
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A REASONING-BASED APPROACH TO CRYPTIC
CROSSWORD CLUE SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cryptic crossword clues are challenging language tasks for which new test sets are
released daily by major newspapers on a global basis. Each cryptic clue contains
both the definition of the answer to be placed in the crossword grid (in common
with regular crosswords), and ‘wordplay’ that proves that the answer is correct (i.e.
a human solver can be confident that an answer is correct without needing cross-
ing words as confirmation). This work describes an LLM-based reasoning system
built from open-licensed components that solves cryptic clues by (i) hypothesis-
ing answers; (ii) proposing wordplay explanations; and (iii) using a verifier system
that operates on codified reasoning steps. Overall, this system establishes a new
state-of-the-art performance on the challenging Cryptonite dataset of clues from
The Times and The Telegraph newspapers in the UK. Because each proved solu-
tion is expressed in Python, interpretable wordplay reasoning for proven answers
is available for inspection.

1 INTRODUCTION

Recent advances in computational models have significantly improved their ability to handle di-
verse natural language tasks involving complex syntactic and semantic interpretations. Despite these
strides, machines continue to fall short of human performance in several areas, most notable being
those involving reasoning. This work tackles the relatively under-studied reasoning task of cryptic
crossword solving, which is a popular activity across the world, with multiple papers in the UK,
Australia, India and elsewhere featuring daily puzzles for readers to solve.

The following is an example of a cryptic clue1 of moderate complexity:

clue (4D): "Cut up over politician on the French case (7)"

Solvers must interpret the clue to understand the supporting wordplay to arrive at the answer
from two directions (see also Figure 2a for a visual depiction of the reasoning involved):

definition: "Cut up over politician on the French {case}"
wordplay: "(AXE)< (cut, <up), MP, LE (the, in French)"
answer: "EXAMPLE"

In the above, the reasoning steps are: (i) identifying which part of the clue is the definition
(highlighted with curly braces) that acts as a regular crossword clue; (ii) parsing the remainder of
the clue for the wordplay - here, for instance, (a) the indicator word ‘up’ tells us to reverse the
word resulting from ‘Cut’ (since this is a down-oriented clue), (b) this is ‘over’ the abbreviation
of Member of Parliament ‘MP’ (a politician in the UK), (c) and ‘on’ a French translation of ‘the’
(common knowledge); and (iii) finally assembling the parts to ‘prove’ that the correct answer is
‘EXAMPLE’ (this agrees with the definition span, with the correct number of letters).

In this work, we take our cue from the effectiveness of provers coupled with verifiers for math-
ematical reasoning tasks (Jiang et al., 2023). We tackle the cryptic crossword clue solving task
using an LLM to (i) suggest answer candidates; (ii) create informal proofs (i.e. coming up with
wordplay); and (iii) perform a formalisation process (which rewrites the wordplay logic in
Python). The proposed solutions are then checked with a verifier for validity.

1The Times UK (6-March-2024), Cryptic #28857 clue 4D

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

20 candidates:

answer: SNIPPED
answer: EXAMPLE
answer: LUGGAGE
...

10 suggestions (1 shown here):

definition: Cut up over politician on the French {case}
wordplay: (AXE)< (cut, <up), MP, LE (the, in French)

assert is_synonym("cut", "AXE")
assert is_action("INITIAL", "up")
assert "AXE"[::-1] == "EXA"
assert is_abbreviation("politician", "MP")
assert is_synonym("the, in French", "LE")
assert "EXA"+"MP"+"LE"
assert is_synonym("case", "EXAMPLE", pattern='7')

SUCCESS

answer candidate

generator

(Gemma2-9B FT)

definition and wordplay suggestions (Gemma2-9B FT)

formalisation to Python (Gemini-1.5-Flash or Gemma2-9B-it)

Python verification (uses AST and simulates functions)

Error output (with hinting):
* assertion failure : "up" does not suggest
 "INITIAL", could be: "REVERSE"

answer: EXAMPLE

'Proved' answer

Fo
r

ea
ch

 a
ns

we
r

ca
nd

id
at

e

 S
U

C
C

E
S

S
 :

 R
e
p

o
rt

 a
n

sw
e
r

a
s

p
ro

v
e
d

clue: Cut up over politician on the French case (7)
ad: down

Cryptic Crossword Question

Re
tr

y
fo

rm
al

is
at

io
n

up

to
 m

ax
_r

ew
ri

te
s

ti
me

s

For each suggestion

Figure 1: Proving process: answer candidate → wordplay→ LLM formalisation

1.1 CONTRIBUTIONS

The following are the main contributions of this work:
• An open-license system for reasoning over Cryptic clues - our pipeline (illustrated in Figure 1)

enables 9B-scale local models to achieve state-of-the-art results on the Cryptonite dataset.

• Local models for cryptic clue tasks - We show how local LLMs can be fine-tuned to produce
answer candidates, and wordplay suggestions, and then prompted to perform Wordplay for-
malisation. Following an approach akin to mathematical statement formalisation, but where there
are less than 10 examples of ‘good proofs’ available, our novel pipeline was specifically engi-
neered to avoid ‘reasoning steps’ becoming stuck in dead ends.

• Python domain-specific verifier - Using the output of the formaliser, the verifier presented here
deconstructs the Python AST, so that it can evaluate each assert statement on a line-by-line
basis. We believe that this is somewhat novel, since it enables the verifier to not only indicate
whether the proof is valid overall, but also point to specific failures (used to regenerate failed
formalisations) on all proof lines simultaneously.

To promote further study in this area, all code for the formaliser and domain-specific verifier is made
publicly available.

2 RELATED WORK

2.1 REGULAR CROSSWORDS

Non-cryptic (“regular”) crosswords are known throughout the world, and are the predominant type
found in newspapers in the U.S.A. One key difference from cryptic crosswords is that individual
regular crossword clues are generally not ‘standalone’ - there may be a number of different answers
that fit the given clue. The key to solving regular crosswords is thus the interaction between answers
(i.e. the crossing-words), which allows for planning/backtracking to enable solving rates in the high
90% range (Wallace et al., 2022).

This work, in contrast, focuses on the solving of clues on a standalone basis, which requires elements
of reasoning through the wordplay present in cryptic clues.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Cut up over politician on the French case (7)

EXAMPLE
axe

EXAsynonym

MP
LE

synonym synonym
reverse

position position
synonym

Offer of support also broadcast (8)

PROPOSAL

synonym

= PROP + OSAL

anagramsynonym

Wader woman has on (5)

HERON

synonym

= HER + ON

literalsynonym

Research done, primarily on most of magical beings (5)

DELVE
elves

synonym

= D + ELVE

take first
letter synonymtake first
letter

take first
letter

take most
letters of

elves

synonym

= D + ELVE

take first
letter synonymtake first
letter

take first
letter

take most
letters of

axe

EXAsynonym

MP
LE

synonym synonym
reverse

position position
synonym

(a)

(c) (d)

(b)

Figure 2: Clue solving illustrations. Answers are in green, definitions in blue (dashed frame), word-
plays in orange, and indicators in purple. Further textual examples can be found in Appendix A.1

2.2 CRYPTIC CROSSWORDS

In an 800 participant research study into the backgrounds of cryptic crossword solvers (Friedlander
& Fine, 2016), the following observation was made about the skills required to solve these linguis-
tic/reasoning puzzles:

“... cryptic crossword skill therefore appears to be bound up with code-cracking
and problem-solving skills of a quasi-algebraic nature. Conversely, lexical ability,
although no doubt valuable, does not appear to be a critical discriminator of high
expertise among elite solvers.”

Cryptic crosswords have received surprisingly little attention from the machine learning community,
despite being a notable language-oriented reasoning puzzle with global appeal. One possible reason
is that cryptic crosswords are much less common in the United States than ‘regular crosswords’. See
Webb (2024) for an inspiring demonstration of expert solving a cryptic crossword in real-time.

The benchmark dataset used by this work is Cryptonite (Efrat et al., 2021) - a large-scale dataset of
Cryptic Crossword clues from The Times and The Telegraph (major UK newspapers). The dataset
contains 523,000 naturally sourced clues (published between 2001 and 2020), with the train, valida-
tion and testing splits being chosen so that a given answer can only appear in one of the splits.

While the dataset made available in Rozner et al. (2021) is also of interest, its clues are limited
to those from the Guardian newspaper, and Connor (2024) notes in the Guardian’s own blog “The
Times hosts an annual crossword-solving competition and it remains, until such time as the Guardian
has its own version, the gold standard.” Moreover, the smaller number (142,000) of clues the dataset
contains have no orientation markings (‘across/down’), which are required to make sense of some
wordplay.

For a more in-depth discussion of the decision to focus on the Cryptonite dataset (and not per-
form testing on the Guardian dataset), please see Appendix A.3. In summary, while the ’Init’ split
presented in Rozner et al. (2021) has attractive properties (explored there, and in other works), this
work specifically targets the wordplay reasoning side of cryptic clues, and since that involves fine-
tuning models on Cryptonite (including Wordplay examples with carefully matched train/val/test
splits), this precludes us from doing the same kind of multi-dataset comparisons found elsewhere.

2.2.1 RULE-BASED SOLVERS

Williams & Woodhead (1979) is an early example of attempting to devise a formal language for
describing cryptic clues. However, the linguistic elements of the clues tend to thwart a strictly
formal approach.

A more flexible rule-based solver with a manually-crafted probabilistic grammar was introduced in
(Deits, 2015; 2022). Building on the assumption that a clue can usually be split into wordplay

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

{
"publication": "FT", "setter": "falcon", "author": "teacow",
"num": 16, "ad": "D",
"clue": "{Offer} of support also broadcast", "pattern": "8",
"wordplay": "PROP (support) + (ALSO)* (*broadcast)",
"answer": "PROPOSAL"

}

Figure 3: An example from the Wordplay dataset (in this wordplay, ()* is an anagram indicator).
This clue’s solution is diagrammed in Figure 2b

and definition, the solver tries to find the most probable parse such that the wordplay yields
a semantically-similar result to the definition. The logical form of this DSL approach is very
appealing. However, it appears limited to solving clues where the wordplay is somewhat simple
(due to the combinatorial explosion of possibilities created by longer/more complex clues).

The goal of this work is to use the flexibility of LLMs to enable a far wider range of clues to be
attempted, with the aid of a formaliser/verifier to check the solutions.

2.2.2 LLM-BASED SOLVERS

Cryptonite is a challenging task for LLMs : Efrat et al. (2021) reported that fine-tuning T5-Large
(a 770M encoder-decoder model) on Cryptonite’s 470k cryptic clue training set achieved only 7.6%
test set accuracy, slightly below the 8.6% accuracy of the rule-based clue solver of Deits (2022).
Interestingly, prior to 2024, even large-scale Language Models scored very poorly on cryptic clues,
likely due to (i) the misleading surface reading of the clues; (ii) the obliqueness of the definitions;
and (iii) the reasoning steps required to prove the answer correct based on the wordplay.

Recent works, such as Sadallah et al. (2024) and Saha et al. (2024), tackle cryptic crosswords with
more up-to-date local models, and also commercial LLMs. Saha et al. (2024) reports results with
5- and 10-Shot prompting (without fine-tuning models), but also includes a wide-ranging study of
the capabilities of models for crosswords in general. We include experiments that bring the relevant
baselines up-to-date, and also touch on their illuminating Partial Correctness Metrics (which are
relevant when attempting full grids, but not the main focus here).

In this work, we use a pipeline of 9B-scale LMs to produce answer candidates and wordplay
suggestions, followed by a third LM to formalise each proposed solution using Python code and
then rewrite/update the solutions based on feedback from a purpose-built verifier. In our results, we
focus on the ‘pure’ Cryptonite benchmark: Accuracy is judged based on a Top-1 basis (with the
model’s single answer being marked wholly correct or not), with no crossing letters being given.
Framed as a reasoning task, if the model ‘understands’ the cryptic solution properly, the answer
will be wholly correct - there should be no partial marks.

2.3 CODE & REASONING

To compensate for LLM approximate generation of logical reasoning, techniques like PAL (Gao
et al., 2023) exploit LLMs’ facility for writing code to create verifiable reasoning chains. An im-
portant influence on this work was also the Draft, Sketch, and Prove framework (Jiang et al., 2023)
which uses an LLM to draft and create proofs that are then verified formally.

Informed by the evolution from AlphaCode (Li et al., 2022), in which huge numbers of programs
are generated and filtered in order to generate a valid solution, to AlphaCodium (Ridnik et al., 2024),
in which solutions are iterated upon and involving much less computation, this work uses a verifier
that can feed back ‘hints’ to the formalising LLM, so that the task of re-writing nearly-valid proofs
is made easier.

2.4 WORDPLAY DATASET

The Wordplay dataset (Andrews, 2024) - an example from which is given in Figure 3 - consists of
data gathered from websites where cryptic crossword enthusiasts post solutions on a daily basis for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

each of the major publications. Each completed puzzle is annotated by an individual, identifiable au-
thor/solver that lists the approximately 30 clues with their definition, wordplay and answer
fields. Note that the authors each chose their own ‘standard’ for writing out the wordplay, leading
to a significant variation in wordplay annotation style between solvers : Even though the under-
lying reasoning is clear, solvers do not annotate in the same style (even across time). The Wordplay
dataset deliberately follows the train, validation, and test splits defined by Cryptonite.

3 METHODS

The overall system described in the work is illustrated in Figure 1. The order of operations for the
pipeline was chosen based on watching human solvers - who report going through the following
steps: (a) attempting to parse the clue in a number of ways, trying to isolate the definition from
the wordplay; (b) seeing which parts of the wordplay they are most confident about; (c) ‘having a
hunch’ of the final answer; and (d) gaining a full understanding of how a clue’s wordplay works
(such that the function of every element can be explained) as proof of the overall process.

Observations of the behaviour of GPT-4 using Chain-of-Thought prompts Wei et al. (2023) (or more
recently ‘o1’), suggest that even very capable models tend to fixate early on during the reasoning
process, and are only rarely able of completely re-hypothesising. Theses LLMs also frequently
becomes caught up with the literal (’surface’) meaning of the clue, which is often misleading. The
combination of these elements caused us to re-consider how to approach this kind of problem.

By organising our system’s pipeline to hypothesis candidate answers as the first step (so that the
models must try to fit the reasoning to the answer, with varying degrees of success) bakes re-
hypothesisation into the process. Another aspect that required care was the looseness of the language
used in cryptic clues, which may stop even valid ‘reasoning’ from being provable.

3.1 CANDIDATE answer GENERATION

Our first step to solving a given cryptic clue is to generate multiple answer candidates from the
original clue, pattern and ad (across/down) fields. For this task, we fine-tuned a Gemma2 9B
base model (Gemma Team & Google DeepMind, 2024) using the LoRA (Hu et al., 2021) implemen-
tation provided by the unsloth package (unsloth.ai, 2024). The model was trained for 1 epoch on
the Cryptonite training set of approximately 470,000 examples.

For each clue being evaluated, we generate 20 valid answer candidates, where candidates that
did not match the pattern were immediately rejected and regenerated, and those not contained in
the crossword words list (Beresford, 2000) were filtered out2. The number of candidates was chosen
to balance generation cost with likelihood of the correct answer appearing in the candidate list - see
Figure 7 for a cumulative frequency analysis. The list of candidates was then grouped so that the
frequency of each answer could be found - enabling statistics to be collected.

3.2 GENERATION OF definition AND wordplay SUGGESTIONS

To train the wordplay suggestion model, which translates each answer candidate into multiple
definition and wordplay suggestions, we make use of the Wordplay dataset of Andrews
(2024). For this task, we fine-tuned another Gemma2 9B base model using LoRA. The model was
trained on 4 epochs on a set of approximately 16,800 examples (consisting of solution explanations
of puzzles from The Times and The Financial Times from selected authors in the Wordplay dataset).

3.3 PYTHON FORMALISATION

Rather than create a dataset with many examples of formalisation, here we use in-context prompting
with less than 10 examples of the formalisation style required. In preliminary work, we concluded
that the available Gemini-Flash LLM was not capable of using a (novel) cryptic crossword domain
specific language (“DSL”) through in-context learning with so few examples. In contrast, we found

2This rejection of invalid words here is not ‘cheating’ since we do not use the dictionary to suggest words,
rather it is only used to weed out actively proposed non-words from a short-list.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

def proof(answer="DELVE",

 clue="research done, primarily on most of magical beings",

 pattern='5'):

 """

 definition: research done, primarily, on most of magical beings

 wordplay: D[one] (primarily) ELVE[s] (magical beings, most of)

 """

 assert action_type("primarily", Action.INITIALS)

 assert "DONE"[:1] == "D"

 assert is_synonym("magical beings", "ELVES")

 assert action_type("most of", Action.REMOVE_LAST)

 assert "ELVES"[:-1] == "ELVE"

 assert "D"+"ELVE" == "DELVE"

 assert is_synonym("research", "DELVE", pattern='5')

proof()

LLM formalisation

Gemma2 wordplay

Gemma2 answer candidate

Figure 4: Python proving: answer candidate → wordplay→ LLM formalisation

Action=Enum('Action',
'ANAGRAM,REMOVE_FIRST,INITIALS,REMOVE_LAST,'+
'GOES_INSIDE,GOES_OUTSIDE,REVERSE,SUBSTRING,HOMOPHONE')

External definitions
def is_synonym(phrase:str, test_synonym:str, pattern:str='') -> bool:

True if 'test_synonym' is a reasonable synonym for 'phrase',
with letters optionally matching 'pattern'

def is_abbreviation(phrase:str, test_abbreviation:str) -> bool:
Determines whether 'test_abbreviation' is
a valid abbreviation or short form for 'phrase'

def action_type(phrase:str, action:Action) -> bool:
Determines whether 'phrase' might signify the given 'action'

def is_anagram(letters:str, word:str) -> bool:
True if 'word' can be formed from 'letters' (i.e. an anagram)

def is_homophone(phrase:str, test_homophone:str) -> bool:
Determines whether 'test_homophone' sounds like 'phrase'

Figure 5: External functions available via In-Context Learning

that the LLM could be prompted to produce Python code with relative ease, so the approach taken
was to frame a declarative-style-DSL as Python function calls within assert statements. The LLM
was found to be able to reliably produce syntactically correct Python, and use the ‘external functions’
that had been described (as illustrated in Listing 5) to form logical sequences of declarations, which
could then be parsed line-by-line by manipulating the Python abstract syntax tree (“AST”). An
example of the Python DSL being generated by the formalisation LLM is given in Figure 4, with the
workings of the clue solution being illustrated in Figure 2c.

To formalise wordplay into Python ‘proofs’ of the correctness of solutions, we used Google’s
Gemini-Flash-1.5-001 LLM (a pinned model version) during development. This model was
initially chosen instead of a frontier-tier model since the formalisation task should not require much
inventiveness/reasoning: the actual required steps are already present in the wordplay, the task is
merely to translate to Python. To determine whether the choice of Gemini-Flash was a limiting
factor, we subsequently tested an unmodified Gemma2-9B-it model on the same task.

In terms of the DSL itself, the back-end to the is synonym and is homophone functions con-
sists of calls to simple language models. The action type function performs a nearest-neighbour
match against list of indicator words, and the is abbreviation function performs a look-up
against a list of abbreviations - both sourced from Deits (2022). For string manipulation actions
(such as ‘REVERSE’), the LLM formaliser itself was capable of producing correct output unaided.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

AssertionError: assert: is_abbreviation('an Artist', 'RA') : \
'an Artist' does not have a valid abbreviation; \
'RA' is an abbreviation for : \

artist, artillery, Royal Artillery, gunners, painter
AssertionError: assert action_type('goes crazy', Action.ANAGRAM) : \

'goes crazy' does not suggest Action.ANAGRAM, but 'crazy' does
AssertionError: assert action_type('worked', Action.HOMOPHONE) : \

'worked' does not suggest Action.HOMOPHONE, but may be Action.ANAGRAM

Figure 6: Illustrative AssertionError responses (with hinting) from the verifier

3.4 IN-CONTEXT LEARNING

To produce Python code that could be sent to the prover, the LLM was prompted in an In-Context
Learning (“ICL”) manner. This consisted of the following parts:

1. Cryptic crossword rubric to explain to the LLM what the principles were behind the fields
such as clue, definition, wordplay, etc.

2. Many-shot clue → wordplay examples (20-30 given)
3. The ‘external functions’ rubric shown in Figure 5
4. Few-shot wordplay → Python formalisations (6 examples given)
5. The actual clue, answer, definition and wordplay being formalised

Gemini-Flash did not appear to be particularly sensitive to the prompting style used, except in
the ‘handover step’ (between problem description and model generation) where several trials were
needed to obtain the final function definition in the required format consistently. Further details of
all the ICL prompts are given in Appendix A.5. For the final Gemma2-9B-it formalisation runs, the
same prompts were used unchanged (with no other tuning/training).

3.5 PROOF VERIFICATION WITH HINTING

The verifier implemented here must decide whether a given formalisation is valid, and report any
errors found to iteratively improve the Python code as feedback to the LLM formaliser in a cycle,
as seen in Self-Debug (Chen et al., 2023), and AlphaCodium (Ridnik et al., 2024). Examples of
assertion failures, with constructive hinting, are shown in Figure 6.

This cycle is repeated until a formalisation is validated (zero assertion failures, considered a ‘SUC-
CESS’ with the answer having been proved), or max rewrites=2 is reached. If no Python
formalisation can be validated, then the fallback answer is used (defined as being the most fre-
quent answer amongst the original candidates produced in the first stage of solving the clue).

3.6 PARTIAL CORRECTNESS METRICS

One interesting direction explored in Saha et al. (2024) was the performance of LLMs on cryptic
clues if some of the letters were known (as would be the case if an entire grid were being solved).
The conditions examined were with 25%, 50% and 70% of letters ‘known’. Based on observa-
tions working with the proposed system for single clues (and more general experience of crossword
solving), we approached this problem in two ways.

For the 25% level of letters ‘known’, it was a simple matter to use our existing system with candidate
answers which didn’t match the known letters filtered out. For the higher levels of known letters, we
instead used the FastText embedding method of Mikolov et al. (2018) to find the nearest neighbour
answer within The UK Advanced Cryptics Dictionary, Beresford (2000), by comparing against
the embedding of the raw clue phrase itself.

The ‘Partial Correctness’ results, while not being a core thrust of our reasoning approach but inter-
esting in their own right, are given in Appendix A.5.7.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of answer candidates

15

20

25

30

35

40

45

P
ro

b
ab

il
it

y
(p

ct
)

(a) Is the gold answer in the candidate list?

Validation

Test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of answer candidates

16

18

20

22

24

P
ro

b
ab

il
it

y
(p

ct
)

(b) Is the highest frequency candidate the gold answer?

Validation

Test

Figure 7: Statistics of answer candidate list, as more candidates generated

4 EXPERIMENTS

4.1 GEMMA2 9B answer CANDIDATE GENERATION

During the initial experimental phases of fine-tuning local models for the answer generation task it
was discovered that -base models scored more highly than -it models. This might be explained
by observing that instruction fine-tuning may (to some extent) penalise off-the-wall answers, which
may be essential for our task. In addition, we also observed that while the Top-1 candidate from a
model generating with a temperature t = 0.5 had high accuracy, it was beneficial to run candidate
generation with t = 1.0 (even though the Top-1 accuracy was lower in this case) - since having a
wider spread of answer candidates was useful for our pipeline overall.

Figure 7a shows that the probability of the gold answer being among the candidates produced is
(unsurprisingly) monotonically increasing in the number of independent samples. It also shows that
this process is not yet asymptotically limited, although slowing down with increasing n.

Figure 7b shows that choosing the highest-frequency answer candidate can be a very effective
strategy. However, there is a clear limit to this idea: There is a significant probability that cryptic
crossword answers are in the long tail of potential answers. Indeed, intentionally creating misleading
clue ‘surfaces readings’ is a hallmark of good cryptic clue setting.

4.2 GEMMA2 9B wordplay CANDIDATE GENERATION

Since wordplay is so flexible, it is difficult to evaluate it for accuracy against other examples
(without, say, a large LLM to evaluate the differences). However, good wordplay should result in
good formalisations, so evaluation is available on an end-to-end basis.

One key assumption in the system proposed here is that a correct answer should lead to in-
terpretable wordplay, whereas an incorrect answer candidate should give rise to unformalis-
able/unverifiable wordplay. The following typical example illustrates how the correct answer
leads readily to correct wordplay (the workings of this clue are illustrated in Figure 2d), whereas
trials with an incorrect answer candidate (which was, in fact, the most frequent candidate for this
clue) give clearly unverifiable wordplay:

clue: "wader woman has on (5)"
definition: "{wader} woman has on" # Same for all

answer: "HERON" # correct answer
wordplay: "woman (HER) has on (ON)"

answer: EGRET # incorrect answer - 3 trials shown
wordplay: "woman (HER) on top of (REG - another word for on, \

as in 'do you have the heating on?')"
wordplay: "EG (woman has) + RET (on)"
wordplay: "woman (HER) has on/around (EG) - a wader bird"

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Cryptonite results : Standard splits, Top-1 answer accuracy rate
Validation Test

Model samples Overall Quick Hard Overall Quick Hard

Rule-based (*) 26k 8.3% 8.6% 13.5% 5.8%
T5-large (770M) FT (*) 26k 7.4% 7.6% 12.8% 3.4%

Gemma2-9B-it 5-shot 1000 5.7% 11.5% 5.2% 4.5% 10.5% 4.0%
Gemini-Flash 5-shot 1000 6.6% 12.5% 6.1% 6.5% 11.8% 6.1%
GPT-4o 5-shot 1000 29.8% 45.0% 28.5% 27.6% 47.4% 26.0%

Gemma2-9B FT 1000 21.7% 28.8% 21.1% 15.9% 38.2% 14.1%
Gemma2-9B freq (#=20) 1000 26.6% 31.3% 26.2% 25.5% 55.3% 23.1%

(AB) logprob answer 500 23.9% 35.9% 22.9% 22.7% 55.3% 20.1%
(AB) logprob wordplay 200 21.0% 15.4% 21.4% 20.5% 46.7% 18.4%

Gemini-Flash Formaliser 200 28.0% 23.1% 28.3% 32.5% 46.7% 31.4%
Gemma2 9B-it Formaliser 200 26.0% 23.1% 26.2% 29.0% 46.7% 27.6%

Rows (*) are as reported in Efrat et al. (2021); The Hard columns are for the non-Quick clues

4.3 CRYPTONITE RESULTS (TOP-1 EXACT MATCH)

In this work, we focus our testing on using the Cryptonite dataset of Efrat et al. (2021) as a bench-
mark, with the Top-1 exact-match results shown in Table 1. As in Saha et al. (2024), due to compu-
tational constraints, we performed sampling of the validation and test sets, using fewer than the full
26k examples available. One standard deviation at 1000 samples is ≈ ±1.5%, and at 200, ≈ ±3.3%.

The 5-Shot results in Table 1 show that:

• GPT-4o (2024-11-25) gives stronger results than those of GPT-4-Turbo (2024-04-09) given in
Saha et al. (2024) - so this is an updated baseline;

• The updated GPT-4o results show surprisingly strong performance on the validation split (unfor-
tunately, the composition of this commercial model’s training data is unknown);

• Gemini-1.5-Flash-001 (which was used in development of the formaliser) is not particularly good
at solving cryptic clues in itself;

• The Gemma2-9B model gets a large uplift from fine-tuning on the Cryptonite training set (com-
pare the 5-Shot figures to the later Gemma2-9B FT ones).

The Gemma2-9B FT accuracy figures are for the first result returned by the fine-tuned Gemma2
model. In contrast, the Gemma2-9B freq accuracy figures are for the most common (i.e. highest
frequency) result among the Gemma2 answer candidates (for which 20 samples were generated for
each clue). These voting-based results show impressive performance, which would have exceeded
prior state-of-the-art results for open-licensed models on their own.

Going beyond single models, the Gemini-Flash Formaliser demonstrates Top-1 exact-
match performance of 32.5% for the Cryptonite Test set, establishing a new state-of-the art result,
even against the updated baselines. Moreover, the results of the non-fine-tuned Gemma2-9B-it
Formaliser also beat the previous state-of-the-art results - which is perhaps an even stronger
statement about the capabilities the system described here, since in this case Gemma2-9B models
have been used throughout the solving process, showing that it is be possible to achieve very com-
petitive cryptic crossword solving results through reasoning with off-line, open-licensed models.

The formaliser results are (surprisingly) relatively worse for Quick clues. This seems to be related
to the fact that the agreement/frequency-based Gemma2 freq model is very strong on these clues,
and any ‘contribution’ from the formalising/verification procedure is likely to overrule a good base-
line result, due to erroneous verification of ‘proofs’ that are not valid.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.4 ABLATIONS

The lines in Table 1 marked ‘(AB)’ are ablations. Both utilise the measurement of average logprob
of the output tokens given by the relevant model.

The first (‘logprob answer’) shows the results of using the Gemma2-9B FT model from above, with
the candidate answer being chosen from the list of 20 possibilities according to highest logprob.
Since answers are typically very short, this method is similar to the frequency-based selection model.

The second (‘logprob wordplay’) shows the results of evaluating the Gemma2-9B FT model that
generates wordplay hypotheses, and choosing an answer based on the highest logprob according
that generating model. Somewhat unexpectedly, this was not as effective as might be assumed from
the generated wordplay seen in Section 4.2 - where the wordplay for wrong answers looks
absurd. Examining samples of the wordplay most favoured by pure logprob order, it seems that
the generating LLM finds simply-worded but completely fictitious wordplay quite likely.

Both of these ablations demonstrate that the formalisation and verification steps are essential com-
ponents in our system - we cannot shortcut them using a ‘dumb ranker’ in the pipeline.

4.5 OBSERVED LIMITATIONS OF THE SYSTEM

The verifier implemented for this work does not detect a number of potential errors in the Python
function it analyses:

• The entire Python function might consist of comments : Nothing triggers assert
• The Python function contains conditional execution, routing around assert statements
• Occasionally, the hint assert XYZ failed results in the re-write : assert XYZ==False

• The proof may be logically disconnected, with left-hand-side terms not being supported / justified
by right-hand-side terms in other lines of the code

These issues do not appear insurmountable, given time and effort. It should be noted that since the
formalising LLM is only being used In-Context there is little chance that the above issues are being
systematically abused (which would almost certainly happen if there was learning-in-the-loop in a
Reinforcement Learning setting).

5 CONCLUSIONS

It is hypothesised that the next-token-prediction task may be insufficient to get machines to reason
and plan (Kambhampati, 2024). Our choice of platform for reasoning experiments was that of
cryptic crossword clue solving - and we have demonstrated early success with a system that include
both LLMs, verifiers and coding aids.

We believe that our results validate our overall approach to codification of the cryptic crossword
problem domain : Generating answer candidates and wordplay suggestions followed by pro-
duction of code via an LLM-based formalisation process, verification using Python code analysis
tools, and iterative prompting of the LLM formaliser proved quite effective.

We were happy to discover that our development work using the Gemini-Flash LLM as a formaliser
was directly transferable to a non-fine-tuned version of the open-licensed Gemma2-itmodel for the
same role, with little loss of performance, enabling the whole pipeline to be run locally. The weakest
link in the chain was, predictably, getting the ‘Aha’ of wordplay creation to work - humans can
still generate wordplay that is beyond the capabilities of current models.

The authors sincerely hope that this work sparks interest in the cryptic crossword domain, which
presents an array of interesting and challenging reasoning problems on which fruitful research can
take place, even for those with limited computation budgets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

6.1 SOCIETAL IMPACT

There are many current cryptic crossword enthusiasts that would potentially not welcome AI-
enabled solvers to ‘take over’ their favourite pastime. In particular, when taken further, this line
of work would potentially disruptive to public leaderboards that rank people according to the time
taken to solve puzzles 100% correctly. However, there is currently little risk of LLM cryptic solvers
as being anything more than comic relief for current experts.

6.2 POTENTIAL BIAS IN FAVOUR OF NATIVE ENGLISH SPEAKERS

While the English language has a high capacity for ambiguity and wordplay overall, making this
type of crossword possible, cryptic crosswords also exist in other languages (Wikipedia contributors,
2024). In addition, although solving cryptic crossword answers may be very difficult (even for native
English speakers), understanding the answer from given wordplay is much simpler.

7 REPRODUCIBILITY

7.1 DATASETS AND CODE

The following outline the efforts that have been made to ensure reproducibility:
• Datasets - Resources such as dictionaries used, and the Cryptonite and Wordplay datasets are

available online, via the sources referenced in the main text.
• System Code & LLM Prompts - Python code for the complete end-to-end system will be made

available on publication. The prompting required for the LLM formalisation (arguably a form of
programming) are included in the Appendix.

• Models used / training - The models referenced in this work are available with open weights
(the Gemma2 models), or via API (the Gemini-Flash model, with a pinned version number). The
training procedures are outlined in the text, and therefore have some degree of reproducibility.
The fine-tuned Gemma2 models will be made available in any case, on publication.

7.2 COMPUTATIONAL REQUIREMENTS

The Gemini LLM was accessed by API, and the total spend to create the results in this paper was
less than $100 USD, with each prompt round-trip taking around 5 seconds. The Fine-Tuning of
the Gemma2 9B model took around 24 hours for a full Cryptonite training run, and 8 hours for the
Wordplay dataset runs. Thus, the single-GPU model runs totalled less than $50 USD.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Andrews. Wordplay Dataset, 2024. URL https://github.com/mdda/
cryptic-wordplay.

J Ross Beresford. The UK Advanced Cryptics Dictionary. Technical report, published online, 2000.
https://cfajohnson.com/wordfinder/.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

Alan Connor. Devious humour and painful puns: will the cryptic cross-
word remain the last thing AI can’t conquer?, 2024. URL https://www.
theguardian.com/crosswords/crossword-blog/2024/nov/04/
cryptic-crossword-ai-conquer-human-solvers-artificial-intelligence-software.

Robin Deits. rdeits/cryptics github code repo. https://github.com/rdeits/cryptics,
2015.

Robin Deits. rdeits/crypticcrosswords.jl github code repo. https://github.com/rdeits/
CrypticCrosswords.jl, 2022.

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy. Cryptonite: A cryptic crossword benchmark
for extreme ambiguity in language. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 4186–4192, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.344. URL
https://aclanthology.org/2021.emnlp-main.344.

Kathryn J. Friedlander and Philip A. Fine. The grounded expertise components approach in the
novel area of cryptic crossword solving. Frontiers in Psychology, 7, 2016. ISSN 1664-1078.
doi: 10.3389/fpsyg.2016.00567. URL https://www.frontiersin.org/journals/
psychology/articles/10.3389/fpsyg.2016.00567.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, pp. 10764–10799, 2023.

Gemma Team and Google DeepMind. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, 2021.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Tim-
oth’ee Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, Sketch, and Prove: Guiding formal
theorem provers with informal proofs. In International Conference on Learning Representations,
2023. URL https://doi.org/10.48550/arXiv.2210.12283.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15–18, March 2024. ISSN 1749-6632. doi: 10.1111/nyas.15125.
URL http://dx.doi.org/10.1111/nyas.15125.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with AlphaCode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Derrick Somerset Macnutt. Ximenes on the art of the crossword. Methuen, 1966.

12

https://github.com/mdda/cryptic-wordplay
https://github.com/mdda/cryptic-wordplay
https://cfajohnson.com/wordfinder/
https://arxiv.org/abs/2304.05128
https://www.theguardian.com/crosswords/crossword-blog/2024/nov/04/cryptic-crossword-ai-conquer-human-solvers-artificial-intelligence-software
https://www.theguardian.com/crosswords/crossword-blog/2024/nov/04/cryptic-crossword-ai-conquer-human-solvers-artificial-intelligence-software
https://www.theguardian.com/crosswords/crossword-blog/2024/nov/04/cryptic-crossword-ai-conquer-human-solvers-artificial-intelligence-software
https://github.com/rdeits/cryptics
https://github.com/rdeits/CrypticCrosswords.jl
https://github.com/rdeits/CrypticCrosswords.jl
https://aclanthology.org/2021.emnlp-main.344
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2016.00567
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2016.00567
https://arxiv.org/abs/2408.00118
https://doi.org/10.48550/arXiv.2210.12283
http://dx.doi.org/10.1111/nyas.15125
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. Ad-
vances in pre-training distributed word representations. In Proceedings of the International Con-
ference on Language Resources and Evaluation (LREC 2018), 2018.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with AlphaCodium: From prompt
engineering to flow engineering, 2024.

Josh Rozner, Christopher Potts, and Kyle Mahowald. Decrypting cryptic crosswords: Semantically
complex wordplay puzzles as a target for NLP. In Advances in Neural Information Processing
Systems, volume 34, pp. 11409–11421, 2021. URL https://papers.nips.cc/paper/
2021/hash/5f1d3986fae10ed2994d14ecd89892d7-Abstract.html.

Abdelrahman “Boda” Sadallah, Daria Kotova, and Ekaterina Kochmar. Are LLMs good cryptic
crossword solvers?, 2024. URL https://arxiv.org/abs/2403.12094.

Soumadeep Saha, Sutanoya Chakraborty, Saptarshi Saha, and Utpal Garain. Language models are
crossword solvers, 2024. URL https://arxiv.org/abs/2406.09043.

unsloth.ai. Unsloth code repo. https://github.com/unslothai/unsloth, 2024.

Eric Wallace, Nicholas Tomlin, Albert Xu, Kevin Yang, Eshaan Pathak, Matthew Ginsberg, and Dan
Klein. Automated crossword solving, 2022.

David Webb. Epic crossword battle expert vs. Times cryptic puzzle #29029. https://youtu.
be/N5p4TqdjsHs, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Wikipedia. Cryptic crossword — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Cryptic_crossword&oldid=1228427465, 2024. [On-
line; accessed 1-July-2024].

Wikipedia contributors. Cryptic crossword - regional variation. https://en.wikipedia.
org/wiki/Cryptic_crossword#Regional_variation, 2024.

PW Williams and D Woodhead. Computer assisted analysis of cryptic crosswords. The Computer
Journal, 22(1):67–70, 1979.

13

https://papers.nips.cc/paper/2021/hash/5f1d3986fae10ed2994d14ecd89892d7-Abstract.html
https://papers.nips.cc/paper/2021/hash/5f1d3986fae10ed2994d14ecd89892d7-Abstract.html
https://arxiv.org/abs/2403.12094
https://arxiv.org/abs/2406.09043
https://github.com/unslothai/unsloth
https://youtu.be/N5p4TqdjsHs
https://youtu.be/N5p4TqdjsHs
https://arxiv.org/abs/2201.11903
https://en.wikipedia.org/w/index.php?title=Cryptic_crossword&oldid=1228427465
https://en.wikipedia.org/w/index.php?title=Cryptic_crossword&oldid=1228427465
https://en.wikipedia.org/wiki/Cryptic_crossword#Regional_variation
https://en.wikipedia.org/wiki/Cryptic_crossword#Regional_variation

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CRYPTIC CROSSWORD BACKGROUND

The following borrows extensively from the description on Wikipedia (2024) (kudos to the
authors there), to which we have added wordplay annotations in a notation typical of the
FifteenSquare.com website (and in the Wordplay dataset use in this work).

A.1.1 BASICS

A cryptic clue leads to its answer only if it is read in the right way. What the clue appears to say when
read normally (the surface reading) is usually a distraction with nothing to do with the solution. The
challenge is to find the way of reading the clue that leads to the solution.

A typical clue consists of two parts:

• The straight or definition. This is in essence the same as any non-cryptic crossword clue: a
synonym for the answer. It usually exactly matches the part of speech, tense, and number of
the answer, and usually appears at the start or end of a clue. For our annotations, the span that
encompasses the definition is highlighted using curly braces.

• The cryptic, subsidiary indication or wordplay. This gives the solver some instructions on how
to get to the answer in another (less literal) way. The wordplay parts of clues can be obscure,
especially to a newcomer, but they tend to utilise standard rules and conventions which become
more familiar with practice.

Sometimes the two parts of the clue are joined with a link word or phrase such as ‘from’, ‘gives’
or ‘could be’. One of the tasks of the solver is to find the boundary between the definition and the
wordplay, and insert a mental pause there when reading the clue cryptically.

We list below several of the important styles of wordplay that are commonly used, each with
an annotated example. For a more comprehensive list, along with an outline of the ‘Ximenean
principles’, please see Wikipedia (2024).

A.1.2 ANAGRAMS

An anagram is a rearrangement of a certain section of the clue to form the answer. This is usually in-
dicated by a codeword which indicates change, movement, breakage or something otherwise amiss.
For example:

clue: Chaperone shredded corset (6)
definition: {Chaperone} shredded corset
answer: ESCORT
wordplay: (corset)* (*shredded)

A.1.3 CHARADE

In a charade, the answer is formed by joining individually clued words to make a larger word
(namely, the answer). For example:

clue: Outlaw leader managing money (7)
definition: Outlaw leader {managing money}
answer: BANKING
wordplay: BAN (outlaw) + KING (leader)

A.1.4 CONTAINERS

A container or insertion clue puts one set of letters inside another. For example (also starting to add
a little more indirection):

clue: Utter nothing when there's wickedness about (5)
definition: {utter} nothing when there's wickedness about

14

FifteenSquare.com

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

answer: VOICE
wordplay: O (nothing) with VICE (wickedness) around it (about)

A.1.5 DELETIONS

Deletion is a wordplay mechanism which removes some letters of a word to create a shorter word.
For example:

clue: Bird is cowardly, about to fly away (5)
definition: {Bird} is cowardly, about to fly away
answer: RAVEN
wordplay: [c]RAVEN (cowardly) - 'C' (i.e. circa, about) (-fly away)

A.1.6 DOUBLE DEFINITION

A clue may, rather than having a definition part and a wordplay part, have two definition parts. For
example:

clue: Not seeing window covering (5)
definition: {Not seeing} {window covering}
answer: BLIND
wordplay: Double Definition (DD)

A.1.7 HIDDEN WORDS

With hidden word clues, the solution itself is written within the clue – either as part of a longer word
or across more than one word. For example:

clue: Found ermine, deer hides damaged (10)
definition: Found ermine, deer hides {damaged}
answer: UNDERMINED
wordplay: [fo]UND ERMINE D[eer] (hides)

A.1.8 HOMOPHONES

Homophones are words that sound the same but have different meanings, such as ‘night’ and
‘knight’. Homophone clues always have an indicator word or phrase that has to do with being
spoken or heard. For example:

clue: We hear twins shave (4)
definition: We hear twins {shave}
answer: PARE
wordplay: "pair" (twins, "we hear")

A.1.9 REVERSALS

A word that gets turned around to make another is a reversal. For example:

clue: Returned beer fit for a king (5)
definition: Returned beer {fit for a king}
answer: REGAL
wordplay: (LAGER)< (beer, <returned)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 WORDPLAY DATASET

The Wordplay Dataset used in this work is extracted from websites where cryptic crossword en-
thusiasts post solutions to the puzzles published in major publications. Each completed puzzle is
annotated by an solver who provides the community with definition, wordplay and answer
fields for each of the approximately 30 clues in that day’s grid.

For UK papers, these enthusiast websites include:

• timesforthetimes.co.uk - Times, Times Quick

• www.fifteensquared.net - Independent, Guardian, Financial Times

• bigdave44.com - Telegraph, Sunday Telegraph

The following is an example from the Wordplay dataset, formatted in YAML (the workings of this
clue are illustrated in Figure 2c):

title: Financial Times 16,479 by FALCON
url: https://www.fifteensquared.net/2020/05/18/ \

financial-times-16479-by-falcon/
author: teacow
clues:
- clue: '{Offer} of support also broadcast'

pattern: '8'
ad: D
answer: PROPOSAL
wordplay: PROP (support) + (ALSO)* (*broadcast)

- ...

In the above:

• clue is the original clue, as given to solvers, but with the ‘regular crossword’ definition
portion highlighted with curly braces;

• pattern is the number of characters in the answer;

• ad (across/down) is potentially significant, because some clues include directional hints such as
‘before’ or ‘upwards’ which are only meaningful if the orientation of the answer within the grid
is known;

• answer is the clue’s final answer (not known to the solvers before solving); and

• wordplay is an informally annotated explanation of how the clue words act together to logically
build the letters in the answer (the resulting grid letters typically being in upper case) - here the *
symbol signifies that ALSO is to be anagrammed due to the anagram indicator (broadcast) in
the clue.

The Wordplay dataset is publicly available as Andrews (2024). Note that care was taken to ensure
that the training/validation/test splits follow those of the Cryptonite dataset (and the test set answers
are deliberately scrubbed from the retrieved data by the provided scripts, to reduce the chance that
they become training data for an over-eager crawling system).

A.3 CHOICE OF CRYPTONITE VS ROZNER

At the start of this paper’s research program, the Cryptonite dataset of Efrat et al. (2021) was cho-
sen as being the focus, over the approximately contemporaneous dataset from Rozner et al. (2021)
(denoted Rozner here), for the following reasons:

• Cryptonite was larger (523k clues, compared to 142k in Rozner)

• Cryptonite consists of clues from The Times and The Telegraph (whereas Rozner is the UK’s
Guardian). While these are all fine newspapers, it is clear that in the cryptic crossword community
(found online via websites for wordplay discussions, or YouTube channels) that The Times is
considered the Gold Standard of cryptic crosswords.

16

timesforthetimes.co.uk
www.fifteensquared.net
bigdave44.com

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

– Indeed, Connor (2024) - one of the Guardian’s own cryptic blog posts - directly states: “The
Times hosts an annual crossword-solving competition and it remains, until such time as the
Guardian has its own version, the gold standard.”

– In the authors’ view, The Times deserves its role as Gold Standard due to (a) adhering to /
upholding the Ximenean standard Macnutt (1966) for what is allowed in clues; (b) doing so for
decades; and (c) maintaining high consistency of clue difficulty within puzzles (where solvers
frequently complain that the Guardian clues can often be rather haphazard)

• The Cryptonite dataset was made available for direct download - even though the licensing is
(politely) ‘fuzzy’, it remains a useable research dataset (and seems unlikely to be challenged
by The Times, since it is not possible to reconstruct their full puzzles from the clues given as
individual line-items, due to deduplication, for example)
– The Rozner dataset required researchers to ‘scrape their own data’, likely because while the

data was being retrieved from a public website, the data itself could reasonably be assumed to
be copyrighted. This slight inconvenience had a useful impact (please see below)

• Unlike the Cryptonite dataset, the Rozner dataset does not include Across/Down markers for the
clues - which makes some of the clues difficult to resolve (for instance EXAMPLE on the paper’s
first page can only be read correctly if one sees that it is a Down clue - which converts ‘up’ into a
reversal indicator)

• The Cryptonite dataset also includes ‘is quick’ annotations that show whether a clue was taken
from a ‘Quick Cryptic’ crossword (these clues are typically easier, which enables a further degree
of performance analysis).

• The Cryptonite dataset splits were set in stone. Rozner, though, had a series of splits (random,
disjoint, and ‘init’):
– The ‘random’ split was clearly shown to be a poor way of separating train/test due to close

overlaps
– The ‘disjoint’ split is similar in spirit to the Cryptonite methodology
– The ‘Init’ split had the additional twist that common prefixes would only be found in their own

splits. This had a catchy intuition, although it’s not clear from a cryptic cluing perspective
whether this has much genuine basis. While there are some prefixes that are common (eg: EX-
is easily clued by referring to divorce, etc), the impact seems overall marginal (particularly
given the accuracy rate differences reported)

Our paper describes a system trained on Cryptonite clue/answer training data, and also (as a com-
ponent) the Wordplay dataset (which abides by the Cryptonite splits too).

It would be possible to test our existing (Cryptonite trained) system on the Rozner ’Init’ test set.
However, while Saha et al. (2024) could have the flexibility to run tests on either dataset (since no
training was performed), running our current model on the Rozner ‘Init’ test set would be clearly
mis-aligned vis-a-vis the data split.

But there is also a structural reason against re-training the paper’s system on the Rozner ‘Init’ split
for (specifically) Wordplay. The Wordplay dataset generation process was guided by the principle of
maintaining the Cryptonite splits, it would be a disaster if Rosner ‘Init’ Wordplay splits were to be
made public. The reason: It is very likely that the Cryptonite test set has a large intersection with the
Rozner ‘Init’ training set (and conversely). As seems evident from the baseline improvements shown
above, OpenAI likely trains on the Cryptonite training set (as they are welcome to do). However,
since (as of November 2024) Saha et al. (2024) appears to have released (or re-released) the ‘Init’
training set under an MIT license, a commercial vendor such as OpenAI would be quite within their
rights to also train on that. Thus, commercial systems (against which reviewers are forcing academic
papers to benchmark) will have been trained on the test sets (without commercial vendors explicitly
‘cheating’ - they will just be training on all the available training data).

In the authors’ judgement, the reasoning paths that are being tested here through the cryptic cross-
word task are a prize cultural asset, generated over decades of human effort, and this should not be
squandered. Hopefully, this explains the authors’ reluctance to dataset-hop : We don’t want to make
it common to gather and distribute cross-contaminating datasets, specifically Wordplay datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 FINE-TUNING PROMPT

The following is a verbatim training example used for the fine-tuning of the Gemma2-9B-base
model:

Instruction:
Cryptic clue wordplay generation : Given the clue and the answer, \
return expert definition and wordplay annotations

Input:
clue: "musical and ballet, oddly, that can be avoided"
answer: EVITABLE ˜ evitable

Response:
definition: musical and ballet, oddly, {that can be avoided}
wordplay: EVITA (musical) + B[a]L[l]E[t] (ballet, odd letters)

A.5 IN-CONTEXT LEARNING PROMPTS FOR THE GEMINI LLM

The Gemini LLM is prompted in-context with the concatenation of the following sections:

• Cryptic Crossword overview
• Many-shot wordplay examples
• Declaration of ‘external’ Python functions
• 6-shot formalisation demonstration
• Actual problem statement (for continuation as a Python proof)
• After a verification failure: Error messages for the generated proof, with hints if available, and

request to improve iteratively

The sections of the prompt are described more fully below, note that care was taken to ensure that
the chosen terminology was use consistently throughout.

A.5.1 CRYPTIC CROSSWORD PREAMBLE

The following is the rubric and wordplay preamble given to the Gemini LLM:

A Cryptic crossword question involves using the words in \
the given clue to yield an answer that matches the letter pattern.
The clue will provide a definition of the answer, as well \
as some 'wordplay' that can also be used to confirm the answer.
Expert question solvers write informal 'proofs' using a \
particular format.

For the definition, the original clue is annotated with \
'{}' to denote where the definition is to be found.
For the wordplay, the following conventions are loosely used:
* The answer is assembled from the letters in CAPS
* Words in brackets show the origins of letters in CAPS, \
often being synonyms, or short forms
* Action words are annotated as illustrated:

+ (ETO N)* (*mad = anagram-signifier) = TONE
+ (FO OR)< (<back = reversal-signifier) = ROOF
+ [re]USE (missing = removal-signifier) = USE

* DD is a shorthand for 'Double Definition'

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5.2 MANY-SHOT WORDPLAY EXAMPLES

Around 20 examples from the Wordplay dataset are included in the in-context prompt:

For example:

clue: "arrived with an artist, to get optical device (6)"
definition: arrived with an artist, to get {optical device}
answer: CAMERA
wordplay: CAME (arrived) + RA (artist, short form)

clue: ...

A.5.3 EXTERNAL PYTHON DSL FUNCTIONS

Domain Specific Python functions are described in-context to the LLM, which appears able to use
them without seeing their internal functionality. In fact, the actual implementation of the functions
is more extensive than described, since calls to these functions also track ‘near misses’ which can
be fed back as hints during the re-write process.

The task is to produce a formal proof using python code, \
where the docstring will also include an informal proof as an aid.
The following are functions that can be used in your output code:

Action=Enum('Action', 'ANAGRAM,REMOVE_FIRST,INITIALS,REMOVE_LAST,'+
'GOES_INSIDE,GOES_OUTSIDE,REVERSE,SUBSTRING,HOMOPHONE')

External definitions
def is_synonym(phrase:str, test_synonym:str, pattern:str='') -> bool:

Determines whether 'test_synonym' is a reasonable synonym for 'phrase',
with letters optionally matching 'pattern'

def is_abbreviation(phrase:str, test_abbreviation:str) -> bool:
Determines whether 'test_abbreviation' is
a valid abbreviation or short form for 'phrase'

def action_type(phrase:str, action:Action) -> bool:
Determines whether 'phrase' might signify the given 'action'

def is_anagram(letters:str, word:str) -> bool:
Determines whether 'word' can be formed from 'letters' (i.e. an anagram)

def is_homophone(phrase:str, test_homophone:str) -> bool:
Determines whether 'test_homophone' sounds like 'phrase'

A.5.4 FEW-SHOT FORMALISATION EXAMPLES

The following are 3 (out of 6) of the few-shot formalisation examples given before the final test-case
prompt:

The following are examples of simple functions that prove that \
each puzzle solution is correct:

```python
def proof(answer="ONCE",

clue="head decapitated long ago", pattern='4'):
"""
definition: head decapitated {long ago}
wordplay: [b]ONCE (head decapitated = remove first letter of BONCE)
"""
assert is_synonym("head", "BONCE")
assert action_type("decapitated", Action.REMOVE_FIRST) \

and "BONCE"[1:]=="ONCE"
assert is_synonym("long ago", "ONCE", pattern='4')

proof()
```

```python
def proof(answer="DECIMAL",

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

clue="the point of medical treatment", pattern='7'):
"""
definition: {the point} of medical treatment
wordplay: (MEDICAL)* (*treatment = anagram)
"""
assert is_synonym("the point", "DECIMAL", pattern='7')
assert action_type("treatment", Action.ANAGRAM)
assert is_anagram("MEDICAL", "DECIMAL")

proof()
```

```python
def proof(answer="SUPERMARKET",

clue="fat bags for every brand that’s a big seller",
pattern='11'):

"""
definition: fat bags for every brand that’s {a big seller}
wordplay: SUET (fat) (bags = goes outside) of \

(PER (for every) + MARK (brand))
"""
assert is_synomym("fat", "SUET")
assert action_type("bags", Action.IS_OUTSIDE)
assert "SUET" == "SU" + "ET"
assert is_abbreviation("for every", "PER")
assert is_synomym("brand", "MARK")
assert "SU"+"PER"+"MARK"+"ET" == "SUPERMARKET"
assert is_synonym("a big seller", "SUPERMARKET", pattern='11')

proof()
```

A.5.5 FORMALISATION INSTRUCTION

The following instruction is given before the final ‘test-case’ prompt illustrated in Figure 4:

Please complete the following in a similar manner, and return the whole function:

```python
def proof(answer= ...

A.5.6 PROOF VERIFICATION WITH HINTING

Examples of assertion failures, with constructive hinting, are shown:

AssertionError: assert: is_abbreviation('an Artist', 'RA') :
'an Artist' does not have a valid abbreviation;
'RA' is an abbreviation for : artist, artillery, Royal Artillery,
gunners, painter

AssertionError: assert action_type('goes crazy', Action.ANAGRAM) :
'goes crazy' itself does not suggest Action.ANAGRAM, but 'crazy' does

AssertionError: assert action_type('worked', Action.HOMOPHONE) :
'worked' does not suggest Action.HOMOPHONE, but maybe Action.ANAGRAM

# Please re-implement the SOLUTION above \
(altering both the docstring and the python code as required), \
taking care to fix each of the problems identified, \
and return the whole function:

```python
def proof(answer= ...

Once the prover has fully parsed a given output with zero assertion failures, the proof is considered
a success (up to 2 re-write iterations are allowed, more that that is considered an overall failure to
prove the answer).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Partial Correctness Metrics Results
Validation Test

Model known% samples Overall Quick Hard Overall Quick Hard

GPT-4T (‘Init’) 25% 33.7%
GPT-4T (‘Init’) 50% 52.9%
GPT-4T (‘Init’) 70% 76.3%

Gemini-Flash 25% 200 37.0% 38.5% 36.9% 45.5% 66.7% 43.8%
Gemma2-9B-it 25% 200 37.5% 38.5% 37.4% 44.0% 66.7% 42.2%

FastText k=1 NN 25% 200 15.5% 15.4% 15.5% 21.0% 33.3% 20.0%
FastText k=1 NN 50% 200 52.5% 38.5% 53.5% 62.0% 46.7% 63.2%
FastText k=1 NN 70% 200 79.0% 61.5% 80.2% 81.0% 100.0% 79.5%

A.5.7 PARTIAL CORRECTNESS METRICS RESULTS

Our results in Table 2, which corresponds to the Exploiting Partially Filled Grids section in Saha
et al. (2024), are based on running models on Cryptonite splits, rather than their ‘Init’. However, the
percentage differences observed are likely large enough outweigh the shift between the two datasets.

The GPT-4T rows in Table 2 are as reported in Saha et al. (2024), and apply to the ‘Init’ test dataset
(i.e. different from our Cryptonite numbers, but still comparable figures in terms of what is being
shown here).

The Gemini/Gemma2 rows show the effect of simply filtering the output of our Gemma2-9B fine-
tuned candidate answer proposal model, based on a random letter pattern (using the same formu-
lation as Saha et al. (2024)) and then using the rest of our pipeline. Here, our approach beats the
previously reported GPT-4T results, and is itself limited by our first stage Gemma2 model’s ‘Top-20’
candidate answers only containing the correct answer only around 45% of the time.

Our FastText k = 1 kNN systematic approach is clearly very powerful - particularly considering
that it does not involve any large model, merely a brute-force search. This only works because the
number of known letters for these rows are so high - indeed the 70% level would not be allowed in
crosswords that obey the Ximenean guidelines of Macnutt (1966).

If solving complete grids were the target of our research, we would certainly incorporate this kind
of solution and overlay the reasoning component to choose from the short-list output (rather than
just selecting the first entry, as here). Note that also the performance is bounded above, because the
wordlist is not exhaustive - we determined that 7.0% of the gold answers (on the Cryptonite test set)
do not appear in the list. This may not be such an issue with the ‘Init’ dataset, since that wordlist is
likely more restricted.

21

	Introduction
	Contributions

	Related Work
	Regular Crosswords
	Cryptic Crosswords
	Rule-based solvers
	LLM-based solvers

	Code & reasoning
	Wordplay dataset

	Methods
	Candidate answer generation
	Generation of definition and wordplay suggestions
	Python formalisation
	In-Context Learning
	Proof Verification with Hinting
	Partial Correctness Metrics

	Experiments
	Gemma2 9B answer candidate generation
	Gemma2 9B wordplay candidate generation
	Cryptonite Results (Top-1 exact match)
	Ablations
	Observed Limitations of the System

	Conclusions
	Ethics Statement
	Societal impact
	Potential bias in favour of native English speakers

	Reproducibility
	Datasets and Code
	Computational requirements

	Appendix
	Cryptic Crossword Background
	Basics
	Anagrams
	Charade
	Containers
	Deletions
	Double definition
	Hidden words
	Homophones
	Reversals

	Wordplay Dataset
	Choice of Cryptonite vs Rozner
	Fine-tuning prompt
	In-Context Learning Prompts for the Gemini LLM
	Cryptic Crossword preamble
	Many-shot wordplay examples
	External Python DSL functions
	Few-shot formalisation examples
	Formalisation instruction
	Proof Verification with Hinting
	Partial Correctness Metrics Results

