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Abstract

Deep learning models benefit from training on a vast collection of samples. However, training
on more samples is not necessarily equivalent to higher performance in terms of accuracy and
speed. Learning with organized training materials, by emphasizing on easy or hard examples,
is shown to achieve better performance in certain scenarios. While there is no standard
strategy for easiness evaluation, a loss metric is frequently used as an indicator. In this work,
we propose a unified sample easiness estimator to quantify the level of easiness of a model on
a sample. We further propose a novel loss function, named Sample Easiness-based Loss (SEL),
which regularizes class probabilities to be better used in sample easiness estimates. SEL can
be easily applied to any neural network architecture without any modification. We then
provide a novel neural network training strategy, sample easiness-based training (SET), to
offer a choice of training with designated sample easiness, e.g., medium easiness, to reduce the
training time significantly. Results show that our SET utilizes only 0.06%–11.18% of training
samples while achieving similar or higher test accuracies. In addition, we demonstrate that
our sample easiness framework is helpful in mislabeled data identification task.

1 Introduction

Learning with organized materials divided into varying levels of difficulty is effective in training animals. This
is commonly referred to in behavioral sciences as shaping (Krueger & Dayan, 2009). While in psychology, it
is argued that allowing learners to play an active role improves learning (Gureckis & Markant, 2012). By
having the freedom to preferentially select and focus their effort on useful information, learners can improve
retention of material and reduce learning uncertainty. Learning can be accelerated by avoiding redundant
data. Similarly, artificial neural networks (NNs) can also improve their prediction performance by learning
from organized training samples (Chang et al., 2017).

However, how does the model decide which materials to consider for training? In human learning, imagine
we are taking a class, and there are many problems we need to prepare for the final exam. After one round of
review, we self-evaluate to identify which materials we need more preparation. We then focus our efforts on
those materials and spend much less time on those we are already skilled at. Under time constraints, we
might even discard those extremely hard questions. In machine learning, the difficulty level or easiness of a
training sample is typically not known a priori and is conceptually difficult for a human to provide it (Kumar
et al., 2010). In addition, different models would find different types of samples easier to learn. Therefore, a
unified measure indicating how a model is effective at recognizing a sample can act as a direct indicator of
easiness.

There are a number of definitions of sample easiness or example difficulty in the literature (Baldock et al.,
2021; Carlini et al., 2019; Lalor et al., 2018; Agarwal et al., 2020). For NNs, two measures are particularly
related to this work: accuracy and loss. Accuracy is a common performance measure that quantifies the
ratio of correct predictions over total samples in classification problems. However, there is no measure for
per-sample accuracy. Loss function is measured during training and loss values have been used as a measure
for sample difficulty, with samples contributing to lower loss inferred to be easier (Kumar et al., 2010).
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Figure 1: Data and sample easiness visualization and statistics of a classification problem using
Fashion MNIST data. We train a CNN with 12k features on Fashion MNIST (Xiao et al., 2017) to do
multi-class classification and we show the prediction results in the scatter plot. Marker colors represent three
easiness levels. Marker style represents the correct/wrong prediction. Marker size represents the count of
samples in log-scale. We use ankle boot samples for demonstration, an easy sample looks like most of the
ankle boots seen in the dataset, a hard sample has sandal features, and a medium sample has sneaker features.
We observe from the statistics shown in the table that there is only a small number of medium easiness
samples.

In this paper, we first provide an approach to calculate the sample easiness in NN training. Use Figure
1 as a demonstrating example, our sample easiness measure recognizes easy, medium, and hard samples.
Next, we propose a sample easiness-based loss and a novel NN training strategy, called sample easiness-based
training. Specifically, we propose to focus on medium easiness samples to reduce training time with almost
no degradation to prediction performance. Finally, we demonstrate sample easiness as a helpful method in
mislabeled data identification task. Our main contributions are listed as follows:

• We propose a unified sample easiness measure and a sample easiness-based loss (SEL). We examine
SEL in extensive experiments on image processing datasets with classic vision models (e.g., VGG,
ResNet, DenseNet) pre-trained on ImageNet and a convolutional neural network trained from scratch.
We observe that models trained with SEL achieve better performance in terms of accuracy and
sample easiness error.

• We further propose a sample easiness-based training strategy (SET) for NN training. SET dynamically
selects training samples on-the-go based on sample easiness, and only trains on those selected samples.
We provide two additional variants of SET and examine them through comprehensive experiments.
We observe that with SET, models achieve comparable accuracy results when using only 0.06% –
11.18% of training data. This results in significant runtime reduction compared to the full-blown
training with 100% of training data.
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• We also show that our sample easiness is useful when combined with other methods in mislabeled
data identification task. Sample easiness helps distinguish difficult samples and mislabeled samples
better. Hence, this helps reduce false positive rate in mislabeled data recognition.

2 Related Work

Prior research in cognitive sciences has shown that humans and animals learn much better when the training
materials are presented in an organized manner, typically of increasing difficulty rather than following a pure
trial and error learning strategy (Elman, 1993; Krueger & Dayan, 2009). In computational science, this is
comparable to the growing field of active learning with the key idea that learning algorithms should have an
active role in choosing the data from which it learns (Settles, 2009). Our sample easiness-based training in
some aspect seems similar to active learning, as SET also actively and dynamically selects samples to train
in each epoch. The fundamental difference is that SET still needs to see all the labeled training data and
examine them in each epoch, although SET only uses a small fraction of the samples in the later training
stages.

There are a few proposed measures that quantify sample importance or difficulty with respect to learning.
Among them the loss function-related measures are the most commonly used in various training data
organization strategies. One prominent area is curriculum learning (Bengio et al., 2009; Pi et al., 2016;
Hacohen & Weinshall, 2019; Wu et al., 2020) with the idea that using organized training material where
the learning strategy is to “start small” and then gradually learn from increasingly difficult samples. Other
related works include Self-paced learning (Kumar et al., 2010) where each iteration simultaneously selects
easy samples and learns a new parameter vector, and self-paced curriculum learning (Jiang et al., 2015) which
combines the merits of curriculum and self-paced learning. Meanwhile, the hard example mining training
strategy puts more emphasis on harder samples by assigning them greater weights. Recent works include the
adaptive hard sample mining algorithm (Chen et al., 2020) that selects the hard samples from a set sorted
by loss value using an adaptive threshold of hard level, while Smirnov et al. (2018) introduced auxiliary
embeddings with hard example mining. In contrast to strategies emphasizing easy or hard samples, our
SET utilizes medium samples, and it also provides a configurable sample selection mechanism to allow users
customize their sample selection and organization strategy.

Other example difficulty or importance notations have been proposed in the literature. For instance, item
response theory is used to measure test items’ difficulty (Lalor et al., 2018); the variance of gradient and
gradient magnitude are proposed to determine the relative ease or importance of learning data samples
(Agarwal et al., 2020; Katharopoulos & Fleuret, 2018; Vodrahalli et al., 2018); goodness-of-fit-based method is
used to determine the ease of a set of sample instead of individual samples (Kumar et al., 2010); consistency
score that reflects the probability of correct generalization to the example (Jiang et al., 2020) and effective
prediction depth estimates the layer depth at which a prediction is made for a given input (Baldock et al., 2021),
etc. Although there are different flavors of example difficulty, and they have been used in multiple related
tasks, such as out-of-distribution detection (Agarwal et al., 2020), core dataset selection for data-efficient
training (Mirzasoleiman et al., 2020), and mislabeled data identification (Jiang et al., 2020), the measures
proposed in these works mostly work for a set of samples, or requires extra standalone models to preform the
estimation, or do not have a unified range for different models or datasets. Our proposed sample easiness,
estimates example difficulty with class probabilities provided by the classifier, and provides sample easiness
for each sample. It works for NNs and any other classifiers that can produce class probabilities. In addition,
our unified sample easiness always produce a value between zero and one (inclusive), which makes it easy to
define customized easy, medium, and hard samples.

3 Methods

In this section, we define the sample easiness and its calculation for NNs in multi-class classification problems.
Then, we propose a sample easiness-based loss (SEL) with implementation details. Finally, we present sample
easiness-based training (SET), a training strategy that provides users the flexibility of choosing the type
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sample easiness used for training. We propose to focus on the medium easiness training materials to consume
less computing resources.

3.1 Sample Easiness

Here, we propose to measure easiness of samples with values ranging from 0 (difficult) to 1 (easy). Broadly
speaking, sample easiness serves as an indicator of correct prediction, and it can be seen as a per-sample
accuracy measure.
Definition 3.1 (Sample Easiness). Subject to a training example x and a specified neural network with M
output neurons, (i.e., an M -class classification problem), the sample easiness of x is determined as follows:

Ex =
M−1∏
j=0

ϵx
j =

M−1∏
j=0

P (hi > hj), ∀j ̸= i, (1)

where i is the true label, and hi is the value of output neuron i after the softmax function. ϵx = [ϵx
0 , ...ϵx

M−1]
is sample easiness vector.

In the literature, loss values and confidence are often used as indicators for easiness of examples (Bengio
et al., 2009; Kumar et al., 2010). While this is so, the magnitude of the loss value does not give an intuitive
measure of whether an example is easy or hard in contrast to the proposed measure of easiness Ex ∈ [0, 1].

Sample easiness and confidence. Confidence is the maximum output value after the softmax function,
i.e., max(h) (Guo et al., 2017). Intuitively, if a NN predicts the correct output, all ϵx

j ’s are equal to 1. From
Eq. equation 1, Ex takes value of 1 which marks this sample x as easy. On the contrary for a hard example,
Ex takes a value of 0. For example, in a 5-class (classes 0 to 4) classification problem, the NN takes a sample
x with label y = 0 and outputs (0, 0, 1, 0, 0). In this case, the NN generates the wrong prediction of class 2
with confidence value of 1. The calculated sample easiness is Ex = 0, and this sample is marked as hard.

3.2 Sample Easiness-based Loss (SEL)

Previously, we introduced that sample easiness reflects per-sample accuracy. Hence, optimizing sample
easiness helps improve the overall accuracy. Given a NN and the sample easiness definition, Ex should be
optimized to 1 for all x in the dataset during the training process. Therefore, it is possible to design a loss
function based on sample easiness to reflect this objective. We propose SEL such that a NN classifier learns
to optimize sample easiness. For a sample x with true label y = i, all the entries of sample easiness vector ϵx

should be optimized to the maximum value of 1’s except ϵx
i which is optimized to 0.5 in the implementation.

We denote this optimal sample easiness vector as ϵ̂x. Hence, SEL is defined as

LSE(x) = DKL(ϵ̂x||ϵx), (2)

where DKL is the Kullback–Leibler divergence (Kullback & Leibler, 1951). Given a dataset S, the total
SEL-enhanced loss function L is a weighted sum of a cross-entropy loss LCE and our proposed LSE :

L =
∑

(x,y)∈S

LCE(h, y) + λ
∑
x∈S

LSE(x), (3)

where λ is a positive constant balancing the influence of LCE and LSE , and h is the output of a NN.

3.3 Sample Easiness-based Training Strategy (SET)

It has been shown that not all data are equally useful. Sample easiness allows us to evaluate the training data
during the training process to identify which samples need further attention from the classifier. With SEL,
the trained model is further adjusted based on those samples that are incorrectly classified, which include
hard and part of the medium samples. In this section, we propose to train only on medium easiness samples
to save computing resources.
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With the sample easiness measure, our sample easiness-based training (SET) utilizes sample selection strategy
to self-evaluate easiness of examples into three difficulty levels, namely: (i) Hard samples: Ex = 0 means that
the NN has absolutely no idea how to correctly classify that example. It is possible that the example is an
outlier, e.g., from an out-distribution, which makes the example unrecognizable, or is of low quality, e.g.,
labeled wrong; it is also possible that the NN is not sufficiently trained to recognize patterns contained in this
particular example. (ii) Easy samples: Ex = 1 indicates the NN knows how to classify the example without
any ambiguities. (iii) Medium samples: Ex ∈ (0, 1) signifies that the NN has some hints of the underlying
data pattern but it still needs more training to increase the accuracy. Therefore, using this sample easiness
metric, we can actively select data that need more training. Note that for sample easiness, with its value
ranging from 0 to 1, the allowable sample easiness interval used for training can be adjusted and determined
by users to fit various purposes. We provide our definitions of easy, medium, and hard for later use in NN
SET.

Algorithm 1 Sample easiness-based training (MO).
Input : Dataset S and an NN classifier C.
Output : Trained NN classifier C.

1 Early stage training
2 for e epochs do

Train neural network C as usual
3 end
4 end
5 Sample easiness-based training
6 for i in E epochs do

Take a batch Bi from S
for a sample (xj , yj) in Bi do

Calculate Exj ▷ Sample easiness
Append (xj , yj) to BMO

i if 0 < Exj < 1 ▷ Medium samples only (MO)
end
Train neural network C with BMO

i as usual
7 end
8 end

With the quantitative definition of sample easiness, we propose to train on different sets of samples based on
easiness category depending on the different resource constraints and/or performance requirements. We can
emphasize examples based on one easiness or multiple easiness levels. From our experimental experience,
medium examples take the smallest portion of training data compared to easy and hard examples. In order to
save computing resources, the strategy is to focus on the medium samples only (MO) as shown in Algorithm
1. A majority of easy samples together with hard samples can be dropped after the early stage of training to
speed up the training process. In our experiments, 10-20% of the epochs were used for the early stage of
training.

4 Experiments

In this section, we first evaluate our SEL with image classification benchmark datasets on multiple models.
Then, we compare SET and its variants with classical NN training. For SET experiment, we create two
additional SET variants, namely loss-based SET (L-SET) and SEL-based SET (SEL-SET). In Sections 4.1
and 4.2, we consider 3 popular deep learning architectures: VGG16 (Simonyan & Zisserman, 2014), ResNet50
(He et al., 2016), DenseNet121 (Huang et al., 2017); and our developed convolutional neural network (CNN)
with 18M parameters. All the models are evaluated on the following benchmark image classification datasets:
CIFAR 10 (Krizhevsky et al., 2009), CIFAR 100 (Krizhevsky et al., 2009), and SVHN (Netzer et al., 2011).
We initialize VGG-16, ResNet-50, and DenseNet-121 with parameters pre-trained on ImageNet (Deng et al.,
2009), and train a CNN from scratch to evaluate our method comprehensively with both pre-trained and
non-pre-trained models. Finally, in Section 4.3, we show how sample easiness can aid a mislabeled data
identification method in achieving lower false positive rate.
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Dataset Model Method ACC (↑) AUROC (↑) MSR (↓) ESE∗ (↓)

CIFAR-10

VGG16 Baseline 78.35% 96.16% 1.26% 0.91
SEL 78.37% 96.80% 1.07% 0.41

ResNet50 Baseline 90.36% 98.06% 0.74% 0.31
SEL 90.66% 97.55% 0.53% 0.21

DenseNet121 Baseline 93.32% 99.00% 0.74% 0.17
SEL 93.27% 98.49% 0.41% 0.08

CNN Baseline 85.44% 98.04% 2.03% 0.71
SEL 85.50% 97.35% 0.98% 0.30

CIFAR-100

VGG16 Baseline 41.15% 91.37% 10.68% 2.80
SEL 43.11% 85.89% 3.54% 1.61

ResNet50 Baseline 67.46% 92.15% 1.84% 0.39
. SEL 67.91% 90.06% 0.96% 0.35

DenseNet121 Baseline 71.68% 93.95% 1.98% 0.59
SEL 72.39% 92.03% 1.21% 0.55

CNN Baseline 56.72% 95.65% 10.20% 3.28
SEL 57.02% 95.32% 8.04% 2.34

SVHN

VGG16 Baseline 94.76% 98.91% 0.39% 0.12
SEL 95.16% 98.79% 0.17% 0.04

ResNet50 Baseline 93.03% 98.47% 0.42% 0.12
SEL 93.04% 98.24% 0.28% 0.10

DenseNet121 Baseline 94.28% 99.23% 0.62% 0.17
SEL 94.68% 98.58% 0.26% 0.12

CNN Baseline 95.08% 99.35% 2.03% 0.24
SEL 95.27% 99.05% 0.98% 0.11

Table 1: Comparison of four deep learning classifiers trained with cross-entropy loss (Baseline)
and our proposed SEL-enhanced loss (SEL). Three of them are classic models pre-trained with ImageNet,
and one of them is a smaller-scale CNN model with 18M parameters trained from scratch. The best results
are shown in boldface. Here, MSR is the medium sample rate and ESE is the expected sample easiness error.
∗ESE values are multiplied by 103 for clarity. ↑/↓ indicates higher/lower value is better.

4.1 Sample Easiness-based Loss

Our goal with SEL is not only to improve model accuracy, but also to build a classifier resulting with more
precise sample easiness estimates. In this section, we examine SEL by comparing different NN performance
metrics: accuracy (ACC), area under the receiver operating characteristic (AUROC), medium sample rate
(MSR), and expected sample easiness error (ESE). Table 1 shows that using SEL-enhanced loss improves
both MSR and ESE with no negative impact (if not an improvement) to accuracy.

4.1.1 Experimental settings.

All models are trained with Adam optimizer with learning rate of 0.001 and mini-batch size of 128. Softmax
function is applied in all output layers. Models trained with cross-entropy loss (LCE) are denoted as baselines
and models trained with our SEL-enhanced loss (L) (Eq. 3) are denoted as SEL. For models with SEL, we
set λ = 0.1.

Calculation of sample easiness. All our NNs are with a softmax function (Bishop, 2006) applied in the output
layer, and we denote the output vector as h. Probability of the output of neuron i larger than the output
of neuron j defined in Definition 3.1 can be obtained if we know the probability density function (PDF) of
hi and hj . However, such PDFs are unknown to us. We instead to calculate the probability of hi greater
than hj using a Monte Carlo method. For simplicity and convenience, in this work, we generate two sets of
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Gaussian noise from distribution N (µ = 0, σ2). (We used σ2 = 1e − 4, 1e − 6 & 1e − 8. The results reported
in the paper for all the experiments are for σ2 = 1e − 4. We observed similar results for other values of σ2.)
Then, we added generated noise to hi and hj , and count P (hi > hj). We repeat this process for all j and
calculate Eq. 1.

4.1.2 Evaluation metrics.

To measure the effectiveness of SEL, we evaluate models with accuracy (ACC), the area under the receiver
operating characteristic (AUROC), medium sample rate (MSR), and expected sample easiness error (ESE).
MSR is calculated by counting the percentage of medium easiness samples recognized by the trained model
using our sample easiness evaluation. ESE in our work is formulated to evaluate the quality of sample easiness
estimates. Inspired by expected calibration error (ECE) (Naeini et al., 2015), we perform a similar evaluation
for ESE as follows. The predictions are sorted and partitioned into K bins (K = 5 in our experiments). The
sample easiness value of each sample falls into one of these K bins, and ESE is calculated over the bins via
the empirical estimates as follows:

ESE =
K∑

i=1
P (i) · |oi − si|, (4)

where oi and si are the true fraction of correctly predicted samples and the mean of the sample easiness
values for the samples in bin i, respectively, and P (i) is the empirical fraction of all samples that fall into bin
i.

4.1.3 Experimental results.

The comparison results are summarized in Table 1, where baseline in the table refers to the models trained
with classic cross-entropy loss, and SEL refers to the models trained with our SEL-enhanced loss as proposed
in Section 3.2.

Here, we examine if classic models (such as VGG-16, ResNet-50, DenseNet-121) pre-trained with a large
dataset can benefit from our SEL. We also study whether our SEL is beneficial to deep learning models with
smaller scale architecture1 and trained from scratch. We observe from the results that NN (both classic
pre-trained models and randomly initialized small-scale model) trained with SEL have an improved ACC
compared to their baseline counterparts. These can be attributed to SEL penalizing incorrectly predicted
hard and medium samples and pushing models to learn to recognize these as easy samples. The decreased
MSRs confirm this effect of SEL; hence, the slightly worse AUROCs are explained. Besides the improved
ACCs and MSRs, we observe that models trained with SEL result in improved (lower) ESE values, which
implies that the calculated sample easiness of models trained with SEL can be interpreted as a more accurate
estimation of true sample easiness.

4.2 Sample Easiness-based Training

In this section, we examine the performance of SET by comparing it with classic NN training. With SET, it
selects samples from training set at each epoch with a certain sample easiness range. We specifically tune our
SET to select medium samples only following Algorithm 1 in this experiment2. We also make two variants
of SET, namely L-SET, in which samples are selected based on loss values instead of sample easiness, and
SEL-SET, in which we use SEL-enhanced loss function. By comparing SET and L-SET, we find that SET
gives better ACC as seen in Tabel 2. By comparing SET and SEL-SET, we observe that SEL-SET achieves
better ACC with less data selected in each epoch.

4.2.1 Experimental settings.

Following the experiment setup from the previous section, all models are compiled with Adam optimizer with
0.001 learning rate, and mini-batch size of 128. In order to utilize SET more efficiently, we perform a few

1In our experiment, we train a CNN with 18M parameters.
2We also did experiments with easy samples only (EO), hard sample only (HO), easy and medium samples only (EMO), and

medium and hard samples only (MHO), results can be found in supplementary materials.
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Dataset CIFAR-10 CIFAR-100 SVHN
Evaluation Metric ACC ART ADU ACC ART ADU ACC ART ADU
Model Method (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓)

VGG16

Classic 72.30% 228.71 100% 41.21% 229.82 100% 94.74% 31.24 100%
SET 71.41% 87.60 3.58% 41.06% 87.55 3.49% 94.32% 17.89 1.35%

L-SET 69.10% 85.45 3.58% 41.51% 89.60 3.49% 90.93% 19.03 1.35%
SEL-SET 71.45% 136.03 2.47% 41.17% 134.74 2.05% 94.83% 37.99 0.26%

ResNet50

Classic 90.81% 153.19 100% 67.02% 153.15 100% 92.77% 77.54 100%
SET 89.23% 56.03 0.27% 65.63% 55.91 0.27% 90.76% 37.91 1.49%

L-SET 87.03% 55.32 0.27% 57.81% 55.49 0.27% 91.48% 40.96 1.49%
SEL-SET 90.77% 76.69 0.06% 65.83% 76.78 0.24% 92.48% 104.36 0.68%

DenseNet121

Classic 94.68% 166.80 100% 73.17% 166.72 100% 94.88% 154.60 100%
SET 94.24% 54.22 0.27% 71.90% 56.89 1.74% 91.66% 60.25 1.68%

L-SET 91.13% 52.91 0.27% 62.83% 55.49 1.74% 92.93% 63.33 1.68%
SEL-SET 94.50% 151.94 0.12% 71.80% 156.23 1.44% 93.18% 227.40 0.86%

CNN

Classic 85.94% 19.34 100% 56.10% 19.34 100% 95.36% 29.85 100%
SET 79.91% 7.71 4.23% 52.14% 8.91 11.18% 94.08% 14.07 1.72%

L-SET 79.18% 7.45 4.23% 53.85% 8.96 11.18% 93.34% 13.52 1.72%
SEL-SET 80.83% 22.59 2.49% 52.23% 23.84 7.90% 94.84% 47.84 0.85%

Table 2: Comparison of models trained with classic training method, SET, L-SET, and SEL-SET.
We use medium easiness level sample-only (MO) in all SET methods. The main advantage of MO SET is
that, it achieves equal or even better accuracy with only a small portion of training data while classical
training uses 100% of data. Note that data usage of L-SET is matched with SET. ART (seconds) comparative
results of one experiment with different methods are evaluated on the same machine to ensure fair runtime
comparison, e.g., VGG16/CIFAR-10 Classic, SET, L-SET, SEL-SET are run on the same machine. Better
results are shown in boldface. Here, ART is the average run-time per epoch, and ADU is the average data
usage in later training stage.

epochs (5-10 epochs) of early stage training, up to the point where it has some experience with all the data,
but not fully trained to recognize all the patterns with high accuracy. Then, for SET we sort all training
data according to its sample easiness values, and select medium samples to train in the next epoch. This
selection and train again process is done iteratively during the whole training process (for 40 – 45 epochs)
with fewer data being used each time.

We compare sample easiness estimators in SET, i.e., our sample easiness and loss. L-SET uses loss as sample
easiness estimator. Because there is no standard definition of medium samples using loss as easiness estimator,
we leverage the information calculated in our SET as follows. To compare our SET and L-SET fairly, we
sort training samples with respect to their sample easiness, and we record the number of medium samples
Nm based on easiness (which is later on used to calculate data usage) and the number of hard samples Nh.
Without a standard guideline to follow in determining the medium easiness samples using loss values, we rank
all training samples in L-SET according to their loss values and choose the top Nh to Nh + Nm samples as
medium samples. This guarantees (i) a clear medium samples selection and (ii) the total number of training
samples used in both SET and L-SET is the same. Therefore, the difference emerged in comparison between
SET and L-SET roots back to the different sample easiness estimators.

In addition to SET and L-SET, we also propose a third method using SEL-based loss function in SET, and
denote it as SEL-SET. SET trains models with Nm selected samples (based on our sample easiness evaluation)
in each epoch, and L-SET selects Nm samples based on loss values, while SEL-SET performs similar process
as SET but with a SEL-based loss function, and it should select less medium samples due to the effect of SEL.
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4.2.2 Evaluation metrics.

To measure the effectiveness of SET, we evaluate models with accuracy (ACC), average runtime per epoch
(ART), and average data usage (ADU) through out the training. SET in essence selects samples from the
training set and then trains models with fewer data. And, it is beneficial if SET can reduce training time and
uses less data, while maintaining similar or achieving higher ACC. Therefore, we evaluate SET with the two
most significant metrics, average runtime and average data usage.

4.2.3 Experimental results.

The comparison between SET, L-SET, and SEL-SET is demonstrated in Table 2. Classic method represents
that the models are trained with classic NN training process with 100% of training data used.

SET vs. L-SET. From comparative results between SET and L-SET, we observe that SET achieves better
ACC results most of the time, this is due to superiorness of our sample easiness estimation, which selects
more valuable samples to train on during the training process. Loss, on the other hand, as another sample
easiness estimator selects samples that are not that useful in improving model performance. The ADU of
SET and L-SET are the same due to the reason that loss as a sample easiness estimator does not provide a
clear definition of “medium" samples, therefore, we leverage the ranking provided by SET in L-SET to select
samples. This is the reason why L-SET runs a bit faster than SET.

a. b.Note: SET and L-SET have the same data usage. 
Data usage of classic trainining is 100%.

Figure 2: Comparative results of SET, L-SET, and SET-SET on VGG16 trained with SVHN.
Curves are averages over five runs, and shaded areas denote standard deviation. Early and later stages
of training are set to 5 and 45 epochs, respectively. a. Data usage during later stage of training. L-SET
leverages sample selection from SET, hence, the data usage of SET and L-SET is the same. SEL-SET utilizes
SEL-based loss and selects even fewer samples during training. b. Accuracy result comparisons between
VGG16-SET, VGG16–L-SET, VGG16-SEL-SET, and VGG16-Classic.

SET vs. SEL-SET. The only difference between SET and SEL-SET is the loss function. SEL-SET is trained
based on our proposed SEL-based loss. In Table 2, we observe that SEL-SET emerges to be the best one
with the highest ACC and lowest ADU in all experiments. In most of the cases, SET achieves almost the
same ACC compared to the models trained with classic method using 100% of training data. Surprisingly,
SET managed to achieve such performance with only 0.27% to 11.18% of training data. This data usage
reduction contributes greatly to saving computing resource during training, and the runtime per epoch also
drastically reduced. With SEL, we boost the performance of SET even further. In SEL-SET, with less data
used in each epoch, i.e., 0.06% to 7.90%, it achieves even better results and sometimes outperforms models
trained with 100% of training data. From previous sections, we know that SEL helps push models to learn to
recognize more medium and hard samples; therefore, the amount of medium samples reduces during training.
This results in lower ADU as we observed from the results, and higher ART due to the overhead of SEL.
Nevertheless, SEL-SET emerges to be the best one considering all evaluation metrics.
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Less is more. It is shown that with dramatically less training data, models trained with SET (e.g., SEL-SET
using medium sample only), achieve equivalent or even higher accuracy, and hence the drastically less average
runtime per epoch. We note that SET uses less data in training in each epoch compare to classic training,
but it still needs to see and examine all training samples in each epoch and then do the selection. Even
though SEL and SET bring some overhead in calculating sample easiness and sorting samples based on
sample easiness, the overall runtime is reduced when training large-scale models on large image classification
datasets.

Furthermore, we demonstrate data usage in detail in Figure 2, where we train VGG16 with classic training
method, SET, L-SET, SEL-SEL on SVHN dataset. In this experiment, with 0.18%–1.57% of training data,
VGG16-SET manages to perform almost the same as VGG16 trained with 100% data, and VGG16-SEL-SET
achieves higher ACC results with even fewer training data (0.04%–1.46%). This result shows that training
with a few ‘useful’ samples is more effective and efficient than training with a large amount of samples that
may or may not contribute to performance. The difficult task is to find the ‘useful’ samples from a massive
amount of training data. Here, we show that SET and SEL-SET can provide a solution.

Loss vs. sample easiness. In the literature, the sample easiness is usually quantified through the loss
magnitude. However, the loss value varies significantly with different data, NN architectures, and especially
the types of loss function used. Therefore, to identify easy or hard examples using loss values, hyper-parameter
tuning or manual selection is an unavoidable step. Without a universal standard, this artificial selection
does not seem to be intelligent. Our proposed sample easiness with a standardized value range, on the other
hand, can provide a universal definitions of easy, medium, and hard examples that stay valid in all cases.
With medium sample only SET, we find that the accuracy, despite using considerably fewer training samples,
does not decrease by a large margin compared to classic training in which all data are used for the entire
training. As previously discussed, emphasizing on easy, medium, or hard examples is appropriate under
different constraints. With SET, we can customize which easiness level(s) to pay more attention to in training,
and this is worth studying in future works.

Figure 3: TPR and FPR Comparative results of AUM and AUM-SE trained with ResNet on
CIFAR-10. TPR of AUM-SE is undamaged by calibration and remains the same as AUM, which is 98.99%
in this experiment. AUM-SE achieves lower FPR compared to AUM, which indicates that our sample easiness
help improve the performance of AUM by reducing its FPR.

4.3 Identification of Mislabeled Data

The task of mislabeled data identification or label noise detection is to recognize mislabeled samples from
training datasets. There are many approaches to either explicitly or implicitly identify mislabeled samples.
The vast majority of approaches use training loss as an estimator for label quality. This is based on the
understanding that mislabeled samples tend to have higher loss in early training stage (Zhang et al., 2021;
Shen & Sanghavi, 2019). Therefore, we find our proposed sample easiness could be useful in identifying
mislabeled data, as mislabeled data tend to be harder than correctly labeled data.

10
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Due to the nature of sample easiness estimation, it can be used after training or in the scenarios where
training dynamics is not available. There are multiple early works on mislabeled data identification that do
not require access to training process (Sluban et al., 2010; Liu & Zhang, 2012; Fefilatyev et al., 2012). More
recent works on mislabeled data identification with higher performance usually require access of training
process (Zhang et al., 2021; Shen & Sanghavi, 2019; Han et al., 2018). One state-of-the-art, AUM (Pleiss
et al., 2020), makes use of training dynamics and replaces loss with a metric (area under the margin) that does
not confuse hard samples for mislabeled samples. As our measure operates based on the estimation of sample
easiness, we would like to see if our method could be used to adjust AUM and improve its performance.

4.3.1 Experimental settings.

Following (Pleiss et al., 2020), we train ResNet on CIFAR-10, and insert label noise to a subset of the dataset
by reassigning their labels from c to c+1 (note that a sample originally with label 9 will receive a new label 0).
We use the code provided by Pleiss et al. (2020)3. AUM is a model that identifies mislabeled samples using a
threshold, it tends to have high true positive rate and high false positive rate. Therefore, we adjust AUM’s
results with our sample easiness to reduce its false positive rate. More specifically, if a sample identified by
AUM is marked as easy samples (i.e., sample easiness is 1) by our estimator, we denote it as mislabeled.

4.3.2 Evaluation metrics.

In this experiment, we compare the true positive rate (TPR) and false positive rate (FPR) of AUM and
sample easiness-adjusted AUM (AUM-SE).

4.3.3 Experimental results.

Figure 3 displays the TPR and FPR results of AUM and AUM-SE. We observe that both AUM and AUM-SE
achieve high TPR (98.99%) from the early stages in training. Although AUM can distinguish some difficult
samples from mislabeled sample, its recognized “mislabeled sample" is far more than the real mislabeled
sample. Hence, its FPR is high. On the contrary, AUM-SE obtains a much lower FPR, this is because sample
easiness directly identifies hard samples. In conclusion, without dampening the TPR performance of AUM,
sample easiness helps AUM achieve much lower FPR.

5 Conclusion

In this paper, we propose a sample easiness measure and compose it in loss function to regularize class
probabilities to be better used in sample easiness estimation. We further propose a sample easiness-based
training strategy which exploits this simple way of classifying training samples according to easiness level
(easy, medium, hard). Since the easiness is from a scale of 0 to 1, it also offers the possibility for users to
decide on a training strategy using a specified easiness interval that is appropriate for their application. In
particular, we choose to focus on medium samples only in our training. The extensive experimental results
demonstrate that with medium samples only (0.06% – 11.18% of training data), models achieve similar and
higher accuracy compared to models trained with 100% of training data. Training time therefore is reduced
by a large margin as a result. In addition, we demonstrate that our sample easiness is also valuable in other
application areas such as mislabeled data detection, to help distinguish between hard samples and mislabeled
samples and reduce the false positive rate.

3https://github.com/Manuscrit/Area-Under-the-Margin-Ranking
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Supplementary Materials

Easy, medium, or hard? As previously discussed in the main text, emphasizing on easy, medium, or hard
examples is appropriate under different constraints. Hence, using sample easiness-based training (SET), we
can choose which easiness level we would like to pay more attention to. In the experiments, we find that
medium samples only take a small percentage of the whole data, therefore, in our main text, we would like to
explore the possibility to utilize medium sample alone (MO) in training, opposed to use all training data.
In what follows, we provide comparison between variations of SET, namely: EO (easy example-only), MO
(medium example-only), and HO (hard example-only). In addition, we provide variations of above baselines,
namely EMO (easy and medium), MHO (medium and hard). Note that EMHO, i.e., the combination of easy,
medium, and hard examples, is the same as the classical neural network training.

Dataset Model EO MO HO EMO MHO EMHO

Fashion MNIST
VGG16 13.94±0.17 14.05±0.12 14.18±0.19 13.92±0.09 14.18±0.15 14.42±0.08

ResNet50 13.98±0.06 14.12±0.13 14.46±0.06 13.91±0.07 14.54±0.12 14.42±0.08
DenseNet121 13.40±0.27 13.57±0.12 13.89±0.16 13.21±0.07 13.82±0.17 13.50±0.14

CIFAR-10
VGG16 38.57±0.19 38.91±0.25 39.50±0.26 38.57±0.16 39.53±0.24 40.06±0.19

ResNet50 36.72±0.53 37.00±0.23 37.21±0.27 36.60±0.09 37.15±0.22 38.28±0.28
DenseNet121 41.67±0.41 42.00±0.41 43.11±0.30 41.80±0.28 42.70±0.79 42.49±0.19

CIFAR-100
VGG16 68.15±0.20 68.83±0.07 70.13±0.23 67.96±0.11 69.94±0.11 69.87±0.22

ResNet50 62.91±0.09 63.36±0.17 64.23±0.33 62.81±0.29 64.14±0.21 64.66±0.24
DenseNet121 69.45±0.19 70.79±1.76 71.15±0.42 69.90±2.41 71.15±0.20 71.19±0.11

Table 3: Comparison of SET strategies based on different sample easiness levels with respect to error rates
(%). All results are calculated over 5 runs.

Table 3 summarizes the comparison results for EO, MO, HO, EMO, MHO, and EMHO. Here, we utilized
three models (VGG16, ResNet50, and DenseNet121) to perform classification tasks on three datasets: Fashion
MNIST, CIFAR-10, and CIFAR-100. From the error rate results, we find that training with easier samples
(e.g., EO, EMO) is generally more helpful, especially when the dataset is more difficult (e.g., CIFAR-10 and
CIFAR-100). Emphasizing on hard examples does not outperform classical training in our experiments.
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