (in=64, p=0.8)
(n1, 64) → (n1, 64) MI-Conv (in=64, out=64, k), Leaky ReLU
(n1, 64) → (n2, 64) SimAGpool (in=64, p=0.8)
(n2, 64) → (n2, 64) MI-Conv (in=64, out=64, k), Leaky ReLU
(n2, 64) → (n3, 64) SimAGpool (in=64, p=0.8)

Decoder
(n3, 64) → (n2, 64) Inductive Un-Pool (in=64, out=64), ReLU
(n2, 64) → (n1, 64) Inductive Un-Pool (in=64, out=64), ReLU
(n1, 64) → (n0, d0) Inductive Un-Pool (in=64, out=d0), ReLU

C.2 FEW SHOT GRAPH CLASSIFICATION

C.2.1 FRANKENSTEIN

We chose 100 samples and compressed them with the pre-trained compression model to train the
classifier using Adam β1=0.9 and β2=0.999, batch size 200, learning rate 0.01 for 1,000 epochs.
For the non-compression method, the input is the uncompressed graphs. Then we evaluated the
performance on a test set with another 100 samples.

C.2.2 VISUAL GENOME & IMG2SCENEGRAPH-ACSG

For the compression part, we first trained MIAGAE and all the baselines on the Visual Genome
dataset using Adam β1=0.9 and β2=0.999, batch size 500, learning rate 0.001 for 100 epochs. For the
classification part, we chose 1,000 samples from the Img2SceneGraph-ACSG dataset and compressed
them using the pre-trained model. The compressed graphs will train the classifier using bath size 200,
learning rate 0.01, weight decay 0.01 for 1,000 epochs. We evaluated the performance on a test set
with another 1,000 samples from Img2SceneGraph-ACSG.

9


	Introduction and related works
	Multi-Kernel Inductive Attention Graph Autoencoder
	Multi-kernel Inductive Convolutional layer
	Similarity Attention Graph Pooling

	Experiments
	Graph compression and reconstruction
	Graph representation learning and Few-shot Graph classification

	Conclusion
	Dataset
	Image to Scene Graph Pipeline
	Img2SceneGraph-ACSG
	Visual Genome

	Network Architecture
	Training details
	Graph Compression
	Few shot graph classification
	FRANKENSTEIN
	Visual Genome & Img2SceneGraph-ACSG



