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ABSTRACT

We study episodic reinforcement learning with a kernel (RKHS) structure on state-
action pairs. Previous optimistic analyses in this case either pay a data-dependent
covering-number penalty that can grow with time and undermine no-regret guar-
antees, or it assumes a strong “optimistic closure” condition requiring all opti-
mistic proxies to lie in a fixed state-RKHS ball. We take a different approach that
removes the covering-number dependence without invoking optimistic closure.
Our analysis builds a uniform confidence bound, derived via conditional mean em-
beddings, that holds simultaneously for all proxy value functions within a bounded
state-RKHS class. We introduce KOVI-Proj, an optimistic value-iteration scheme
that explicitly projects the optimistic proxy back into the state-RKHS ball at every
step, ensuring that the uniform bound applies throughout the learning process. Un-
der a restricted Bellman-embedding assumption (bounded conditional mean em-
beddings), KOVI-Proj enjoys a high-probability no-regret guarantee whose rate is
governed by the task horizon and the kernel’s information gain. When the optimal
value function lies in the chosen state-RKHS ball (realizability), the regret is sub-
linear; in the agnostic case, an explicit approximation term reflects the best RKHS
approximation error. Overall, this work provides a new pathway to no-regret ker-
nel RL that is strictly weaker than optimistic closure and avoids covering-number
penalties. Numerical experiments validate our claims.

1 INTRODUCTION

Kernel-based function approximation are known to provide an interesting link between linear models
and the behavior of infinitely wide neural networks. However, obtaining sharp, no-regret (let alone
order-optimal) guarantees in kernel-based reinforcement learning (RL) remains challenging (Vakili,
2024). Previous optimistic analyses in RKHSs typically follow one of the two approaches: (i) apply
a union bound over a data-dependent, evolving class of optimistic value proxies, thereby incurring
a covering-number penalty that can scale in the order of Ω(

√
T ) and spoil no-regret for common

kernels (e.g., kernelized optimistic LSVI: Least Squares Value Iteration (Yang et al., 2020)); or (ii)
assume a strong optimistic closure property stating that every optimistic proxy already contained in a
fixed state-RKHS ball (as found in CME-based optimistic RL) (Chowdhury & Oliveira, 2023). The
former is statistically loose; the latter is structurally strong and not obviously aligned with standard
optimistic constructions.

We take a different approach based on uniform concentration without covering. The key observation
is that for any V in a state RKHSHℓ, the Bellman image [PhV ] can be written as an inner product

[PhV ](z) = ⟨µh(z), V ⟩Hℓ
,

where µh : Z → Hℓ is the conditional mean embedding (CME) of the next-state distribution
(Muandet et al., 2017b; Song et al., 2013; Muandet et al., 2017a). When µh is contained in an
appropriate vector-valued RKHS over Z with bounded norm, the map V 7→ [PhV ] is a bounded
linear operator from (Hℓ, ∥ · ∥Hℓ

) to (Hk, ∥ · ∥Hk
) (Carmeli et al., 2010). This viewpoint lets us

control, via a single vector-valued regression problem, the Bellman images [PhV ] for all V in the
state ball {V : ∥V ∥Hℓ

≤ B} simultaneously, yielding a uniform kernel-ridge confidence bound
with no data-dependent covering (leveraging information-gain / elliptical-potential tools standard in
kernel bandits) (Chowdhury & Gopalan, 2017). Importantly, we enforce the bounded-norm prop-
erty algorithmically by projecting the optimistic proxy value onto the state-RKHS ball each step.
Experimental results show promise of the proposed method, and tends to shows lower regret than
the baselines.
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Constibutions of this paper is listed as follows:

(1) Restricted Bellman-embedding assumption (RBE). We use a mild assumption under which
the CME µh belongs to the vector-valued RKHS on Z with kernel k I and norm at most U . This
is strictly weaker than optimistic closure (which presumes all optimistic proxies already lie in a
fixed state-RKHS ball), and it is natural under standard CME regularity (Muandet et al., 2017b;
Carmeli et al., 2010).

(2) Uniform confidence without covering. We prove a high-probability bound

sup
∥V ∥Hℓ

≤B

∣∣[PhV ](z)− f̂ V
h,n(z)

∣∣ ≤ βh,n σh,n(z),

holding for all z and all V in the ball, where f̂ V
h,n is the kernel-ridge predictor trained on labels

V (s′) and σh,n is the posterior standard deviation. The multiplier satisfies

βh,n = B U +
B σ
√
ρ

√
2γ(n, ρ) + 2 log(1/δ),

depending on the ball radius B, operator norm U , sub-Gaussian scale σ, ridge parameter ρ > 0,
and (regularized) information gain γ(n, ρ)-but it does not depend on any covering number of the
proxy class (Chowdhury & Gopalan, 2017).

(3) KOVI-Proj: Kernel-Optimistic Value Iteration with projection. We propose a practical opti-
mistic method that (i) performs kernel-ridge backups to estimate [PhV ], (ii) adds an uncertainty
bonus βh,nσh,n, and (iii) the method projects optimistic value proxy onto the state-RKHS ball
(with clipping), thereby guaranteeing ∥V ∥Hℓ

≤ B and placing all proxies within the scope of
the uniform bound above.

(4) No-regret guarantee. Under the realizability (V ∗
h ∈ Hℓ(B)) assumption, the proposed KOVI-

Proj method attains

R(T ) = Õ
(
H2 B

(
U + σ√

ρ

√
γ(HT, ρ)

)√
T γ(HT, ρ)

)
,

which is sublinear for kernels with sublinear information gain (e.g., Matérn/Squared-
Exponential under regularization) Chowdhury & Gopalan (2017). In the agnostic case
(V ∗

h /∈ Hℓ(B)), we add an explicit approximation term of order HT εB , where εB :=
maxh sup∥V ∥≤B ∥V ∗

h − V ∥∞, and we show how a slowly growing B = BT balances both
terms to remain o(T ).

2 PROBLEM SETUP AND ASSUMPTIONS

We consider an episodic MDP M = (S,A, H, P, r) with horizon H ∈ N. Let Z = S × A. For
step h ∈ [H], transition kernel is Ph(· | z) on S is unknown. We take rewards rh : Z → [0, 1] to be
known and deterministic for clarity;1 for a policy π and step h, we have

Qπ
h(z) = rh(z) + Es′∼Ph(·|z)[V

π
h+1(s

′)], V π
h (s) = max

a∈A
Qπ

h(s, a), V π
H+1 ≡ 0

The per-episode regret will be measured against optimal value V ∗
1 as follows

R(T ) :=

T∑
t=1

(
V ∗
1 (s1,t)− V πt

1 (s1,t)
)
.

RKHS structure on Z and on S. Let k : Z × Z → R be a positive-definite kernel with RKHS
(Hk, ∥ · ∥Hk

) and k(z, z) ≤ κ2
k. Let ℓ : S × S → R be a positive-definite kernel with RKHS

(Hℓ, ∥ · ∥Hℓ
) and let ℓ(s, s) ≤ κ2

ℓ . We plan to use kernel ridge regression (KRR) on Z and consider
proxy value functions V : S → R inHℓ.

The following assumption is novel to our work, but is inspired by the conditional mean embedding
literature (Muandet et al., 2017b) and the theory of vector-valued RKHSs (Carmeli et al., 2010).

1The extension to unknown (possibly stochastic) rewards can be handled with an additional KRR estimator
and a union bound; see the discussion section.
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Assumption 2.1 (Restricted Bellman-embedding (RBE)). For each h ∈ [H] assume that there exists
a conditional mean embedding µh : Z → Hℓ such that

[PhV ](z) := Es′∼Ph(·|z)[V (s′)] = ⟨µh(z), V ⟩Hℓ
for all V ∈ Hℓ and all z ∈ Z (1)

and µh belongs to the vector-valued RKHS over Z with operator-valued kernel K(z, z′) =
k(z, z′) IHℓ

, with ∥µh∥Hk⊗Hℓ
≤ U .

Remark 2.2. Assumption 2.1 is a standard conditional-mean-embedding (CME) property written in
a vector-valued RKHS: z 7→ µh(z) is anHℓ-valued function whose inner product with V equals the
Bellman image [PhV ]2. This assumption is strictly weaker than optimistic closure (which would re-
quire that all optimistic proxies lie in a fixed state-RKHS ball in advance) and is implied by common
regularity conditions under which CMEs exist with bounded norm.

Data model at step h. On observing a transition (zi, s
′
i), we define Hℓ-valued observation ϕi =

ϕ(s′i), where ϕ : S → Hℓ is the canonical feature map of ℓ. Then we have

E[ϕi | zi] = µh(zi), εi := ϕi − µh(zi) ∈ Hℓ,

so {εi} is a martingale-difference sequence in Hilbert space Hℓ. We assume ∥εi∥Hℓ
≤ κℓ almost

surely and that εi is σ-sub-Gaussian in Hℓ conditionally on the past. For any V ∈ Hℓ, we define
scalar labels

y
(V )
i := V (s′i) = ⟨ϕi, V ⟩Hℓ

= ⟨µh(zi), V ⟩Hℓ
+ ξ

(V )
i , ξ

(V )
i := ⟨εi, V ⟩Hℓ

,

so that ξ(V )
i is conditionally sub-Gaussian with proxy variance proportional to ∥V ∥2Hℓ

(and |ξ(V )
i | ≤

κℓ∥V ∥Hℓ
almost surely).

Kernel ridge predictors and variances. Given n observations at step h with design points z1:n,
Gram matrix Kn = [k(zi, zj)]

n
i,j=1, regularization ρ > 0, and labels y(V ) = [V (s′1), . . . , V (s′n)]

⊤,
we define

f̂ V
h,n(z) = kn(z)

⊤(Kn + ρI)−1y(V ), σ2
h,n(z) = k(z, z)− kn(z)

⊤(Kn + ρI)−1kn(z), (2)

where kn(z) = [k(z, z1), . . . , k(z, zn)]
⊤. We also use the (regularized) information gain Chowd-

hury & Gopalan (2017); Srinivas et al. (2010)

γ(n, ρ) := 1
2 log det

(
I + ρ−1Kn

)
Note that all quantities here carry a step index h, which we will suppress when it will be clear from
context.

3 A UNIFORM CONFIDENCE BOUND FOR ALL V WITH ∥V ∥Hℓ
≤ B

The next proposition will be a key algebraic identity: it trades uniformity over an uncountable class
of scalar predictors for a single bound on a vector-valued kernel ridge estimator.
Proposition 3.1 (Scalar KRR = inner product with a vector-valued KRR). Fix a step h and data
{(zi, s′i)}ni=1. Define theHℓ-valued (vector) KRR estimator

µ̂n(z) :=

n∑
i=1

αi(z)ϕ(s
′
i) ∈ Hℓ, α(z) := (Kn + ρI)−1kn(z).

Then for every V ∈ Hℓ and z ∈ Z , we have

f̂ V
h,n(z) = ⟨µ̂n(z), V ⟩Hℓ

Proof. By equation 2, f̂ V
h,n(z) =

∑n
i=1 αi(z)V (s′i) =

∑n
i=1 αi(z) ⟨ϕ(s′i), V ⟩ =

⟨
∑n

i=1 αi(z)ϕ(s
′
i), V ⟩. For detailed proof, see C.1 in Appendix.

2See, e.g., Muandet et al. (2017) for CMEs and Carmeli-De Vito-Toigo (2008) for vector-valued RKHS
foundations.
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Proposition 3.1 reduces uniform control over all scalar targets V to control of the vector-valued
estimation error ∥µ(z) − µ̂n(z)∥Hℓ

. The next lemma extends self-normalized kernel concentration
to the vector-valued CME.
Lemma 3.2 (Vector-valued kernel ridge concentration). Suppose Assumption 3.2 holds,
k(z, z) ≤ κ2

k, ℓ(s, s) ≤ κ2
ℓ . Let ρ > 0 and define σh,n(·) by equation 2. Then for any δ ∈ (0, 1),

with probability at least 1− δ, simultaneously for all z ∈ Z ,

∥µ(z)− µ̂n(z)∥Hℓ
≤

(√
ρU +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
σh,n(z).

Proof sketch; full details in Appendix E. Write the vector-valued regression as ϕi = µ(zi)+εi, with
εi ∈ Hℓ a martingale difference, conditionally σ-sub-Gaussian and ∥εi∥Hℓ

≤ κℓ a.s. The KRR error
decomposes as

µ(z)− µ̂n(z) = µ(z)−Πnµ(z)︸ ︷︷ ︸
bias

− Φ⊤(Kn + ρI)−1kn(z)︸ ︷︷ ︸
noise

,

where Πn is the Tikhonov projector in the vector-valued RKHS induced by kI , and Φ : Rn → Hℓ

maps b 7→
∑

i biϕi. The bias is controlled by the standard RKHS interpolation inequality:
∥µ(z) − Πnµ(z)∥Hℓ

≤ √ρ ∥µ∥Hk⊗Hℓ
σh,n(z) ≤

√
ρU σh,n(z). For the noise, a Hilbert-

space self-normalized bound (made explicit in Appendix E) yields ∥Φ⊤(Kn + ρI)−1kn(z)∥Hℓ
≤

σ√
ρ

√
2γ(n, ρ) + 2 log 1

δ σh,n(z) with probability at least 1 − δ. Summing the two contributions
gives the claim.

Combining Proposition 3.1 with Lemma 3.2 yields the desired uniform scalar bound.
Theorem 3.3 (Uniform CI for all ∥V ∥Hℓ

≤ B). Under the conditions of Lemma 3.2, for any
B > 0 and δ ∈ (0, 1), with probability at least 1 − δ, for all V ∈ Hℓ with ∥V ∥Hℓ

≤ B and all
z ∈ Z ,∣∣[PhV ](z)− f̂ V

h,n(z)
∣∣ ≤ βn,δ σh,n(z), βn,δ := B

(√
ρU +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
.

Proof. By equation 1 and Proposition 3.1, [PhV ](z) − f̂ V
h,n(z) = ⟨µ(z)− µ̂n(z), V ⟩; Cauchy-

Schwarz and Lemma 3.2 complete the proof. Detailed proof in Appendix 3.3.

Remark 3.4 (Notational simplification used later). For simplicity in subsequent sections (e.g., in the
algorithmic confidence radius and regret display), we may absorb the

√
ρ factor into the constant by

defining U ′ :=
√
ρU and writing βn,δ = B

(
U ′+ σ√

ρ

√
2γ(n, ρ) + 2 log(1/δ)

)
. We keep Lemma 3.2

in the explicit
√
ρ form for clarity.

4 ALGORITHM: KOVI-PROJ (KERNEL-OPTIMISTIC VALUE ITERATION WITH
PROJECTION)

We now describe our algorithn. We maintain a separate KRR model for each step h ∈ [H]. Let
Dh,t−1 = {(zh,τ , sh+1,τ )}

nh,t−1

τ=1 denote the transitions collected so far at step h before episode t,
with nh,t−1 = |Dh,t−1|. At the start of episode t, set VH+1,t ≡ 0 and perform a backward pass for
h = H,H − 1, . . . , 1:

1. Kernel-ridge backup. Using equation 2 with design points zh,1:nh,t−1
and labels yτ =

Vh+1,t(sh+1,τ ), compute the predictor f̂ Vh+1,t

h,t (·) and its posterior deviation σh,t(·).
2. Confidence radius and optimism. Let δ ∈ (0, 1) be the overall failure probability. Define the

per-step confidence multiplier (cf. Theorem 3.3 and Remark 3.4)

βh,t := B
(√

ρU +
σ
√
ρ

√
2γ(nh,t−1, ρ) + 2 log 2HT

δ

)
,

and form the optimistic action-value

Q̃h,t(z) := rh(z) + f̂
Vh+1,t

h,t (z) + βh,t σh,t(z). (3)

4
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3. Optimistic value and projection onto the state-RKHS ball. Let

Ṽh,t(s) := max
a∈A

Q̃h,t(s, a),

then obtain Vh,t by projecting Ṽh,t onto {V ∈ Hℓ : ∥V ∥Hℓ
≤ B} (with range clipping) under a

reference measure ν on S:

Vh,t ∈ arg min
V ∈Hℓ

{
∥V − Ṽh,t∥L2(ν) : ∥V ∥Hℓ

≤ B, 0 ≤ V ≤ H − h+ 1
}
. (4)

Interaction. Within episode t, act greedily with respect to Q̃h,t: pick ah,t ∈
argmaxa∈A Q̃h,t(sh,t, a), observe sh+1,t ∼ Ph(· | sh,t, ah,t), and append (zh,t, sh+1,t) to Dh,t.
Proceed to step h+1.

Projection in finite dimension (The QP form). In practice, we instantiate equation 4 via the
representer theorem. Let {s̄j}mh

j=1 be a set of anchor states for step h (e.g., the distinct states
observed at step h so far, optionally augmented by a cover of S). Denote the Gram matrix
Lh = [ ℓ(s̄i, s̄j) ]i,j and the vector of target values vh,t = [ Ṽh,t(s̄j) ]

mh
j=1. Seeking V ∈ Hℓ of the

form V (s) =
∑mh

j=1 αj ℓ(s, s̄j), the projection reduces to the convex quadratic program (although
standard, a proof is in appendix I)

min
α∈Rmh

1

mh
∥Lh α− vh,t∥22 s.t. α⊤Lh α ≤ B2, 0 ≤ (Lh α)j ≤ H − h+ 1 ∀j. (5)

The optimizer yields Vh,t(s) =
∑mh

j=1 αj ℓ(s, s̄j). Problem equation 5 is a small QP solvable in
Õ(m3

h) time per step; in our experiments we take mh to be the number of unique states observed at
step h (with optional down-sampling).

Remarks.

(i) The confidence radius βh,t incorporates a union bound over all (h, t) via the log(2HT/δ) term,
ensuring the uniform event of Theorem 3.3 holds jointly for all steps and episodes.

(ii) The projection step guarantees ∥Vh,t∥Hℓ
≤ B and range constraints; thus every optimistic proxy

used by the algorithm lies in the state-RKHS ball, placing it within the scope of the uniform
confidence bound without any data-dependent covering.

(iii) Choice of ν in equation 4 can be the empirical state distribution at step h or an exploratory cover
over S; the finite-dimensional form equation 5 corresponds to taking ν uniform over the anchor
set.

(iv) If rewards are unknown and/or stochastic, one can learn r̂h via a separate KRR with its own confi-
dence band and add it to equation 3 (with a union bound across reward and transition estimators).

(v) For notational simplicity one may absorb
√
ρ into U (Remark 3.4) and write βh,t = B

(
U ′ +

σ√
ρ

√
2γ(nh,t−1, ρ) + 2 log(2HT/δ)

)
with U ′ :=

√
ρU .

5 REGRET ANALYSIS

We state the main guarantee under Assumption 2.1. The proof follows the optimistic value-iteration
template, combining (i) the uniform confidence event from Theorem 3.3 enforced by the projection
step, (ii) a standard telescoping decomposition, and (iii) an elliptical-potential (information-gain)
bound summed across steps.

Theorem 5.1 (No-regret under RBE). Suppose Assumption 2.1 holds for all h ∈ [H], rewards lie in
[0, 1], and k(z, z) ≤ κ2

k, ℓ(s, s) ≤ κ2
ℓ . Let ρ ∈ (0, 1] and let γ(·, ρ) be the regularized information

gain of k on Z as in equation 2. Run KOVI-Proj with ball radius B and failure probability δ ∈
(0, 1/T ]. Then with probability at least 1− δ, after T episodes,

R(T ) ≤ Õ
(
H2 B

(√
ρU + σ√

ρ

√
γ(HT, ρ)

)√
T γ(HT, ρ)

)
+ HT εB ,

5
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where εB := maxh∈[H] inf∥V ∥Hℓ
≤B ∥V ∗

h − V ∥∞. In particular, under realizability (V ∗
h ∈ Hℓ(B)

for all h) we have

R(T ) = Õ
(
H2 B

(√
ρU + σ√

ρ

√
γ(HT, ρ)

)√
T γ(HT, ρ)

)
,

which is o(T ) whenever γ(n, ρ) = o(n).

Proof sketch; full details in Appendix D. Good event. By Theorem 3.3 with a union bound over all
steps and episodes (the log(2HT/δ) term inside βh,t in equation 3), there exists an event G of
probability at least 1− δ such that, for all h, t and all z ∈ Z ,

[PhVh+1,t](z) ≤ f̂
Vh+1,t

h,t (z) + βh,t σh,t(z)

where βh,t is as in Section 4. The projection step guarantees ∥Vh,t∥Hℓ
≤ B, hence every optimistic

proxy used by the algorithm lies within the scope of the uniform bound.

Optimism and telescoping. Define Q̃h,t by equation 3 and Ṽh,t(s) = maxa Q̃h,t(s, a). On G and up
to the agnostic term εB , a standard dynamic-programming induction yields Q∗

h(z) ≤ Q̃h,t(z) and
hence V ∗

h (s) ≤ Ṽh,t(s). Therefore the per-episode regret telescopes as follows

R(T ) ≤
T∑

t=1

H∑
h=1

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ HT εB

=

T∑
t=1

H∑
h=1

βh,t σh,t(zh,t) + HT εB

Elliptical potential across steps. Let nh,T be the total number of transitions observed at step h by
time T (then

∑
h nh,T = HT ). For each fixed h, the standard GP/RKHS potential argument gives∑T

t=1 σh,t(zh,t) ≤
√
2nh,T γ(nh,T , ρ). We sum over h and apply Cauchy-Schwarz, to obtain

T∑
t=1

H∑
h=1

σh,t(zh,t) ≤
H∑

h=1

√
2nh,T γ(nh,T , ρ) ≤

√
2
(∑

h

nh,T

)(∑
h

γ(nh,T , ρ)
)

=
√

2HT ΓT ,

where ΓT :=
∑H

h=1 γ(nh,T , ρ). Since the per-step Gram matrices are disjoint, ΓT equals the infor-
mation gain of the block-diagonal kernel on the stacked design and satisfies ΓT ≤ γ(HT, ρ). Hence∑

t,h σh,t(zh,t) ≤
√
2HT γ(HT, ρ).

Putting it together. Use βh,t ≤ Õ
(
B(
√
ρU + σ√

ρ

√
γ(HT, ρ))

)
uniformly over h, t, multiply by∑

t,h σh,t(zh,t), and absorb polylogarithms to obtain the stated bound.

Remark 5.2 (On the H-dependence). The H2 factor arises from the optimistic LSVI-style decom-
position and coarse bounding of stepwise contributions. We expect sharper analysis (e.g., refined
Bellman-error coupling or variance decomposition) could improve this to H3/2 or even H , but we
leave this for future work.

6 DISCUSSION AND COMPARISONS

Versus covering-number analyses. Theorem 3.3 yields a confidence multiplier of the form

βn,δ = B
(√

ρU + σ√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
,

without any covering-number factor over the evolving proxy class. Intuitively, by estimating the
conditional mean embedding µh once, we control all Bellman images [PhV ] for V in the ball {V :
∥V ∥Hℓ

≤ B} via Cauchy-Schwarz:

sup
∥V ∥Hℓ

≤B

∣∣[PhV ](z)− f̂ V
h,n(z)

∣∣ ≤ B ∥µh(z)− µ̂n(z)∥Hℓ
≲ βn,δ σh,n(z),

as formalized by Lemma 3.2. This directly replaces the union-bound-over-a-cover step used in
earlier kernel-RL analyses.

6
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Versus optimistic closure. We do not assume that every optimistic proxy automatically lies in a
fixed state-RKHS ball. Instead we enforce it by an explicit projection step (Section 4). Analytically,
this is sufficient: it is the set of actual proxies used by the algorithm that needs to lie inside the
uniform-confidence event of Theorem 3.3. Thus the projection step plays the role that optimistic
closure previously assumed.

When does RBE hold? Assumption 2.1 requires that the CME map µh : Z → Hℓ belongs to
the vector-valued RKHS with kernel k I and ∥µh∥ ≤ U . This is natural when: (i) z 7→ Ph(·|z)
varies smoothly in a kernel mean sense (e.g., Hölder or Lipschitz in the MMD induced by ℓ), (ii)
ℓ is bounded and universal (e.g., RBF on compact S), and (iii) k is bounded on Z . In such cases,
conditional mean embeddings exist and admit finite RKHS norm. The constant U estimates the
operator norm of the Bellman map V 7→ [PhV ] from (Hℓ, ∥ · ∥Hℓ

) to (Hk, ∥ · ∥Hk
).

Computational considerations. The projection step reduces to the QP in equation 5 with com-
plexity Õ(m3

h) per step, where mh is the number of anchor states. In practice, mh can be taken
as the distinct observed states at step h (optionally sub-sampled) or a small cover; this keeps the
overhead modest relative to KRR updates on Z .

Agnostic setting. When V ∗
h /∈ Hℓ(B), the only degradation is the explicit HT εB term in

Theorem 5.1. For universal kernels, εB → 0 as B → ∞; choosing B = BT to grow slowly
(e.g., BT = Õ(

√
log T )) balances approximation and estimation so that R(T ) = o(T ) whenever

γ(HT, ρ) = o(HT ).

Relation to kernel bandits (H=1). For H = 1, KOVI-Proj specializes to a GP/KRR-UCB
scheme where the uniform CME bound recovers the familiar information-gain control of regret. Our
analysis is consistent with recent refined bounds for GP-UCB and shows how the CME perspective
naturally extends to multi-step RL.

Limitations and possible improvements. Our current regret bound scales as H2, inherited from
an optimistic LSVI-style decomposition. Tighter coupling of stepwise Bellman errors or a variance-
aware decomposition could plausibly reduce this to H3/2 or H . Extending RBE examples and
verifying U for broader kernel/state-action families, and integrating unknown rewards with joint
confidence control, are also natural next steps.

BROADER IMPACT

This work proposes a CME-based uniformization mechanism for kernel RL that removes an obsta-
cle to no-regret guarantees while relaxing structural assumptions (no optimistic closure). Broader
impacts include more reliable kernelized RL with principled uncertainty quantification; as always,
care is warranted when deploying RL systems in safety-critical settings.

7 LLM USAGE

LLM was used for polishing texts to rephrase and correct grammar.

8 EXPERIMENTS

9 NUMERICAL EXPERIMENT: 1D DOUBLE–WELL (QCQP PROJECTION,
ABSORBING GOAL)

Setup. We consider the classical quartic double-well in 1D with overdamped Langevin dynamics
and additive control:

xt+1 = xt + ∆t
(
xt − x3

t + ut

)
+ σ εt, ut ∈ {−u0, 0,+u0}, εt ∼ N (0, 1).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Double–Well (H = 40, T = 100): final cumulative regret (mean over seeds) and SEM.

Algorithm Final Cum. Regret (↓) SEM

KOVI-Proj 93.287 4.308
KOVI0 118.236 0.085
Kernel-LSVI-ε 118.301 0.007

Episodes have horizon H = 40. The goal set is an absorbing tube around x = +1 of radius τ ; the
reward is one-shot hit +1 (upon first entry) minus a step penalty 0.01 each step, and the episode
terminates on hit. This makes the benchmark V ∗

1 O(1) and aligned with the environment (details in
the appendix).

Algorithms. We compare three methods: (i) KOVI-Proj, which performs backward optimistic
value iteration with a kernel surrogate for [PhV ] and always projects Vh by solving the QCQP

min
α

1
m∥Lα− vh∥22 s.t. α⊤Lα ≤ B2, 0 ≤ (Lα)j ≤ H − h+ 1,

(ii) KOVI0, the same but without the RKHS projection (ridge only), and (iii) Kernel-LSVI-ε, a
non-optimistic KRR baseline with ε-greedy exploration. All methods warm-start with a few random
episodes; we amortize planning with a plan-every-K schedule. We evaluate over K = 100 episodes
and three seeds.

Results. Figure 1a shows the mean cumulative regret (shaded: SEM) against episodes. KOVI-Proj
learns substantially faster and attains markedly lower regret. Table 1 summarizes final cumulative
regret (mean over seeds) and its SEM.

(a) Double–Well (H = 40, T = 100): mean
cumulative regret vs. episode (QCQP projection
always on). KOVI-Proj (blue) outperforms both
the no–projection ablation KOVI0 (orange) and
Kernel-LSVI-ε (green).

(b) GridWorld 9×9 (H = 5), 100 episodes: mean
cumulative regret (shaded: SEM across seeds).
Here KOVI-pro in blue has least growth in regret.
Projection is QCQP.

Figure 1: Regret Plots for Double-well and Grid World.

Discussion. Three observations are consistent across seeds: (i) Level. KOVI-Proj lowers the fi-
nal cumulative regret by about 21% relative to the non–projected optimistic ablation and the non-
optimistic baseline. This reflects substantially higher hit probability of the absorbing goal within
the H = 40-step window. (ii) Rate. The slope of the regret curve is strictly smaller for KOVI-Proj
across the training horizon, indicating faster value improvement per episode. (iii) Role of projec-
tion. Removing the RKHS ball + range constraints (KOVI0) collapses the optimism guarantee: the
upper-confidence target Q̃h no longer reliably upper–bounds the Bellman image, leading to mis-
calibrated targets and markedly worse exploration. In contrast, the QCQP projection keeps value
iterates within the feasible hypothesis set, preserving the UCB validity and translating into consis-
tent goal-reaching behavior.

8
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Table 2: GridWorld (9× 9, H = 5), 100 episodes summary metrics (mean over seeds).

Algorithm Final Cum. Regret (↓) Regret Slope / ep (↓) Mean Return (↑) SEM(Return)

KOVI-Proj 162.348 1.579 0.533 0.602
KOVI0 220.928 2.221 -0.053 0.132
Kernel-LSVI-ε 224.968 2.248 -0.093 0.048

10 GRIDWORLD BENCHMARK

Environment. We use a 9×9 GridWorld (states {0, . . . , 8}2) with start at (0, 0) and goal at (8, 8).
The horizon is H = 5 per episode. Actions are {up,right,down,left}. With slip probability
pslip = 0.1, the executed action is replaced uniformly at random. The reward is +1 upon entering
the goal and −0.01 otherwise. We have RBF kernel over states with lengthscale ℓ = 0.35, product
kernel for Q over state-action, KRR ridge λQ = 10−2 for Q, ridge λV = 10−3 for the ridge baseline,
anchors placed on a stride-2 grid (m = 25 anchors), UCB scale β = 0.8

√
log((mH + 1)/δ) with

δ = 0.1, and RKHS ball radius B = 4.0 for the projection.

Algorithms. We compare (i) KOVI-Proj (QCQP projection for Vh enforcing ∥Vh∥Hℓ
≤ B and

0 ≤ Vh ≤ H − h + 1), (ii) KOVI0 (same optimism, but Vh via ridge without constraints), and
(iii) Kernel-LSVI-ε (non-optimistic KRR targets with ε-greedy; ε decays as in the code). At each
episode, we perform a backward planning pass to update {Vh}1h=H from replayed targets, then run
one episode of interaction.

Metrics. We compute the optimal benchmark V ∗
1 by dynamic programming and report (i) mean

cumulative regret over K = 100 episodes, (ii) the least-squares per-episode regret slope, and (iii)
mean return; all statistics are averaged over three seeds with SEM bands.

Results. Figure 1b shows the regret curves; Table 2 summarizes final numbers.

Discussion. KOVI-Proj substantially improves both level and rate of regret: its final cumulative
regret is≈ 162.3 versus≈ 220.9 (KOVI0) and≈ 225.0 (Kernel-LSVI-ε), corresponding to a relative
reduction of ∼ 26% against both baselines. The estimated regret slope drops from ≈ 2.22–2.25 to
≈ 1.58, indicating faster learning throughout training. In terms of return, KOVI-Proj achieves
a positive average (≈ 0.53) while the baselines remain near the step-penalty floor (≈ −0.05 to
−0.09), confirming that optimism together with the RKHS projection (norm ball + range constraints)
materially helps the agent reach the goal within the short horizon despite slippage. The higher SEM
for KOVI-Proj reflects mixed outcomes early on (goal reached vs. not reached) typical of sparse-
reward exploration; this variance shrinks with longer runs or denser anchors.

REPRODUCIBILITY.

All the results are generated by python notebook code and it is attached in supplementary. Details
of experiment are in paper and supplementary.

ETHICS STATEMENT

We have followed the ICLR Code of Ethics throughout this work. Our study does not have any
ethical issue.
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A ENVIRONMENT AND IMPLEMENTATION DETAILS (DOUBLE-WELL)

Continuous-time model and discretization. We consider the standard overdamped Langevin dy-
namics in the quartic double-well potential

U(x) = 1
4x

4 − 1
2x

2, b(x) := −∇U(x) = x− x3,
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a canonical bistable system (Hänggi et al., 1990; Gardiner, 2009). With additive control ut and
thermal diffusion D > 0, the SDE is

dXt =
(
b(Xt) + ut

)
dt +

√
2DdWt.

We simulate via Euler–Maruyama with step ∆t > 0:

Xt+1 = Xt +∆t
(
b(Xt) + ut

)
+ σ εt, σ2 := 2D∆t, εt ∼ N (0, 1). (6)

Finite–horizon MDP. Episodes have horizon H . The MDP M = (S,A, P, r,H, µ1) is:

• State space: S = [−2, 2] (we clip draws from equation 6 to [−2, 2]).
• Action space: A = {−u0, 0,+u0} (discrete pushes).

• Transitions: Xt+1 |Xt = x,At = a ∼ N
(
x+∆t (x− x3 + a), σ2

)
.

• Goal and absorption: The goal tube is G := {x : |x − xgoal| ≤ τ} with xgoal = +1. On first
entry into G, the episode terminates (absorbing goal).

• Reward: One–shot sparse success with step penalty:

r(x, a, x′) = 1{x′ ∈ G} − λstep.

• Initial state: µ1 is a point mass near the left well, X1 ≈ −1 (small Gaussian jitter).

Absorption ensures V ∗
1 is O(1) and aligned with the simulated environment.

Default parameters (reproduced). Unless stated otherwise, the experiments in the main text use:

H = 40, ∆t = 0.10, u0 = 1.0, σ = 0.07, D =
σ2

2∆t
, τ = 0.10, λstep = 0.01.

We run K = 100 episodes and average over three seeds. For numerical kernels and projection:

state kernel length ℓ = 0.6, state-action kernel length k = 0.35, ρ = 3×10−4, B = 1.2.

The projection grid uses m = 81 anchor states; the DP benchmark grid uses M = 121 points. We
cap each stage buffer to at most 120 tuples to bound kernel linear–algebra cost. We warm-start with
5 random episodes and then plan every 3 episodes (plan-every-K schedule).

Kernels and surrogates. The state RKHS (Hℓ, ℓ) uses the RBF kernel ℓ(x, x′) = exp
(
− (x−x′)2

2ℓ2

)
.

For state–action surrogates we use the product kernel

κ
(
(x, a), (x′, a′)

)
= ℓk(x, x

′)1{a = a′}, ℓk(x, x
′) = exp

(
− (x−x′)2

2k2

)
.

These choices are standard (Schölkopf & Smola, 2002) and make the Gram matrices PSD.

Projection (QCQP, always). At each stage h, KOVI-Proj projects the optimistic targets vh ∈ Rm

onto the feasible RKHS ball with range constraints:

min
α∈Rm

1

m
∥Lα− vh∥22 s.t. α⊤Lα ≤ B2, 0 ≤ (Lα)j ≤ H − h+ 1 (j = 1, . . . ,m) (7)

where Lij = ℓ(si, sj) for the anchor grid {sj}mj=1. By a constrained representer theorem, the
optimizer lies in span{ℓ(·, sj)} (Kimeldorf & Wahba, 1971; Schölkopf & Smola, 2002). We solve
equation 7 via cvxpy using either MOSEK or SCS; to avoid numerical PSD certification issues on
L, we symmetrize L← 1

2 (L+L⊤), add a 10−10 ridge, and wrap it with psd wrap in the quadratic
constraint. Projection is performed always; there is no ridge fallback.

Optimistic targets and uncertainty. Given a stage dataset Dh = {(zi = (xi, ai), x
′
i)} with

yi := Vh+1(x
′
i), we form the KRR mean f̂h(z) = k(z, Z)⊤(K + ρI)−1y and its variance via a

Cholesky factor of K + ρI ,

σ2
h(z) = k(z, z)− k(z, Z)⊤(K + ρI)−1k(Z, z)

The optimistic action–value uses Q̃h(x, a) = f̂h(x, a) + βh σh(x, a) + r(x, ·) with a logarithmic
scale βh = β(h, |Dh|) (details and schedules in the main text).
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Vectorized DP benchmark V ∗. We compute V ∗ on discretization {sj}Mj=1 without Monte Carlo
by using row–stochastic Gaussian weight matrices. Let bj := b(sj) and µj(a) = sj +∆t (bj + a).
For each action a, define

Wa(i, j) ∝ exp
(
− (sj − µi(a))

2

2σ2

)
,

M∑
j=1

Wa(i, j) = 1,

and an absorbing mask goal(j) = 1{|sj − xgoal| ≤ τ}. With rj = goal(j)− λstep and VH+1 ≡ 0,
we recurse

Vh(i) = max
a∈A

M∑
j=1

Wa(i, j)
(
rj + 1{goal(j) = 0}Vh+1(j)

)
, h = H,H − 1, . . . , 1

This enforces zero continuation from goal bins (absorption) and avoids high–variance MC estima-
tion. Lookup Vh(x) is done by nearest–neighbor interpolation on {sj}.

Preprocessing and amortization. We do a warm-start for each learner with 5 random episodes
to populate {Dh} before applying optimism; thereafter we perform a full backward planning pass
every 3 episodes (plan-every-K) and cap per–stage replay by 120 pairs to control kernel linear-
algebra cost. These engineering choices do not affect the statement of the algorithms and keep
QCQP solves tractable.

B REMARKS ON OTHER WORKS

Kernel function approximation for RL. Kernel methods have long served as nonparametric
function approximators in reinforcement learning, bridging linear models and certain infinite-width
neural networks. A modern line of work instantiates optimistic least-squares value iteration (LSVI)
with kernels, coupling kernel ridge regression (KRR) backups with exploration bonuses (Yang et al.,
2020). Analytically, these approaches often invoke a union bound over a data-dependent, evolving
class of optimistic value proxies, bringing in a covering-number penalty that may scale as Ω(

√
T )

for common kernels. This term can spoil no-regret guarantees in long horizons and large time bud-
gets, and it is one of the central obstacles our work circumvents by replacing the union bound with
a uniform, CME-based confidence statement that holds simultaneously for all value proxies inside a
fixed state-RKHS ball.

Optimistic closure via conditional mean embeddings. A complementary kernel-RL line re-
places the evolving-cover argument with a structural assumption: optimistic closure, i.e., every
optimistic value proxy produced by the algorithm lies in a common, fixed state-RKHS ball. Chowd-
hury and Oliveira (Chowdhury & Oliveira, 2023) operationalize this idea using conditional mean
embeddings (CMEs) to map one-step lookahead into a linear functional on the state RKHS. This re-
covers clean, GP/KRR-style uncertainty quantification, but at the cost of a strong structural premise
on the optimizer’s iterates. In contrast, our analysis similarly leverages CMEs, yet dispenses with
optimistic closure: we enforce the bounded-norm property algorithmically by an explicit RKHS
projection of the optimistic proxy each step, and then prove a uniform confidence bound that applies
to all functions in the ball without any data-dependent covering.

Vector-valued RKHS and CMEs. Our development relies on classical results on vector-valued
RKHSs and conditional mean embeddings. The CME view represents the Bellman image as an
inner product [PhV ](z) = ⟨µh(z), V ⟩Hℓ

with an Hℓ-valued map µh; this viewpoint is extensively
surveyed by Muandet et al. (Muandet et al., 2017b). The required functional-analytic foundations
for vector-valued RKHSs with operator-valued kernels such as K(z, z′) = k(z, z′)I—can be found
in Carmeli, De Vito, Toigo, and co-authors (Carmeli et al., 2010). Building on these tools, we show
that (i) scalar KRR predictions with labels V (s′) can be written as an inner product with a vector-
valued KRR estimator of the CME, and (ii) a single Hilbert-space self-normalized concentration
argument yields uniform confidence for the whole state-ball {V : ∥V ∥Hℓ

≤ B}, removing the
covering-number penalty.

12
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Kernel bandits, information gain, and elliptical potentials. Our regret analysis adopts the
standard information-gain and elliptical-potential machinery developed for kernelized bandits and
GP regression. In particular, Chowdhury and Gopalan (Chowdhury & Gopalan, 2017) provide
clean, modular bounds in terms of the (regularized) information gain γ(n, ρ), which we adapt
to the multi-step RL setting by summing per-step potentials (with a block-diagonal argument
across steps). The combination of CME-based linearization and information-gain control yields
the Õ

(√
T γ(HT, ρ)

)
-type scaling in our main result, while avoiding data-dependent covers.

Positioning within kernel RL. Putting these threads together, our contribution can be viewed as a
third route to kernel-RL optimism: (i) unlike covering-number analyses for kernelized LSVI (Yang
et al., 2020), we avoid data-dependent covers; (ii) unlike optimistic closure (Chowdhury & Oliveira,
2023), we do not assume a priori that all optimistic proxies already lie in a fixed state-RKHS ball;
instead, (iii) we enforce the bounded-norm property by projection and prove a uniform CME-based
confidence bound that holds for all functions in the ball simultaneously. This uniformization is
central to obtaining sublinear regret without the Ω(

√
T ) covering penalty.

Context in open problems. The broader agenda of obtaining sharp or order-optimal regret guar-
antees for kernel-based RL has been highlighted as an open challenge (Vakili, 2024). Our analysis:
via vector-valued RKHS concentration for CMEs and a projection step that replaces optimistic clo-
sure addresses a prominent bottleneck identified in that discussion: removing the covering-number
dependence while retaining principled uncertainty quantification in kernelized optimistic value iter-
ation.

On horizon dependence and refinements. As in kernelized optimistic LSVI, our H2 scaling
arises from a standard telescoping decomposition and coarse coupling of stepwise estimation errors.
While we expect refined Bellman-error coupling or variance-aware decompositions to reduce this to
H3/2 or even H , the present focus is on eliminating the covering-number obstruction under a natural
CME boundedness condition closing a gap emphasized in prior work (Yang et al., 2020; Chowdhury
& Oliveira, 2023; Vakili, 2024).

C PROOF OF THEOREM 1

Proposition C.1 (Scalar KRR = inner product with a vector-valued KRR). Fix a step h and data
{(zi, s′i)}ni=1. Let ℓ be a kernel on S with RKHS (Hℓ, ⟨·, ·⟩Hℓ

) and feature map ϕ : S → Hℓ so that
ℓ(s, s′) = ⟨ϕ(s), ϕ(s′)⟩Hℓ

. Let k be a kernel onZ = S×A with Gram matrix Kn = [k(zi, zj)]
n
i,j=1

and, for z ∈ Z , define kn(z) = [k(z, z1), . . . , k(z, zn)]
⊤. For a ridge parameter ρ > 0, define

µ̂n(z) :=

n∑
i=1

αi(z)ϕ(s
′
i) ∈ Hℓ, α(z) := (Kn + ρI)−1kn(z).

Then for every V ∈ Hℓ and z ∈ Z ,

f̂ V
h,n(z) = ⟨µ̂n(z), V ⟩Hℓ

,

where f̂ V
h,n is the scalar KRR predictor trained on labels y

(V )
i := V (s′i) = ⟨ϕ(s′i), V ⟩Hℓ

, i.e.

f̂ V
h,n(z) = kn(z)

⊤(Kn + ρI)−1y(V ) with y(V ) = (y
(V )
1 , . . . , y

(V )
n )⊤.

Proof. We give a self-contained argument in two steps.

Step 1: Scalar KRR with inner-product labels. Fix V ∈ Hℓ. Consider the scalar KRR problem
on the input space Z with kernel k and training labels

y
(V )
i := V (s′i) = ⟨ϕ(s′i), V ⟩Hℓ

, i = 1, . . . , n.

It is standard that the KRR predictor at a test point z ∈ Z is

f̂ V
h,n(z) = kn(z)

⊤(Kn + ρI)−1 y(V ). (8)

13
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Step 2: Vector-valued KRR and the CME estimator. Define the vector-valued RKHS on Z
with operator-valued kernel K(z, z′) := k(z, z′) IHℓ

; this space can be identified with the tensor-
product RKHS Hk ⊗ Hℓ. Consider the vector-valued KRR problem that regresses the Hℓ-valued
observations ϕi := ϕ(s′i) ∈ Hℓ on the inputs zi:

µ̂n ∈ arg min
g∈Hk⊗Hℓ

{ n∑
i=1

∥ϕi − g(zi) ∥2Hℓ
+ ρ ∥g∥2Hk⊗Hℓ

}
. (9)

By the (vector-valued) representer theorem, the minimizer has the finite form

µ̂n(·) =

n∑
i=1

K(·, zi)ci =

n∑
i=1

k(·, zi) ci, ci ∈ Hℓ

Let C = [c1, . . . , cn] be the column tuple and note that g(zj) =
∑n

i=1 k(zj , zi)ci. The normal
equations for equation 9 read(

Kn + ρI
)
C⊤ = Φ⊤, where Φ : Rn → Hℓ, Φei = ϕi,

so that C⊤ = (Kn + ρI)−1Φ⊤. Therefore, for any z ∈ Z ,

µ̂n(z) =

n∑
i=1

k(z, zi) ci =

n∑
i=1

αi(z)ϕi =

n∑
i=1

αi(z)ϕ(s
′
i), α(z) := (Kn + ρI)−1kn(z),

(10)
which matches the stated definition.

Equality of predictons. Combining equation 8 and equation 10, and recalling y
(V )
i =

⟨ϕ(s′i), V ⟩Hℓ
, we compute

f̂ V
h,n(z) = kn(z)

⊤(Kn + ρI)−1y(V ) =

n∑
i=1

αi(z) y
(V )
i =

n∑
i=1

αi(z) ⟨ϕ(s′i), V ⟩Hℓ

= ⟨µ̂n(z), V ⟩Hℓ
.

This holds for every V ∈ Hℓ and every z ∈ Z , as claimed.

D PROOF OF THEOREM 5.1

Proof. Step 1: A uniform “good” event. Apply Theorem 3.3 with a union bound over all steps
h ∈ [H], episodes t ∈ [T ], and query points z (the latter handled by the supremum in Theorem 3.3).
Using the per-step confidence radius in equation 3 with the log(2HT/δ) factor, there exists an event

G with Pr(G) ≥ 1− δ

such that, simultaneously for all h, t and all z ∈ Z ,

[PhVh+1,t](z) ≤ f̂
Vh+1,t

h,t (z) + βh,t σh,t(z) (11)

where βh,t = B
(√

ρU + σ√
ρ

√
2γ(nh,t−1, ρ) + 2 log 2HT

δ

)
and σh,t is as in equation 2. See proof

in H.1. The projection step (Section 4) guarantees ∥Vh,t∥Hℓ
≤ B, ensuring applicability of Theo-

rem 3.3 to the actual proxies the algorithm uses.

Remark D.1 (Why the projection step matters?). Theorem 3.3 provides a high-probability confi-
dence bound that holds uniformly for all value functions V whose RKHS norm is bounded by B,
i.e., for all V ∈ {V : ∥V ∥Hℓ

≤ B}. The optimistic proxy Ṽh,t produced by the backup (§4) need
not lie in this ball a priori. The projection step maps Ṽh,t to

Vh,t ∈ arg min
∥V ∥Hℓ

≤B
∥V − Ṽh,t∥L2(ν) (with range clipping),

thereby guaranteeing ∥Vh,t∥Hℓ
≤ B. Consequently, every value proxy the algorithm actually uses

satisfies the assumptions of Theorem 3.3, and the uniform confidence bound applies directly to the
algorithm’s updates without any additional covering or closure assumptions.
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Step 2: Optimism up to agnostic error. Fix (h, t) and z = (s, a). By definition of Q∗
h and by

boundedness of the value range,
Q∗

h(z) = rh(z) + [PhV
∗
h+1](z) ≤ rh(z) + [PhVh+1,t](z) + ∥V ∗

h+1 − Vh+1,t∥∞.

By the definition of the “worst case” agnostic approximation level εB := maxh sup∥V ∥Hℓ
≤B ∥V ∗

h −
V ∥∞ and since ∥Vh+1,t∥Hℓ

≤ B, we have ∥V ∗
h+1 − Vh+1,t∥∞ ≤ εB . See proof in D.2. Combining

with equation 11 and the definition equation 3 of Q̃h,t gives

Q∗
h(z) ≤ Q̃h,t(z) + εB for all h, t, z on the event G. (12)

See proof in Remark D.3. Maximizing over a further yields V ∗
h (s) ≤ Ṽh,t(s) + εB .

Step 3: Telescoping regret decomposition. Let zh,t = (sh,t, ah,t) be the state-action chosen
by KOVI-Proj at step h of episode t. From equation 12 and the greedy action choice ah,t ∈
argmaxa Q̃h,t(sh,t, a),

V ∗
1 (s1,t)− V πt

1 (s1,t) ≤
H∑

h=1

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ H εB .

See Remark D.3. Summing over episodes and using equation 3 then gives

R(T ) ≤
T∑

t=1

H∑
h=1

βh,t σh,t(zh,t) + HT εB on G. (13)

Step 4: Elliptical-potential bound across steps. For each fixed step h, let nh,T be the number of
transitions observed at step h up to episode T . Denote by σh,τ−1(zh,τ ) the posterior standard devi-
ation just before the τ -th observation at step h (this is exactly σh,t(zh,t) when the τ -th observation
occurs in episode t). The standard GP/RKHS potential argument applied to the (adaptively chosen)
design at step h yields

nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2 γ(nh,T , ρ),

nh,T∑
τ=1

σh,τ−1(zh,τ ) ≤
√

2nh,T γ(nh,T , ρ).

See detailed proof in Lemma D.5. Summing over h and using Cauchy-Schwarz,
T∑

t=1

H∑
h=1

σh,t(zh,t) ≤
H∑

h=1

√
2nh,T γ(nh,T , ρ) ≤

√
2
(∑

h

nh,T

)(∑
h

γ(nh,T , ρ)
)

=
√
2HT ΓT .

See Remark D.9 for last equality. Let Kh be the Gram matrix of the design at step h and Kblk :=
diag(K1, . . . ,KH). Then

ΓT =
1

2

H∑
h=1

log det
(
I + ρ−1Kh

)
=

1

2
log det

(
I + ρ−1Kblk

)
≤ 1

2
log det

(
I + ρ−1Kall

)
≤ γ(HT, ρ)

where Kall is full Gram matrix over the concateneted HT design points and the last inequality
uses that adding nonnegative off-diagonal blocks (cross-step similarities) increases the determinant.
Therefore,

T∑
t=1

H∑
h=1

σh,t(zh,t) ≤
√

2HT γ(HT, ρ). (14)

Step 5: Putting it together. From equation 13 and equation 14, and using that (see proof in Remark
D.8)

βh,t ≤ Õ
(
B
(√

ρU + σ√
ρ

√
γ(HT, ρ)

))
uniformly over h, t,

we obtain

R(T ) ≤ Õ
(
H2 B

(√
ρU + σ√

ρ

√
γ(HT, ρ)

)√
T γ(HT, ρ)

)
+ HT εB ,

which is the claimed bound. This completes the proof.
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Lemma D.2 (Agnostic approximaton bound for projected proxies). For each h ∈ [H], define
the worst-case (supremum) approximation error of the RKHS ball

εB(h) := sup
∥V ∥Hℓ

≤B

∥∥V ∗
h − V

∥∥
∞, εB := max

j∈[H]
εB(j).

If the algorithm’s projection guarantees ∥Vh,t∥Hℓ
≤ B for all h, t, then for every h ∈ [H] and

t ∈ [T ], ∥∥V ∗
h − Vh,t

∥∥
∞ ≤ εB(h) ≤ εB .

In particular, with h 7→ h+ 1 we get ∥V ∗
h+1 − Vh+1,t ∥∞ ≤ εB

Proof. Fix h ∈ [H] and t ∈ [T ]. By projecton, ∥Vh,t∥Hℓ
≤ B, so Vh,t belongs to the admissible

set in the definition of εB(h). Since εB(h) is a supremum over that set, it dominates the error at the
particular choice Vh,t:∥∥V ∗

h − Vh,t

∥∥
∞ ≤ sup

∥V ∥Hℓ
≤B

∥∥V ∗
h − V

∥∥
∞ = εB(h).

Finally, by definition εB(h) ≤ maxj∈[H] εB(j) = εB , which yields the second inequality. The
special case h 7→ h+ 1 is immediate.

Remark D.3 (Telescoping bound from optimism up to εB). From equation 12, for every step h
and episode t and every z = (s, a),

Q∗
h(z) ≤ Q̃h,t(z) + εB .

Evaluating at the algorithm’s visited pair zh,t = (sh,t, ah,t) and using the Bellman identities

V ∗
h (sh,t) = rh(zh,t) + [PhV

∗
h+1](zh,t), V πt

h (sh,t) = rh(zh,t) + [PhV
πt

h+1](zh,t),

we obtain the one-step inequality

V ∗
h (sh,t)− V πt

h (sh,t) = [PhV
∗
h+1](zh,t)− [PhV

πt

h+1](zh,t)

≤
(
Q̃h,t(zh,t)− rh(zh,t)

)
− [PhVh+1,t](zh,t)

+
(
[PhV

∗
h+1]− [PhV

πt

h+1]
)
(zh,t)︸ ︷︷ ︸

= E[V ∗
h+1(sh+1,t)−V

πt
h+1(sh+1,t) | sh,t,ah,t]

+ εB .

Taking conditional expectation on the episode’s history up to step h (which leaves the displayed
conditional expectation unchanged), and summing this inequality over h = 1, . . . ,H makes the
middle terms telescope (See Remark D.4):

H∑
h=1

E
[
V ∗
h+1(sh+1,t)− V πt

h+1(sh+1,t)
∣∣ history up to h

]
= E

[
V ∗
H+1(sH+1,t)− V πt

H+1(sH+1,t)
]

= 0,

since V ∗
H+1 ≡ V πt

H+1 ≡ 0. Therefore,

V ∗
1 (s1,t)− V πt

1 (s1,t) ≤
H∑

h=1

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ H εB ,

which is the claimed bound.

Remark D.4. How the middle terms telescope. Let Fh be the history (sigma-field) up to step h in
episode t, and define

∆h := V ∗
h (sh,t) − V πt

h (sh,t), h = 1, . . . ,H, with ∆H+1 = 0

From equation 12 we derived, for each h,

∆h ≤
(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ E

[
∆h+1 | Fh

]
+ εB . (15)
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Rearrange equation 15 to isolate the martingale increment

∆h − E
[
∆h+1 | Fh

]
≤

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ εB .

Summing this inequality over h = 1, . . . ,H and using linearity gives

H∑
h=1

(
∆h − E[∆h+1 | Fh]

)
≤

H∑
h=1

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ H εB .

The left-hand side telescopes by the tower property:

H∑
h=1

(
∆h − E[∆h+1 | Fh]

)
= ∆1 − E[∆H+1 | FH ] = ∆1 − 0 = V ∗

1 (s1,t)− V πt
1 (s1,t),

because ∆H+1 = V ∗
H+1(sH+1,t)− V πt

H+1(sH+1,t) ≡ 0. Thus we obtain

V ∗
1 (s1,t)− V πt

1 (s1,t) ≤
H∑

h=1

(
Q̃h,t(zh,t)− rh(zh,t)− [PhVh+1,t](zh,t)

)
+ H εB

Concrete cancellation for H = 3 (illustration). Writing equation 15 for h = 1, 2, 3 and sub-
tracting the conditional expectations:

∆1 − E[∆2 | F1] ≤ bonus1 + εB ,

∆2 − E[∆3 | F2] ≤ bonus2 + εB ,

∆3 − E[∆4 | F3] ≤ bonus3 + εB (∆4 ≡ 0).

Summing yields(
∆1−E[∆2 | F1]

)
+
(
∆2−E[∆3 | F2]

)
+
(
∆3−E[∆4 | F3]

)
≤ bonus1+bonus2+bonus3+3εB

The middle terms cancel pairwise by the tower property: −E[∆2 | F1] + ∆2 and −E[∆3 |
F2] + ∆3 vanish after taking expectations step by step, and E[∆4 | F3] = 0. What remains is
exactly ∆1 on the left, i.e., V ∗

1 (s1,t)− V πt
1 (s1,t), which proves the claim.

Lemma D.5 (Elliptical potential / information-gain bound at a fixed step). Fix a step h and let
{zh,τ}

nh,T

τ=1 be the (adaptively chosen) design points collected at this step up to time T . Let

σ2
h,τ−1(z) := k(z, z) − kh,τ−1(z)

⊤(Kh,τ−1 + ρI
)−1

kh,τ−1(z),

where Kh,τ−1 = [k(zh,i, zh,j)]
τ−1
i,j=1 and kh,τ−1(z) = [k(z, zh,1), . . . , k(z, zh,τ−1)]

⊤. Then, for
any ρ > 0,

nh,T∑
τ=1

log
(
1 +

σ2
h,τ−1(zh,τ )

ρ

)
=

1

2
log det

(
I + ρ−1Kh,nh,T

)
=: γ(nh,T , ρ), (16)

and consequently

nh,T∑
τ=1

σh,τ−1(zh,τ ) ≤

√√√√ nh,T

nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) (by Cauchy-Schwarz). (17)

Moreover, under the common normalization k(z, z) ≤ 1 and ρ = 1,
nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2 γ(nh,T , 1),

nh,T∑
τ=1

σh,τ−1(zh,τ ) ≤
√

2nh,T γ(nh,T , 1). (18)

Proof. We prove in following three steps.
Step 1: Determinant telescoping (matrix determinant lemma). Let Aτ−1 := Kh,τ−1 + ρI (with
A0 = ρI). Consider augmenting Aτ−1 by the new point zh,τ , i.e., the block matrix

Aτ =

[
Kh,τ−1 + ρI kh,τ−1(zh,τ )
kh,τ−1(zh,τ )

⊤ k(zh,τ , zh,τ ) + ρ

]
.

17
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By the Schur complement (or the matrix determinant lemma),

det(Aτ ) = det(Aτ−1)
(
ρ+ k(zh,τ , zh,τ )− kh,τ−1(zh,τ )

⊤A−1
τ−1kh,τ−1(zh,τ )

)
= det(Aτ−1)

(
ρ+ σ2

h,τ−1(zh,τ )
)
.

Divide both sides by ρτ and take logs. Telescoping over τ = 1, . . . , nh,T gives

log det
(
I + ρ−1Kh,nh,T

)
=

nh,T∑
τ=1

log
(
1 +

σ2
h,τ−1(zh,τ )

ρ

)
which is equation 16 after multiplying by 1/2 to match the definition γ(n, ρ) = 1

2 log det(I +

ρ−1K).

Step 2: From equation 16 to bounds on sums. The second display equation 17 is a direct applica-
tion of Cauchy-Schwarz:

∑
aτ ≤

√
(
∑

1)(
∑

a2τ ).

To control
∑

σ2 in terms of γ, one can use standard scalar inequalities relating log(1 + x) and x.
A common (and sharp) form in the GP literature (see, e.g., Srinivas et al., 2010, or Chowdhury &
Gopalan, 2017) is

nh,T∑
τ=1

min
{
1,

σ2
h,τ−1(zh,τ )

ρ

}
≤ 2

nh,T∑
τ=1

log
(
1 +

σ2
h,τ−1(zh,τ )

ρ

)
= 4 γ(nh,T , ρ).

In particular, under the normalization k(z, z) ≤ 1 and ρ = 1, we have 0 ≤ σ2
h,τ−1(zh,τ ) ≤ 1 so that

min{1, σ2} = σ2. See proof in D.6. Thus
nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2 log det

(
I +Kh,nh,T

)
= 2 · 2 γ(nh,T , 1) = 4 γ(nh,T , 1).

See detailed proof in Remark D.7. A slightly refined inequality (using, for x ∈ [0, 1], that log(1 +
x) ≥ x− x2/2 together with

∑
σ4 ≤

∑
σ2) improves the constant and yields

nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2 γ(nh,T , 1),

as stated in equation 18. Finally, combining with equation 17 gives
nh,T∑
τ=1

σh,τ−1(zh,τ ) ≤
√

2nh,T γ(nh,T , 1)

Remark on constants. All bounds above hold up to universel constants that can be made explicit;
the versions in equation 18 are the ones commonly used in GP-UCB analyses (with k(z, z) ≤ 1,
ρ = 1). For general ρ > 0, one obtains

∑
σ2 ≲ ρ γ(n, ρ) and hence

∑
σ ≲

√
ρn γ(n, ρ).

Remark D.6. Why min{1, σ2} = σ2 when k(z, z) ≤ 1 and ρ = 1. Recall the posterior deviation
at time τ − 1:

σ2
h,τ−1(z) = k(z, z) − kh,τ−1(z)

⊤(Kh,τ−1 + I
)−1

kh,τ−1(z).

Two facts imply 0 ≤ σ2
h,τ−1(z) ≤ 1:

1. Nonnegativity. The block matrix
(

Kh,τ−1+I kh,τ−1(z)

kh,τ−1(z)
⊤ k(z,z)

)
is positive semidefinite, so its Schur

complement is nonnegative:

k(z, z) − kh,τ−1(z)
⊤(Kh,τ−1 + I

)−1
kh,τ−1(z) ≥ 0

2. Upper bound by k(z, z). Since the subtracted term is nonnegative, σ2
h,τ−1(z) ≤ k(z, z) ≤ 1

under the normalization k(z, z) ≤ 1

18
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Therefore, pointwise for every querid zh,τ ,

0 ≤ σ2
h,τ−1(zh,τ ) ≤ 1,

and hence min{1, σ2
h,τ−1(zh,τ )} = σ2

h,τ−1(zh,τ ).

Remark D.7. From
∑

min{1, σ2} to
∑

σ2 and γ. Under the normalization k(z, z) ≤ 1 and ρ = 1
we have 0 ≤ σ2

h,τ−1(zh,τ ) ≤ 1, hence min{1, σ2
h,τ−1(zh,τ )} = σ2

h,τ−1(zh,τ ). A standard scalar
inequalty used in GP/KRR analyses (see, e.g., GP-UCB) states that

nh,T∑
τ=1

min
{
1, σ2

h,τ−1(zh,τ )
}
≤ 2

nh,T∑
τ=1

log
(
1 + σ2

h,τ−1(zh,τ )
)

Therefore,
nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2

nh,T∑
τ=1

log
(
1 + σ2

h,τ−1(zh,τ )
)
.

Using the determinant telescoping identity
∑nh,T

τ=1 log(1 + σ2
h,τ−1(zh,τ )) = log det(I + Kh,nh,T

)
(at ρ = 1), we obtain

nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 2 log det

(
I +Kh,nh,T

)
.

Finally, by definition γ(nh,T , 1) =
1
2 log det(I +Kh,nh,T

), so

2 log det(I +Kh,nh,T
) = 2 · 2 γ(nh,T , 1) = 4 γ(nh,T , 1)

Hence
nh,T∑
τ=1

σ2
h,τ−1(zh,τ ) ≤ 4 γ(nh,T , 1)

where two factors of “2” come from (i) the scalr inequality linking min{1, σ2} to log(1 + σ2) and
(ii) the definition γ = 1

2 log det(·).
Remark D.8 (Uniform bound on βh,t). Recall

βh,t = B
(√

ρU +
σ
√
ρ

√
2 γ(nh,t−1, ρ) + 2 log 2HT

δ

)
,

where nh,t−1 = |Dh,t−1| is the number of step-h samples before episode t and γ(·, ρ) is the (regu-
larized) information gain. Since nh,t−1 ≤

∑H
h′=1 nh′,t−1 ≤ HT and γ(n, ρ) is nondecreasing in

n,
γ(nh,t−1, ρ) ≤ γ(HT, ρ) for all h, t.

Therefore,

βh,t ≤ B
(√

ρU +
σ
√
ρ

√
2 γ(HT, ρ) + 2 log 2HT

δ

)
≤ Õ

(
B
(√

ρU + σ√
ρ

√
γ(HT, ρ)

))
,

uniformly over h, t, where Õ(·) hides polylogarithmic factors in (H,T, 1/δ) and absolute constants.
The last step uses the elementary inequality

√
a+ b ≤

√
a +
√
b and absorbs the

√
log(2HT/δ)

term into the Õ(·) notation.

Remark D.9. Why
√
2
(∑

h nh,T

) (∑
h γ(nh,T , ρ)

)
=
√
2HT ΓT . By definition we set

ΓT :=

H∑
h=1

γ(nh,T , ρ).

Also, over T episodes and H steps per episode, total number of design points across all steps is
H∑

h=1

nh,T = HT

Substituting these two identities into
√
2
(∑

h nh,T

) (∑
h γ(nh,T , ρ)

)
gives√

2
(∑

h

nh,T

)(∑
h

γ(nh,T , ρ)
)

=
√

2 (HT ) ΓT =
√

2HT ΓT .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PROOF OF LEMMA

Lemma E.1 (Vector-valued kernel ridge concentration). Suppose Assumption 2.1 holds,
k(z, z) ≤ κ2

k, and ℓ(s, s) ≤ κ2
ℓ . Let ρ > 0 and define σh,n(·) by equation 2. Then for any

δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all z ∈ Z ,

∥µ(z)− µ̂n(z)∥Hℓ
≤

(√
ρU +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
σh,n(z).

Proof. Recall the vector-valued KRR estimator µ̂n : Z → Hℓ defined by

µ̂n(z) =

n∑
i=1

αi(z)ϕ(s
′
i), α(z) = (Kn + ρI)−1kn(z),

where Kn = [k(zi, zj)]
n
i,j=1, kn(z) = [k(z, z1), . . . , k(z, zn)]

⊤, and ϕ(s′) is the canonical feature
map of ℓ. Let Φ : Rn → Hℓ be the linear map Φb =

∑n
i=1 bi ϕ(s

′
i), so µ̂n(z) = Φ⊤(Kn +

ρI)−1kn(z). By the data model (Section 2),

ϕ(s′i) = µ(zi) + εi, E[εi | Fi−1] = 0, ∥εi∥Hℓ
≤ κℓ, σ-sub-Gaussian inHℓ,

where {Fi} is the natural filtration.

Error decomposition. Let µ ∈ Hk ⊗ Hℓ denote the (unknown) CME map z 7→ µ(z). Write
Φ = M︸︷︷︸

signal

+ E︸︷︷︸
noise

, where Mb =
∑

i biµ(zi) and Eb =
∑

i biεi. Then, for any z ∈ Z ,

µ(z)− µ̂n(z) = µ(z)−M⊤(Kn + ρI)−1kn(z)︸ ︷︷ ︸
bias

− E⊤(Kn + ρI)−1kn(z)︸ ︷︷ ︸
noise

(19)

We next bound the two terms separately and then combine via the triangle inequality.

Bias term. Let Hk,I be the vector-valued RKHS over Z with operator-valued kernel K(z, z′) =
k(z, z′) IHℓ

and norm ∥ · ∥Hk⊗Hℓ
. Denote by Πn,ρ the ρ-regularized orthogonal projector onto the

finite-dimensional subspace span{K(·, zi)u : i ∈ [n], u ∈ Hℓ } ⊂ Hk,I . It is standard (vector-
valued representer theorem and Tikhonov interpolation inequality, see Lemma G.2 in Appendix)
that

∥µ(z)−M⊤(Kn + ρI)−1kn(z)∥Hℓ
= ∥µ(z)−Πn,ρµ(z)∥Hℓ

≤ √ρ ∥µ∥Hk⊗Hℓ
σh,n(z). (20)

By Assumption 2.1 we have ∥µ∥Hk⊗Hℓ
≤ U , hence the bias is bounded by

√
ρU σh,n(z).

Noise term (Hilbert-space self-normalized bound). Consider the random element N(z) :=
E⊤(Kn + ρI)−1kn(z) =

∑n
i=1 αi(z) εi ∈ Hℓ with α(z) = (Kn + ρI)−1kn(z). We will show

that, with probability at least 1− δ, simultaneously for all z ∈ Z ,

∥N(z)∥Hℓ
≤ σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ σh,n(z) (21)

Derivation. For any fixed z, write N(z) =
∑n

i=1 αi(z)εi. Let ⟨·, ·⟩ denote the inner product in Hℓ

and let S := {u ∈ Hℓ : ∥u∥Hℓ
= 1}. By duality,

∥N(z)∥Hℓ
= sup

u∈S

n∑
i=1

αi(z) ⟨εi, u⟩.

Define, for each u ∈ S, the scalar martingale difference sequence ξ
(u)
i := ⟨εi, u⟩, which is condi-

tionally σ-sub-Gaussian (by assumption) and satisfies |ξ(u)i | ≤ κℓ a.s. Let ξ(u) := (ξ
(u)
1 , . . . , ξ

(u)
n )⊤.

Then
n∑

i=1

αi(z) ξ
(u)
i = kn(z)

⊤(Kn + ρI)−1ξ(u).
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We invoke the standard kernel self-normalized concentration for adaptively chosen designs (the
proof appears below as: for any δ ∈ (0, 1), with probability at least 1− δ,∣∣kn(z)⊤(Kn + ρI)−1ξ(u)

∣∣ ≤ σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ σh,n(z), (22)

simultaneously for all z ∈ Z and fixed u ∈ S. The inequality equation 22 is proved below. Since
the right-hand side does not depend on u, taking the supremum over u ∈ S yields equation 21.

Proof of equation 22. Fix u ∈ S. Let An := Kn + ρI and note that γ(n, ρ) = 1
2 log det(I +

ρ−1Kn) =
1
2 log det(An) − n

2 log ρ. For any λ > 0, by the sub-Gaussian mgf bound and the fact
that the design may be adaptive but An is Fn-measurable, one can show (see Abbasi-Yadkori et al.
(2011); Chowdhury & Gopalan (2017)) the mixture supermartingale

M := exp
(

1
2σ2 ξ

(u)⊤A−1
n ξ(u)

)( ρn/2

det(An)1/2

)
satisfies E[M] ≤ 1 (this is the standard Laplace method; see, e.g., the scalar KRR analyses for
kernelized bandits). By Markov’s inequality, see proof Lemma E.2,

Pr
(
ξ(u)⊤A−1

n ξ(u) ≥ 2σ2
(
γ(n, ρ) + log 1

δ

))
≤ δ

On this event, for any z,∣∣kn(z)⊤A−1
n ξ(u)

∣∣ ≤ ∥A−1/2
n kn(z)∥2 ·∥A−1/2

n ξ(u)∥2 ≤
√
2σ

√
γ(n, ρ) + log 1

δ ∥A
−1/2
n kn(z)∥2.

Finally, using the identity

σ2
h,n(z) = k(z, z)− kn(z)

⊤A−1
n kn(z) = k(z, z)− ∥A−1/2

n kn(z)∥22

and the inequality ∥A−1/2
n kn(z)∥2 ≤ ρ−1/2

√
k(z, z)− kn(z)⊤A

−1
n kn(z) (which follows from

An ⪰ ρI), we obtain

∥A−1/2
n kn(z)∥2 ≤

1
√
ρ
σh,n(z)

Combining the last two displays gives equation 22, completing the proof of the scalar self-
normalized bound.

Combine bias and noise. From equation 19, equation 20, and equation 21, with probability at least
1− δ,

∥µ(z)− µ̂n(z)∥Hℓ
≤ √ρU σh,n(z) +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ σh,n(z)

simultaneously for all z ∈ Z , as claimed.

Lemma E.2 (Self-normalized tail bound by Markov). Let (Ft)
n
t=0 be a filtration and let ξ(u) =

(ξ1, . . . , ξn)
⊤ be an Ft-adapted martingale difference sequence that is conditionally σ-sub-

Gaussian: E[exp{λξt} | Ft−1] ≤ exp(σ
2λ2

2 ) for all λ ∈ R and t = 1, . . . , n. Let An ∈ Rn×n

be Fn-measurble, symmetric positive definite (e.g., An = Kn + ρI with ridge ρ > 0 and a design-
dependent Gram matrix Kn ⪰ 0). Define the (design-dependent) information term (Scarlett &
Bogunovic (2018); Srinivas et al. (2010))

γ(n, ρ) :=
1

2
log

det(An)

ρn
=

1

2
log det

(
I + ρ−1Kn

)
.

Then for every δ ∈ (0, 1),

P
(
ξ(u)⊤A−1

n ξ(u) ≥ 2σ2
(
γ(n, ρ) + log 1

δ

))
≤ δ
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Proof. Consider the mixture/Laplace supermartingale (proved, e.g., in Abbasi-Yadkori et al. (2011);
Chowdhury & Gopalan (2017))

M := exp
( 1

2σ2
ξ(u)⊤A−1

n ξ(u)
)( ρn/2

det(An)1/2

)
, which satisfies E[M] ≤ 1.

Fix δ ∈ (0, 1). By the definition of γ(n, ρ), exp{γ(n, ρ)} = det(An)
1/2/ρn/2. Therefore, the event

ξ(u)⊤A−1
n ξ(u) ≥ 2σ2

(
γ(n, ρ) + log 1

δ

)
is equivalent to

exp
(

1
2σ2 ξ

(u)⊤A−1
n ξ(u)

)
≥ exp{γ(n, ρ)} · 1δ =

det(An)
1/2

ρn/2
· 1δ

⇐⇒ M ≥ 1
δ .

Hence,

P
(
ξ(u)⊤A−1

n ξ(u) ≥ 2σ2
(
γ(n, ρ) + log 1

δ

))
= P(M≥ δ−1) ≤ δ E[M] ≤ δ

where we used Markov’s inequality in the first inequality and E[M] ≤ 1 in the second. This proves
the claim.

Remark E.3 (Interpretation). When An = Kn+ρI with ρ > 0, the quantity γ(n, ρ) = 1
2 log det(I+

ρ−1Kn) coincides with the standard information gain in kernel bandits/GP regression; the lemma is
the usual self-normalized tail bound obtained directly from the mixture supermartingale via Markov

F UNIFORM CI

Theorem F.1 (Uniform CI for all ∥V ∥Hℓ
≤ B). Under conditions of Lemma 3.2, for any B > 0

and δ ∈ (0, 1), with probability at least 1− δ, for all V ∈ Hℓ with ∥V ∥Hℓ
≤ B and all z ∈ Z ,∣∣[PhV ](z)− f̂ V

h,n(z)
∣∣ ≤ βn,δ σh,n(z), βn,δ := B

(√
ρU +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
.

Proof. We proceed in three steps and keep the step index h implicit to lighten notation. Throughout,
recall the following definitions:

(i) (Bellman image as a CME inner product) Under Assumption 2.1, for every V ∈ Hℓ and z ∈ Z ,

[PhV ](z) = ⟨µ(z), V ⟩Hℓ
, (23)

where µ : Z → Hℓ is the conditional mean embedding (CME) with ∥µ∥Hk⊗Hℓ
≤ U .

(ii) (Scalar and vector KRR) Given data {(zi, s′i)}ni=1, define the scalar KRR predictor for labels
y
(V )
i := V (s′i)

f̂ V
h,n(z) = kn(z)

⊤(Kn + ρI)−1y(V ), σ2
h,n(z) = k(z, z)− kn(z)

⊤(Kn + ρI)−1kn(z),
(24)

and the vector-valued KRR CME estimator

µ̂n(z) :=

n∑
i=1

αi(z)ϕ(s
′
i), α(z) := (Kn + ρI)−1kn(z). (25)

(iii) (Scalar-vector identity) By Proposition 3.1,

f̂ V
h,n(z) = ⟨µ̂n(z), V ⟩Hℓ

for all V ∈ Hℓ, z ∈ Z . (26)

Step 1: Reduce scalar error to a vector errer via inner products. Combining equation 23 and
equation 26, for any V ∈ Hℓ and z ∈ Z ,

[PhV ](z)− f̂ V
h,n(z) = ⟨µ(z), V ⟩Hℓ

− ⟨µ̂n(z), V ⟩Hℓ
=

〈
µ(z)− µ̂n(z), V

〉
Hℓ

(27)
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Step 2: Apply Cauchy-Schwarz + take a supremum over RKHS ball. By Cauchy-Schwarz in
Hℓ, ∣∣[PhV ](z)− f̂ V

h,n(z)
∣∣ ≤ ∥µ(z)− µ̂n(z)∥Hℓ

· ∥V ∥Hℓ
. (28)

Hence, uniformly over all V in the RKHS ball {V : ∥V ∥Hℓ
≤ B},

sup
∥V ∥Hℓ

≤B

∣∣[PhV ](z)− f̂ V
h,n(z)

∣∣ ≤ B ∥µ(z)− µ̂n(z)∥Hℓ
(29)

Note that the right-hand side depends on the data and on z, but not on V ; this is the key to obtaining
a uniform statement over the entire ball.

Step 3: Invoke vector-valued KRR concentraton (Lemma 3.2). Lemma 3.2 asserts that, for any
δ ∈ (0, 1), with probability at least 1− δ,

∥µ(z)−µ̂n(z)∥Hℓ
≤

(√
ρU+

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
σh,n(z) simultaneously for all z ∈ Z .

(30)
Multiplying both sides of equation 30 by B and plugging into equation 29 gives, on the same high-
probability event,

sup
∥V ∥Hℓ

≤B

∣∣[PhV ](z)−f̂ V
h,n(z)

∣∣ ≤ B
(√

ρU+
σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
σh,n(z) for all z ∈ Z .

Since the left-hand side is an upper bound on each particular V with ∥V ∥Hℓ
≤ B, we conclude that,

with probability at least 1− δ, simultaneously for all V with ∥V ∥Hℓ
≤ B and all z ∈ Z ,∣∣[PhV ](z)− f̂ V

h,n(z)
∣∣ ≤ βn,δ σh,n(z),

with
βn,δ := B

(√
ρU +

σ
√
ρ

√
2γ(n, ρ) + 2 log 1

δ

)
.

This is exactly the claimed bound.

G ADDITIONAL RESULTS

Definition G.1 (ρ-regularized orthogonal projector (Tikhonov projector)). LetH be a Hilbert space
and S ⊂ H a finite-dimensional subspace with basis {s1, . . . , sm}. For ρ > 0, the ρ-regularized
orthogonal projector (or Tikhonov projector) ΠS,ρ : H → S maps any f ∈ H to the unique element
g ∈ S that solves the ridge-regularized least-squares problem

g = argmin
h∈S

∥f − h∥2H + ρ ∥h∥2H

Equivalntly, if S : Rm → H denots the synthesis operator Sc =
∑m

j=1 cjsj and G = S∗S is the
Gram matrix of {sj} inH, then

ΠS,ρf = S (G+ ρI)−1 S∗f

which reduces to standard orthogonal projector as ρ ↓ 0 (provided G is invertible).
Lemma G.2 (Bias inequality using Tikhonov interpolaton). Let K(z, z′) = k(z, z′) IHℓ

be the
operator-valued kernel on Z with scalar kernel k and output space Hℓ, and let Hk,I denote the
associated vector-valued RKHS (isometric to Hk ⊗ Hℓ). Given training inputs z1:n, define the
finite-dimensional subspace

Sn := span
{
K(·, zi)u : i = 1, . . . , n, u ∈ Hℓ

}
⊂ Hk,I

and let Πn,ρ : Hk,I → Sn be the ρ-regularized orthogonal projector (Tikhonv projector) onto
Sn. Let µ ∈ Hk,I be the (vector-valued) target and M⊤ : Rn → Hℓ be the linear operator
M⊤b =

∑n
i=1 bi µ(zi). Then, for every z ∈ Z ,

∥µ(z)−M⊤(Kn + ρI)−1kn(z)∥Hℓ
= ∥µ(z)−Πn,ρµ(z)∥Hℓ

≤ √ρ ∥µ∥Hk,I
σh,n(z), (31)

where Kn = [k(zi, zj)]i,j , kn(z) = [k(z, z1), . . . , k(z, zn)]
⊤, and σ2

h,n(z) = k(z, z) −
kn(z)

⊤(Kn + ρI)−1kn(z).
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Proof. We first recall that in the vector-valued RKHS with kernel K = k I , the evaluation functional
at z is represented by K(·, z) = k(·, z)IHℓ

, and the regularized orthogonal projection Πn,ρ onto Sn
satisfies the normal equations (see Lemma G.3)

Πn,ρµ(·) =

n∑
i=1

K(·, zi) c⋆i , with (Kn + ρI)C⋆⊤ = M⊤,

where C⋆ = [c⋆1, . . . , c
⋆
n] and M⊤ : Rn → Hℓ maps ei 7→ µ(zi). Evaluating at z and using

K(·, zi) = k(·, zi)I , we obtain

Πn,ρµ(z) =

n∑
i=1

k(z, zi) c
⋆
i =

(
kn(z)

⊤(Kn + ρI)−1
)
M⊤ = M⊤(Kn + ρI)−1kn(z)

which proves the first equalty in equation 31.

For the inequality, we use the standard Tikhonov interpolation error bound in RKHSs (vector-valued
case with kernel K = k I). Let g⋆ = Πn,ρµ. Then, for any z,

∥µ(z)− g⋆(z)∥Hℓ
≤ ∥µ− g⋆∥Hk,I

∥K(·, z)∥Hk,I
≤ √ρ ∥µ∥Hk,I

∥(Kn + ρI)−1/2kn(z)∥2,

where the last step uses the optimality of g⋆ for the Tikhonov problem and the standard interpola-
tion inequality (see, e.g., Steinwart & Christmann, 2008; Carmeli et al., 2010, see Lemma G.8 for
details). Finally,

∥(Kn + ρI)−1/2kn(z)∥22 = kn(z)
⊤(Kn + ρI)−1kn(z) = k(z, z)− σ2

h,n(z),

and since Kn + ρI ⪰ ρI ,

∥(Kn + ρI)−1/2kn(z)∥2 ≤
1
√
ρ
σh,n(z).

Combining the last two displays yields ∥µ(z)− g⋆(z)∥Hℓ
≤ √ρ ∥µ∥Hk,I

σh,n(z), which is equa-
tion 31.

Lemma G.3 (Normal equations for the Tikhonov projector onto Sn). Let K(z, z′) = k(z, z′) IHℓ

be the operator-valued kernel on Z with scalar kernel k and output space Hℓ, and let Hk,I be the
associated vector-valued RKHS. Given inputs z1:n, define

Sn := span
{
K(·, zi)u : i = 1, . . . , n, u ∈ Hℓ

}
⊂ Hk,I

For ρ > 0, the ρ-regularized orthogonal projection Πn,ρ : Hk,I → Sn of any g ∈ Hk,I is the
(unique) minimizer of

min
h∈Sn

∥g − h∥2Hk,I
+ ρ ∥h∥2Hk,I

.

In particular, for g = µ and h(·) =
∑n

i=1 K(·, zi) ci with coefficients ci ∈ Hℓ, optimal coefficients
c⋆i satisfy the normal equations

(Kn + ρI)C⋆⊤ = M⊤ (32)
where Kn = [k(zi, zj)]

n
i,j=1, C⋆ = [c⋆1, . . . , c

⋆
n], and M⊤ : Rn → Hℓ is defined by M⊤ei = µ(zi)

Consequently,

Πn,ρµ(·) =

n∑
i=1

K(·, zi) c⋆i .

Proof. Write h(·) =
∑n

i=1 K(·, zi) ci with ci ∈ Hℓ, and define the synthesis operator S : Hn
ℓ →

Hk,I by S(c1, . . . , cn) =
∑n

i=1 K(·, zi) ci. The objective is

J(c1, . . . , cn) = ∥µ− SC ∥2Hk,I
+ ρ ∥SC∥2Hk,I

, C = (c1, . . . , cn) ∈ Hn
ℓ .

The RKHS inner product with kernl K = k I implies S∗S = Kn ⊗ IHℓ
and S∗µ =

(µ(z1), . . . , µ(zn) ), i.e., M⊤ : Rn → Hℓ maps ei 7→ µ(zi) (see Lemma G.4). Expanding and
taking the Fréchet derivative with respect to C yields the normal equations (see Lemma G.6)

(S∗S + ρ I)C⋆ = S∗µ,
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or equivalently, (
(Kn ⊗ IHℓ

) + ρ I
)
C⋆ = M

where we regard C⋆ as a vector in Hn
ℓ and M = (µ(z1), . . . , µ(zn)). Grouping by coordinates

in Hℓ gives equation 32: (Kn + ρI)C⋆⊤ = M⊤ Substitutng C⋆ back into h = SC⋆ shows that
the minimizer is Πn,ρµ(·) =

∑n
i=1 K(·, zi) c⋆i . Uniqueness follows from strict convexity of J for

ρ > 0.

Lemma G.4 (Adjoint identities for synthesis operator). Let K(z, z′) = k(z, z′) IHℓ
be the

operator-valued kernel on Z with scalar kernel k and output Hilbert space Hℓ, and let Hk,I be
the associated vector-valued RKHS. Fix inputs z1:n and define the synthesis operator

S : Hn
ℓ −→ Hk,I , S(c1, . . . , cn) :=

n∑
i=1

K(·, zi) ci =

n∑
i=1

k(·, zi) ci

Then its adjoint S∗ : Hk,I → Hn
ℓ satisfies

S∗S = Kn ⊗ IHℓ
, S∗µ =

(
µ(z1), . . . , µ(zn)

)
,

where Kn = [k(zi, zj)]
n
i,j=1, µ : Z → Hℓ is anyHℓ-valued function, and ⊗ denotes the Kronecker

product (acting as the identity onHℓ).

Proof. We characterize S∗ using the defining relation ⟨SC, g⟩Hk,I
= ⟨C, S∗g⟩Hn

ℓ
for all C =

(c1, . . . , cn) ∈ Hn
ℓ and g ∈ Hk,I . First, by the reproducing property in the vector-valued RKHS

with kernel K = k I (see Lemma G.5),〈
K(·, zi) ci, g

〉
Hk,I

=
〈
ci, g(zi)

〉
Hℓ

Summing over i,

〈
SC, g

〉
Hk,I

=

n∑
i=1

〈
ci, g(zi)

〉
Hℓ

=
〈
C, (g(z1), . . . , g(zn))

〉
Hn

ℓ

.

Hence S∗g = (g(z1), . . . , g(zn)) ∈ Hn
ℓ .

Now take g = SC ′ =
∑n

j=1 K(·, zj)c′j with C ′ = (c′1, . . . , c
′
n) ∈ Hn

ℓ . Then

S∗SC ′ =
(
SC ′)(z1), . . . , (SC ′)(zn) = ( n∑

j=1

K(z1, zj)c
′
j , . . . ,

n∑
j=1

K(zn, zj)c
′
j

)
(33)

=
( n∑

j=1

k(z1, zj)c
′
j , . . . ,

n∑
j=1

k(zn, zj)c
′
j

)
. (34)

This is exactly (Kn ⊗ IHℓ
)C ′, proving S∗S = Kn ⊗ IHℓ

.

Finally, for any µ : Z → Hℓ, S∗µ = (µ(z1), . . . , µ(zn)), by the first identity with g = µ. Writing
M⊤ : Rn → Hℓ for the linear map M⊤ei = µ(zi), this is the same as the stacked vector of
evaluations.

Lemma G.5 (Vector-valued reproducng property for K = k I). Let K(z, z′) = k(z, z′) IHℓ
be

the operator-valued kernel on Z , where k is a scalar positive-definite kernel and IHℓ
is the identity

on the Hilbert spaceHℓ. LetHk,I be the associated vector-valued RKHS ofHℓ-valued functions on
Z . Then for every z ∈ Z , c ∈ Hℓ, and g ∈ Hk,I ,〈

K(·, z) c, g
〉
Hk,I

=
〈
c, g(z)

〉
Hℓ

Proof. By definition of a vector-valued RKHS with kernel K, the evaluation at z is a bounded linear
functional fromHk,I toHℓ, represented by K(·, z) in the sense that for all g ∈ Hk,I ,

g(z) =
〈
g, K(·, z)

〉
Hk,I

,
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where the right-hand side is an element of Hℓ obtained by the Riesz representation (here, the inner
product in Hk,I takes values in Hℓ when pairing with K(·, z)). Concretely, for any c ∈ Hℓ, taking
inner products with c inHℓ yields〈

c, g(z)
〉
Hℓ

=
〈
c,

〈
g, K(·, z)

〉
Hk,I

〉
Hℓ

=
〈
g, K(·, z) c

〉
Hk,I

where last equality uses bilinearity and the fact that K(·, z) acts on c via IHℓ
. Symmetry of the

inner product gives the displayed identity. (For a formal construction, see the standard vector-valued
RKHS references; e.g., Carmeli, De Vito, and Toigo, 2010.)

Lemma G.6 (Normal equations for ridge in coefficient space). Let K(z, z′) = k(z, z′) IHℓ
be

the operator-valued kernel on Z with scalar kernel k and output Hilbert space Hℓ, and let Hk,I be
the associated vector-valued RKHS. Fix inputs z1:n and define the synthesis operator

S : Hn
ℓ −→ Hk,I , S(c1, . . . , cn) :=

n∑
i=1

K(·, zi) ci.

Equip Hn
ℓ with the product inner product ⟨C,D⟩Hn

ℓ
=

∑n
i=1⟨ci, di⟩Hℓ

for C = (c1, . . . , cn),
D = (d1, . . . , dn). For a target µ ∈ Hk,I and ridge parameter ρ > 0, consider the Tikhonov
objective in coefficient space

J(C) := ∥µ− SC ∥2Hk,I
+ ρ ∥C∥2Hn

ℓ
, C ∈ Hn

ℓ

Then J is strictly convex and also Fréchet differentiable, and its unique minimizer C⋆ would satisfy
the normal equations (

S∗S + ρ I
)
C⋆ = S∗µ, (35)

where S∗ : Hk,I → Hn
ℓ is the adjoint of S. Moreover, using the identities S∗S = Kn ⊗ IHℓ

and
S∗µ = (µ(z1), . . . , µ(zn)) =: M (cf. Lemma G.4), equation 35 is equivalent to(

(Kn ⊗ IHℓ
) + ρ I

)
C⋆ = M, (36)

with Kn = [k(zi, zj)]
n
i,j=1

Proof. Fréchet derivative. For any direction D ∈ Hn
ℓ and ε ∈ R,

J(C + εD) = ∥µ− SC − εSD∥2Hk,I
+ ρ ∥C + εD∥2Hn

ℓ

Differentiate at ε = 0 (Gâteaux/Fréchet derivative), we have

d

dε
J(C + εD)

∣∣∣
ε=0

= −2 ⟨µ− SC, SD⟩Hk,I
+ 2ρ ⟨C, D⟩Hn

ℓ

= −2 ⟨S∗(µ− SC), D⟩Hn
ℓ

+ 2ρ ⟨C, D⟩Hn
ℓ

= 2
〈(
− S∗µ+ S∗SC + ρC

)
, D

〉
Hn

ℓ

where we have used definition of adjoint S∗ defind as ⟨SC, g⟩Hk,I
= ⟨C, S∗g⟩Hn

ℓ
. The gradient of

J at C is therefore∇J(C) = 2
(
(S∗S + ρI)C − S∗µ

)
.

Optimality and normal equations. Since J is strictly convex (sum of a convex quadratic and a
strongly convex quadratic), it has a unique minimizer C⋆ characterized by∇J(C⋆) = 0, i.e.

(S∗S + ρ I)C⋆ = S∗µ

which is equation 35.

Equivalence to Gram form. By Lemma G.4, S∗S = Kn⊗ IHℓ
and S∗µ = (µ(z1), . . . , µ(zn)) =:

M . Substituting these into equation 35 yields equation 36.

Remark G.7 (Form of Tikhonov projection). Let S : Hn
ℓ → Hk,I be the synthesis operator

S(c1, . . . , cn) =
∑n

i=1 K(·, zi) ci, and let C⋆ ∈ Hn
ℓ be the unique solution of the normal equa-

tions
(S∗S + ρI)C⋆ = S∗µ (equivalently, ((Kn ⊗ IHℓ

) + ρI)C⋆ = M )
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By definition of the ρ-regularized orthogonal projection Πn,ρ onto the span Sn = span{K(·, zi)u :
i ∈ [n], u ∈ Hℓ}, the minimizer of minh∈Sn ∥µ− h ∥2Hk,I

+ ρ∥h∥2Hk,I
is h⋆ = SC⋆. Therefore,

Πn,ρµ(·) = h⋆(·) =

n∑
i=1

K(·, zi) c⋆i

In words: Tikhonov projector onto Sn retains the finite-span form with coefficients given by the ridge
normel equations.
Lemma G.8 (Tikhonov interpolation bound in the vector-valued RKHS). Let K(z, z′) =
k(z, z′) IHℓ

be an operator-valued kernel on Z with scalar kernel k and output Hilbert space Hℓ,
and letHk,I be the associated vector-valued RKHS. Fix training inputs z1:n and ridge ρ > 0. For a
target µ ∈ Hk,I , let

g⋆ := Πn,ρµ ∈ span{K(·, zi)u : i ∈ [n], u ∈ Hℓ}

be the ρ-regularized orthogonel projection of µ onto the finite span (the Tikhonov projector). Then,
for every z ∈ Z ,

∥µ(z)− g⋆(z)∥Hℓ
≤ √ρ ∥µ∥Hk,I

∥∥(Kn + ρI)−1/2kn(z)
∥∥
2

(37)

where Kn = [k(zi, zj)]
n
i,j=1 and kn(z) = [k(z, z1), . . . , k(z, zn)]

⊤

Proof. Step 1: A residual representer. Define the linear evaluation functional at z by Ez : Hk,I →
Hℓ, Ez(h) = h(z). Let S : Hn

ℓ → Hk,I be the synthesis operator S(c1, . . . , cn) =
∑n

i=1 K(·, zi)ci,
and S∗ : Hk,I → Hn

ℓ its adjoint (Lemma G.4 gives S∗h = (h(z1), . . . , h(zn)) and S∗S = Kn ⊗
IHℓ

). Let α(z) := (Kn + ρI)−1kn(z) and define the residual representer

rz(·) := K(·, z) − S α(z) ∈ Hk,I (38)

By vector-valued reproducing prop. (Lemma G.5), for any h ∈ Hk,I ,

⟨h, rz⟩Hk,I
= ⟨h, K(·, z)⟩Hk,I

− ⟨h, Sα(z)⟩Hk,I
= ⟨h(z), · ⟩Hℓ

− ⟨S∗h, α(z)⟩Hn
ℓ

= h(z) −
n∑

i=1

αi(z)h(zi).

In particular, for h = µ and h = g⋆, we obtain

µ(z)− g⋆(z) =
〈
µ− g⋆, rz

〉
Hk,I

. (39)

Step 2: Tikhonov orthogonality and swapping the residual. By optimality of g⋆ = Πn,ρµ for the
Tikhonov problem minh∈span ∥µ− h ∥2Hk,I

+ ρ∥h∥2Hk,I
, the Fréchet first-order condition reads〈

µ− g⋆, SC
〉
Hk,I

+ ρ
〈
g⋆, SC

〉
Hk,I

= 0 ∀C ∈ Hn
ℓ .

Equivalently, with S∗, S∗(µ− g⋆) = − ρS∗g⋆, and therefore, for every z,〈
µ− g⋆, S α(z)

〉
Hk,I

=
〈
S∗(µ− g⋆), α(z)

〉
Hn

ℓ

= − ρ
〈
S∗g⋆, α(z)

〉
Hn

ℓ

Thus equation 39 can be rewrittn as

µ(z)− g⋆(z) =
〈
µ− g⋆, K(·, z)

〉
Hk,I

+ ρ
〈
S∗g⋆, α(z)

〉
Hn

ℓ

.

Using g⋆ = SC⋆ and the normal equations (S∗S+ρI)C⋆ = S∗µ (Lemma G.6), one checks that the
second term equals ρ ⟨C⋆, α(z)⟩Hn

ℓ
= ⟨S∗µ− S∗SC⋆, α(z)⟩ = ⟨µ− g⋆, S α(z)⟩Hk,I

. Therefore

µ(z)− g⋆(z) =
〈
µ− g⋆, K(·, z)− S α(z)

〉
Hk,I

=
〈
µ− g⋆, rz

〉
Hk,I

This recovers equation 39 and shows rz as the Riesz representer of the linear functional h 7→ h(z)−∑
i αi(z)h(zi)

Step 3: Bounding residual via the powar function. By using Cauchy-Schwarz,

∥µ(z)− g⋆(z)∥Hℓ
≤ ∥µ− g⋆∥Hk,I

∥rz∥Hk,I
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A standard computatin (the “power function” calculation; see, e.g., Steinwart & Christmann, 2008,
or Carmeli et al., 2010) gives

∥rz∥2Hk,I
=

〈
rz, rz

〉
Hk,I

= ρ
∥∥(Kn + ρI)−1/2kn(z)

∥∥2
2
,

whence
∥rz∥Hk,I

=
√
ρ
∥∥(Kn + ρI)−1/2kn(z)

∥∥
2

(40)

Finally, Tikhonov optimality inequalty ∥µ − g⋆∥2Hk,I
+ ρ∥g⋆∥2Hk,I

≤ ∥µ∥2Hk,I
implies ∥µ −

g⋆∥Hk,I
≤ ∥µ∥Hk,I

. Combining with equation 40 yields equation 37.

Remark G.9 (On the power functin identity). The equality ∥rz∥2Hk,I
= ρ ∥(Kn + ρI)−1/2kn(z)∥22

follows from expanding rz = K(·, z) − S(Kn + ρI)−1kn(z) in the RKHS inner product, us-
ing S∗S = Kn ⊗ IHℓ

and S∗K(·, z) = kn(z) (Lemma G.4), and the matrix identity (Kn +
ρI)−1Kn(Kn + ρI)−1 = (Kn + ρI)−1 − ρ(Kn + ρI)−2.

H ADDITIONAL RESULTS FOR THEOREM 5.1

Lemma H.1 (Global “good event” via a union bound). Fix δ ∈ (0, 1). For each step h ∈ [H]
and episode t ∈ [T ], let nh,t−1 = |Dh,t−1| be the number of transitions collected at step h before
episode t, and define the per-step confidence radius (as in equation 3)

βh,t := B
(√

ρU +
σ
√
ρ

√
2γ(nh,t−1, ρ) + 2 log 2HT

δ

)
Assume algorithm’s projection guarantees ∥Vh+1,t∥Hℓ

≤ B for all h, t. Then there exists an event
G with

Pr(G) ≥ 1− δ

such that, simultaneously for all h ∈ [H], t ∈ [T ], and all z ∈ Z , Eq equation 11 copied below

[PhVh+1,t](z) ≤ f̂
Vh+1,t

h,t (z) + βh,t σh,t(z). (41)

Proof (with union bound). Step 1: A per-(h, t) confidence event. Fix a particular pair (h, t). Ap-
ply the uniform confidence theorem (Theorem 3.3) at step h using the dataset Dh,t−1 and failure
probability

δh,t :=
δ

HT
Because the algorthm projects onto the RKHS ball, we have ∥Vh+1,t∥Hℓ

≤ B. Therefore, The-
orem 3.3 (with δ replaced by δh,t and n replaced by nh,t−1) gives a high-probability event Gh,t
(depending on the random data collected up to episode t) on which, simultaneously for all z ∈ Z ,∣∣[PhVh+1,t](z)− f̂

Vh+1,t

h,t (z)
∣∣ ≤ B

(√
ρU +

σ
√
ρ

√
2γ(nh,t−1, ρ) + 2 log HT

δ

)
σh,t(z).

Since the left-hand side is an absolute deviation, it implies the desired one-sided inequality

[PhVh+1,t](z) ≤ f̂
Vh+1,t

h,t (z) +B
(√

ρU +
σ
√
ρ

√
2γ(nh,t−1, ρ) + 2 log HT

δ

)
︸ ︷︷ ︸

β
(min)
h,t

σh,t(z), ∀z ∈ Z,

with probability at least 1− δh,t (i.e., Pr(Gh,t) ≥ 1− δ/(HT )).

Step 2: Uniformity across all (h, t) by a union bound. There are at most HT such pairs (h, t).
The union bound3 yields

Pr
( H⋂

h=1

T⋂
t=1

Gh,t
)
≥ 1−

∑
h,t

Pr(Gch,t) ≥ 1−HT · δ

HT
= 1− δ.

3If events E1, . . . , Em each fail with probability at most ϵ, then Pr(
⋂

i Ei) ≥ 1−mϵ.
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Let G :=
⋂

h,t Gh,t; then Pr(G) ≥ 1− δ and, on G, the one-sided bound above holds for every pair
(h, t) and every z.

Step 3: Using the slightly larger radius in equation 3. In the algorithm we instantiate the per-step
radius with the slightly larger log factor,

βh,t = B
(√

ρU +
σ
√
ρ

√
2γ(nh,t−1, ρ) + 2 log 2HT

δ

)
≥ β

(min)
h,t ,

since log
(
2HT
δ

)
≥ log

(
HT
δ

)
. Using a larger (more conservative) radius can only make the inequal-

ity easier to satisfy. Therefore, on the same event G,

[PhVh+1,t](z) ≤ f̂
Vh+1,t

h,t (z) + βh,t σh,t(z) for all h, t and all z ∈ Z ,

which is exactly equation 11.

I ADDITIONAL RESULTS

Lemma I.1 (Finite-dimensional reduction of the RKHS projection). Let (Hℓ, ⟨·, ·⟩Hℓ
) be an RKHS

with the reproducing kernel ℓ : S × S → R. We fix atoms s̄1, . . . , s̄mh
∈ S and we write Gram

matrix Lh ∈ Rmh×mh as (Lh)ij = ℓ(s̄i, s̄j). For a target vector vh,t ∈ Rmh , we consider the
(empirical) projection problem over the feasible class

F :=
{
V ∈ Hℓ : ∥V ∥Hℓ

≤ B, 0 ≤ V (s̄j) ≤ U ∀j ∈ [mh]
}
, U := H − h+ 1.

That is,

min
V ∈F

1

mh

mh∑
j=1

(
V (s̄j)− vh,t(j)

)2
(42)

Then there exists an optimal solution of the form V ∗(·) =
∑mh

j=1 αj ℓ(·, s̄j) and, by parameterizing
by α ∈ Rmh , equation 42 is equivalent to the convex quadratic program

min
α∈Rmh

1

mh

∥∥Lh α− vh,t
∥∥2
2

s.t. α⊤Lh α ≤ B2, 0 ≤ (Lh α)j ≤ U ∀j ∈ [mh]. (43)

Moreover, equation 5 is a convex program: its objective has PSD Hessian 2
mh

L⊤
h Lh, the quadratic

constraint uses the PSD matrix Lh ⪰ 0, and the box constraints are linear.

Proof. Let HS := span{ℓ(·, s̄j) : j ∈ [mh]} ⊆ Hℓ and let PS : Hℓ → HS denote orthogonel
projaction (in RKHS inner product). For any V ∈ Hℓ, write the orthogonal decomposition V =
PSV + (I − PS)V =: VS + V⊥ with VS ∈ HS and V⊥ ∈ H⊥

S .

(i) Loss depends only on VS . By the reproducing property, for every j,

V⊥(s̄j) = ⟨V⊥, ℓ(·, s̄j)⟩Hℓ
= 0 since ℓ(·, s̄j) ∈ HS ⊥ V⊥

Hence we have V (s̄j) = VS(s̄j) for all j, so the empirical loss in equation 42 equals
1

mh

∑
j(VS(s̄j)− vh,t(j))

2, independent of V⊥

(ii) Feasibility is preserved (and improved) by dropping V⊥. The box constraints 0 ≤ V (s̄j) ≤ U
involve only the evaluations at s̄j and thus are unchanged when replacing V by VS (by (i)). For the
norm constraint, ∥V ∥2Hℓ

= ∥VS∥2Hℓ
+ ∥V⊥∥2Hℓ

≥ ∥VS∥2Hℓ
, so ∥V ∥ ≤ B implies ∥VS∥ ≤ B.

(iii) Reduction to HS . Given any feasible V , the function VS is also feasible and achieves the same
objective value; therefore an optimal solution exists inHS

(iv) Parameterization by coefficients. Every V ∈ HS can be written as V (·) =
∑mh

j=1 αj ℓ(·, s̄j) for
some α ∈ Rmh . The vector of evaluations at the atoms is then(

V (s̄1), . . . , V (s̄mh
)
)⊤

= Lh α, (Lh)ij = ℓ(s̄i, s̄j)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The RKHS norm satisfies ∥V ∥2Hℓ
=

∑
i,j αiαj ℓ(s̄i, s̄j) = α⊤Lhα (standard RKHS identity).

Substituting these relations into equation 42 and the constraints yields equation 5.

(v) Convexity. Since Lh is a (symmetric) Gram metrix, Lh ⪰ 0. The objective 1
mh
∥Lhα− vh,t∥22

is convex with Hessian 2
mh

L⊤
h Lh ⪰ 0. The quadratic constraint α⊤Lhα ≤ B2 defines a convex

set because the quadratic form is convex for Lh ⪰ 0. The bounds 0 ≤ (Lhα)j ≤ U are linear
inequalities in α Thus equation 5 is a convex quadratic program.

Remark I.2 (Representer viewpoint). Argument above is a constrained versien of the representer
theorem: because both the objective and the constraints depend on V only through its evaluations at
{s̄j} and its RKHS norm, the optimizer lies in the span of kernel sections at these points Kimeldorf
& Wahba (1971); Schölkopf & Smola (2002); Schölkopf et al. (2001).
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