

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ON KERNEL RL WITHOUT OPTIMISTIC CLOSURE

Anonymous authors

Paper under double-blind review

ABSTRACT

We study episodic reinforcement learning with a kernel (RKHS) structure on state-action pairs. Previous optimistic analyses in this case either pay a data-dependent covering-number penalty that can grow with time and undermine no-regret guarantees, or it assumes a strong “optimistic closure” condition requiring all optimistic proxies to lie in a fixed state-RKHS ball. We take a different approach that removes the covering-number dependence without invoking optimistic closure. Our analysis builds a uniform confidence bound, derived via conditional mean embeddings, that holds simultaneously for all proxy value functions within a bounded state-RKHS class. We introduce **KOVI-Proj**, an optimistic value-iteration scheme that explicitly projects the optimistic proxy back into the state-RKHS ball at every step, ensuring that the uniform bound applies throughout the learning process. Under a restricted Bellman-embedding assumption (bounded conditional mean embeddings), KOVI-Proj enjoys a high-probability no-regret guarantee whose rate is governed by the task horizon and the kernel’s information gain. When the optimal value function lies in the chosen state-RKHS ball (realizability), the regret is sublinear; in the agnostic case, an explicit approximation term reflects the best RKHS approximation error. Overall, this work provides a new pathway to no-regret kernel RL that is strictly weaker than optimistic closure and avoids covering-number penalties. Numerical experiments validate our claims.

1 INTRODUCTION

Kernel-based function approximation are known to provide an interesting link between linear models and the behavior of infinitely wide neural networks. However, obtaining sharp, no-regret (let alone order-optimal) guarantees in kernel-based reinforcement learning (RL) remains challenging (Vakili, 2024). Previous optimistic analyses in RKHSs typically follow one of the two approaches: (i) apply a union bound over a *data-dependent, evolving* class of optimistic value proxies, thereby incurring a covering-number penalty that can scale in the order of $\Omega(\sqrt{T})$ and spoil no-regret for common kernels (e.g., kernelized optimistic LSVI: Least Squares Value Iteration (Yang et al., 2020)); or (ii) assume a strong *optimistic closure* property stating that *every* optimistic proxy already contained in a fixed state-RKHS ball (as found in CME-based optimistic RL) (Chowdhury & Oliveira, 2023). The former is statistically loose; the latter is structurally strong and not obviously aligned with standard optimistic constructions.

We take a different approach based on *uniform concentration without covering*. The key observation is that for any V in a state RKHS \mathcal{H}_ℓ , the Bellman image $[P_h V]$ can be written as an inner product

$$[P_h V](z) = \langle \mu_h(z), V \rangle_{\mathcal{H}_\ell},$$

where $\mu_h : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ is the *conditional mean embedding* (CME) of the next-state distribution (Muandet et al., 2017b; Song et al., 2013; Muandet et al., 2017a). When μ_h is contained in an appropriate vector-valued RKHS over \mathcal{Z} with bounded norm, the map $V \mapsto [P_h V]$ is a bounded linear operator from $(\mathcal{H}_\ell, \|\cdot\|_{\mathcal{H}_\ell})$ to $(\mathcal{H}_k, \|\cdot\|_{\mathcal{H}_k})$ (Carmeli et al., 2010). This viewpoint lets us control, via a single vector-valued regression problem, the Bellman images $[P_h V]$ for all V in the state ball $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$ simultaneously, yielding a uniform kernel-ridge confidence bound with *no* data-dependent covering (leveraging information-gain / elliptical-potential tools standard in kernel bandits) (Chowdhury & Gopalan, 2017). Importantly, we *enforce* the bounded-norm property algorithmically by projecting the optimistic proxy value onto the state-RKHS ball each step. Experimental results show promise of the proposed method, and tends to shows lower regret than the baselines.

054 **Constitutions of this paper is listed as follows:**
 055

056 (1) **Restricted Bellman-embedding assumption (RBE).** We use a mild assumption under which
 057 the CME μ_h belongs to the vector-valued RKHS on \mathcal{Z} with kernel k I and norm at most U . This
 058 is strictly weaker than optimistic closure (which presumes *all* optimistic proxies already lie in a
 059 fixed state-RKHS ball), and it is natural under standard CME regularity (Muandet et al., 2017b;
 060 Carmeli et al., 2010).

061 (2) **Uniform confidence without covering.** We prove a high-probability bound

$$062 \quad \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq \beta_{h,n} \sigma_{h,n}(z),$$

063 holding for all z and all V in the ball, where $\hat{f}_{h,n}^V$ is the kernel-ridge predictor trained on labels
 064 $V(s')$ and $\sigma_{h,n}$ is the posterior standard deviation. The multiplier satisfies

$$065 \quad \beta_{h,n} = B U + \frac{B \sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log(1/\delta)},$$

066 depending on the ball radius B , operator norm U , sub-Gaussian scale σ , ridge parameter $\rho > 0$,
 067 and (regularized) information gain $\gamma(n, \rho)$ -*but it does not depend* on any covering number of the
 068 proxy class (Chowdhury & Gopalan, 2017).

069 (3) **KOVI-Proj: Kernel-Optimistic Value Iteration with projection.** We propose a practical optimis-
 070 mistic method that (i) performs kernel-ridge backups to estimate $[P_h V]$, (ii) adds an uncertainty
 071 bonus $\beta_{h,n} \sigma_{h,n}$, and (iii) *the method projects optimistic value proxy* onto the state-RKHS ball
 072 (with clipping), thereby guaranteeing $\|V\|_{\mathcal{H}_\ell} \leq B$ and placing all proxies within the scope of the
 073 uniform bound above.

074 (4) **No-regret guarantee.** Under the realizability ($V_h^* \in \mathcal{H}_\ell(B)$) assumption, the proposed KOVI-
 075 Proj method attains

$$076 \quad R(T) = \tilde{\mathcal{O}}\left(H^2 B \left(U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}\right) \sqrt{T \gamma(HT, \rho)}\right),$$

077 which is sublinear for kernels with sublinear information gain (e.g., Matérn/Squared-
 078 Exponential under regularization) Chowdhury & Gopalan (2017). In the agnostic case
 079 ($V_h^* \notin \mathcal{H}_\ell(B)$), we add an explicit approximation term of order $HT \varepsilon_B$, where $\varepsilon_B :=$
 080 $\max_h \sup_{\|V\| \leq B} \|V_h^* - V\|_\infty$, and we show how a slowly growing $B = B_T$ balances both
 081 terms to remain $o(T)$.

082 2 PROBLEM SETUP AND ASSUMPTIONS

083 We consider an episodic MDP $M = (\mathcal{S}, \mathcal{A}, H, P, r)$ with horizon $H \in \mathbb{N}$. Let $\mathcal{Z} = \mathcal{S} \times \mathcal{A}$. For
 084 step $h \in [H]$, transition kernel is $P_h(\cdot | z)$ on \mathcal{S} is unknown. We take rewards $r_h : \mathcal{Z} \rightarrow [0, 1]$ to be
 085 known and deterministic for clarity;¹ for a policy π and step h , we have

$$086 \quad Q_h^\pi(z) = r_h(z) + \mathbb{E}_{s' \sim P_h(\cdot | z)}[V_{h+1}^\pi(s')], \quad V_h^\pi(s) = \max_{a \in \mathcal{A}} Q_h^\pi(s, a), \quad V_{H+1}^\pi \equiv 0$$

087 The per-episode regret will be measured against optimal value V_1^* as follows

$$088 \quad R(T) := \sum_{t=1}^T (V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t})).$$

089 **RKHS structure on \mathcal{Z} and on \mathcal{S} .** Let $k : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ be a positive-definite kernel with RKHS
 090 $(\mathcal{H}_k, \|\cdot\|_{\mathcal{H}_k})$ and $k(z, z) \leq \kappa_k^2$. Let $\ell : \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ be a positive-definite kernel with RKHS
 091 $(\mathcal{H}_\ell, \|\cdot\|_{\mathcal{H}_\ell})$ and let $\ell(s, s) \leq \kappa_\ell^2$. We plan to use kernel ridge regression (KRR) on \mathcal{Z} and consider
 092 proxy value functions $V : \mathcal{S} \rightarrow \mathbb{R}$ in \mathcal{H}_ℓ .

093 The following assumption is novel to our work, but is inspired by the conditional mean embedding
 094 literature (Muandet et al., 2017b) and the theory of vector-valued RKHSs (Carmeli et al., 2010).

095 ¹The extension to unknown (possibly stochastic) rewards can be handled with an additional KRR estimator
 096 and a union bound; see the discussion section.

108 **Assumption 2.1** (Restricted Bellman-embedding (RBE)). *For each $h \in [H]$ assume that there exists*
 109 *a conditional mean embedding $\mu_h : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ such that*

$$111 [P_h V](z) := \mathbb{E}_{s' \sim P_h(\cdot|z)}[V(s')] = \langle \mu_h(z), V \rangle_{\mathcal{H}_\ell} \quad \text{for all } V \in \mathcal{H}_\ell \text{ and all } z \in \mathcal{Z} \quad (1)$$

112 *and μ_h belongs to the vector-valued RKHS over \mathcal{Z} with operator-valued kernel $K(z, z') =$
 113 $k(z, z') I_{\mathcal{H}_\ell}$, with $\|\mu_h\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell} \leq U$.*

114 **Remark 2.2.** *Assumption 2.1 is a standard conditional-mean-embedding (CME) property written in*
 115 *a vector-valued RKHS: $z \mapsto \mu_h(z)$ is an \mathcal{H}_ℓ -valued function whose inner product with V equals the*
 116 *Bellman image $[P_h V]$ ². This assumption is strictly weaker than optimistic closure (which would re-*
 117 *quire that all optimistic proxies lie in a fixed state-RKHS ball in advance) and is implied by common*
 118 *regularity conditions under which CMEs exist with bounded norm.*

120 **Data model at step h .** On observing a transition (z_i, s'_i) , we define \mathcal{H}_ℓ -valued observation $\phi_i =$
 121 $\phi(s'_i)$, where $\phi : \mathcal{S} \rightarrow \mathcal{H}_\ell$ is the canonical feature map of ℓ . Then we have

$$122 \mathbb{E}[\phi_i | z_i] = \mu_h(z_i), \quad \varepsilon_i := \phi_i - \mu_h(z_i) \in \mathcal{H}_\ell,$$

124 so $\{\varepsilon_i\}$ is a martingale-difference sequence in Hilbert space \mathcal{H}_ℓ . We assume $\|\varepsilon_i\|_{\mathcal{H}_\ell} \leq \kappa_\ell$ almost
 125 surely and that ε_i is σ -sub-Gaussian in \mathcal{H}_ℓ conditionally on the past. For any $V \in \mathcal{H}_\ell$, we define
 126 scalar labels

$$127 y_i^{(V)} := V(s'_i) = \langle \phi_i, V \rangle_{\mathcal{H}_\ell} = \langle \mu_h(z_i), V \rangle_{\mathcal{H}_\ell} + \xi_i^{(V)}, \quad \xi_i^{(V)} := \langle \varepsilon_i, V \rangle_{\mathcal{H}_\ell},$$

129 so that $\xi_i^{(V)}$ is conditionally sub-Gaussian with proxy variance proportional to $\|V\|_{\mathcal{H}_\ell}^2$ (and $|\xi_i^{(V)}| \leq$
 130 $\kappa_\ell \|V\|_{\mathcal{H}_\ell}$ almost surely).

132 **Kernel ridge predictors and variances.** Given n observations at step h with design points $z_{1:n}$,
 133 Gram matrix $K_n = [k(z_i, z_j)]_{i,j=1}^n$, regularization $\rho > 0$, and labels $\mathbf{y}^{(V)} = [V(s'_1), \dots, V(s'_n)]^\top$,
 134 we define

$$135 \hat{f}_{h,n}^V(z) = k_n(z)^\top (K_n + \rho I)^{-1} \mathbf{y}^{(V)}, \quad \sigma_{h,n}^2(z) = k(z, z) - k_n(z)^\top (K_n + \rho I)^{-1} k_n(z), \quad (2)$$

137 where $k_n(z) = [k(z, z_1), \dots, k(z, z_n)]^\top$. We also use the (regularized) information gain Chowd-
 138 hury & Gopalan (2017); Srinivas et al. (2010)

$$140 \gamma(n, \rho) := \frac{1}{2} \log \det(I + \rho^{-1} K_n)$$

141 Note that all quantities here carry a step index h , which we will suppress when it will be clear from
 142 context.

144 3 A UNIFORM CONFIDENCE BOUND FOR ALL V WITH $\|V\|_{\mathcal{H}_\ell} \leq B$

146 The next proposition will be a key algebraic identity: it trades uniformity over an *uncountable* class
 147 of scalar predictors for a single bound on a *vector-valued* kernel ridge estimator.

149 **Proposition 3.1 (Scalar KRR = inner product with a vector-valued KRR).** *Fix a step h and data*
 150 $\{(z_i, s'_i)\}_{i=1}^n$. *Define the \mathcal{H}_ℓ -valued (vector) KRR estimator*

$$151 \hat{\mu}_n(z) := \sum_{i=1}^n \alpha_i(z) \phi(s'_i) \in \mathcal{H}_\ell, \quad \alpha(z) := (K_n + \rho I)^{-1} k_n(z).$$

154 Then for every $V \in \mathcal{H}_\ell$ and $z \in \mathcal{Z}$, we have

$$155 \hat{f}_{h,n}^V(z) = \langle \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell}$$

158 *Proof.* By equation 2, $\hat{f}_{h,n}^V(z) = \sum_{i=1}^n \alpha_i(z) V(s'_i) = \sum_{i=1}^n \alpha_i(z) \langle \phi(s'_i), V \rangle =$
 159 $\langle \sum_{i=1}^n \alpha_i(z) \phi(s'_i), V \rangle$. For detailed proof, see C.1 in Appendix. \square

161 ²See, e.g., Muandet et al. (2017) for CMEs and Carmeli-De Vito-Toigo (2008) for vector-valued RKHS foundations.

162 Proposition 3.1 reduces uniform control over all scalar targets V to control of the *vector-valued*
 163 estimation error $\|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell}$. The next lemma extends self-normalized kernel concentration
 164 to the vector-valued CME.

165 **Lemma 3.2 (Vector-valued kernel ridge concentration).** *Suppose Assumption 3.2 holds,
 166 $k(z, z) \leq \kappa_k^2$, $\ell(s, s) \leq \kappa_\ell^2$. Let $\rho > 0$ and define $\sigma_{h,n}(\cdot)$ by equation 2. Then for any $\delta \in (0, 1)$,
 167 with probability at least $1 - \delta$, simultaneously for all $z \in \mathcal{Z}$,*

$$169 \|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \leq \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right) \sigma_{h,n}(z).$$

171 *Proof sketch; full details in Appendix E.* Write the vector-valued regression as $\phi_i = \mu(z_i) + \varepsilon_i$, with
 172 $\varepsilon_i \in \mathcal{H}_\ell$ a martingale difference, conditionally σ -sub-Gaussian and $\|\varepsilon_i\|_{\mathcal{H}_\ell} \leq \kappa_\ell$ a.s. The KRR error
 173 decomposes as

$$175 \mu(z) - \hat{\mu}_n(z) = \underbrace{\mu(z) - \Pi_n \mu(z)}_{\text{bias}} - \underbrace{\Phi^\top (K_n + \rho I)^{-1} k_n(z)}_{\text{noise}},$$

177 where Π_n is the Tikhonov projector in the vector-valued RKHS induced by kI , and $\Phi : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$
 178 maps $\mathbf{b} \mapsto \sum_i b_i \phi_i$. The bias is controlled by the standard RKHS interpolation inequality:
 179 $\|\mu(z) - \Pi_n \mu(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell} \sigma_{h,n}(z) \leq \sqrt{\rho} U \sigma_{h,n}(z)$. For the noise, a Hilbert-
 180 space self-normalized bound (made explicit in Appendix E) yields $\|\Phi^\top (K_n + \rho I)^{-1} k_n(z)\|_{\mathcal{H}_\ell} \leq$
 181 $\frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \sigma_{h,n}(z)$ with probability at least $1 - \delta$. Summing the two contributions
 182 gives the claim. \square

184 Combining Proposition 3.1 with Lemma 3.2 yields the desired *uniform* scalar bound.

185 **Theorem 3.3 (Uniform CI for all $\|V\|_{\mathcal{H}_\ell} \leq B$).** *Under the conditions of Lemma 3.2, for any
 186 $B > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$, for all $V \in \mathcal{H}_\ell$ with $\|V\|_{\mathcal{H}_\ell} \leq B$ and all
 187 $z \in \mathcal{Z}$,*

$$189 |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq \beta_{n,\delta} \sigma_{h,n}(z), \quad \beta_{n,\delta} := B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right).$$

191 *Proof.* By equation 1 and Proposition 3.1, $[P_h V](z) - \hat{f}_{h,n}^V(z) = \langle \mu(z) - \hat{\mu}_n(z), V \rangle$; Cauchy-
 192 Schwarz and Lemma 3.2 complete the proof. Detailed proof in Appendix 3.3. \square

194 **Remark 3.4** (Notational simplification used later). *For simplicity in subsequent sections (e.g., in the
 195 algorithmic confidence radius and regret display), we may absorb the $\sqrt{\rho}$ factor into the constant by
 196 defining $U' := \sqrt{\rho} U$ and writing $\beta_{n,\delta} = B(U' + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log(1/\delta)})$. We keep Lemma 3.2
 197 in the explicit $\sqrt{\rho}$ form for clarity.*

200 4 ALGORITHM: KOVI-PROJ (KERNEL-OPTIMISTIC VALUE ITERATION WITH 201 PROJECTION)

203 We now describe our algorithm. We maintain a separate KRR model for each step $h \in [H]$. Let
 204 $\mathcal{D}_{h,t-1} = \{(z_{h,\tau}, s_{h+1,\tau})\}_{\tau=1}^{n_{h,t-1}}$ denote the transitions collected so far at step h before episode t ,
 205 with $n_{h,t-1} = |\mathcal{D}_{h,t-1}|$. At the start of episode t , set $V_{H+1,t} \equiv 0$ and perform a backward pass for
 206 $h = H, H-1, \dots, 1$:

- 207 1. **Kernel-ridge backup.** Using equation 2 with design points $z_{h,1:n_{h,t-1}}$ and labels $y_\tau =$
 208 $V_{h+1,t}(s_{h+1,\tau})$, compute the predictor $\hat{f}_{h,t}^{V_{h+1,t}}(\cdot)$ and its posterior deviation $\sigma_{h,t}(\cdot)$.
- 209 2. **Confidence radius and optimism.** Let $\delta \in (0, 1)$ be the overall failure probability. Define the
 210 per-step confidence multiplier (cf. Theorem 3.3 and Remark 3.4)

$$212 \beta_{h,t} := B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{2HT}{\delta}} \right),$$

214 and form the optimistic action-value

$$215 \tilde{Q}_{h,t}(z) := r_h(z) + \hat{f}_{h,t}^{V_{h+1,t}}(z) + \beta_{h,t} \sigma_{h,t}(z). \quad (3)$$

216 3. Optimistic value and projection onto the state-RKHS ball. Let
 217

$$218 \quad \tilde{V}_{h,t}(s) := \max_{a \in \mathcal{A}} \tilde{Q}_{h,t}(s, a), \\ 219$$

220 then obtain $V_{h,t}$ by projecting $\tilde{V}_{h,t}$ onto $\{V \in \mathcal{H}_\ell : \|V\|_{\mathcal{H}_\ell} \leq B\}$ (with range clipping) under a
 221 reference measure ν on \mathcal{S} :

$$222 \quad V_{h,t} \in \arg \min_{V \in \mathcal{H}_\ell} \{ \|V - \tilde{V}_{h,t}\|_{L^2(\nu)} : \|V\|_{\mathcal{H}_\ell} \leq B, 0 \leq V \leq H - h + 1 \}. \quad (4) \\ 223$$

225 **Interaction.** Within episode t , act greedily with respect to $\tilde{Q}_{h,t}$: pick $a_{h,t} \in$
 226 $\arg \max_{a \in \mathcal{A}} \tilde{Q}_{h,t}(s_{h,t}, a)$, observe $s_{h+1,t} \sim P_h(\cdot | s_{h,t}, a_{h,t})$, and append $(z_{h,t}, s_{h+1,t})$ to $\mathcal{D}_{h,t}$.
 227 Proceed to step $h+1$.
 228

229 **Projection in finite dimension (The QP form).** In practice, we instantiate equation 4 via the
 230 representer theorem. Let $\{\bar{s}_j\}_{j=1}^{m_h}$ be a set of anchor states for step h (e.g., the distinct states
 231 observed at step h so far, optionally augmented by a cover of \mathcal{S}). Denote the Gram matrix
 232 $L_h = [\ell(\bar{s}_i, \bar{s}_j)]_{i,j}$ and the vector of target values $v_{h,t} = [\tilde{V}_{h,t}(\bar{s}_j)]_{j=1}^{m_h}$. Seeking $V \in \mathcal{H}_\ell$ of the
 233 form $V(s) = \sum_{j=1}^{m_h} \alpha_j \ell(s, \bar{s}_j)$, the projection reduces to the convex quadratic program (although
 234 standard, a proof is in appendix I)

$$235 \quad \min_{\alpha \in \mathbb{R}^{m_h}} \frac{1}{m_h} \|L_h \alpha - v_{h,t}\|_2^2 \quad \text{s.t.} \quad \alpha^\top L_h \alpha \leq B^2, \quad 0 \leq (L_h \alpha)_j \leq H - h + 1 \quad \forall j. \quad (5)$$

236 The optimizer yields $V_{h,t}(s) = \sum_{j=1}^{m_h} \alpha_j \ell(s, \bar{s}_j)$. Problem equation 5 is a small QP solvable in
 237 $\tilde{\mathcal{O}}(m_h^3)$ time per step; in our experiments we take m_h to be the number of unique states observed at
 238 step h (with optional down-sampling).

242 **Remarks.**
 243

244 (i) The confidence radius $\beta_{h,t}$ incorporates a union bound over all (h, t) via the $\log(2HT/\delta)$ term,
 245 ensuring the uniform event of Theorem 3.3 holds jointly for all steps and episodes.
 246

247 (ii) The projection step guarantees $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$ and range constraints; thus *every* optimistic proxy
 248 used by the algorithm lies in the state-RKHS ball, placing it within the scope of the uniform
 249 confidence bound without any data-dependent covering.
 250

251 (iii) Choice of ν in equation 4 can be the empirical state distribution at step h or an exploratory cover
 252 over \mathcal{S} ; the finite-dimensional form equation 5 corresponds to taking ν uniform over the anchor
 253 set.
 254

255 (iv) If rewards are unknown and/or stochastic, one can learn \hat{r}_h via a separate KRR with its own confi-
 256 dence band and add it to equation 3 (with a union bound across reward and transition estimators).
 257

258 (v) For notational simplicity one may absorb $\sqrt{\rho}$ into U (Remark 3.4) and write $\beta_{h,t} = B(U' +$
 259 $\frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2\log(2HT/\delta)})$ with $U' := \sqrt{\rho}U$.
 260

261 **5 REGRET ANALYSIS**
 262

263 We state the main guarantee under Assumption 2.1. The proof follows the optimistic value-iteration
 264 template, combining (i) the uniform confidence event from Theorem 3.3 enforced by the projection
 265 step, (ii) a standard telescoping decomposition, and (iii) an elliptical-potential (information-gain)
 266 bound summed across steps.

267 **Theorem 5.1** (No-regret under RBE). *Suppose Assumption 2.1 holds for all $h \in [H]$, rewards lie in
 268 $[0, 1]$, and $k(z, z) \leq \kappa_k^2$, $\ell(s, s) \leq \kappa_\ell^2$. Let $\rho \in (0, 1]$ and let $\gamma(\cdot, \rho)$ be the regularized information
 269 gain of k on \mathcal{Z} as in equation 2. Run KOVI-Proj with ball radius B and failure probability $\delta \in (0, 1/T]$. Then with probability at least $1 - \delta$, after T episodes,*

$$270 \quad R(T) \leq \tilde{\mathcal{O}}\left(H^2 B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)} \right) \sqrt{T \gamma(HT, \rho)} \right) + HT \varepsilon_B,$$

270 where $\varepsilon_B := \max_{h \in [H]} \inf_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* - V\|_\infty$. In particular, under realizability ($V_h^* \in \mathcal{H}_\ell(B)$ for all h) we have

$$273 \quad R(T) = \tilde{\mathcal{O}}\left(H^2 B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}\right) \sqrt{T \gamma(HT, \rho)}\right),$$

275 which is $o(T)$ whenever $\gamma(n, \rho) = o(n)$.

276 *Proof sketch; full details in Appendix D. Good event.* By Theorem 3.3 with a union bound over all
277 steps and episodes (the $\log(2HT/\delta)$ term inside $\beta_{h,t}$ in equation 3), there exists an event \mathcal{G} of
278 probability at least $1 - \delta$ such that, for all h, t and all $z \in \mathcal{Z}$,

$$280 \quad [P_h V_{h+1,t}](z) \leq \hat{f}_{h,t}^{V_{h+1,t}}(z) + \beta_{h,t} \sigma_{h,t}(z)$$

281 where $\beta_{h,t}$ is as in Section 4. The projection step guarantees $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$, hence every optimistic
282 proxy used by the algorithm lies within the scope of the uniform bound.

283 *Optimism and telescoping.* Define $\tilde{Q}_{h,t}$ by equation 3 and $\tilde{V}_{h,t}(s) = \max_a \tilde{Q}_{h,t}(s, a)$. On \mathcal{G} and up
284 to the agnostic term ε_B , a standard dynamic-programming induction yields $Q_h^*(z) \leq \tilde{Q}_{h,t}(z)$ and
285 hence $V_h^*(s) \leq \tilde{V}_{h,t}(s)$. Therefore the per-episode regret telescopes as follows

$$288 \quad R(T) \leq \sum_{t=1}^T \sum_{h=1}^H \left(\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t}) \right) + HT \varepsilon_B$$

$$291 \quad = \sum_{t=1}^T \sum_{h=1}^H \beta_{h,t} \sigma_{h,t}(z_{h,t}) + HT \varepsilon_B$$

294 *Elliptical potential across steps.* Let $n_{h,T}$ be the total number of transitions observed at step h by
295 time T (then $\sum_h n_{h,T} = HT$). For each fixed h , the standard GP/RKHS potential argument gives
296 $\sum_{t=1}^T \sigma_{h,t}(z_{h,t}) \leq \sqrt{2 n_{h,T} \gamma(n_{h,T}, \rho)}$. We sum over h and apply Cauchy-Schwarz, to obtain

$$298 \quad \sum_{t=1}^T \sum_{h=1}^H \sigma_{h,t}(z_{h,t}) \leq \sum_{h=1}^H \sqrt{2 n_{h,T} \gamma(n_{h,T}, \rho)} \leq \sqrt{2 \left(\sum_h n_{h,T} \right) \left(\sum_h \gamma(n_{h,T}, \rho) \right)} = \sqrt{2 HT \Gamma_T},$$

300 where $\Gamma_T := \sum_{h=1}^H \gamma(n_{h,T}, \rho)$. Since the per-step Gram matrices are disjoint, Γ_T equals the information
301 gain of the block-diagonal kernel on the stacked design and satisfies $\Gamma_T \leq \gamma(HT, \rho)$. Hence
302 $\sum_{t,h} \sigma_{h,t}(z_{h,t}) \leq \sqrt{2 HT \gamma(HT, \rho)}$.

304 *Putting it together.* Use $\beta_{h,t} \leq \tilde{\mathcal{O}}(B(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}))$ uniformly over h, t , multiply by
305 $\sum_{t,h} \sigma_{h,t}(z_{h,t})$, and absorb polylogarithms to obtain the stated bound. \square

307 **Remark 5.2** (On the H -dependence). *The H^2 factor arises from the optimistic LSVI-style decom-
308 position and coarse bounding of stepwise contributions. We expect sharper analysis (e.g., refined
309 Bellman-error coupling or variance decomposition) could improve this to $H^{3/2}$ or even H , but we
310 leave this for future work.*

312 6 DISCUSSION AND COMPARISONS

314 **Versus covering-number analyses.** Theorem 3.3 yields a confidence multiplier of the form

$$316 \quad \beta_{n,\delta} = B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right),$$

317 without any covering-number factor over the evolving proxy class. Intuitively, by estimating the
318 *conditional mean embedding* μ_h once, we control *all* Bellman images $[P_h V]$ for V in the ball $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$ via Cauchy-Schwarz:

$$321 \quad \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq B \|\mu_h(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \lesssim \beta_{n,\delta} \sigma_{h,n}(z),$$

323 as formalized by Lemma 3.2. This directly replaces the union-bound-over-a-cover step used in
earlier kernel-RL analyses.

324 **Versus optimistic closure.** We *do not* assume that every optimistic proxy automatically lies in a
 325 fixed state-RKHS ball. Instead we *enforce* it by an explicit projection step (Section 4). Analytically,
 326 this is sufficient: it is the set of *actual* proxies used by the algorithm that needs to lie inside the
 327 uniform-confidence event of Theorem 3.3. Thus the projection step plays the role that *optimistic*
 328 *closure* previously assumed.

330 **When does RBE hold?** Assumption 2.1 requires that the CME map $\mu_h : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ belongs to
 331 the vector-valued RKHS with kernel $k I$ and $\|\mu_h\| \leq U$. This is natural when: (i) $z \mapsto P_h(\cdot|z)$
 332 varies smoothly in a kernel mean sense (e.g., Hölder or Lipschitz in the MMD induced by ℓ), (ii)
 333 ℓ is bounded and universal (e.g., RBF on compact \mathcal{S}), and (iii) k is bounded on \mathcal{Z} . In such cases,
 334 conditional mean embeddings exist and admit finite RKHS norm. The constant U estimates the
 335 operator norm of the Bellman map $V \mapsto [P_h V]$ from $(\mathcal{H}_\ell, \|\cdot\|_{\mathcal{H}_\ell})$ to $(\mathcal{H}_k, \|\cdot\|_{\mathcal{H}_k})$.

336 **Computational considerations.** The projection step reduces to the QP in equation 5 with com-
 337 plexity $\tilde{\mathcal{O}}(m_h^3)$ per step, where m_h is the number of anchor states. In practice, m_h can be taken
 338 as the distinct observed states at step h (optionally sub-sampled) or a small cover; this keeps the
 339 overhead modest relative to KRR updates on \mathcal{Z} .

341 **Agnostic setting.** When $V_h^* \notin \mathcal{H}_\ell(B)$, the only degradation is the explicit $HT\varepsilon_B$ term in
 342 Theorem 5.1. For universal kernels, $\varepsilon_B \rightarrow 0$ as $B \rightarrow \infty$; choosing $B = B_T$ to grow slowly
 343 (e.g., $B_T = \tilde{\mathcal{O}}(\sqrt{\log T})$) balances approximation and estimation so that $R(T) = o(T)$ whenever
 344 $\gamma(HT, \rho) = o(HT)$.

346 **Relation to kernel bandits ($H=1$).** For $H = 1$, KOVI-Proj specializes to a GP/KRR-UCB
 347 scheme where the uniform CME bound recovers the familiar information-gain control of regret. Our
 348 analysis is consistent with recent refined bounds for GP-UCB and shows how the CME perspective
 349 naturally extends to multi-step RL.

351 **Limitations and possible improvements.** Our current regret bound scales as H^2 , inherited from
 352 an optimistic LSVI-style decomposition. Tighter coupling of stepwise Bellman errors or a variance-
 353 aware decomposition could plausibly reduce this to $H^{3/2}$ or H . Extending RBE examples and
 354 verifying U for broader kernel/state-action families, and integrating unknown rewards with joint
 355 confidence control, are also natural next steps.

357 BROADER IMPACT

360 This work proposes a CME-based uniformization mechanism for kernel RL that removes an ob-
 361 stacle to no-regret guarantees while relaxing structural assumptions (no optimistic closure). Broader
 362 impacts include more reliable kernelized RL with principled uncertainty quantification; as always,
 363 care is warranted when deploying RL systems in safety-critical settings.

365 7 LLM USAGE

366 LLM was used for polishing texts to rephrase and correct grammar.

369 8 EXPERIMENTS

372 9 NUMERICAL EXPERIMENT: 1D DOUBLE–WELL (QCQP PROJECTION, 373 ABSORBING GOAL)

375 **Setup.** We consider the classical quartic *double-well* in 1D with overdamped Langevin dynamics
 376 and additive control:

$$377 x_{t+1} = x_t + \Delta t (x_t - x_t^3 + u_t) + \sigma \varepsilon_t, \quad u_t \in \{-u_0, 0, +u_0\}, \quad \varepsilon_t \sim \mathcal{N}(0, 1).$$

378 Table 1: Double-Well ($H = 40, T = 100$): final cumulative regret (mean over seeds) and SEM.
379

380	Algorithm	Final Cum. Regret (\downarrow)	SEM
381	KOVI-Proj	93.287	4.308
382	KOVI0	118.236	0.085
383	Kernel-LSVI- ε	118.301	0.007

386 Episodes have horizon $H = 40$. The goal set is an *absorbing tube* around $x = +1$ of radius τ ; the
387 reward is one-shot *hit* +1 (upon first entry) minus a step penalty 0.01 each step, and the episode
388 terminates on hit. This makes the benchmark $V_1^* O(1)$ and aligned with the environment (details in
389 the appendix).
390

391 **Algorithms.** We compare three methods: (i) **KOVI-Proj**, which performs backward optimistic
392 value iteration with a kernel surrogate for $[P_h V]$ and *always* projects V_h by solving the QCQP
393

$$394 \min_{\alpha} \frac{1}{m} \|L\alpha - v_h\|_2^2 \quad \text{s.t.} \quad \alpha^\top L\alpha \leq B^2, \quad 0 \leq (L\alpha)_j \leq H - h + 1,$$

396 (ii) **KOVI0**, the same but *without* the RKHS projection (ridge only), and (iii) **Kernel-LSVI- ε** , a
397 non-optimistic KRR baseline with ε -greedy exploration. All methods warm-start with a few random
398 episodes; we amortize planning with a plan-every- K schedule. We evaluate over $K = 100$ episodes
399 and three seeds.
400

401 **Results.** Figure 1a shows the mean cumulative regret (shaded: SEM) against episodes. KOVI-Proj
402 learns substantially faster and attains markedly lower regret. Table 1 summarizes final cumulative
403 regret (mean over seeds) and its SEM.

415 (a) Double-Well ($H = 40, T = 100$): mean
416 cumulative regret vs. episode (QCQP projection
417 always on). KOVI-Proj (blue) outperforms both
418 the no-projection ablation KOVI0 (orange) and
419 Kernel-LSVI- ε (green).
420

421 (b) GridWorld 9 \times 9 ($H = 5$), 100 episodes: mean
422 cumulative regret (shaded: SEM across seeds).
423 Here KOVI-proj in blue has least growth in regret.
424 Projection is QCQP.
425

426 Figure 1: Regret Plots for Double-well and Grid World.
427

428 **Discussion.** Three observations are consistent across seeds: (i) *Level*. KOVI-Proj lowers the
429 final cumulative regret by about 21% relative to the non-projected optimistic ablation and the non-
430 optimistic baseline. This reflects substantially higher hit probability of the absorbing goal within
431 the $H = 40$ -step window. (ii) *Rate*. The slope of the regret curve is strictly smaller for KOVI-Proj
432 across the training horizon, indicating faster value improvement per episode. (iii) *Role of projection*.
433 Removing the RKHS *ball + range* constraints (KOVI0) collapses the optimism guarantee: the
434 upper-confidence target \tilde{Q}_h no longer reliably upper-bounds the Bellman image, leading to mis-
435 calibrated targets and markedly worse exploration. In contrast, the QCQP projection keeps value
436 iterates within the feasible hypothesis set, preserving the UCB validity and translating into consis-
437 tent goal-reaching behavior.
438

432 Table 2: GridWorld (9×9 , $H = 5$), 100 episodes summary metrics (mean over seeds).
433

434 Algorithm	435 Final Cum. Regret (\downarrow)	436 Regret Slope / ep (\downarrow)	437 Mean Return (\uparrow)	438 SEM(Return)
KOVI-Proj	162.348	1.579	0.533	0.602
KOVI0	220.928	2.221	-0.053	0.132
Kernel-LSVI- ε	224.968	2.248	-0.093	0.048

440 10 GRIDWORLD BENCHMARK
441

442 **Environment.** We use a 9×9 GridWorld (states $\{0, \dots, 8\}^2$) with start at $(0, 0)$ and goal at $(8, 8)$.
443 The horizon is $H = 5$ per episode. Actions are $\{\text{up}, \text{right}, \text{down}, \text{left}\}$. With slip probability
444 $p_{\text{slip}} = 0.1$, the executed action is replaced uniformly at random. The reward is $+1$ upon entering
445 the goal and -0.01 otherwise. We have RBF kernel over states with lengthscale $\ell = 0.35$, product
446 kernel for Q over state-action, KRR ridge $\lambda_Q = 10^{-2}$ for Q , ridge $\lambda_V = 10^{-3}$ for the ridge baseline,
447 anchors placed on a stride-2 grid ($m = 25$ anchors), UCB scale $\beta = 0.8\sqrt{\log((mH + 1)/\delta)}$ with
448 $\delta = 0.1$, and RKHS ball radius $B = 4.0$ for the projection.
449

450 **Algorithms.** We compare (i) **KOVI-Proj** (QCQP projection for V_h enforcing $\|V_h\|_{\mathcal{H}_\ell} \leq B$ and
451 $0 \leq V_h \leq H - h + 1$), (ii) **KOVI0** (same optimism, but V_h via ridge without constraints), and
452 (iii) **Kernel-LSVI- ε** (non-optimistic KRR targets with ε -greedy; ε decays as in the code). At each
453 episode, we perform a backward planning pass to update $\{V_h\}_{h=H}^1$ from replayed targets, then run
454 one episode of interaction.
455

456 **Metrics.** We compute the optimal benchmark V_1^* by dynamic programming and report (i) mean
457 cumulative regret over $K = 100$ episodes, (ii) the least-squares per-episode regret slope, and (iii)
458 mean return; all statistics are averaged over three seeds with SEM bands.
459

460 **Results.** Figure 1b shows the regret curves; Table 2 summarizes final numbers.
461

462 **Discussion.** KOVI-Proj substantially improves both level and rate of regret: its final cumulative
463 regret is ≈ 162.3 versus ≈ 220.9 (KOVI0) and ≈ 225.0 (Kernel-LSVI- ε), corresponding to a relative
464 reduction of $\sim 26\%$ against both baselines. The estimated regret slope drops from $\approx 2.22\text{--}2.25$ to
465 ≈ 1.58 , indicating faster learning throughout training. In terms of return, KOVI-Proj achieves
466 a positive average (≈ 0.53) while the baselines remain near the step-penalty floor (≈ -0.05 to
467 -0.09), confirming that optimism together with the RKHS *projection* (norm ball + range constraints)
468 materially helps the agent reach the goal within the short horizon despite slippage. The higher SEM
469 for KOVI-Proj reflects mixed outcomes early on (goal reached vs. not reached) typical of sparse-
470 reward exploration; this variance shrinks with longer runs or denser anchors.
471

472 REPRODUCIBILITY.
473

474 All the results are generated by python notebook code and it is attached in supplementary. Details
475 of experiment are in paper and supplementary.
476

477 ETHICS STATEMENT
478

479 We have followed the ICLR Code of Ethics throughout this work. Our study does not have any
480 ethical issue.
481

483 REFERENCES
484

485 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
486 bandits. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2011.

486 Claudio Carmeli, Ernesto De Vito, Alessandro Toigo, and Veronica Umanit . Vector-valued repro-
 487 ducing kernel hilbert spaces and universality. *Analysis and Applications*, 8(1):19–61, 2010.
 488

489 Sattar R. Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In *Proceedings of the*
 490 *34th International Conference on Machine Learning (ICML)*, volume 70, pp. 844–853. PMLR,
 491 2017.

492 Sattar R. Chowdhury and Roberto I. Oliveira. Value function approximations via kernel embed-
 493 dings for no-regret reinforcement learning. In *Proceedings of the Asian Conference on Machine*
 494 *Learning (ACML)*. PMLR, 2023.

495

496 Crispin W. Gardiner. *Stochastic Methods: A Handbook for the Natural and Social Sciences*.
 497 Springer Series in Synergetics. Springer, Berlin, Heidelberg, 4 edition, 2009. doi: 10.1007/978-3-540-70713-4.

498

499 Peter H nggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after kramers.
 500 *Reviews of Modern Physics*, 62(2):251–341, 1990. doi: 10.1103/RevModPhys.62.251. Classic
 501 review using the quartic double-well potential $U(x) = ax^4 - bx^2$ as the canonical bistable system.

502

503 George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions. *Journal of*
 504 *Mathematical Analysis and Applications*, 33(1):82–95, 1971.

505

506 Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Sch lkopf. Kernel
 507 mean embedding of distributions: A review and beyond. *Foundations and Trends in Machine*
 508 *Learning*, 10(1–2):1–141, 2017a.

509

510 Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, and Bernhard Sch lkopf. Kernel
 511 mean embedding of distributions: A review and beyond. *Foundations and Trends in Machine*
 512 *Learning*, 10(1–2):1–141, 2017b.

513

514 Jonathan Scarlett and Ilija Bogunovic. Gaussian process bandits: A tutorial. *Foundations and*
 515 *Trends in Machine Learning*, 11(5–6):421–516, 2018. Survey framing γ_T and its determinant
 516 form $\frac{1}{2} \log \det(I + \rho^{-1} K_n)$.

517

518 Bernhard Sch lkopf and Alexander J. Smola. *Learning with Kernels*. MIT Press, 2002.

519

520 Bernhard Sch lkopf, Ralf Herbrich, and Alexander J. Smola. A generalized representer theorem. In
 521 *COLT*, 2001.

522

523 Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel embeddings of conditional distributions: A
 524 unified kernel framework for nonparametric inference. *Journal of Machine Learning Research*,
 525 14:1415–1444, 2013.

526

527 Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian process
 528 optimization in the bandit setting: No regret and experimental design. In *Proceedings of the 27th*
 529 *International Conference on Machine Learning (ICML)*, 2010. Introduces the GP information
 530 gain $\gamma_T = \max_{|A|=T} I(y_A; f_A)$ and uses $\frac{1}{2} \log \det(I + \rho^{-1} K_A)$.

531

532 Sattar Vakili. Open problem: Order-optimal regret bounds for kernel-based rl. *COLT Open Prob-*
 533 *lems*, 2024.

534

535 Zhuoran Yang, Chi Jin, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
 536 learning with kernel and neural function approximations. In *Advances in Neural Information*
 537 *Processing Systems (NeurIPS)*, volume 33, 2020.

538

539 A ENVIRONMENT AND IMPLEMENTATION DETAILS (DOUBLE-WELL)

540 **Continuous-time model and discretization.** We consider the standard overdamped Langevin dy-
 541 namics in the quartic double-well potential

$$542 U(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2, \quad b(x) := -\nabla U(x) = x - x^3,$$

540 a canonical bistable system (Hägggi et al., 1990; Gardiner, 2009). With additive control u_t and
 541 thermal diffusion $D > 0$, the SDE is
 542

$$543 dX_t = (b(X_t) + u_t) dt + \sqrt{2D} dW_t.$$

544 We simulate via Euler–Maruyama with step $\Delta t > 0$:

$$545 X_{t+1} = X_t + \Delta t (b(X_t) + u_t) + \sigma \varepsilon_t, \quad \sigma^2 := 2D \Delta t, \quad \varepsilon_t \sim \mathcal{N}(0, 1). \quad (6)$$

547 **Finite-horizon MDP.** Episodes have horizon H . The MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, H, \mu_1)$ is:

- 549 • *State space:* $\mathcal{S} = [-2, 2]$ (we clip draws from equation 6 to $[-2, 2]$).
- 550 • *Action space:* $\mathcal{A} = \{-u_0, 0, +u_0\}$ (discrete pushes).
- 551 • *Transitions:* $X_{t+1} | X_t = x, A_t = a \sim \mathcal{N}(x + \Delta t (x - x^3 + a), \sigma^2)$.
- 552 • *Goal and absorption:* The goal tube is $\mathcal{G} := \{x : |x - x_{\text{goal}}| \leq \tau\}$ with $x_{\text{goal}} = +1$. On first
 553 entry into \mathcal{G} , the episode terminates (*absorbing goal*).
- 554 • *Reward:* One–shot sparse success with step penalty:

$$555 r(x, a, x') = \mathbb{1}\{x' \in \mathcal{G}\} - \lambda_{\text{step}}.$$

- 556 • *Initial state:* μ_1 is a point mass near the left well, $X_1 \approx -1$ (small Gaussian jitter).

557 Absorption ensures V_1^* is $O(1)$ and aligned with the simulated environment.

558 **Default parameters (reproduced).** Unless stated otherwise, the experiments in the main text use:

$$559 H = 40, \quad \Delta t = 0.10, \quad u_0 = 1.0, \quad \sigma = 0.07, \quad D = \frac{\sigma^2}{2\Delta t}, \quad \tau = 0.10, \quad \lambda_{\text{step}} = 0.01.$$

560 We run $K = 100$ episodes and average over three seeds. For numerical kernels and projection:

$$561 \text{state kernel length } \ell = 0.6, \quad \text{state-action kernel length } k = 0.35, \quad \rho = 3 \times 10^{-4}, \quad B = 1.2.$$

562 The projection grid uses $m = 81$ anchor states; the DP benchmark grid uses $M = 121$ points. We
 563 cap each stage buffer to at most 120 tuples to bound kernel linear–algebra cost. We warm-start with
 564 5 random episodes and then plan every 3 episodes (plan-every- K schedule).

565 **Kernels and surrogates.** The state RKHS (\mathcal{H}_ℓ, ℓ) uses the RBF kernel $\ell(x, x') = \exp(-\frac{(x-x')^2}{2\ell^2})$.
 566 For state–action surrogates we use the product kernel

$$567 \kappa((x, a), (x', a')) = \ell_k(x, x') \mathbb{1}\{a = a'\}, \quad \ell_k(x, x') = \exp(-\frac{(x-x')^2}{2k^2}).$$

568 These choices are standard (Schölkopf & Smola, 2002) and make the Gram matrices PSD.

569 **Projection (QCQP, always).** At each stage h , KOVI-Proj projects the optimistic targets $v_h \in \mathbb{R}^m$
 570 onto the feasible RKHS ball with range constraints:

$$571 \min_{\alpha \in \mathbb{R}^m} \frac{1}{m} \|L\alpha - v_h\|_2^2 \quad \text{s.t.} \quad \alpha^\top L\alpha \leq B^2, \quad 0 \leq (L\alpha)_j \leq H - h + 1 \quad (j = 1, \dots, m) \quad (7)$$

572 where $L_{ij} = \ell(s_i, s_j)$ for the anchor grid $\{s_j\}_{j=1}^m$. By a constrained representer theorem, the
 573 optimizer lies in $\text{span}\{\ell(\cdot, s_j)\}$ (Kimeldorf & Wahba, 1971; Schölkopf & Smola, 2002). We solve
 574 equation 7 via cvxpy using either MOSEK or SCS; to avoid numerical PSD certification issues on
 575 L , we symmetrize $L \leftarrow \frac{1}{2}(L + L^\top)$, add a 10^{-10} ridge, and wrap it with `psd_wrap` in the quadratic
 576 constraint. Projection is performed *always*; there is no ridge fallback.

577 **Optimistic targets and uncertainty.** Given a stage dataset $\mathcal{D}_h = \{(z_i = (x_i, a_i), x'_i)\}$ with
 578 $y_i := V_{h+1}(x'_i)$, we form the KRR mean $\hat{f}_h(z) = k(z, Z)^\top (K + \rho I)^{-1} y$ and its variance via a
 579 Cholesky factor of $K + \rho I$,

$$580 \sigma_h^2(z) = k(z, z) - k(z, Z)^\top (K + \rho I)^{-1} k(Z, z)$$

581 The optimistic action–value uses $\tilde{Q}_h(x, a) = \hat{f}_h(x, a) + \beta_h \sigma_h(x, a) + r(x, \cdot)$ with a logarithmic
 582 scale $\beta_h = \beta(h, |\mathcal{D}_h|)$ (details and schedules in the main text).

594 **Vectorized DP benchmark V^* .** We compute V^* on discretization $\{s_j\}_{j=1}^M$ without Monte Carlo
 595 by using row-stochastic Gaussian weight matrices. Let $b_j := b(s_j)$ and $\mu_j(a) = s_j + \Delta t (b_j + a)$.
 596 For each action a , define

$$598 \quad W_a(i, j) \propto \exp\left(-\frac{(s_j - \mu_i(a))^2}{2\sigma^2}\right), \quad \sum_{j=1}^M W_a(i, j) = 1,$$

$$599 \quad 600$$

601 and an absorbing mask $\text{goal}(j) = \mathbb{1}\{|s_j - x_{\text{goal}}| \leq \tau\}$. With $r_j = \text{goal}(j) - \lambda_{\text{step}}$ and $V_{H+1} \equiv 0$,
 602 we recurse

$$603 \quad V_h(i) = \max_{a \in \mathcal{A}} \sum_{j=1}^M W_a(i, j) \left(r_j + \mathbb{1}\{\text{goal}(j) = 0\} V_{h+1}(j) \right), \quad h = H, H-1, \dots, 1$$

$$604 \quad 605 \quad 606$$

607 This enforces zero continuation from goal bins (absorption) and avoids high-variance MC estimation.
 608 Lookup $V_h(x)$ is done by nearest-neighbor interpolation on $\{s_j\}$.

609 **Preprocessing and amortization.** We do a warm-start for each learner with 5 random episodes
 610 to populate $\{\mathcal{D}_h\}$ before applying optimism; thereafter we perform a full backward planning pass
 611 every 3 episodes (*plan-every-K*) and cap per-stage replay by 120 pairs to control kernel linear-
 612 algebra cost. These engineering choices do not affect the statement of the algorithms and keep
 613 QCQP solves tractable.

616 B REMARKS ON OTHER WORKS

617 **Kernel function approximation for RL.** Kernel methods have long served as nonparametric
 618 function approximators in reinforcement learning, bridging linear models and certain infinite-width
 619 neural networks. A modern line of work instantiates *optimistic least-squares value iteration* (LSVI)
 620 with kernels, coupling kernel ridge regression (KRR) backups with exploration bonuses (Yang et al.,
 621 2020). Analytically, these approaches often invoke a union bound over a *data-dependent, evolving*
 622 class of optimistic value proxies, bringing in a covering-number penalty that may scale as $\Omega(\sqrt{T})$
 623 for common kernels. This term can spoil no-regret guarantees in long horizons and large time budgets,
 624 and it is one of the central obstacles our work circumvents by replacing the union bound with
 625 a uniform, CME-based confidence statement that holds simultaneously for all value proxies inside a
 626 fixed state-RKHS ball.

627 **Optimistic closure via conditional mean embeddings.** A complementary kernel-RL line re-
 628 places the evolving-cover argument with a structural assumption: *optimistic closure*, i.e., every
 629 optimistic value proxy produced by the algorithm lies in a common, fixed state-RKHS ball. Chowd-
 630 hury and Oliveira (Chowdhury & Oliveira, 2023) operationalize this idea using *conditional mean*
 631 *embeddings* (CMEs) to map one-step lookahead into a linear functional on the state RKHS. This re-
 632 covers clean, GP/KRR-style uncertainty quantification, but at the cost of a strong structural premise
 633 on the optimizer’s iterates. In contrast, our analysis similarly leverages CMEs, yet *dispenses with*
 634 *optimistic closure*: we enforce the bounded-norm property algorithmically by an explicit RKHS
 635 projection of the optimistic proxy each step, and then prove a *uniform* confidence bound that applies
 636 to *all* functions in the ball *without* any data-dependent covering.

637 **Vector-valued RKHS and CMEs.** Our development relies on classical results on vector-valued
 638 RKHSs and conditional mean embeddings. The CME view represents the Bellman image as an
 639 inner product $[P_h V](z) = \langle \mu_h(z), V \rangle_{\mathcal{H}_e}$ with an \mathcal{H}_e -valued map μ_h ; this viewpoint is extensively
 640 surveyed by Muandet et al. (Muandet et al., 2017b). The required functional-analytic foundations
 641 for vector-valued RKHSs with operator-valued kernels such as $K(z, z') = k(z, z')I$ —can be found
 642 in Carmeli, De Vito, Toigo, and co-authors (Carmeli et al., 2010). Building on these tools, we show
 643 that (i) scalar KRR predictions with labels $V(s')$ can be written as an inner product with a *vector-
 644 valued* KRR estimator of the CME, and (ii) a single Hilbert-space self-normalized concentration
 645 argument yields uniform confidence for the whole state-ball $\{V : \|V\|_{\mathcal{H}_e} \leq B\}$, removing the
 646 covering-number penalty.

648 **Kernel bandits, information gain, and elliptical potentials.** Our regret analysis adopts the
 649 standard information-gain and elliptical-potential machinery developed for kernelized bandits and
 650 GP regression. In particular, Chowdhury and Gopalan (Chowdhury & Gopalan, 2017) provide
 651 clean, modular bounds in terms of the (regularized) information gain $\gamma(n, \rho)$, which we adapt
 652 to the multi-step RL setting by summing per-step potentials (with a block-diagonal argument
 653 across steps). The combination of CME-based linearization and information-gain control yields
 654 the $\tilde{O}(\sqrt{T \gamma(HT, \rho)})$ -type scaling in our main result, while avoiding data-dependent covers.
 655

656 **Positioning within kernel RL.** Putting these threads together, our contribution can be viewed as a
 657 third route to kernel-RL optimism: (i) unlike covering-number analyses for kernelized LSVI (Yang
 658 et al., 2020), we avoid data-dependent covers; (ii) unlike *optimistic closure* (Chowdhury & Oliveira,
 659 2023), we do not assume a priori that all optimistic proxies already lie in a fixed state-RKHS ball;
 660 instead, (iii) we *enforce* the bounded-norm property by projection and prove a *uniform* CME-based
 661 confidence bound that holds for all functions in the ball simultaneously. This uniformization is
 662 central to obtaining sublinear regret without the $\Omega(\sqrt{T})$ covering penalty.
 663

664 **Context in open problems.** The broader agenda of obtaining sharp or order-optimal regret guar-
 665 antees for kernel-based RL has been highlighted as an open challenge (Vakili, 2024). Our analysis:
 666 via vector-valued RKHS concentration for CMEs and a projection step that replaces optimistic clo-
 667 sure addresses a prominent bottleneck identified in that discussion: removing the covering-number
 668 dependence while retaining principled uncertainty quantification in kernelized optimistic value iter-
 669 ation.
 670

671 **On horizon dependence and refinements.** As in kernelized optimistic LSVI, our H^2 scaling
 672 arises from a standard telescoping decomposition and coarse coupling of stepwise estimation errors.
 673 While we expect refined Bellman-error coupling or variance-aware decompositions to reduce this to
 674 $H^{3/2}$ or even H , the present focus is on eliminating the covering-number obstruction under a natural
 675 CME boundedness condition closing a gap emphasized in prior work (Yang et al., 2020; Chowdhury
 676 & Oliveira, 2023; Vakili, 2024).
 677

C PROOF OF THEOREM 1

678 **Proposition C.1 (Scalar KRR = inner product with a vector-valued KRR).** Fix a step h and data
 679 $\{(z_i, s'_i)\}_{i=1}^n$. Let ℓ be a kernel on \mathcal{S} with RKHS $(\mathcal{H}_\ell, \langle \cdot, \cdot \rangle_{\mathcal{H}_\ell})$ and feature map $\phi : \mathcal{S} \rightarrow \mathcal{H}_\ell$ so that
 680 $\ell(s, s') = \langle \phi(s), \phi(s') \rangle_{\mathcal{H}_\ell}$. Let k be a kernel on $\mathcal{Z} = \mathcal{S} \times \mathcal{A}$ with Gram matrix $K_n = [k(z_i, z_j)]_{i,j=1}^n$
 681 and, for $z \in \mathcal{Z}$, define $k_n(z) = [k(z, z_1), \dots, k(z, z_n)]^\top$. For a ridge parameter $\rho > 0$, define
 682

$$683 \hat{\mu}_n(z) := \sum_{i=1}^n \alpha_i(z) \phi(s'_i) \in \mathcal{H}_\ell, \quad \alpha(z) := (K_n + \rho I)^{-1} k_n(z).$$

684 Then for every $V \in \mathcal{H}_\ell$ and $z \in \mathcal{Z}$,

$$685 \hat{f}_{h,n}^V(z) = \langle \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell},$$

686 where $\hat{f}_{h,n}^V$ is the scalar KRR predictor trained on labels $y_i^{(V)} := V(s'_i) = \langle \phi(s'_i), V \rangle_{\mathcal{H}_\ell}$, i.e.
 687 $\hat{f}_{h,n}^V(z) = k_n(z)^\top (K_n + \rho I)^{-1} \mathbf{y}^{(V)}$ with $\mathbf{y}^{(V)} = (y_1^{(V)}, \dots, y_n^{(V)})^\top$.
 688

689 *Proof.* We give a self-contained argument in two steps.
 690

691 **Step 1: Scalar KRR with inner-product labels.** Fix $V \in \mathcal{H}_\ell$. Consider the scalar KRR problem
 692 on the input space \mathcal{Z} with kernel k and training labels
 693

$$694 y_i^{(V)} := V(s'_i) = \langle \phi(s'_i), V \rangle_{\mathcal{H}_\ell}, \quad i = 1, \dots, n.$$

695 It is standard that the KRR predictor at a test point $z \in \mathcal{Z}$ is
 696

$$697 \hat{f}_{h,n}^V(z) = k_n(z)^\top (K_n + \rho I)^{-1} \mathbf{y}^{(V)}. \quad (8)$$

702 **Step 2: Vector-valued KRR and the CME estimator.** Define the *vector-valued* RKHS on \mathcal{Z}
 703 with operator-valued kernel $K(z, z') := k(z, z') I_{\mathcal{H}_\ell}$; this space can be identified with the tensor-
 704 product RKHS $\mathcal{H}_k \otimes \mathcal{H}_\ell$. Consider the vector-valued KRR problem that regresses the \mathcal{H}_ℓ -valued
 705 observations $\phi_i := \phi(s'_i) \in \mathcal{H}_\ell$ on the inputs z_i :

$$707 \quad \hat{\mu}_n \in \arg \min_{g \in \mathcal{H}_k \otimes \mathcal{H}_\ell} \left\{ \sum_{i=1}^n \|\phi_i - g(z_i)\|_{\mathcal{H}_\ell}^2 + \rho \|g\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell}^2 \right\}. \quad (9)$$

709 By the (vector-valued) representer theorem, the minimizer has the finite form
 710

$$711 \quad \hat{\mu}_n(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i = \sum_{i=1}^n k(\cdot, z_i) c_i, \quad c_i \in \mathcal{H}_\ell$$

714 Let $C = [c_1, \dots, c_n]$ be the column tuple and note that $g(z_j) = \sum_{i=1}^n k(z_j, z_i) c_i$. The normal
 715 equations for equation 9 read

$$716 \quad (K_n + \rho I) C^\top = \Phi^\top, \quad \text{where } \Phi : \mathbb{R}^n \rightarrow \mathcal{H}_\ell, \quad \Phi e_i = \phi_i,$$

718 so that $C^\top = (K_n + \rho I)^{-1} \Phi^\top$. Therefore, for any $z \in \mathcal{Z}$,

$$719 \quad \hat{\mu}_n(z) = \sum_{i=1}^n k(z, z_i) c_i = \sum_{i=1}^n \alpha_i(z) \phi_i = \sum_{i=1}^n \alpha_i(z) \phi(s'_i), \quad \alpha(z) := (K_n + \rho I)^{-1} k_n(z),$$

722 which matches the stated definition.
 723

724 **Equality of predictions.** Combining equation 8 and equation 10, and recalling $y_i^{(V)} =$
 725 $\langle \phi(s'_i), V \rangle_{\mathcal{H}_\ell}$, we compute

$$727 \quad \hat{f}_{h,n}^V(z) = k_n(z)^\top (K_n + \rho I)^{-1} y^{(V)} = \sum_{i=1}^n \alpha_i(z) y_i^{(V)} = \sum_{i=1}^n \alpha_i(z) \langle \phi(s'_i), V \rangle_{\mathcal{H}_\ell}$$

$$730 \quad = \langle \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell}.$$

731 This holds for every $V \in \mathcal{H}_\ell$ and every $z \in \mathcal{Z}$, as claimed. \square
 732

733 D PROOF OF THEOREM 5.1

735 *Proof. Step 1: A uniform “good” event.* Apply Theorem 3.3 with a union bound over all steps
 736 $h \in [H]$, episodes $t \in [T]$, and query points z (the latter handled by the supremum in Theorem 3.3).
 737 Using the per-step confidence radius in equation 3 with the $\log(2HT/\delta)$ factor, there exists an event
 738

$$739 \quad \mathcal{G} \text{ with } \Pr(\mathcal{G}) \geq 1 - \delta$$

740 such that, *simultaneously* for all h, t and all $z \in \mathcal{Z}$,

$$741 \quad [P_h V_{h+1,t}](z) \leq \hat{f}_{h,t}^{V_{h+1,t}}(z) + \beta_{h,t} \sigma_{h,t}(z) \quad (11)$$

743 where $\beta_{h,t} = B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{2HT}{\delta}} \right)$ and $\sigma_{h,t}$ is as in equation 2. See proof
 744 in H.1. The projection step (Section 4) guarantees $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$, ensuring applicability of The-
 745 rem 3.3 to the *actual* proxies the algorithm uses.

747 **Remark D.1** (Why the projection step matters?). *Theorem 3.3 provides a high-probability confi-
 748 dence bound that holds uniformly for all value functions V whose RKHS norm is bounded by B ,
 749 i.e., for all $V \in \{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$. The optimistic proxy $\tilde{V}_{h,t}$ produced by the backup (§4) need
 750 not lie in this ball *a priori*. The projection step maps $\tilde{V}_{h,t}$ to*

$$752 \quad V_{h,t} \in \arg \min_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V - \tilde{V}_{h,t}\|_{L^2(\nu)} \quad (\text{with range clipping}),$$

754 thereby guaranteeing $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$. Consequently, every value proxy the algorithm actually uses
 755 satisfies the assumptions of Theorem 3.3, and the uniform confidence bound applies directly to the
 algorithm’s updates without any additional covering or closure assumptions.

756 **Step 2: Optimism up to agnostic error.** Fix (h, t) and $z = (s, a)$. By definition of Q_h^* and by
 757 boundedness of the value range,

$$758 \quad Q_h^*(z) = r_h(z) + [P_h V_{h+1}^*](z) \leq r_h(z) + [P_h V_{h+1,t}](z) + \|V_{h+1}^* - V_{h+1,t}\|_\infty.$$

759 By the definition of the “worst case” agnostic approximation level $\varepsilon_B := \max_h \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* -$
 760 $V\|_\infty$ and since $\|V_{h+1,t}\|_{\mathcal{H}_\ell} \leq B$, we have $\|V_{h+1}^* - V_{h+1,t}\|_\infty \leq \varepsilon_B$. See proof in D.2. Combining
 761 with equation 11 and the definition equation 3 of $\tilde{Q}_{h,t}$ gives
 762

$$763 \quad Q_h^*(z) \leq \tilde{Q}_{h,t}(z) + \varepsilon_B \quad \text{for all } h, t, z \text{ on the event } \mathcal{G}. \quad (12)$$

764 See proof in Remark D.3. Maximizing over a further yields $V_h^*(s) \leq \tilde{V}_{h,t}(s) + \varepsilon_B$.

765 **Step 3: Telescoping regret decomposition.** Let $z_{h,t} = (s_{h,t}, a_{h,t})$ be the state-action chosen
 766 by KOVI-Proj at step h of episode t . From equation 12 and the greedy action choice $a_{h,t} \in$
 767 $\arg \max_a \tilde{Q}_{h,t}(s_{h,t}, a)$,

$$770 \quad V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t}) \leq \sum_{h=1}^H \left(\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t}) \right) + H \varepsilon_B.$$

771 See Remark D.3. Summing over episodes and using equation 3 then gives
 772

$$773 \quad R(T) \leq \sum_{t=1}^T \sum_{h=1}^H \beta_{h,t} \sigma_{h,t}(z_{h,t}) + HT \varepsilon_B \quad \text{on } \mathcal{G}. \quad (13)$$

774 **Step 4: Elliptical-potential bound across steps.** For each fixed step h , let $n_{h,T}$ be the number of
 775 transitions observed at step h up to episode T . Denote by $\sigma_{h,\tau-1}(z_{h,\tau})$ the posterior standard deviation
 776 just before the τ -th observation at step h (this is exactly $\sigma_{h,t}(z_{h,t})$ when the τ -th observation
 777 occurs in episode t). The standard GP/RKHS potential argument applied to the (adaptively chosen)
 778 design at step h yields
 779

$$780 \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \gamma(n_{h,T}, \rho), \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}(z_{h,\tau}) \leq \sqrt{2 n_{h,T} \gamma(n_{h,T}, \rho)}.$$

781 See detailed proof in Lemma D.5. Summing over h and using Cauchy-Schwarz,
 782

$$783 \quad \sum_{t=1}^T \sum_{h=1}^H \sigma_{h,t}(z_{h,t}) \leq \sum_{h=1}^H \sqrt{2 n_{h,T} \gamma(n_{h,T}, \rho)} \leq \sqrt{2 \left(\sum_h n_{h,T} \right) \left(\sum_h \gamma(n_{h,T}, \rho) \right)} \\ 784 \quad = \sqrt{2 HT \Gamma_T}.$$

785 See Remark D.9 for last equality. Let K_h be the Gram matrix of the design at step h and $K_{\text{blk}} :=$
 786 $\text{diag}(K_1, \dots, K_H)$. Then
 787

$$788 \quad \Gamma_T = \frac{1}{2} \sum_{h=1}^H \log \det(I + \rho^{-1} K_h) = \frac{1}{2} \log \det(I + \rho^{-1} K_{\text{blk}}) \leq \frac{1}{2} \log \det(I + \rho^{-1} K_{\text{all}}) \\ 789 \quad \leq \gamma(HT, \rho)$$

790 where K_{all} is full Gram matrix over the concatenated HT design points and the last inequality
 791 uses that adding nonnegative off-diagonal blocks (cross-step similarities) increases the determinant.
 792 Therefore,
 793

$$794 \quad \sum_{t=1}^T \sum_{h=1}^H \sigma_{h,t}(z_{h,t}) \leq \sqrt{2 HT \gamma(HT, \rho)}. \quad (14)$$

803 **Step 5: Putting it together.** From equation 13 and equation 14, and using that (see proof in Remark
 804 D.8)

$$805 \quad \beta_{h,t} \leq \tilde{\mathcal{O}}\left(B\left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}\right)\right) \quad \text{uniformly over } h, t,$$

806 we obtain
 807

$$808 \quad R(T) \leq \tilde{\mathcal{O}}\left(H^2 B\left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}\right) \sqrt{T \gamma(HT, \rho)}\right) + HT \varepsilon_B,$$

809 which is the claimed bound. This completes the proof. \square

810 **Lemma D.2 (Agnostic approximatotn bound for projected proxies).** *For each $h \in [H]$, define*
 811 *the worst-case (supremum) approximation error of the RKHS ball*

$$813 \quad \varepsilon_B(h) := \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* - V\|_\infty, \quad \varepsilon_B := \max_{j \in [H]} \varepsilon_B(j).$$

815 *If the algorithm's projection guarantees $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$ for all h, t , then for every $h \in [H]$ and*
 816 *$t \in [T]$,*

$$817 \quad \|V_h^* - V_{h,t}\|_\infty \leq \varepsilon_B(h) \leq \varepsilon_B.$$

819 *In particular, with $h \mapsto h + 1$ we get $\|V_{h+1}^* - V_{h+1,t}\|_\infty \leq \varepsilon_B$*

820 *Proof.* Fix $h \in [H]$ and $t \in [T]$. By projecton, $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$, so $V_{h,t}$ belongs to the admissible
 821 set in the definition of $\varepsilon_B(h)$. Since $\varepsilon_B(h)$ is a supremum over that set, it dominates the error at the
 822 particular choice $V_{h,t}$:

$$824 \quad \|V_h^* - V_{h,t}\|_\infty \leq \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* - V\|_\infty = \varepsilon_B(h).$$

826 Finally, by definition $\varepsilon_B(h) \leq \max_{j \in [H]} \varepsilon_B(j) = \varepsilon_B$, which yields the second inequality. The
 827 special case $h \mapsto h + 1$ is immediate. \square

829 **Remark D.3 (Telescoping bound from optimism up to ε_B).** *From equation 12, for every step h*
 830 *and episode t and every $z = (s, a)$,*

$$832 \quad Q_h^*(z) \leq \tilde{Q}_{h,t}(z) + \varepsilon_B.$$

833 *Evaluating at the algorithm's visited pair $z_{h,t} = (s_{h,t}, a_{h,t})$ and using the Bellman identities*

$$835 \quad V_h^*(s_{h,t}) = r_h(z_{h,t}) + [P_h V_{h+1}^*](z_{h,t}), \quad V_h^{\pi_t}(s_{h,t}) = r_h(z_{h,t}) + [P_h V_{h+1}^{\pi_t}](z_{h,t}),$$

836 *we obtain the one-step inequality*

$$838 \quad \begin{aligned} V_h^*(s_{h,t}) - V_h^{\pi_t}(s_{h,t}) &= [P_h V_{h+1}^*](z_{h,t}) - [P_h V_{h+1}^{\pi_t}](z_{h,t}) \\ &\leq (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t})) - [P_h V_{h+1,t}](z_{h,t}) \\ &\quad + \underbrace{([P_h V_{h+1}^*] - [P_h V_{h+1}^{\pi_t}])(z_{h,t})}_{= \mathbb{E}[V_{h+1}^*(s_{h+1,t}) - V_{h+1}^{\pi_t}(s_{h+1,t}) \mid s_{h,t}, a_{h,t}]} + \varepsilon_B. \end{aligned}$$

844 *Taking conditional expectation on the episode's history up to step h (which leaves the displayed*
 845 *conditional expectation unchanged), and summing this inequality over $h = 1, \dots, H$ makes the*
 846 *middle terms telescope (See Remark D.4):*

$$847 \quad \begin{aligned} \sum_{h=1}^H \mathbb{E}[V_{h+1}^*(s_{h+1,t}) - V_{h+1}^{\pi_t}(s_{h+1,t}) \mid \text{history up to } h] &= \mathbb{E}[V_{H+1}^*(s_{H+1,t}) - V_{H+1}^{\pi_t}(s_{H+1,t})] \\ &= 0, \end{aligned}$$

852 *since $V_{H+1}^* \equiv V_{H+1}^{\pi_t} \equiv 0$. Therefore,*

$$854 \quad V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t}) \leq \sum_{h=1}^H (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + H \varepsilon_B,$$

856 *which is the claimed bound.*

858 **Remark D.4. How the middle terms telescope.** *Let \mathcal{F}_h be the history (sigma-field) up to step h in*
 859 *episode t , and define*

$$860 \quad \Delta_h := V_h^*(s_{h,t}) - V_h^{\pi_t}(s_{h,t}), \quad h = 1, \dots, H, \quad \text{with} \quad \Delta_{H+1} = 0$$

862 *From equation 12 we derived, for each h ,*

$$863 \quad \Delta_h \leq (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + \mathbb{E}[\Delta_{h+1} \mid \mathcal{F}_h] + \varepsilon_B. \quad (15)$$

864 Rearrange equation 15 to isolate the martingale increment
 865

$$866 \Delta_h - \mathbb{E}[\Delta_{h+1} | \mathcal{F}_h] \leq (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + \varepsilon_B.$$

867 Summing this inequality over $h = 1, \dots, H$ and using linearity gives
 868

$$869 \sum_{h=1}^H (\Delta_h - \mathbb{E}[\Delta_{h+1} | \mathcal{F}_h]) \leq \sum_{h=1}^H (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + H \varepsilon_B.$$

872 The left-hand side telescopes by the tower property:
 873

$$874 \sum_{h=1}^H (\Delta_h - \mathbb{E}[\Delta_{h+1} | \mathcal{F}_h]) = \Delta_1 - \mathbb{E}[\Delta_{H+1} | \mathcal{F}_H] = \Delta_1 - 0 = V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t}),$$

876 because $\Delta_{H+1} = V_{H+1}^*(s_{H+1,t}) - V_{H+1}^{\pi_t}(s_{H+1,t}) \equiv 0$. Thus we obtain
 877

$$878 V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t}) \leq \sum_{h=1}^H (\tilde{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + H \varepsilon_B$$

881 **Concrete cancellation for $H = 3$ (illustration).** Writing equation 15 for $h = 1, 2, 3$ and subtracting the conditional expectations:
 882

$$884 \Delta_1 - \mathbb{E}[\Delta_2 | \mathcal{F}_1] \leq \text{bonus}_1 + \varepsilon_B, \\ 885 \Delta_2 - \mathbb{E}[\Delta_3 | \mathcal{F}_2] \leq \text{bonus}_2 + \varepsilon_B, \\ 886 \Delta_3 - \mathbb{E}[\Delta_4 | \mathcal{F}_3] \leq \text{bonus}_3 + \varepsilon_B \quad (\Delta_4 \equiv 0).$$

888 Summing yields

$$889 (\Delta_1 - \mathbb{E}[\Delta_2 | \mathcal{F}_1]) + (\Delta_2 - \mathbb{E}[\Delta_3 | \mathcal{F}_2]) + (\Delta_3 - \mathbb{E}[\Delta_4 | \mathcal{F}_3]) \leq \text{bonus}_1 + \text{bonus}_2 + \text{bonus}_3 + 3\varepsilon_B$$

890 The middle terms cancel pairwise by the tower property: $-\mathbb{E}[\Delta_2 | \mathcal{F}_1] + \Delta_2$ and $-\mathbb{E}[\Delta_3 | \mathcal{F}_2] + \Delta_3$ vanish after taking expectations step by step, and $\mathbb{E}[\Delta_4 | \mathcal{F}_3] = 0$. What remains is exactly Δ_1 on the left, i.e., $V_1^*(s_{1,t}) - V_1^{\pi_t}(s_{1,t})$, which proves the claim.
 891

894 **Lemma D.5 (Elliptical potential / information-gain bound at a fixed step).** Fix a step h and let
 895 $\{z_{h,\tau}\}_{\tau=1}^{n_{h,T}}$ be the (adaptively chosen) design points collected at this step up to time T . Let

$$896 \sigma_{h,\tau-1}^2(z) := k(z, z) - k_{h,\tau-1}(z)^\top (K_{h,\tau-1} + \rho I)^{-1} k_{h,\tau-1}(z),$$

898 where $K_{h,\tau-1} = [k(z_{h,i}, z_{h,j})]_{i,j=1}^{\tau-1}$ and $k_{h,\tau-1}(z) = [k(z, z_{h,1}), \dots, k(z, z_{h,\tau-1})]^\top$. Then, for
 899 any $\rho > 0$,

$$900 \sum_{\tau=1}^{n_{h,T}} \log \left(1 + \frac{\sigma_{h,\tau-1}^2(z_{h,\tau})}{\rho} \right) = \frac{1}{2} \log \det(I + \rho^{-1} K_{h,n_{h,T}}) =: \gamma(n_{h,T}, \rho), \quad (16)$$

903 and consequently

$$905 \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}(z_{h,\tau}) \leq \sqrt{n_{h,T} \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau})} \quad (\text{by Cauchy-Schwarz}). \quad (17)$$

908 Moreover, under the common normalization $k(z, z) \leq 1$ and $\rho = 1$,

$$910 \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \gamma(n_{h,T}, 1), \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}(z_{h,\tau}) \leq \sqrt{2 n_{h,T} \gamma(n_{h,T}, 1)}. \quad (18)$$

913 *Proof.* We prove in following three steps.

914 **Step 1: Determinant telescoping (matrix determinant lemma).** Let $A_{\tau-1} := K_{h,\tau-1} + \rho I$ (with
 915 $A_0 = \rho I$). Consider augmenting $A_{\tau-1}$ by the new point $z_{h,\tau}$, i.e., the block matrix
 916

$$917 A_\tau = \begin{bmatrix} K_{h,\tau-1} + \rho I & k_{h,\tau-1}(z_{h,\tau}) \\ k_{h,\tau-1}(z_{h,\tau})^\top & k(z_{h,\tau}, z_{h,\tau}) + \rho \end{bmatrix}.$$

918 By the Schur complement (or the matrix determinant lemma),
 919

$$\begin{aligned} 920 \det(A_\tau) &= \det(A_{\tau-1}) \left(\rho + k(z_{h,\tau}, z_{h,\tau}) - k_{h,\tau-1}(z_{h,\tau})^\top A_{\tau-1}^{-1} k_{h,\tau-1}(z_{h,\tau}) \right) \\ 921 &= \det(A_{\tau-1}) (\rho + \sigma_{h,\tau-1}^2(z_{h,\tau})). \\ 922 \end{aligned}$$

923 Divide both sides by ρ^τ and take logs. Telescoping over $\tau = 1, \dots, n_{h,T}$ gives
 924

$$925 \log \det(I + \rho^{-1} K_{h,n_{h,T}}) = \sum_{\tau=1}^{n_{h,T}} \log \left(1 + \frac{\sigma_{h,\tau-1}^2(z_{h,\tau})}{\rho} \right) \\ 926 \\ 927$$

928 which is equation 16 after multiplying by 1/2 to match the definition $\gamma(n, \rho) = \frac{1}{2} \log \det(I +$
 929 $\rho^{-1} K)$.
 930

931 **Step 2: From equation 16 to bounds on sums.** The second display equation 17 is a direct applica-
 932 tion of Cauchy-Schwarz: $\sum a_\tau \leq \sqrt{(\sum 1)(\sum a_\tau^2)}$.
 933

934 To control $\sum \sigma^2$ in terms of γ , one can use standard scalar inequalities relating $\log(1 + x)$ and x .
 935 A common (and sharp) form in the GP literature (see, e.g., Srinivas et al., 2010, or Chowdhury &
 936 Gopalan, 2017) is

$$937 \sum_{\tau=1}^{n_{h,T}} \min \left\{ 1, \frac{\sigma_{h,\tau-1}^2(z_{h,\tau})}{\rho} \right\} \leq 2 \sum_{\tau=1}^{n_{h,T}} \log \left(1 + \frac{\sigma_{h,\tau-1}^2(z_{h,\tau})}{\rho} \right) = 4 \gamma(n_{h,T}, \rho). \\ 938 \\ 939$$

940 In particular, under the normalization $k(z, z) \leq 1$ and $\rho = 1$, we have $0 \leq \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 1$ so that
 941 $\min\{1, \sigma^2\} = \sigma^2$. See proof in D.6. Thus

$$942 \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \log \det(I + K_{h,n_{h,T}}) = 2 \cdot 2 \gamma(n_{h,T}, 1) = 4 \gamma(n_{h,T}, 1). \\ 943 \\ 944$$

945 See detailed proof in Remark D.7. A slightly refined inequality (using, for $x \in [0, 1]$, that $\log(1 +$
 946 $x) \geq x - x^2/2$ together with $\sum \sigma^4 \leq \sum \sigma^2$) improves the constant and yields
 947

$$948 \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \gamma(n_{h,T}, 1), \\ 949 \\ 950$$

951 as stated in equation 18. Finally, combining with equation 17 gives

$$952 \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}(z_{h,\tau}) \leq \sqrt{2 n_{h,T} \gamma(n_{h,T}, 1)} \\ 953 \\ 954$$

955 **Remark on constants.** All bounds above hold up to universal constants that can be made explicit;
 956 the versions in equation 18 are the ones commonly used in GP-UCB analyses (with $k(z, z) \leq 1$,
 957 $\rho = 1$). For general $\rho > 0$, one obtains $\sum \sigma^2 \lesssim \rho \gamma(n, \rho)$ and hence $\sum \sigma \lesssim \sqrt{\rho n \gamma(n, \rho)}$. \square
 958

959 **Remark D.6. Why $\min\{1, \sigma^2\} = \sigma^2$ when $k(z, z) \leq 1$ and $\rho = 1$.** Recall the posterior deviation
 960 at time $\tau - 1$:

$$961 \sigma_{h,\tau-1}^2(z) = k(z, z) - k_{h,\tau-1}(z)^\top (K_{h,\tau-1} + I)^{-1} k_{h,\tau-1}(z). \\ 962 \\ 963$$

964 Two facts imply $0 \leq \sigma_{h,\tau-1}^2(z) \leq 1$:

965 1. **Nonnegativity.** The block matrix $\begin{pmatrix} K_{h,\tau-1} + I & k_{h,\tau-1}(z) \\ k_{h,\tau-1}(z)^\top & k(z, z) \end{pmatrix}$ is positive semidefinite, so its Schur
 966 complement is nonnegative:
 967

$$968 k(z, z) - k_{h,\tau-1}(z)^\top (K_{h,\tau-1} + I)^{-1} k_{h,\tau-1}(z) \geq 0 \\ 969$$

970 2. **Upper bound by $k(z, z)$.** Since the subtracted term is nonnegative, $\sigma_{h,\tau-1}^2(z) \leq k(z, z) \leq 1$
 971 under the normalization $k(z, z) \leq 1$

972 Therefore, pointwise for every querid $z_{h,\tau}$,

$$973 \quad 0 \leq \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 1,$$

974 and hence $\min\{1, \sigma_{h,\tau-1}^2(z_{h,\tau})\} = \sigma_{h,\tau-1}^2(z_{h,\tau})$.

975 **Remark D.7.** From $\sum \min\{1, \sigma^2\}$ to $\sum \sigma^2$ and γ . Under the normalization $k(z, z) \leq 1$ and $\rho = 1$
976 we have $0 \leq \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 1$, hence $\min\{1, \sigma_{h,\tau-1}^2(z_{h,\tau})\} = \sigma_{h,\tau-1}^2(z_{h,\tau})$. A standard scalar
977 inequality used in GP/KRR analyses (see, e.g., GP-UCB) states that

$$978 \quad \sum_{\tau=1}^{n_{h,T}} \min\{1, \sigma_{h,\tau-1}^2(z_{h,\tau})\} \leq 2 \sum_{\tau=1}^{n_{h,T}} \log(1 + \sigma_{h,\tau-1}^2(z_{h,\tau}))$$

982 Therefore,

$$983 \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \sum_{\tau=1}^{n_{h,T}} \log(1 + \sigma_{h,\tau-1}^2(z_{h,\tau})).$$

984 Using the determinant telescoping identity $\sum_{\tau=1}^{n_{h,T}} \log(1 + \sigma_{h,\tau-1}^2(z_{h,\tau})) = \log \det(I + K_{h,n_{h,T}})$
985 (at $\rho = 1$), we obtain

$$986 \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 2 \log \det(I + K_{h,n_{h,T}}).$$

987 Finally, by definition $\gamma(n_{h,T}, 1) = \frac{1}{2} \log \det(I + K_{h,n_{h,T}})$, so

$$988 \quad 2 \log \det(I + K_{h,n_{h,T}}) = 2 \cdot 2 \gamma(n_{h,T}, 1) = 4 \gamma(n_{h,T}, 1)$$

989 Hence

$$990 \quad \sum_{\tau=1}^{n_{h,T}} \sigma_{h,\tau-1}^2(z_{h,\tau}) \leq 4 \gamma(n_{h,T}, 1)$$

991 where two factors of “2” come from (i) the scalar inequality linking $\min\{1, \sigma^2\}$ to $\log(1 + \sigma^2)$ and
992 (ii) the definition $\gamma = \frac{1}{2} \log \det(\cdot)$.

993 **Remark D.8 (Uniform bound on $\beta_{h,t}$).** Recall

$$994 \quad \beta_{h,t} = B\left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2 \gamma(n_{h,t-1}, \rho) + 2 \log \frac{2HT}{\delta}}\right),$$

995 where $n_{h,t-1} = |\mathcal{D}_{h,t-1}|$ is the number of step- h samples before episode t and $\gamma(\cdot, \rho)$ is the (regularized)
996 information gain. Since $n_{h,t-1} \leq \sum_{h'=1}^H n_{h',t-1} \leq HT$ and $\gamma(n, \rho)$ is nondecreasing in
997 n ,

$$998 \quad \gamma(n_{h,t-1}, \rho) \leq \gamma(HT, \rho) \quad \text{for all } h, t.$$

999 Therefore,

$$1000 \quad \beta_{h,t} \leq B\left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2 \gamma(HT, \rho) + 2 \log \frac{2HT}{\delta}}\right) \leq \tilde{O}\left(B\left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{\gamma(HT, \rho)}\right)\right),$$

1001 uniformly over h, t , where $\tilde{O}(\cdot)$ hides polylogarithmic factors in $(H, T, 1/\delta)$ and absolute constants.
1002 The last step uses the elementary inequality $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ and absorbs the $\sqrt{\log(2HT/\delta)}$
1003 term into the $\tilde{O}(\cdot)$ notation.

1004 **Remark D.9.** Why $\sqrt{2(\sum_h n_{h,T}) (\sum_h \gamma(n_{h,T}, \rho))} = \sqrt{2HT\Gamma_T}$. By definition we set

$$1005 \quad \Gamma_T := \sum_{h=1}^H \gamma(n_{h,T}, \rho).$$

1006 Also, over T episodes and H steps per episode, total number of design points across all steps is

$$1007 \quad \sum_{h=1}^H n_{h,T} = HT$$

1008 Substituting these two identities into $\sqrt{2(\sum_h n_{h,T}) (\sum_h \gamma(n_{h,T}, \rho))}$ gives

$$1009 \quad \sqrt{2\left(\sum_h n_{h,T}\right)\left(\sum_h \gamma(n_{h,T}, \rho)\right)} = \sqrt{2(HT)\Gamma_T} = \sqrt{2HT\Gamma_T}.$$

1026 **E PROOF OF LEMMA**
1027

1028 **Lemma E.1 (Vector-valued kernel ridge concentration).** Suppose Assumption 2.1 holds,
1029 $k(z, z) \leq \kappa_k^2$, and $\ell(s, s) \leq \kappa_\ell^2$. Let $\rho > 0$ and define $\sigma_{h,n}(\cdot)$ by equation 2. Then for any
1030 $\delta \in (0, 1)$, with probability at least $1 - \delta$, simultaneously for all $z \in \mathcal{Z}$,

1031
$$\|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \leq \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right) \sigma_{h,n}(z).$$

1032

1033 *Proof.* Recall the vector-valued KRR estimator $\hat{\mu}_n : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ defined by

1034
$$\hat{\mu}_n(z) = \sum_{i=1}^n \alpha_i(z) \phi(s'_i), \quad \alpha(z) = (K_n + \rho I)^{-1} k_n(z),$$

1035

1036 where $K_n = [k(z_i, z_j)]_{i,j=1}^n$, $k_n(z) = [k(z, z_1), \dots, k(z, z_n)]^\top$, and $\phi(s')$ is the canonical feature
1037 map of ℓ . Let $\Phi : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ be the linear map $\Phi b = \sum_{i=1}^n b_i \phi(s'_i)$, so $\hat{\mu}_n(z) = \Phi^\top (K_n +$
1038 $\rho I)^{-1} k_n(z)$. By the data model (Section 2),

1039
$$\phi(s'_i) = \mu(z_i) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i | \mathcal{F}_{i-1}] = 0, \quad \|\varepsilon_i\|_{\mathcal{H}_\ell} \leq \kappa_\ell, \quad \sigma\text{-sub-Gaussian in } \mathcal{H}_\ell,$$

1040

1041 where $\{\mathcal{F}_i\}$ is the natural filtration.

1042 **Error decomposition.** Let $\mu \in \mathcal{H}_k \otimes \mathcal{H}_\ell$ denote the (unknown) CME map $z \mapsto \mu(z)$. Write
1043 $\Phi = \underbrace{M}_{\text{signal}} + \underbrace{E}_{\text{noise}}$, where $Mb = \sum_i b_i \mu(z_i)$ and $Eb = \sum_i b_i \varepsilon_i$. Then, for any $z \in \mathcal{Z}$,

1044
$$\mu(z) - \hat{\mu}_n(z) = \underbrace{\mu(z) - M^\top (K_n + \rho I)^{-1} k_n(z)}_{\text{bias}} - \underbrace{E^\top (K_n + \rho I)^{-1} k_n(z)}_{\text{noise}} \quad (19)$$

1045

1046 We next bound the two terms separately and then combine via the triangle inequality.

1047 **Bias term.** Let $\mathcal{H}_{k,I}$ be the vector-valued RKHS over \mathcal{Z} with operator-valued kernel $K(z, z') =$
1048 $k(z, z') I_{\mathcal{H}_\ell}$ and norm $\|\cdot\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell}$. Denote by $\Pi_{n,\rho}$ the ρ -regularized orthogonal projector onto the
1049 finite-dimensional subspace $\text{span}\{K(\cdot, z_i)u : i \in [n], u \in \mathcal{H}_\ell\} \subset \mathcal{H}_{k,I}$. It is standard (vector-
1050 valued representer theorem and Tikhonov interpolation inequality, see Lemma G.2 in Appendix)
1051 that

1052
$$\|\mu(z) - M^\top (K_n + \rho I)^{-1} k_n(z)\|_{\mathcal{H}_\ell} = \|\mu(z) - \Pi_{n,\rho} \mu(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell} \sigma_{h,n}(z). \quad (20)$$

1053

1054 By Assumption 2.1 we have $\|\mu\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell} \leq U$, hence the bias is bounded by $\sqrt{\rho} U \sigma_{h,n}(z)$.

1055 **Noise term (Hilbert-space self-normalized bound).** Consider the random element $\mathbf{N}(z) :=$
1056 $E^\top (K_n + \rho I)^{-1} k_n(z) = \sum_{i=1}^n \alpha_i(z) \varepsilon_i \in \mathcal{H}_\ell$ with $\alpha(z) = (K_n + \rho I)^{-1} k_n(z)$. We will show
1057 that, with probability at least $1 - \delta$, simultaneously for all $z \in \mathcal{Z}$,

1058
$$\|\mathbf{N}(z)\|_{\mathcal{H}_\ell} \leq \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \sigma_{h,n}(z) \quad (21)$$

1059

1060 *Derivation.* For any fixed z , write $\mathbf{N}(z) = \sum_{i=1}^n \alpha_i(z) \varepsilon_i$. Let $\langle \cdot, \cdot \rangle$ denote the inner product in \mathcal{H}_ℓ
1061 and let $\mathbb{S} := \{u \in \mathcal{H}_\ell : \|u\|_{\mathcal{H}_\ell} = 1\}$. By duality,

1062
$$\|\mathbf{N}(z)\|_{\mathcal{H}_\ell} = \sup_{u \in \mathbb{S}} \sum_{i=1}^n \alpha_i(z) \langle \varepsilon_i, u \rangle.$$

1063

1064 Define, for each $u \in \mathbb{S}$, the scalar martingale difference sequence $\xi_i^{(u)} := \langle \varepsilon_i, u \rangle$, which is condi-
1065 tionally σ -sub-Gaussian (by assumption) and satisfies $|\xi_i^{(u)}| \leq \kappa_\ell$ a.s. Let $\xi^{(u)} := (\xi_1^{(u)}, \dots, \xi_n^{(u)})^\top$.
1066 Then

1067
$$\sum_{i=1}^n \alpha_i(z) \xi_i^{(u)} = k_n(z)^\top (K_n + \rho I)^{-1} \xi^{(u)}.$$

1068

We invoke the standard *kernel self-normalized concentration* for adaptively chosen designs (the proof appears below as: for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$|k_n(z)^\top (K_n + \rho I)^{-1} \xi^{(u)}| \leq \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \sigma_{h,n}(z), \quad (22)$$

simultaneously for all $z \in \mathcal{Z}$ and fixed $u \in \mathbb{S}$. The inequality equation 22 is proved below. Since the right-hand side does not depend on u , taking the supremum over $u \in \mathbb{S}$ yields equation 21.

Proof of equation 22. Fix $u \in \mathbb{S}$. Let $A_n := K_n + \rho I$ and note that $\gamma(n, \rho) = \frac{1}{2} \log \det(I + \rho^{-1} K_n) = \frac{1}{2} \log \det(A_n) - \frac{n}{2} \log \rho$. For any $\lambda > 0$, by the sub-Gaussian mgf bound and the fact that the design may be adaptive but A_n is \mathcal{F}_n -measurable, one can show (see Abbasi-Yadkori et al. (2011); Chowdhury & Gopalan (2017)) the *mixture* supermartingale

$$\mathcal{M} := \exp\left(\frac{1}{2\sigma^2} \xi^{(u)\top} A_n^{-1} \xi^{(u)}\right) \left(\frac{\rho^{n/2}}{\det(A_n)^{1/2}}\right)$$

satisfies $\mathbb{E}[\mathcal{M}] \leq 1$ (this is the standard Laplace method; see, e.g., the scalar KRR analyses for kernelized bandits). By Markov's inequality, see proof Lemma E.2,

$$\Pr\left(\xi^{(u)\top} A_n^{-1} \xi^{(u)} \geq 2\sigma^2(\gamma(n, \rho) + \log \frac{1}{\delta})\right) \leq \delta$$

On this event, for any z ,

$$|k_n(z)^\top A_n^{-1} \xi^{(u)}| \leq \|A_n^{-1/2} k_n(z)\|_2 \cdot \|A_n^{-1/2} \xi^{(u)}\|_2 \leq \sqrt{2} \sigma \sqrt{\gamma(n, \rho) + \log \frac{1}{\delta}} \|A_n^{-1/2} k_n(z)\|_2.$$

Finally, using the identity

$$\sigma_{h,n}^2(z) = k(z, z) - k_n(z)^\top A_n^{-1} k_n(z) = k(z, z) - \|A_n^{-1/2} k_n(z)\|_2^2$$

and the inequality $\|A_n^{-1/2} k_n(z)\|_2 \leq \rho^{-1/2} \sqrt{k(z, z) - k_n(z)^\top A_n^{-1} k_n(z)}$ (which follows from $A_n \succeq \rho I$), we obtain

$$\|A_n^{-1/2} k_n(z)\|_2 \leq \frac{1}{\sqrt{\rho}} \sigma_{h,n}(z)$$

Combining the last two displays gives equation 22, completing the proof of the scalar self-normalized bound.

Combine bias and noise. From equation 19, equation 20, and equation 21, with probability at least $1 - \delta$,

$$\|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} U \sigma_{h,n}(z) + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \sigma_{h,n}(z)$$

simultaneously for all $z \in \mathcal{Z}$, as claimed. \square

Lemma E.2 (Self-normalized tail bound by Markov). *Let $(\mathcal{F}_t)_{t=0}^n$ be a filtration and let $\xi^{(u)} = (\xi_1, \dots, \xi_n)^\top$ be an \mathcal{F}_t -adapted martingale difference sequence that is conditionally σ -sub-Gaussian: $\mathbb{E}[\exp\{\lambda \xi_t\} \mid \mathcal{F}_{t-1}] \leq \exp(\frac{\sigma^2 \lambda^2}{2})$ for all $\lambda \in \mathbb{R}$ and $t = 1, \dots, n$. Let $A_n \in \mathbb{R}^{n \times n}$ be \mathcal{F}_n -measurable, symmetric positive definite (e.g., $A_n = K_n + \rho I$ with ridge $\rho > 0$ and a design-dependent Gram matrix $K_n \succeq 0$). Define the (design-dependent) information term (Scarlett & Bogunovic (2018); Srinivas et al. (2010))*

$$\gamma(n, \rho) := \frac{1}{2} \log \frac{\det(A_n)}{\rho^n} = \frac{1}{2} \log \det(I + \rho^{-1} K_n).$$

Then for every $\delta \in (0, 1)$,

$$\Pr\left(\xi^{(u)\top} A_n^{-1} \xi^{(u)} \geq 2\sigma^2(\gamma(n, \rho) + \log \frac{1}{\delta})\right) \leq \delta$$

1134 *Proof.* Consider the *mixture/Laplace* supermartingale (proved, e.g., in Abbasi-Yadkori et al. (2011);
 1135 Chowdhury & Gopalan (2017))

1136

$$1137 \quad \mathcal{M} := \exp\left(\frac{1}{2\sigma^2} \boldsymbol{\xi}^{(u)\top} A_n^{-1} \boldsymbol{\xi}^{(u)}\right) \left(\frac{\rho^{n/2}}{\det(A_n)^{1/2}}\right), \quad \text{which satisfies } \mathbb{E}[\mathcal{M}] \leq 1.$$

1138

1139 Fix $\delta \in (0, 1)$. By the definition of $\gamma(n, \rho)$, $\exp\{\gamma(n, \rho)\} = \det(A_n)^{1/2}/\rho^{n/2}$. Therefore, the event

1140

$$1141 \quad \boldsymbol{\xi}^{(u)\top} A_n^{-1} \boldsymbol{\xi}^{(u)} \geq 2\sigma^2(\gamma(n, \rho) + \log \frac{1}{\delta})$$

1142

1143 is equivalent to

1144

$$1145 \quad \exp\left(\frac{1}{2\sigma^2} \boldsymbol{\xi}^{(u)\top} A_n^{-1} \boldsymbol{\xi}^{(u)}\right) \geq \exp\{\gamma(n, \rho)\} \cdot \frac{1}{\delta} = \frac{\det(A_n)^{1/2}}{\rho^{n/2}} \cdot \frac{1}{\delta}$$

1146

$$\iff \mathcal{M} \geq \frac{1}{\delta}.$$

1147

1148 Hence,

1149

$$1150 \quad \mathbb{P}\left(\boldsymbol{\xi}^{(u)\top} A_n^{-1} \boldsymbol{\xi}^{(u)} \geq 2\sigma^2(\gamma(n, \rho) + \log \frac{1}{\delta})\right) = \mathbb{P}(\mathcal{M} \geq \delta^{-1}) \leq \delta \mathbb{E}[\mathcal{M}] \leq \delta$$

1151 where we used Markov's inequality in the first inequality and $\mathbb{E}[\mathcal{M}] \leq 1$ in the second. This proves
 1152 the claim. \square

1153 **Remark E.3** (Interpretation). When $A_n = K_n + \rho I$ with $\rho > 0$, the quantity $\gamma(n, \rho) = \frac{1}{2} \log \det(I + \rho^{-1} K_n)$ coincides with the standard information gain in kernel bandits/GP regression; the lemma is
 1154 the usual self-normalized tail bound obtained directly from the mixture supermartingale via Markov
 1155

1157 F UNIFORM CI

1158 **Theorem F.1 (Uniform CI for all $\|V\|_{\mathcal{H}_\ell} \leq B$).** Under conditions of Lemma 3.2, for any $B > 0$
 1159 and $\delta \in (0, 1)$, with probability at least $1 - \delta$, for all $V \in \mathcal{H}_\ell$ with $\|V\|_{\mathcal{H}_\ell} \leq B$ and all $z \in \mathcal{Z}$,

1160

$$1161 \quad |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq \beta_{n,\delta} \sigma_{h,n}(z), \quad \beta_{n,\delta} := B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right).$$

1162

1163 *Proof.* We proceed in three steps and keep the step index h implicit to lighten notation. Throughout,
 1164 recall the following definitions:

1165 (i) (*Bellman image as a CME inner product*) Under Assumption 2.1, for every $V \in \mathcal{H}_\ell$ and $z \in \mathcal{Z}$,

1166

$$1167 \quad [P_h V](z) = \langle \mu(z), V \rangle_{\mathcal{H}_\ell}, \tag{23}$$

1168

1169 where $\mu : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ is the conditional mean embedding (CME) with $\|\mu\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell} \leq U$.

1170 (ii) (*Scalar and vector KRR*) Given data $\{(z_i, s'_i)\}_{i=1}^n$, define the scalar KRR predictor for labels
 1171

$$1172 \quad y_i^{(V)} := V(s'_i)$$

1173

$$1174 \quad \hat{f}_{h,n}^V(z) = k_n(z)^\top (K_n + \rho I)^{-1} \mathbf{y}^{(V)}, \quad \sigma_{h,n}^2(z) = k(z, z) - k_n(z)^\top (K_n + \rho I)^{-1} k_n(z), \tag{24}$$

1175

1176 and the vector-valued KRR CME estimator

1177

$$1178 \quad \hat{\mu}_n(z) := \sum_{i=1}^n \alpha_i(z) \phi(s'_i), \quad \alpha(z) := (K_n + \rho I)^{-1} k_n(z). \tag{25}$$

1179

1180 (iii) (*Scalar-vector identity*) By Proposition 3.1,

1181

$$1182 \quad \hat{f}_{h,n}^V(z) = \langle \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell} \quad \text{for all } V \in \mathcal{H}_\ell, z \in \mathcal{Z}. \tag{26}$$

1183

1184 **Step 1: Reduce scalar error to a vector error via inner products.** Combining equation 23 and
 1185 equation 26, for any $V \in \mathcal{H}_\ell$ and $z \in \mathcal{Z}$,

1186

$$1187 \quad [P_h V](z) - \hat{f}_{h,n}^V(z) = \langle \mu(z), V \rangle_{\mathcal{H}_\ell} - \langle \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell} = \langle \mu(z) - \hat{\mu}_n(z), V \rangle_{\mathcal{H}_\ell} \tag{27}$$

1188

1188 **Step 2: Apply Cauchy-Schwarz + take a supremum over RKHS ball.** By Cauchy-Schwarz in
 1189 \mathcal{H}_ℓ ,

$$|[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq \|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \cdot \|V\|_{\mathcal{H}_\ell}. \quad (28)$$

1190 Hence, uniformly over all V in the RKHS ball $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$,

$$\sup_{\|V\|_{\mathcal{H}_\ell} \leq B} |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq B \|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \quad (29)$$

1191 Note that the right-hand side depends on the data and on z , but *not* on V ; this is the key to obtaining
 1192 a *uniform* statement over the entire ball.

1193 **Step 3: Invoke vector-valued KRR concentraton (Lemma 3.2).** Lemma 3.2 asserts that, for any
 1194 $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\|\mu(z) - \hat{\mu}_n(z)\|_{\mathcal{H}_\ell} \leq \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right) \sigma_{h,n}(z) \quad \text{simultaneously for all } z \in \mathcal{Z}. \quad (30)$$

1195 Multiplying both sides of equation 30 by B and plugging into equation 29 gives, on the same high-
 1196 probability event,

$$\sup_{\|V\|_{\mathcal{H}_\ell} \leq B} |[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right) \sigma_{h,n}(z) \quad \text{for all } z \in \mathcal{Z}.$$

1197 Since the left-hand side is an upper bound on *each* particular V with $\|V\|_{\mathcal{H}_\ell} \leq B$, we conclude that,
 1198 with probability at least $1 - \delta$, *simultaneously for all* V with $\|V\|_{\mathcal{H}_\ell} \leq B$ *and all* $z \in \mathcal{Z}$,

$$|[P_h V](z) - \hat{f}_{h,n}^V(z)| \leq \beta_{n,\delta} \sigma_{h,n}(z),$$

1199 with

$$\beta_{n,\delta} := B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2 \log \frac{1}{\delta}} \right).$$

1200 This is exactly the claimed bound. \square

G ADDITIONAL RESULTS

1201 **Definition G.1** (ρ -regularized orthogonal projector (Tikhonov projector)). *Let \mathcal{H} be a Hilbert space
 1202 and $\mathcal{S} \subset \mathcal{H}$ a finite-dimensional subspace with basis $\{s_1, \dots, s_m\}$. For $\rho > 0$, the ρ -regularized
 1203 orthogonal projector (or Tikhonov projector) $\Pi_{\mathcal{S},\rho} : \mathcal{H} \rightarrow \mathcal{S}$ maps any $f \in \mathcal{H}$ to the unique element
 1204 $g \in \mathcal{S}$ that solves the ridge-regularized least-squares problem*

$$g = \arg \min_{h \in \mathcal{S}} \|f - h\|_{\mathcal{H}}^2 + \rho \|h\|_{\mathcal{H}}^2$$

1205 *Equivalently, if $S : \mathbb{R}^m \rightarrow \mathcal{H}$ denotes the synthesis operator $S\mathbf{c} = \sum_{j=1}^m c_j s_j$ and $G = S^* S$ is the
 1206 Gram matrix of $\{s_j\}$ in \mathcal{H} , then*

$$\Pi_{\mathcal{S},\rho} f = S (G + \rho I)^{-1} S^* f$$

1207 *which reduces to standard orthogonal projector as $\rho \downarrow 0$ (provided G is invertible).*

1208 **Lemma G.2** (Bias inequality using Tikhonov interpolaton). *Let $K(z, z') = k(z, z') I_{\mathcal{H}_\ell}$ be the
 1209 operator-valued kernel on \mathcal{Z} with scalar kernel k and output space \mathcal{H}_ℓ , and let $\mathcal{H}_{k,I}$ denote the
 1210 associated vector-valued RKHS (isometric to $\mathcal{H}_k \otimes \mathcal{H}_\ell$). Given training inputs $z_{1:n}$, define the
 1211 finite-dimensional subspace*

$$\mathcal{S}_n := \text{span} \{ K(\cdot, z_i) u : i = 1, \dots, n, u \in \mathcal{H}_\ell \} \subset \mathcal{H}_{k,I}$$

1212 *and let $\Pi_{n,\rho} : \mathcal{H}_{k,I} \rightarrow \mathcal{S}_n$ be the ρ -regularized orthogonal projector (Tikhonov projector) onto
 1213 \mathcal{S}_n . Let $\mu \in \mathcal{H}_{k,I}$ be the (vector-valued) target and $M^\top : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ be the linear operator
 1214 $M^\top \mathbf{b} = \sum_{i=1}^n b_i \mu(z_i)$. Then, for every $z \in \mathcal{Z}$,*

$$\|\mu(z) - M^\top (K_n + \rho I)^{-1} k_n(z)\|_{\mathcal{H}_\ell} = \|\mu(z) - \Pi_{n,\rho} \mu(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_{k,I}} \sigma_{h,n}(z), \quad (31)$$

1215 *where $K_n = [k(z_i, z_j)]_{i,j}$, $k_n(z) = [k(z, z_1), \dots, k(z, z_n)]^\top$, and $\sigma_{h,n}^2(z) = k(z, z) -
 1216 k_n(z)^\top (K_n + \rho I)^{-1} k_n(z)$.*

1242 *Proof.* We first recall that in the vector-valued RKHS with kernel $K = k I$, the evaluation functional
 1243 at z is represented by $K(\cdot, z) = k(\cdot, z) I_{\mathcal{H}_\ell}$, and the *regularized* orthogonal projection $\Pi_{n,\rho}$ onto \mathcal{S}_n
 1244 satisfies the normal equations (see Lemma G.3)

$$1246 \quad \Pi_{n,\rho}\mu(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i^*, \quad \text{with } (K_n + \rho I) C^{\star\top} = M^\top,$$

1248 where $C^* = [c_1^*, \dots, c_n^*]$ and $M^\top : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ maps $e_i \mapsto \mu(z_i)$. Evaluating at z and using
 1249 $K(\cdot, z_i) = k(\cdot, z_i) I$, we obtain

$$1251 \quad \Pi_{n,\rho}\mu(z) = \sum_{i=1}^n k(z, z_i) c_i^* = (k_n(z)^\top (K_n + \rho I)^{-1}) M^\top = M^\top (K_n + \rho I)^{-1} k_n(z)$$

1254 which proves the first equality in equation 31.

1255 For the inequality, we use the standard Tikhonov interpolation error bound in RKHSs (vector-valued
 1256 case with kernel $K = k I$). Let $g^* = \Pi_{n,\rho}\mu$. Then, for any z ,

$$1258 \quad \|\mu(z) - g^*(z)\|_{\mathcal{H}_\ell} \leq \|\mu - g^*\|_{\mathcal{H}_{k,I}} \|K(\cdot, z)\|_{\mathcal{H}_{k,I}} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_{k,I}} \|(K_n + \rho I)^{-1/2} k_n(z)\|_2,$$

1260 where the last step uses the optimality of g^* for the Tikhonov problem and the standard interpolation
 1261 inequality (see, e.g., Steinwart & Christmann, 2008; Carmeli et al., 2010, see Lemma G.8 for
 1262 details). Finally,

$$1263 \quad \|(K_n + \rho I)^{-1/2} k_n(z)\|_2^2 = k_n(z)^\top (K_n + \rho I)^{-1} k_n(z) = k(z, z) - \sigma_{h,n}^2(z),$$

1264 and since $K_n + \rho I \succeq \rho I$,

$$1266 \quad \|(K_n + \rho I)^{-1/2} k_n(z)\|_2 \leq \frac{1}{\sqrt{\rho}} \sigma_{h,n}(z).$$

1268 Combining the last two displays yields $\|\mu(z) - g^*(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_{k,I}} \sigma_{h,n}(z)$, which is equation
 1269 31. \square

1271 **Lemma G.3** (Normal equations for the Tikhonov projector onto \mathcal{S}_n). *Let $K(z, z') = k(z, z') I_{\mathcal{H}_\ell}$ be the operator-valued kernel on \mathcal{Z} with scalar kernel k and output space \mathcal{H}_ℓ , and let $\mathcal{H}_{k,I}$ be the associated vector-valued RKHS. Given inputs $z_{1:n}$, define*

$$1274 \quad \mathcal{S}_n := \text{span}\{K(\cdot, z_i)u : i = 1, \dots, n, u \in \mathcal{H}_\ell\} \subset \mathcal{H}_{k,I}$$

1276 For $\rho > 0$, the ρ -regularized orthogonal projection $\Pi_{n,\rho} : \mathcal{H}_{k,I} \rightarrow \mathcal{S}_n$ of any $g \in \mathcal{H}_{k,I}$ is the
 1277 (unique) minimizer of

$$1278 \quad \min_{h \in \mathcal{S}_n} \|g - h\|_{\mathcal{H}_{k,I}}^2 + \rho \|h\|_{\mathcal{H}_{k,I}}^2.$$

1279 In particular, for $g = \mu$ and $h(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i$ with coefficients $c_i \in \mathcal{H}_\ell$, optimal coefficients
 1280 c_i^* satisfy the normal equations

$$1281 \quad (K_n + \rho I) C^{\star\top} = M^\top \tag{32}$$

1283 where $K_n = [k(z_i, z_j)]_{i,j=1}^n$, $C^* = [c_1^*, \dots, c_n^*]$, and $M^\top : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ is defined by $M^\top e_i = \mu(z_i)$
 1284 Consequently,

$$1285 \quad \Pi_{n,\rho}\mu(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i^*.$$

1288 *Proof.* Write $h(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i$ with $c_i \in \mathcal{H}_\ell$, and define the synthesis operator $S : \mathcal{H}_\ell^n \rightarrow$
 1289 $\mathcal{H}_{k,I}$ by $S(c_1, \dots, c_n) = \sum_{i=1}^n K(\cdot, z_i) c_i$. The objective is

$$1291 \quad J(c_1, \dots, c_n) = \|\mu - SC\|_{\mathcal{H}_{k,I}}^2 + \rho \|SC\|_{\mathcal{H}_{k,I}}^2, \quad C = (c_1, \dots, c_n) \in \mathcal{H}_\ell^n.$$

1292 The RKHS inner product with kernel $K = k I$ implies $S^* S = K_n \otimes I_{\mathcal{H}_\ell}$ and $S^* \mu =$
 1293 $(\mu(z_1), \dots, \mu(z_n))$, i.e., $M^\top : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ maps $e_i \mapsto \mu(z_i)$ (see Lemma G.4). Expanding and
 1294 taking the Fréchet derivative with respect to C yields the normal equations (see Lemma G.6)

$$1295 \quad (S^* S + \rho I) C^* = S^* \mu,$$

1296 or equivalently,

$$((K_n \otimes I_{\mathcal{H}_\ell}) + \rho I) C^* = M$$

1297 where we regard C^* as a vector in \mathcal{H}_ℓ^n and $M = (\mu(z_1), \dots, \mu(z_n))$. Grouping by coordinates
1298 in \mathcal{H}_ℓ gives equation 32: $(K_n + \rho I) C^{*\top} = M^\top$. Substituting C^* back into $h = SC^*$ shows that
1300 the minimizer is $\Pi_{n,\rho}\mu(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i^*$. Uniqueness follows from strict convexity of J for
1301 $\rho > 0$. \square

1302 **Lemma G.4 (Adjoint identities for synthesis operator).** *Let $K(z, z') = k(z, z') I_{\mathcal{H}_\ell}$ be the
1303 operator-valued kernel on \mathcal{Z} with scalar kernel k and output Hilbert space \mathcal{H}_ℓ , and let $\mathcal{H}_{k,I}$ be
1304 the associated vector-valued RKHS. Fix inputs $z_{1:n}$ and define the synthesis operator*

$$1307 \quad S : \mathcal{H}_\ell^n \longrightarrow \mathcal{H}_{k,I}, \quad S(c_1, \dots, c_n) := \sum_{i=1}^n K(\cdot, z_i) c_i = \sum_{i=1}^n k(\cdot, z_i) c_i$$

1308 Then its adjoint $S^* : \mathcal{H}_{k,I} \rightarrow \mathcal{H}_\ell^n$ satisfies

$$1311 \quad S^* S = K_n \otimes I_{\mathcal{H}_\ell}, \quad S^* \mu = (\mu(z_1), \dots, \mu(z_n)),$$

1312 where $K_n = [k(z_i, z_j)]_{i,j=1}^n$, $\mu : \mathcal{Z} \rightarrow \mathcal{H}_\ell$ is any \mathcal{H}_ℓ -valued function, and \otimes denotes the Kronecker
1313 product (acting as the identity on \mathcal{H}_ℓ).

1314 *Proof.* We characterize S^* using the defining relation $\langle SC, g \rangle_{\mathcal{H}_{k,I}} = \langle C, S^* g \rangle_{\mathcal{H}_\ell^n}$ for all $C =$
1315 $(c_1, \dots, c_n) \in \mathcal{H}_\ell^n$ and $g \in \mathcal{H}_{k,I}$. First, by the reproducing property in the vector-valued RKHS
1316 with kernel $K = k I$ (see Lemma G.5),

$$1319 \quad \langle K(\cdot, z_i) c_i, g \rangle_{\mathcal{H}_{k,I}} = \langle c_i, g(z_i) \rangle_{\mathcal{H}_\ell}$$

1320 Summing over i ,

$$1323 \quad \langle SC, g \rangle_{\mathcal{H}_{k,I}} = \sum_{i=1}^n \langle c_i, g(z_i) \rangle_{\mathcal{H}_\ell} = \langle C, (g(z_1), \dots, g(z_n)) \rangle_{\mathcal{H}_\ell^n}.$$

1324 Hence $S^* g = (g(z_1), \dots, g(z_n)) \in \mathcal{H}_\ell^n$.

1325 Now take $g = SC' = \sum_{j=1}^n K(\cdot, z_j) c'_j$ with $C' = (c'_1, \dots, c'_n) \in \mathcal{H}_\ell^n$. Then

$$1329 \quad S^* SC' = (SC')(z_1), \dots, (SC')(z_n) = \left(\sum_{j=1}^n K(z_1, z_j) c'_j, \dots, \sum_{j=1}^n K(z_n, z_j) c'_j \right) \quad (33)$$

$$1332 \quad = \left(\sum_{j=1}^n k(z_1, z_j) c'_j, \dots, \sum_{j=1}^n k(z_n, z_j) c'_j \right). \quad (34)$$

1334 This is exactly $(K_n \otimes I_{\mathcal{H}_\ell}) C'$, proving $S^* S = K_n \otimes I_{\mathcal{H}_\ell}$.

1335 Finally, for any $\mu : \mathcal{Z} \rightarrow \mathcal{H}_\ell$, $S^* \mu = (\mu(z_1), \dots, \mu(z_n))$, by the first identity with $g = \mu$. Writing
1336 $M^\top : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ for the linear map $M^\top e_i = \mu(z_i)$, this is the same as the stacked vector of
1337 evaluations. \square

1338 **Lemma G.5 (Vector-valued reproducing property for $K = k I$).** *Let $K(z, z') = k(z, z') I_{\mathcal{H}_\ell}$ be
1339 the operator-valued kernel on \mathcal{Z} , where k is a scalar positive-definite kernel and $I_{\mathcal{H}_\ell}$ is the identity
1340 on the Hilbert space \mathcal{H}_ℓ . Let $\mathcal{H}_{k,I}$ be the associated vector-valued RKHS of \mathcal{H}_ℓ -valued functions on
1341 \mathcal{Z} . Then for every $z \in \mathcal{Z}$, $c \in \mathcal{H}_\ell$, and $g \in \mathcal{H}_{k,I}$,*

$$1344 \quad \langle K(\cdot, z) c, g \rangle_{\mathcal{H}_{k,I}} = \langle c, g(z) \rangle_{\mathcal{H}_\ell}$$

1345 *Proof.* By definition of a vector-valued RKHS with kernel K , the evaluation at z is a bounded linear
1346 functional from $\mathcal{H}_{k,I}$ to \mathcal{H}_ℓ , represented by $K(\cdot, z)$ in the sense that for all $g \in \mathcal{H}_{k,I}$,

$$1347 \quad g(z) = \langle g, K(\cdot, z) \rangle_{\mathcal{H}_{k,I}},$$

1350 where the right-hand side is an element of \mathcal{H}_ℓ obtained by the Riesz representation (here, the inner
 1351 product in $\mathcal{H}_{k,I}$ takes values in \mathcal{H}_ℓ when pairing with $K(\cdot, z)$). Concretely, for any $c \in \mathcal{H}_\ell$, taking
 1352 inner products with c in \mathcal{H}_ℓ yields

$$1354 \quad \langle c, g(z) \rangle_{\mathcal{H}_\ell} = \langle c, \langle g, K(\cdot, z) \rangle_{\mathcal{H}_{k,I}} \rangle_{\mathcal{H}_\ell} = \langle g, K(\cdot, z) c \rangle_{\mathcal{H}_{k,I}}$$

1355 where last equality uses bilinearity and the fact that $K(\cdot, z)$ acts on c via $I_{\mathcal{H}_\ell}$. Symmetry of the
 1356 inner product gives the displayed identity. (For a formal construction, see the standard vector-valued
 1357 RKHS references; e.g., Carmeli, De Vito, and Toigo, 2010.) \square
 1358

1359 **Lemma G.6 (Normal equations for ridge in coefficient space).** *Let $K(z, z') = k(z, z') I_{\mathcal{H}_\ell}$ be
 1360 the operator-valued kernel on \mathcal{Z} with scalar kernel k and output Hilbert space \mathcal{H}_ℓ , and let $\mathcal{H}_{k,I}$ be
 1361 the associated vector-valued RKHS. Fix inputs $z_{1:n}$ and define the synthesis operator*

$$1362 \quad S : \mathcal{H}_\ell^n \longrightarrow \mathcal{H}_{k,I}, \quad S(c_1, \dots, c_n) := \sum_{i=1}^n K(\cdot, z_i) c_i.$$

1365 *Equip \mathcal{H}_ℓ^n with the product inner product $\langle C, D \rangle_{\mathcal{H}_\ell^n} = \sum_{i=1}^n \langle c_i, d_i \rangle_{\mathcal{H}_\ell}$ for $C = (c_1, \dots, c_n)$,
 1366 $D = (d_1, \dots, d_n)$. For a target $\mu \in \mathcal{H}_{k,I}$ and ridge parameter $\rho > 0$, consider the Tikhonov
 1367 objective in coefficient space*

$$1369 \quad J(C) := \|\mu - SC\|_{\mathcal{H}_{k,I}}^2 + \rho \|C\|_{\mathcal{H}_\ell^n}^2, \quad C \in \mathcal{H}_\ell^n$$

1370 *Then J is strictly convex and also Fréchet differentiable, and its unique minimizer C^* would satisfy
 1371 the normal equations*

$$1372 \quad (S^* S + \rho I) C^* = S^* \mu, \quad (35)$$

1374 *where $S^* : \mathcal{H}_{k,I} \rightarrow \mathcal{H}_\ell^n$ is the adjoint of S . Moreover, using the identities $S^* S = K_n \otimes I_{\mathcal{H}_\ell}$ and
 1375 $S^* \mu = (\mu(z_1), \dots, \mu(z_n)) =: M$ (cf. Lemma G.4), equation 35 is equivalent to*

$$1376 \quad ((K_n \otimes I_{\mathcal{H}_\ell}) + \rho I) C^* = M, \quad (36)$$

1378 *with $K_n = [k(z_i, z_j)]_{i,j=1}^n$*

1380 **Proof. Fréchet derivative.** For any direction $D \in \mathcal{H}_\ell^n$ and $\varepsilon \in \mathbb{R}$,

$$1382 \quad J(C + \varepsilon D) = \|\mu - SC - \varepsilon SD\|_{\mathcal{H}_{k,I}}^2 + \rho \|C + \varepsilon D\|_{\mathcal{H}_\ell^n}^2$$

1383 Differentiate at $\varepsilon = 0$ (Gâteaux/Fréchet derivative), we have

$$1385 \quad \begin{aligned} \frac{d}{d\varepsilon} J(C + \varepsilon D) \Big|_{\varepsilon=0} &= -2 \langle \mu - SC, SD \rangle_{\mathcal{H}_{k,I}} + 2\rho \langle C, D \rangle_{\mathcal{H}_\ell^n} \\ &= -2 \langle S^*(\mu - SC), D \rangle_{\mathcal{H}_\ell^n} + 2\rho \langle C, D \rangle_{\mathcal{H}_\ell^n} \\ &= 2 \langle (-S^* \mu + S^* SC + \rho C), D \rangle_{\mathcal{H}_\ell^n} \end{aligned}$$

1390 where we have used definition of adjoint S^* defined as $\langle SC, g \rangle_{\mathcal{H}_{k,I}} = \langle C, S^* g \rangle_{\mathcal{H}_\ell^n}$. The gradient of
 1391 J at C is therefore $\nabla J(C) = 2((S^* S + \rho I)C - S^* \mu)$.
 1392

1393 **Optimality and normal equations.** Since J is strictly convex (sum of a convex quadratic and a
 1394 strongly convex quadratic), it has a unique minimizer C^* characterized by $\nabla J(C^*) = 0$, i.e.

$$1395 \quad (S^* S + \rho I) C^* = S^* \mu$$

1397 which is equation 35.

1398 **Equivalence to Gram form.** By Lemma G.4, $S^* S = K_n \otimes I_{\mathcal{H}_\ell}$ and $S^* \mu = (\mu(z_1), \dots, \mu(z_n)) =: M$. Substituting these into equation 35 yields equation 36. \square
 1400

1401 **Remark G.7 (Form of Tikhonov projection).** *Let $S : \mathcal{H}_\ell^n \rightarrow \mathcal{H}_{k,I}$ be the synthesis operator
 1402 $S(c_1, \dots, c_n) = \sum_{i=1}^n K(\cdot, z_i) c_i$, and let $C^* \in \mathcal{H}_\ell^n$ be the unique solution of the normal equa-
 1403 tions*

$$1403 \quad (S^* S + \rho I) C^* = S^* \mu \quad (\text{equivalently, } ((K_n \otimes I_{\mathcal{H}_\ell}) + \rho I) C^* = M)$$

1404 By definition of the ρ -regularized orthogonal projection $\Pi_{n,\rho}$ onto the span $\mathcal{S}_n = \text{span}\{K(\cdot, z_i)u : i \in [n], u \in \mathcal{H}_\ell\}$, the minimizer of $\min_{h \in \mathcal{S}_n} \|\mu - h\|_{\mathcal{H}_{k,I}}^2 + \rho\|h\|_{\mathcal{H}_{k,I}}^2$ is $h^* = SC^*$. Therefore,

$$\Pi_{n,\rho}\mu(\cdot) = h^*(\cdot) = \sum_{i=1}^n K(\cdot, z_i) c_i^*$$

1410 In words: Tikhonov projector onto \mathcal{S}_n retains the finite-span form with coefficients given by the ridge
1411 normel equations.

1412 **Lemma G.8** (Tikhonov interpolation bound in the vector-valued RKHS). Let $K(z, z') = k(z, z')I_{\mathcal{H}_\ell}$ be an operator-valued kernel on \mathcal{Z} with scalar kernel k and output Hilbert space \mathcal{H}_ℓ ,
1413 and let $\mathcal{H}_{k,I}$ be the associated vector-valued RKHS. Fix training inputs $z_{1:n}$ and ridge $\rho > 0$. For a
1414 target $\mu \in \mathcal{H}_{k,I}$, let

$$g^* := \Pi_{n,\rho}\mu \in \text{span}\{K(\cdot, z_i)u : i \in [n], u \in \mathcal{H}_\ell\}$$

1418 be the ρ -regularized orthogonel projection of μ onto the finite span (the Tikhonov projector). Then,
1419 for every $z \in \mathcal{Z}$,

$$\|\mu(z) - g^*(z)\|_{\mathcal{H}_\ell} \leq \sqrt{\rho} \|\mu\|_{\mathcal{H}_{k,I}} \|(K_n + \rho I)^{-1/2}k_n(z)\|_2 \quad (37)$$

1422 where $K_n = [k(z_i, z_j)]_{i,j=1}^n$ and $k_n(z) = [k(z, z_1), \dots, k(z, z_n)]^\top$

1424 *Proof.* **Step 1: A residual representer.** Define the linear evaluation functional at z by $E_z : \mathcal{H}_{k,I} \rightarrow \mathcal{H}_\ell$, $E_z(h) = h(z)$. Let $S : \mathcal{H}_\ell^n \rightarrow \mathcal{H}_{k,I}$ be the synthesis operator $S(c_1, \dots, c_n) = \sum_{i=1}^n K(\cdot, z_i)c_i$,
1425 and $S^* : \mathcal{H}_{k,I} \rightarrow \mathcal{H}_\ell^n$ its adjoint (Lemma G.4 gives $S^*h = (h(z_1), \dots, h(z_n))$ and $S^*S = K_n \otimes I_{\mathcal{H}_\ell}$). Let $\alpha(z) := (K_n + \rho I)^{-1}k_n(z)$ and define the *residual representer*

$$r_z(\cdot) := K(\cdot, z) - S\alpha(z) \in \mathcal{H}_{k,I} \quad (38)$$

1430 By vector-valued reproducing prop. (Lemma G.5), for any $h \in \mathcal{H}_{k,I}$,

$$\begin{aligned} \langle h, r_z \rangle_{\mathcal{H}_{k,I}} &= \langle h, K(\cdot, z) \rangle_{\mathcal{H}_{k,I}} - \langle h, S\alpha(z) \rangle_{\mathcal{H}_{k,I}} = \langle h(z), \cdot \rangle_{\mathcal{H}_\ell} - \langle S^*h, \alpha(z) \rangle_{\mathcal{H}_\ell^n} \\ &= h(z) - \sum_{i=1}^n \alpha_i(z) h(z_i). \end{aligned}$$

1435 In particular, for $h = \mu$ and $h = g^*$, we obtain

$$\mu(z) - g^*(z) = \langle \mu - g^*, r_z \rangle_{\mathcal{H}_{k,I}}. \quad (39)$$

1439 **Step 2: Tikhonov orthogonality and swapping the residual.** By optimality of $g^* = \Pi_{n,\rho}\mu$ for the
1440 Tikhonov problem $\min_{h \in \text{span}} \|\mu - h\|_{\mathcal{H}_{k,I}}^2 + \rho\|h\|_{\mathcal{H}_{k,I}}^2$, the Fréchet first-order condition reads

$$\langle \mu - g^*, SC \rangle_{\mathcal{H}_{k,I}} + \rho \langle g^*, SC \rangle_{\mathcal{H}_{k,I}} = 0 \quad \forall C \in \mathcal{H}_\ell^n.$$

1443 Equivalently, with S^* , $S^*(\mu - g^*) = -\rho S^*g^*$, and therefore, for every z ,

$$\langle \mu - g^*, S\alpha(z) \rangle_{\mathcal{H}_{k,I}} = \langle S^*(\mu - g^*), \alpha(z) \rangle_{\mathcal{H}_\ell^n} = -\rho \langle S^*g^*, \alpha(z) \rangle_{\mathcal{H}_\ell^n}$$

1446 Thus equation 39 can be rewrittn as

$$\mu(z) - g^*(z) = \langle \mu - g^*, K(\cdot, z) \rangle_{\mathcal{H}_{k,I}} + \rho \langle S^*g^*, \alpha(z) \rangle_{\mathcal{H}_\ell^n}.$$

1450 Using $g^* = SC^*$ and the normal equations $(S^*S + \rho I)C^* = S^*\mu$ (Lemma G.6), one checks that the
1451 second term equals $\rho \langle C^*, \alpha(z) \rangle_{\mathcal{H}_\ell^n} = \langle S^*\mu - S^*SC^*, \alpha(z) \rangle = \langle \mu - g^*, S\alpha(z) \rangle_{\mathcal{H}_{k,I}}$. Therefore

$$\mu(z) - g^*(z) = \langle \mu - g^*, K(\cdot, z) - S\alpha(z) \rangle_{\mathcal{H}_{k,I}} = \langle \mu - g^*, r_z \rangle_{\mathcal{H}_{k,I}}$$

1454 This recovers equation 39 and shows r_z as the Riesz representer of the linear functional $h \mapsto h(z) - \sum_i \alpha_i(z)h(z_i)$

1456 **Step 3: Bounding residual via the powar function.** By using Cauchy-Schwarz,

$$\|\mu(z) - g^*(z)\|_{\mathcal{H}_\ell} \leq \|\mu - g^*\|_{\mathcal{H}_{k,I}} \|r_z\|_{\mathcal{H}_{k,I}}$$

1458 A standard computatin (the “power function” calculation; see, e.g., Steinwart & Christmann, 2008,
 1459 or Carmeli et al., 2010) gives
 1460

$$1461 \|r_z\|_{\mathcal{H}_{k,I}}^2 = \langle r_z, r_z \rangle_{\mathcal{H}_{k,I}} = \rho \|(K_n + \rho I)^{-1/2} k_n(z)\|_2^2,$$

1462 whence
 1463

$$1464 \|r_z\|_{\mathcal{H}_{k,I}} = \sqrt{\rho} \|(K_n + \rho I)^{-1/2} k_n(z)\|_2 \quad (40)$$

1465 Finally, Tikhonov optimality inequalty $\|\mu - g^*\|_{\mathcal{H}_{k,I}}^2 + \rho \|g^*\|_{\mathcal{H}_{k,I}}^2 \leq \|\mu\|_{\mathcal{H}_{k,I}}^2$ implies $\|\mu - g^*\|_{\mathcal{H}_{k,I}} \leq \|\mu\|_{\mathcal{H}_{k,I}}$. Combining with equation 40 yields equation 37. \square
 1466

1467 **Remark G.9** (On the power functin identity). *The equality $\|r_z\|_{\mathcal{H}_{k,I}}^2 = \rho \|(K_n + \rho I)^{-1/2} k_n(z)\|_2^2$ follows from expanding $r_z = K(\cdot, z) - S(K_n + \rho I)^{-1} k_n(z)$ in the RKHS inner product, using $S^* S = K_n \otimes I_{\mathcal{H}_\ell}$ and $S^* K(\cdot, z) = k_n(z)$ (Lemma G.4), and the matrix identity $(K_n + \rho I)^{-1} K_n (K_n + \rho I)^{-1} = (K_n + \rho I)^{-1} - \rho (K_n + \rho I)^{-2}$.*

1472 H ADDITIONAL RESULTS FOR THEOREM 5.1

1473 **Lemma H.1** (Global “good event” via a union bound). *Fix $\delta \in (0, 1)$. For each step $h \in [H]$ and episode $t \in [T]$, let $n_{h,t-1} = |\mathcal{D}_{h,t-1}|$ be the number of transitions collected at step h before episode t , and define the per-step confidence radius (as in equation 3)*

$$1478 \beta_{h,t} := B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{2HT}{\delta}} \right)$$

1481 Assume algorithm’s projection guarantees $\|V_{h+1,t}\|_{\mathcal{H}_\ell} \leq B$ for all h, t . Then there exists an event
 1482 \mathcal{G} with

$$1483 \Pr(\mathcal{G}) \geq 1 - \delta$$

1484 such that, simultaneously for all $h \in [H]$, $t \in [T]$, and all $z \in \mathcal{Z}$, Eq equation 11 copied below

$$1485 [P_h V_{h+1,t}](z) \leq \hat{f}_{h,t}^{V_{h+1,t}}(z) + \beta_{h,t} \sigma_{h,t}(z). \quad (41)$$

1487 *Proof (with union bound). Step 1: A per- (h, t) confidence event.* Fix a particular pair (h, t) . Apply the *uniform* confidence theorem (Theorem 3.3) at step h using the dataset $\mathcal{D}_{h,t-1}$ and failure probability

$$1491 \delta_{h,t} := \frac{\delta}{HT}$$

1492 Because the algorithm projects onto the RKHS ball, we have $\|V_{h+1,t}\|_{\mathcal{H}_\ell} \leq B$. Therefore, Theorem 3.3 (with δ replaced by $\delta_{h,t}$ and n replaced by $n_{h,t-1}$) gives a high-probability event $\mathcal{G}_{h,t}$ (depending on the random data collected up to episode t) on which, simultaneously for all $z \in \mathcal{Z}$,

$$1496 |[P_h V_{h+1,t}](z) - \hat{f}_{h,t}^{V_{h+1,t}}(z)| \leq B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{HT}{\delta}} \right) \sigma_{h,t}(z).$$

1498 Since the left-hand side is an *absolute* deviation, it implies the desired *one-sided* inequality

$$1500 [P_h V_{h+1,t}](z) \leq \hat{f}_{h,t}^{V_{h+1,t}}(z) + \underbrace{B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{HT}{\delta}} \right)}_{\beta_{h,t}^{(\min)}} \sigma_{h,t}(z), \quad \forall z \in \mathcal{Z},$$

1504 with probability at least $1 - \delta_{h,t}$ (i.e., $\Pr(\mathcal{G}_{h,t}) \geq 1 - \delta/(HT)$).

1505 **Step 2: Uniformity across all (h, t) by a union bound.** There are at most HT such pairs (h, t) .
 1506 The union bound³ yields

$$1508 \Pr \left(\bigcap_{h=1}^H \bigcap_{t=1}^T \mathcal{G}_{h,t} \right) \geq 1 - \sum_{h,t} \Pr(\mathcal{G}_{h,t}^c) \geq 1 - HT \cdot \frac{\delta}{HT} = 1 - \delta.$$

1511 ³If events E_1, \dots, E_m each fail with probability at most ϵ , then $\Pr(\bigcap_i E_i) \geq 1 - m\epsilon$.

1512 Let $\mathcal{G} := \bigcap_{h,t} \mathcal{G}_{h,t}$; then $\Pr(\mathcal{G}) \geq 1 - \delta$ and, on \mathcal{G} , the one-sided bound above holds for *every* pair
 1513 (h, t) and *every* z .
 1514

1515 **Step 3: Using the slightly larger radius in equation 3.** In the algorithm we instantiate the per-step
 1516 radius with the slightly larger log factor,
 1517

$$1518 \beta_{h,t} = B \left(\sqrt{\rho} U + \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n_{h,t-1}, \rho) + 2 \log \frac{2HT}{\delta}} \right) \geq \beta_{h,t}^{(\min)},$$

1520 since $\log\left(\frac{2HT}{\delta}\right) \geq \log\left(\frac{HT}{\delta}\right)$. Using a *larger* (more conservative) radius can only make the inequality
 1521 easier to satisfy. Therefore, on the same event \mathcal{G} ,
 1522

$$1523 [P_h V_{h+1,t}](z) \leq \hat{f}_{h,t}^{V_{h+1,t}}(z) + \beta_{h,t} \sigma_{h,t}(z) \quad \text{for all } h, t \text{ and all } z \in \mathcal{Z},$$

1524 which is exactly equation 11. \square
 1525

1527 I ADDITIONAL RESULTS

1529 **Lemma I.1** (Finite-dimensional reduction of the RKHS projection). *Let $(\mathcal{H}_\ell, \langle \cdot, \cdot \rangle_{\mathcal{H}_\ell})$ be an RKHS
 1530 with the reproducing kernel $\ell : \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$. We fix atoms $\bar{s}_1, \dots, \bar{s}_{m_h} \in \mathcal{S}$ and we write Gram
 1531 matrix $L_h \in \mathbb{R}^{m_h \times m_h}$ as $(L_h)_{ij} = \ell(\bar{s}_i, \bar{s}_j)$. For a target vector $v_{h,t} \in \mathbb{R}^{m_h}$, we consider the
 1532 (empirical) projection problem over the feasible class*

$$1533 \mathcal{F} := \left\{ V \in \mathcal{H}_\ell : \|V\|_{\mathcal{H}_\ell} \leq B, 0 \leq V(\bar{s}_j) \leq U \ \forall j \in [m_h] \right\}, \quad U := H - h + 1.$$

1536 That is,

$$1537 \min_{V \in \mathcal{F}} \frac{1}{m_h} \sum_{j=1}^{m_h} (V(\bar{s}_j) - v_{h,t}(j))^2 \quad (42)$$

1540 Then there exists an optimal solution of the form $V^*(\cdot) = \sum_{j=1}^{m_h} \alpha_j \ell(\cdot, \bar{s}_j)$ and, by parameterizing
 1541 by $\alpha \in \mathbb{R}^{m_h}$, equation 42 is equivalent to the convex quadratic program

$$1542 \min_{\alpha \in \mathbb{R}^{m_h}} \frac{1}{m_h} \|L_h \alpha - v_{h,t}\|_2^2 \quad \text{s.t.} \quad \alpha^\top L_h \alpha \leq B^2, \quad 0 \leq (L_h \alpha)_j \leq U \ \forall j \in [m_h]. \quad (43)$$

1545 Moreover, equation 5 is a convex program: its objective has PSD Hessian $\frac{2}{m_h} L_h^\top L_h$, the quadratic
 1546 constraint uses the PSD matrix $L_h \succeq 0$, and the box constraints are linear.
 1547

1548 *Proof.* Let $\mathcal{H}_S := \text{span}\{\ell(\cdot, \bar{s}_j) : j \in [m_h]\} \subseteq \mathcal{H}_\ell$ and let $P_S : \mathcal{H}_\ell \rightarrow \mathcal{H}_S$ denote orthogonal
 1549 projection (in RKHS inner product). For any $V \in \mathcal{H}_\ell$, write the orthogonal decomposition $V = P_S V + (I - P_S)V =: V_S + V_\perp$ with $V_S \in \mathcal{H}_S$ and $V_\perp \in \mathcal{H}_S^\perp$.
 1550

1551 (i) *Loss depends only on V_S .* By the reproducing property, for every j ,

$$1553 V_\perp(\bar{s}_j) = \langle V_\perp, \ell(\cdot, \bar{s}_j) \rangle_{\mathcal{H}_\ell} = 0 \quad \text{since } \ell(\cdot, \bar{s}_j) \in \mathcal{H}_S \perp V_\perp$$

1554 Hence we have $V(\bar{s}_j) = V_S(\bar{s}_j)$ for all j , so the empirical loss in equation 42 equals
 1555 $\frac{1}{m_h} \sum_j (V_S(\bar{s}_j) - v_{h,t}(j))^2$, independent of V_\perp .
 1556

1557 (ii) *Feasibility is preserved (and improved) by dropping V_\perp .* The box constraints $0 \leq V(\bar{s}_j) \leq U$
 1558 involve only the evaluations at \bar{s}_j and thus are unchanged when replacing V by V_S (by (i)). For the
 1559 norm constraint, $\|V\|_{\mathcal{H}_\ell}^2 = \|V_S\|_{\mathcal{H}_\ell}^2 + \|V_\perp\|_{\mathcal{H}_\ell}^2 \geq \|V_S\|_{\mathcal{H}_\ell}^2$, so $\|V\| \leq B$ implies $\|V_S\| \leq B$.
 1560

1561 (iii) *Reduction to \mathcal{H}_S .* Given any feasible V , the function V_S is also feasible and achieves the same
 1562 objective value; therefore an optimal solution exists in \mathcal{H}_S .
 1563

1564 (iv) *Parameterization by coefficients.* Every $V \in \mathcal{H}_S$ can be written as $V(\cdot) = \sum_{j=1}^{m_h} \alpha_j \ell(\cdot, \bar{s}_j)$ for
 1565 some $\alpha \in \mathbb{R}^{m_h}$. The vector of evaluations at the atoms is then

$$(V(\bar{s}_1), \dots, V(\bar{s}_{m_h}))^\top = L_h \alpha, \quad (L_h)_{ij} = \ell(\bar{s}_i, \bar{s}_j)$$

1566 The RKHS norm satisfies $\|V\|_{\mathcal{H}_\ell}^2 = \sum_{i,j} \alpha_i \alpha_j \ell(\bar{s}_i, \bar{s}_j) = \alpha^\top L_h \alpha$ (standard RKHS identity).
 1567 Substituting these relations into equation 42 and the constraints yields equation 5.
 1568

1569 (v) *Convexity.* Since L_h is a (symmetric) Gram matrix, $L_h \succeq 0$. The objective $\frac{1}{m_h} \|L_h \alpha - v_{h,t}\|_2^2$
 1570 is convex with Hessian $\frac{2}{m_h} L_h^\top L_h \succeq 0$. The quadratic constraint $\alpha^\top L_h \alpha \leq B^2$ defines a convex
 1571 set because the quadratic form is convex for $L_h \succeq 0$. The bounds $0 \leq (L_h \alpha)_j \leq U$ are linear
 1572 inequalities in α . Thus equation 5 is a convex quadratic program. \square
 1573

1574 **Remark I.2** (Representer viewpoint). *Argument above is a constrained version of the representer
 1575 theorem: because both the objective and the constraints depend on V only through its evaluations at
 1576 $\{\bar{s}_j\}$ and its RKHS norm, the optimizer lies in the span of kernel sections at these points Kimeldorf
 1577 & Wahba (1971); Schölkopf & Smola (2002); Schölkopf et al. (2001).*
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 1621 1622 **Reply to cj7K**

1623 **We thank the reviewer** for the careful reading and detailed suggestions. Below we respond point-
1624 by-point and list concrete fixes. Citations such as “Thm. 5.1” or “Lemma E.2” refer to our submis-
1625 sion. *All* the changes described here will be incorporated in the revised version. **High-level conclu-**
1626 **sion:** none of the issues affect our main message a *uniform, cover-free* CME-based analysis under
1627 the Restricted Bellman-Embedding (RBE) assumption with an explicit projection step to guarantee
1628 applicability of the uniform bound. We correct several presentation issues and a notational incon-
1629 sistency around the approximation term. **I plan to incorporate final changes after agreement is**
1630 **made on all corrections with all reviewers.**

1631 **Strength acknowledged.** We appreciate the remark that our analysis uses a weaker structural
1632 premise than “optimistic closure.” This is exactly the role of the projection + uniform CME bound.
1633 (Intro; Thm. 3.3; Alg. KOVI-Proj). [See Sections 1, 3 & 4 in the submission].

1634 **RESPONSES TO WEAKNESSES**

1635 **1. MULTIPLE PARTS IN THE PROOF**

1636 **(1.a) “ ε_B is inf in Thm. 5.1 but a sup in App. D; this matters in Lemma D.2.”** You’re right:
1637 the symbol was overloaded. In Thm. 5.1 we *intend*

$$1640 \quad \varepsilon_B := \max_{h \in [H]} \inf_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* - V\|_\infty$$

1641 (agnostic approximation level; page with Thm. 5.1). In Lemma D.2 we temporarily wrote a ver-
1642 sion with a *sup*, which is needlessly pessimistic and inconsistent with Thm. 5.1. We will **replace**
1643 **Lemma D.2 by the correct inf-form:**

$$1644 \quad \varepsilon_B(h) := \inf_{\|V\|_{\mathcal{H}_\ell} \leq B} \|V_h^* - V\|_\infty, \quad \varepsilon_B := \max_h \varepsilon_B(h),$$

1645 and use it in the optimism step.

1646 *How we make the proof line up cleanly with the inf-definition (and even simplify the algorithmic*
1647 *step):* In our analysis we use the uniform CME bound (Thm. 3.3) which holds *simultaneously for*
1648 *every* V *with* $\|V\|_{\mathcal{H}_\ell} \leq B$. Therefore, when forming the optimistic Q , we can replace the mean
1649 *term*

$$1650 \quad \widehat{f}^{V_{h+1,t}}(z) \quad \text{by} \quad \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} \widehat{f}^V(z).$$

1651 By Prop. 3.1, $\widehat{f}^V(z) = \langle \widehat{\mu}(z), V \rangle_{\mathcal{H}_\ell}$, and so the supremum has the *closed form*

$$1652 \quad \sup_{\|V\|_{\mathcal{H}_\ell} \leq B} \langle \widehat{\mu}(z), V \rangle_{\mathcal{H}_\ell} = B \|\widehat{\mu}(z)\|_{\mathcal{H}_\ell} \quad (\text{Cauchy-Schwarz}).$$

1653 Hence we can define the optimistic backup as

$$1654 \quad \widetilde{Q}_{h,t}(z) := r_h(z) + B \|\widehat{\mu}_h(z)\|_{\mathcal{H}_\ell} + \beta_{h,t} \sigma_{h,t}(z).$$

1655 With this **one-line modification** (which uses quantities we already estimate), on the good event of
1656 Thm. 3.3 we have, for any approximate best-in-ball \bar{V}_{h+1} with $\|\bar{V}_{h+1}\|_{\mathcal{H}_\ell} \leq B$,

$$1657 \quad [P_h \bar{V}_{h+1}](z) \leq \widehat{f}^{\bar{V}_{h+1}}(z) + \beta_{h,t} \sigma_{h,t}(z) \leq B \|\widehat{\mu}_h(z)\|_{\mathcal{H}_\ell} + \beta_{h,t} \sigma_{h,t}(z).$$

1658 Therefore

$$1659 \quad Q_h^*(z) = r_h(z) + [P_h V_{h+1}^*](z) \leq r_h(z) + [P_h \bar{V}_{h+1}](z) + \varepsilon_B \leq \widetilde{Q}_{h,t}(z) + \varepsilon_B.$$

1660 This yields *exactly* the Thm. 5.1 additive term with the *inf*-definition of ε_B and also preserves the re-
1661 alizability case ($\varepsilon_B = 0$). We will (i) update Alg. 4.2 to use the closed-form supremum $B \|\widehat{\mu}(z)\|_{\mathcal{H}_\ell}$,
1662 (ii) correct Lemma D.2 accordingly, and (iii) adjust the few lines in App. D that referenced the mis-
1663 taken sup. [Relevant text: Thm. 5.1; Prop. 3.1; Thm. 3.3; Sec. 4 (Alg.)].

1674 (1.b) “Eq. (38) → (39) in Lemma G.8 mixes scalars and \mathcal{H}_ℓ -elements; why is the sum zero?”
 1675 Thank you for catching the type clash. In vector-valued RKHSs, the reproducing property is

$$1676 \quad \forall u \in \mathcal{H}_\ell : \langle h(z), u \rangle_{\mathcal{H}_\ell} = \langle h, K(\cdot, z)u \rangle_{\mathcal{H}_k \otimes \mathcal{H}_\ell}.$$

1677 Thus the equality we need should be stated as an equality of pairings with an arbitrary $u \in \mathcal{H}_\ell$:

$$1679 \quad \langle \mu(z) - g^*(z), u \rangle_{\mathcal{H}_\ell} = \langle \mu - g^*, K(\cdot, z)u - S\alpha(z)u \rangle_{\mathcal{H}_k \otimes \mathcal{H}_\ell}.$$

1680 We will rewrite Lemma G.8 accordingly, avoiding expressions like $\langle \mu - g^*, r_z \rangle_{\mathcal{H}_k \otimes \mathcal{H}_\ell}$ without an
 1681 explicit test vector u . The zero-mean term comes from the first-order optimality of the Tikhonov pro-
 1682 jection (Lemma G.6): $S(\mu - g^*) = -\rho Sg^*$, which implies $\langle \mu - g^*, S\alpha(z)u \rangle = \langle -\rho Sg^*, \alpha(z)u \rangle =$
 1683 $\langle \mu - g^*, S\alpha(z)u \rangle$ and cancels as detailed in the revised proof. [Lemma G.6, G.8 in the submission.]

1684 (1.c) “Inequality around lines 1108–1111 and 1266 seems to assume $k(z, z) \leq 1$.” Correct.
 1685 Those displays use the standard GP/KRR identity $0 \leq \sigma^2(z) \leq k(z, z)$ and then specialize to the
 1686 *normalized* case $k(z, z) \leq 1$ to assert $\min\{1, \sigma^2\} = \sigma^2$. We will explicitly carry a constant $\kappa_k^2 :=$
 1687 $\sup_z k(z, z)$ throughout App. D, E and state the normalized corollary only after noting that one
 1688 can scale k and ρ to attain $\kappa_k = 1$ without changing the substance of the bounds. The 1-d linear
 1689 example $k(a, b) = ab$ ($k(z, z) = z^2$) is therefore outside the normalized setting unless one scales k
 1690 (a standard step we will make explicit). [See Remark D.6/E.1 in the submission for the normalized case;
 1691 we will generalize them with κ_k .]

1692 (1.d) “In Lemma E.2, why is M a supermartingale? The form differs from Chowdhury-
 1693 Gopalan (2017).” We agree that our shorthand “supermartingale” can be unclear. The object

$$1694 \quad M_n = \exp\left(\frac{1}{2\sigma^2} \xi^\top A_n^{-1} \xi\right) \cdot \left(\frac{\rho^{n/2}}{\det(A_n)^{1/2}}\right), \quad A_n = K_n + \rho I,$$

1695 is the standard *mixture-Laplace* nonnegative supermartingale used in self-normalized processes for
 1696 kernelized bandits/GP (see Abbasi-Yadkori et al. 2011; Chowdhury-Gopalan 2017). We will make
 1697 the filtration explicit and add the short proof by Markov’s inequality (already sketched in the current
 1698 Lemma E.2) showing $\mathbb{E}[M_n] \leq 1$ and hence $\Pr(\xi^\top A_n^{-1} \xi \geq 2\sigma^2(\gamma(n, \rho) + \log \frac{1}{\delta})) \leq \delta$. This is
 1699 exactly the inequality we use; we will cite the classical statements and align notation line-by-line.
 1700 [Lemma E.2.]

1701 (1.e) “ $\|K(\cdot, z)\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell}$ is not defined; $K(\cdot, z)$ is an operator.” Good point. We will remove
 1702 any occurrence of $\|K(\cdot, z)\|$ and only use quantities of the form $\|K(\cdot, z)u\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell}$, which satisfy
 1703 $\|K(\cdot, z)u\|_{\mathcal{H}_k \otimes \mathcal{H}_\ell}^2 = \langle u, K(z, z)u \rangle_{\mathcal{H}_\ell} = k(z, z) \|u\|_{\mathcal{H}_\ell}^2$. This fully avoids the notational ambiguity
 1704 and stays within the operator-valued RKHS calculus used in Prop. 3.1/Lemmas G.3–G.8. [Ap-
 1705 pendix G.]

1706 (1.f) “Mismatch around lines 1223 vs. 1227; regularization appears on the wrong quantity;
 1707 Remark G.7 depends on norm identification.” We will unify the normal equations to the
 1708 coefficient-space ridge form

$$1709 \quad (SS + \rho I)C^* = S\mu \iff (K_n + \rho I)C^{*\top} = M^\top,$$

1710 where S is the synthesis operator, K_n the scalar Gram matrix on Z , and $M^\top e_i = \mu(z_i)$. This
 1711 is exactly Lemma G.6; the line in question omitted ρ in the first display and will be corrected.
 1712 Remark G.7 will be merged into Lemma G.6 to avoid any impression that we identify different
 1713 norms; we explicitly keep the product norm on \mathcal{H}_ℓ^n and the $\mathcal{H}_k \otimes \mathcal{H}_\ell$ norm on functions. [Lemmas
 1714 G.3, G.6, Remark G.7.]

1715 (1.g) “Remark D.3/D.4: expectation vs realized samples (i.e., $\mathbb{E}[\hat{Q}_{h,t}(z_{h,t})]$ vs $\hat{Q}_{h,t}(z_{h,t})$).”
 1716 Our regret decomposition is *pathwise*. In the revised proof we will explicitly define the filtration
 1717 $\mathcal{F}_{h,t}$ and write, for each realized $z_{h,t}$,

1718 $V_h^*(s_{h,t}) - V_h^{\pi_t}(s_{h,t}) \leq (\hat{Q}_{h,t}(z_{h,t}) - r_h(z_{h,t}) - [P_h V_{h+1,t}](z_{h,t})) + (\mathbb{E}[\Delta_{h+1} \mid \mathcal{F}_{h,t}] - \Delta_{h+1}) + \varepsilon_B$,
 1719 with $\Delta_{h+1} := V_{h+1}^*(s_{h+1,t}) - V_{h+1}^{\pi_t}(s_{h+1,t})$. Summing over h makes the martingale-difference
 1720 terms telescope (tower property), *without* replacing $\hat{Q}_{h,t}(z_{h,t})$ by its expectation. We will replace
 1721 the two remarks by a single short lemma entitled “Pathwise telescoping under conditional optimism.”
 1722 [App. D, Remarks D.3–D.4.]

1728 2. ORGANIZATION AND FORMATTING
17291730 **(2.a) “Unorganized; proofs spread across remarks; repeated arguments.”** We agree that sev-
1731 eral small steps were pushed to remarks for compactness. In the revision we will:1732

- 1733 • Move the global union bound (current App. H) into the main proof of Thm. 5.1 as a *single*
1734 *line* using $\log(2HT/\delta)$ in $\beta_{h,t}$.
- 1735 • Merge Remarks D.3–D.4 into one lemma (see (1.g)); inline the simple monotonicity and
1736 Cauchy–Schwarz steps (current D.6–D.9).
- 1737 • Compress Definition G.1, Lemma G.3, Lemma G.6 and Remark G.7 into a single
1738 “Tikhonov projection in vector-valued RKHS” lemma with (i) normal equations, (ii) finite-
1739 dimensional reduction, (iii) power-function bound; this shortens App. G substantially.

1740 **(2.b) Broader impact/LLM usage/empty Section 8; duplicated appendix titles; duplicate refer-
1741 ences; overlapping remarks.** We will:1742

- 1743 • Move *Broader Impact* to the end and renumber Sections 7–10 to eliminate the empty Section
1744 8.
- 1745 • Deduplicate the appendix section titles and references (the two Muandet et al. entries will
1746 be collapsed into one).
- 1747 • Remove the overlap between Remark 3.4 and Sec. 4(v) (the “ $\sqrt{\rho}$ absorbed into U ” com-
1748 ment will appear only once).

1749 [Sections 6–10 and bibliography.]
1750

1751 1752 MINOR ISSUES AND TYPOS (WILL FIX)

1753

- 1754 • Line 165: “Assumption 2.1” (not 3.2). *Fixed*.
- 1755 • Title of App. C: should read “*Proof of Proposition 3.1*”. *Fixed*.
- 1756 • Notation cleanups in App. E–G as described above to avoid type clashes and to carry κ_k
1757 explicitly where needed. *Fixed*.

1758 1759 SUMMARY OF CONCRETE CHANGES (FOR CLARITY)

1760 1761 1. **Algorithmic tweak (one line):** replace $\hat{f}^{V_{h+1,t}}(z)$ in the optimistic backup by its *closed-*
1762 *form supremum* over the RKHS ball:

1763
$$Q_{h,t}^{\text{UCB}}(z) = r_h(z) + B\|\hat{\mu}_h(z)\|_{\mathcal{H}_\ell} + \beta_{h,t}\sigma_{h,t}(z).$$

1764 This uses Prop. 3.1 and is easy to compute from the quantities already maintained. It
1765 restores the Thm. 5.1 *inf*-defined ε_B without any further assumptions. [Prop. 3.1; Sec. 4;
1766 Thm. 3.3; Thm. 5.1.]1767 2. **Proof fixes:** (i) correct Lemma D.2 (inf, not sup); (ii) make the telescoping inequality
1768 pathwise with explicit filtration; (iii) generalize the “ ≤ 1 ” normalization to a bounded-
1769 diagonal constant κ_k and state the normalized variant as a corollary; (iv) rewrite App. G
1770 in operator form (no $\|K(\cdot, z)\|$) with a single consolidated lemma for Tikhonov projection
1771 and the power-function bound. [Apps. D, E, G.]
1772 3. **Organization/formatting:** move union bound inside Thm. 5.1, merge overlapping re-
1773 marks, fix section ordering, unify duplicated references/titles, and streamline the exposition
1774 around CMEs and vector-valued RKHS.

1775 1776 CONCLUDING REMARK

1777 1778 We appreciate the thorough review. The mathematical issues you pointed out are all addressable
1779 by the edits above; the central contribution a cover-free, CME-based uniform confidence bound
1780 coupled with an explicit projection remains intact, and the small algorithmic tweak simplifies both
1781 the proofs and the implementation while *strengthening* the agnostic-case statement to match the
intended inf-defined approximation error.

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 **Reply to kzb7**

We appreciate the review and the clear suggestions. Below we respond to each point, clarify our assumptions, and list concrete edits we will incorporate in the revised manuscript.

SUMMARY OF OUR METHOD VS. PRIOR WORK

Our algorithm KOVI-PROJ builds UCBs for Q_h from conditional mean embeddings (CME) and *explicitly projects* the optimistic value proxy back onto the RKHS ball $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$ at every step. This projection is the mechanism that makes the confidence event *uniform in the function class actually used by the algorithm*, without assuming *optimistic closure* (the premise that the optimistic iterates always remain inside the ball). When optimistic closure *does* hold, the projection is the identity and our update reduces to the same closed-form used by CME-RL [1]; outside closure, our procedure remains valid and the analysis goes through.

(A) RESPONSES TO QUESTIONS

Q1. What is Assumption 3.2 in Lemma 3.2? This is a **labeling typo**. Lemma 3.2 relies on **Assumption 2.1** (our Restricted Bellman-Embedding / CME assumption on the Bellman averages), not a separate Assumption 3.2. We will fix all occurrences and make the dependency explicit at the start of Lemma 3.2.

Q2. Is Step 3 (Line 216) the projection the main difference from CME-RL [1]? Yes—this is the key algorithmic and conceptual distinction. In CME-RL, a form of *optimistic closure* is assumed so that the optimistic proxy remains inside the RKHS ball, enabling a closed-form optimistic update with no extra step. KOVI-PROJ *does not* assume this closure; instead, after computing the optimistic proxy we apply an explicit projection onto $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$:

$$V_{h,t+1} = \underset{\|V\|_{\mathcal{H}_\ell} \leq B}{\operatorname{argmin}} \|V - \tilde{V}_{h,t+1}\|_{\mathcal{H}_\ell}.$$

This guarantees that the proxy used on the next round is inside the ball, so the CME-based confidence bound applies *uniformly* to the iterate actually used. Under optimistic closure, the projection is identity and the update coincides with CME-RL (modulo notation/regularization); in this sense our method *strictly generalizes* CME-RL.

(B) ORGANIZATION / READABILITY

B1. Pseudocode for Section 4. We agree. In the revision we will add clear pseudocode for KOVI-PROJ (and the ablation without projection), with a parameter block and per-iteration complexity.

B2. Long non-technical sections in the main text; redundant Section 8. We will move *Broader Impact, Reproducibility, and Ethics Statement* to the appendix (or the venue’s separate checklist, as appropriate), and remove the redundant Section 8 by merging its content into the discussion. This shortens the main text and improves flow.

(C) EXPERIMENTS / BASELINES

C1. Add CME-RL [1] as a baseline. We will include CME-RL as a baseline across our environments. To ensure fairness we will: (i) use the same kernels and regularization schedules as ours; (ii) use the authors’ recommended hyperparameters (with a small grid if needed); and (iii) report both the settings where its assumptions provably hold (where we expect parity) and the settings where optimistic closure does not hold (where our projection is designed to help). We will also add an ablation that toggles the projection (NOPROJ) to isolate its effect.

1836
1837

(D) CLARIFICATIONS THAT WILL BE ADDED TO THE PAPER

1838
1839

- **Assumption pointer.** At the start of Lemma 3.2 we will point explicitly to Assumption 2.1 and remove the stray “Assumption 3.2” label.
- **Projection vs. closure (one-paragraph comparison).** In §2 we will add a short paragraph contrasting optimistic closure (structural premise) with our enforced projection (algorithmic mechanism), and state that under closure our update matches CME-RL’s closed form.
- **Uniform confidence event.** Right before Theorem 3.3 we will remind the reader that the projection ensures $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$ for all iterates, which is why the CME-based UCB is uniform over the proxies actually used by the algorithm.
- **Readability.** We will add a figure-level algorithm box, move non-essential remarks to the appendix, and tighten cross-references.

1840
1841
1842
1843
1844
1845
1846
1847
1848

(E) CLOSING

1849
1850
1851
1852
1853
1854
1855
1856

Thank you for highlighting the need for clearer algorithm presentation and for suggesting CME-RL as a baseline. We will incorporate these changes. Conceptually, our method aims to retain the simplicity of CME-based optimism while removing the optimistic-closure premise via an explicit projection step; when closure holds, our procedure collapses to the prior closed-form update, and when it does not, our guarantees continue to apply.

1857
1858**Reference used in this rebuttal**1859
1860
1861

[1] S. Chowdhury and R. Oliveira. *Value function approximations via kernel embeddings for no-regret reinforcement learning*. ACML 2023.

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890 1891 1892 **Reply to oS2x**

1893 **We appreciate the careful read.** Below we address the main theoretical concern (Lemma 3.2 /
1894 Appendix E) and the presentation issues. Each item ends with precise manuscript locations and the
1895 edit we will make in the revision.

1896 1. MAIN CONCERN: LEMMA 3.2 AND THE VECTOR-VALUED 1897 CONCENTRATION BOUND

1898 **Reviewer’s summary.** The proof of Lemma 3.2 tries to pass from a bound for a *fixed* unit vector
1899 $u \in \mathcal{H}_\ell$ to a bound on the *norm* by taking a supremum over u , arguing that the RHS does not depend
1900 on u (cf. Eq. (22)). This step is not justified; the high-probability event depends on u , and a direct
1901 supremum over an uncountable set is invalid.

1902 **Our correction (uniform bound without an illegitimate supremum).** You are right: the line
1903 “since the RHS does not depend on u , take $\sup_{u \in \mathbb{S}_{\mathcal{H}_\ell}}$ ” was too terse and, as written, incorrect. We
1904 replace it with a *uniform* Hilbert-space self-normalized bound that avoids any uncountable union.

1905 For a fixed step and dataset, write $A := K_n + \rho I$ and $\alpha(z) = A^{-1}k_n(z)$. Define the linear map
1906 $E : \mathbb{R}^n \rightarrow \mathcal{H}_\ell$ by $Eb = \sum_{i=1}^n b_i \varepsilon_i$, so the noise term is

$$1907 N(z) = \sum_{i=1}^n \alpha_i(z) \varepsilon_i = E \alpha(z) = (EA^{-1/2}) (A^{-1/2}k_n(z)).$$

1910 Hence

$$1911 \begin{aligned} \|N(z)\| &\leq \|EA^{-1/2}\|_{\text{op}} \cdot \|A^{-1/2}k_n(z)\|_2 = \|EA^{-1/2}\|_{\text{op}} \cdot \sqrt{k(z, z) - k_n(z)^\top A^{-1}k_n(z)} \\ 1912 &= \|EA^{-1/2}\|_{\text{op}} \cdot \sigma_n(z). \end{aligned} \quad (44)$$

1913 It thus suffices to control *one* random operator norm $\|EA^{-1/2}\|_{\text{op}}$, uniformly (no dependence on z
1914 or u). We show in the revision (new Lemma E.1’) that, with probability at least $1 - \delta$,

$$1915 \boxed{\|EA^{-1/2}\|_{\text{op}} \leq \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2\log(1/\delta)}}$$

1916 by a mixture-Laplace supermartingale argument that treats simultaneously all unit vectors in the
1917 *finite-dimensional* span of $\{\varepsilon_i\}_{i=1}^n$ and all $x \in \mathbb{S}^{n-1}$.⁴ Combining the display above with the identity
1918 for $\sigma_n(z)$ gives, for all z on the same event,

$$1919 \|N(z)\| \leq \frac{\sigma}{\sqrt{\rho}} \sqrt{2\gamma(n, \rho) + 2\log(1/\delta)} \sigma_n(z),$$

1920 which is exactly the noise term we use in Lemma 3.2 / Theorem 3.3. This removes the criticized
1921 step and upgrades the bound to hold *uniformly* in u and z without any extra covering factors.

1922 **Manuscript edits.** We will (i) replace Eq. (21)–(22) and the following sentence in App. E by the
1923 operator-norm route above, (ii) add a self-contained proof of the operator bound as Lemma E.1’
1924 (Hilbert-valued self-normalized inequality), and (iii) state explicitly that the resulting event is uni-
1925 form in z . (manuscript citation: Appendix E, Lemma E.1 and the display labeled (22), pp. 20–22)

1926 **Why the earlier “counterexample intuition” does not apply after the fix.** Your example points
1927 out that from $P(|\langle w, u \rangle| \leq b) \geq 1 - \delta$ for a fixed u we cannot conclude $P(\|w\| \leq b) \geq 1 - \delta$.
1928 Our revision *does not* make such an implication. Instead, we directly bound $\|w\| = \|EA^{-1/2}x\|$
1929 via $\|EA^{-1/2}\|_{\text{op}}$ on a single high-probability event, avoiding any u -indexed union.

1930 ⁴The span has dimension at most n . The proof avoids any ε -net penalty that would scale with n and instead
1931 upper-bounds $\sup_{\|x\|=1, \|u\|=1} x^\top A^{-1/2} \xi^{(u)}$ in one shot via the same mgf as in the scalar case, now applied
1932 to $\|EA^{-1/2}\|_{\text{op}}$.

1944 2. RELATION TO AND DISTINCTION FROM “OPTIMISTIC CLOSURE”
19451946 **Reviewer’s concern.** Early in the paper it may read as if we assume every optimistic proxy is
1947 already within a fixed state-RKHS ball (“optimistic closure”).1948 **Clarification and edits.** We do *not* assume optimistic closure. We *enforce* the bounded-norm
1949 property algorithmically by projecting the optimistic proxy onto $\{V : \|V\|_{\mathcal{H}_\ell} \leq B\}$ after each
1950 backup (Alg. step 3), precisely so that the uniform CME bound applies to the *actual* proxies used
1951 (no structural assumption on unconstrained optimistic iterates). We will:
19521953 • add a two-sentence paragraph in §1–§2 that explicitly contrasts the assumption of [Chowd-
1954 huryOliveira23] with our projection step, and
1955 • include a one-line reminder before Theorem 3.3 that the projection ensures $\|V_{h,t}\|_{\mathcal{H}_\ell} \leq B$
1956 and is the only place where boundedness of $\|V\|_{\mathcal{H}_\ell}$ enters.
19571958 (manuscript citations: §1, §2, Theorem 3.3 statement, Algorithm step 3 on p. 5.)
19591960 3. MINOR THEORETICAL/PRESENTATION ISSUES
19611962 1. **Statement under “Contributions, point 2.”** We will rephrase to avoid redundancy (“uni-
1963 form over all V in the ball” is implied by the supremum bound) and point explicitly to
1964 Theorem 3.3 for the precise event. (p. 2)
1965 2. **“Assumption 3.2” label.** This was a typo; the assumption used in Lemma 3.2 is Assump-
1966 tion 2.1 (RBE). We will fix the label everywhere. (pp. 3–4)
1967 3. **Names in citations.** We will correct author name formatting for Chowdhury & Gopalan
1968 (2017) and ensure consistency across the bibliography. (References)
19691970 4. WHERE TO LOOK FOR THE FIXES (QUICK MAP)
19711972 • **Appendix E (core fix).** We replace the scalarization/supremum step by the operator-norm
1973 proof outlined above and insert Lemma E.1’ (uniform Hilbert-space self-normalized inequality).
1974 (pp. 20–22)
1975 • **Theorem 3.3 and its use in Algorithm.** No change in the statement; only the internal proof
1976 route is updated. We add a pointer that the confidence event is uniform in z due to the new
1977 Lemma E.1’. (pp. 4–5)
1978 • **Optimistic closure vs. projection.** We add a clarifying paragraph contrasting our enforced pro-
1979 jection with the structural premise of “optimistic closure,” and a margin remark at Algorithm
1980 step 3. (pp. 1, 5, 6–7 discussion)
19811982 5. CHANGELOG (TO APPEAR IN THE REVISION)
19831984 1. **App. E (major):** Replace Eq. (21)–(22) by a uniform operator-norm bound; add Lemma E.1’
1985 with a complete proof; remove the sentence that illegitimately takes \sup_u across a fixed- u event.
1986 (manuscript citation: App. E)
1987 2. **Text (clarity):** Insert explicit “no optimistic closure” paragraph and adjust the introduction of
1988 the projection step to emphasize that it is the mechanism ensuring $\|V\|_{\mathcal{H}_\ell} \leq B$ for all proxies
1989 used by the algorithm. (§1–§2, Alg. §4)
1990 3. **Typos/labels:** Fix “Assumption 3.2” → “Assumption 2.1”; minor citation-name consistency;
1991 tighten phrasing in Contributions (2). (pp. 2–4, References)
19921993 **Closing.** We agree that the original proof sketch could be misread as taking a supremum over
1994 an event that depends on u . The revised Appendix E removes this issue entirely by bounding the
1995 relevant *operator norm* in one step, yielding the same confidence multiplier as stated and keeping
1996 the main results intact.
1997

Rebuttal to Reviewer xxAq

Thank you for the constructive feedback. Below we respond point-by-point. **High-level:** Our contribution is to remove the *optimistic closure* premise by *enforcing* boundedness via a projection step, while keeping optimism derived from the CME. The uniform confidence event applies to the models the algorithm *actually* uses on-policy; the regret scales with standard information gain.

A. ON THE TWO WEAKNESSES

(W1) “Projection step requires solving a QP, may hurt practicality.” The projection we use is the *Hilbert-ball projection* onto $\mathbb{B}_{\mathcal{H}_\ell}(B) = \{V \in \mathcal{H}_\ell : \|V\| \leq B\}$. It is not a generic QP:

- In a Hilbert space, $\text{Proj}_{\mathbb{B}_{\mathcal{H}_\ell}(B)}(f) = f$ if $\|f\| \leq B$, and $\text{Proj}_{\mathbb{B}_{\mathcal{H}_\ell}(B)}(f) = (B/\|f\|)f$ otherwise. Thus, when the proxy lies in \mathcal{H}_ℓ (which it does under our representer form), the projection is *radial scaling* with a single scalar factor.
- In coefficient form $f(\cdot) = \sum_{i=1}^m \alpha_i \ell(\cdot, s_i)$, $\|f\|_{\mathcal{H}_\ell}^2 = \alpha^\top K \alpha$. The extra cost is computing $\alpha^\top K \alpha$ and possibly multiplying α by $B/\sqrt{\alpha^\top K \alpha}$ —both $O(m^2)$ given the Gram K .
- When we use the (equivalent) Tikhonov version to stabilize the update, we re-use the Cholesky factor of $K + \rho I$ that is *already* built for CME and variance (σ) computations. Within an episode, this factorization is shared across stages, so the marginal cost is negligible relative to the CME step.

We will make this implementation note explicit and add per-step complexity.

(W2) “Limited technical novelty beyond kernel/linear RL.” While our analysis reuses standard tools (information gain, CME), two technical choices are new in this combination: (i) a *uniform* CME-based confidence event coupled with an *explicit projection* so that optimism is valid without assuming closure; (ii) a proof route that avoids covering arguments for the value class by working *only* with the RKHS ball actually enforced by the algorithm. We will emphasize these points in Sec. 1 and add a short comparison table to related work (kernel RL and linear MDPs).

B. ANSWERS TO THE QUESTIONS

Q1. Which parts of the proof change when replacing optimistic closure by projection? Any special treatment? Yes—three places are affected, all conceptually simple:

1. **Uniformity of the confidence event:** The CME bound (Thm. 3.3) is uniform for all $V \in \mathbb{B}_{\mathcal{H}_\ell}(B)$. The projection guarantees the iterate $V_{h,t} \in \mathbb{B}_{\mathcal{H}_\ell}(B)$ at every step, so the bound applies to the proxy actually used. Under optimistic closure this guarantee is assumed; here we enforce it.
2. **Optimistic backup:** We use

2. Optimistic backup: We use

$$Q_{h,t}(z) = r_h(z) + \sup_{\|V\| \leq B} \langle \widehat{\mu}_h(z), V \rangle_{\mathcal{H}_\ell} + \beta_{h,t} \sigma_{h,t}(z) = r_h(z) + B \|\widehat{\mu}_h(z)\|_{\mathcal{H}_\ell} + \beta_{h,t} \sigma_{h,t}(z),$$

and then project the implied value proxy onto $\mathbb{B}_{\mathcal{H}_e}(B)$. Under closure, the projection is the identity and this reduces to the closed-form update used in CME-RL.

3. **Regret telescoping:** Unchanged structurally; we only add the projection non-expansiveness $\left\| \text{Proj}_{\mathbb{B}_{\mathcal{H}_\ell}(B)}(f) - \text{Proj}_{\mathbb{B}_{\mathcal{H}_\ell}(B)}(g) \right\|_{\mathcal{H}_\ell} \leq \|f - g\|_{\mathcal{H}_\ell}$ to propagate optimism through the DP steps.

No additional concentration or covering arguments are needed beyond those already used to control σ and $\hat{\mu}$.

2052
Q2. Relation to the linear/parametric case where one enforces bounded weights by L_2 projection. In the linear case $V(\cdot) = \theta^\top \phi(\cdot)$ with $\|\theta\| \leq B$, Step 3 becomes the Euclidean projection
2053 $\theta \leftarrow \min\{1, B/\|\tilde{\theta}\|\} \tilde{\theta}$, and the UCB term is the familiar elliptical form. We will add a short sub-
2054 section showing that our algorithm reduces to the standard LSVI-UCB update with weight projection
2055 and that our proof tracks the classic self-normalized argument, replacing $\|\theta\|$ by $\|V\|_{\mathcal{H}_\ell}$.
2056
2057

2058
Q3. Assumptions for the projection to “work appropriately”; role of anchor states. Our the-
2059 theory needs only that the projection is onto the *true* RKHS ball $\mathbb{B}_{\mathcal{H}_\ell}(B)$. When using a finite dictionary
2060 (“anchor” states) to represent proxies, the projection is carried out in that span; this *does not affect*
2061 *validity* of the bound, because the uniform event and regret analysis are stated for the function actu-
2062 ally used by the algorithm (the projected proxy in that span). A too-small dictionary may increase
2063 approximation error, which shows up in the standard ε_B term; it does not break boundedness or
2064 optimism. We will clarify this in Sec. 4 and add a remark on Nyström/greedy dictionary growth and
2065 its effect on compute vs. approximation.
2066

2067
Q4. Why does “no projection” (KOVI0) continue to lag instead of aligning after a burn-in? Even if $V^* \in \mathbb{B}_{\mathcal{H}_\ell}(B)$, the unprojected optimistic proxy can *persistently* leave $\mathbb{B}_{\mathcal{H}_\ell}(B)$ at poorly
2068 visited regions because $\beta_t \sigma(\cdot)$ need not shrink uniformly. This produces over-optimistic backups
2069 that keep the policy exploring high-uncertainty regions, which in turn maintains large widths and
2070 prevents alignment. The projection caps this runaway behavior at radius B , stabilizing the fixed
2071 point iteration and constraining exploration. We will add this explanation and a small synthetic
2072 example to the appendix (illustrating persistent overshoot without projection).
2073

2074 C. CONCRETE EDITS WE WILL MAKE

- 2075 1. **Algorithmic clarity and cost:** Add pseudocode with a dedicated line for the projection. In-
2076 clude the closed-form radial projection, its coefficient-space form, and complexity (reusing the
2077 factorization of $K + \rho I$).
- 2078 2. **Linear case bridge:** New subsection showing the reduction to weight projection and elliptical
2079 UCB; include a proposition and two-line proof.
- 2080 3. **Assumptions for projection:** Clarify that boundedness is enforced (not assumed), and that dic-
2081 tionary choice affects only approximation error ε_B ; add a brief note on growing dictionaries /
2082 Nyström.
- 2083 4. **Experiments:** Add an ablation comparing *with* vs. *without* projection across tasks, plus a small
2084 synthetic example where no-projection overshoots persistently; keep identical kernels and hyper-
2085 parameters for fairness.

2086 D. MINOR FIXES

2087 We will (i) define z at L043 and n at L065 when first used, (ii) increase the contrast/line width for
2088 KOVI0 in Fig. 1, and (iii) fix the formatting at L357.

2089 CLOSING

2090 We appreciate the reviewer’s observation that our method achieves sublinear regret while removing
2091 optimistic closure. The added clarifications, linear-case bridge, and implementation notes should
2092 address practicality and novelty concerns.
2093