
Partial-labeled Abdominal Organ and Cancer
Segmentation via Cascaded Dual-decoding U-Net

Zhiyu Ye1,2,3[0009−0001−1520−0051], Hairong Zheng1,3[0000−0002−8558−5102], and
Tong Zhang2[0000−0002−8838−4963]

1 Shenzhen Institute of Advanced Technology, Shenzhen, China
2 Peng Cheng Laboratory, Shenzhen, China

3 University of Chinese Academy of Sciences, China
zhangt02@pcl.ac.cn

Abstract. In the FLARE2023 challenge, we developed a cascaded dual-
decoding U-Net framework to address the complex task of partial-labeled
abdominal organ and cancer segmentation. Initially, we explored the po-
tential of 3D transformer-based models but transitioned to 2D U-Net
solutions due to computational resource and inference time constraints.
We first trained separate 3D models for cancer and full-organ segmen-
tation using data that included labels for both cancer and full organs.
Subsequently, we generated pseudo labels for unlabeled and partially la-
beled data based on these initial models. To enable a single model to
effectively learn and infer both organ and cancer labels within images,
we designed a dual-decoding structure based on the 2D U-Net architec-
ture. Our training process involved several steps with various subsets
of the training data. By comparing our model trained without unla-
beled data, we discussed the impact of unlabeled data and its pseudo
labels on the experimental results. Our method, the version trained
without unlabeled data, achieved an average DSC score of 83.22% for
organs and 33.22% for lesions on the validation set. The average run-
ning time and area under the GPU memory-time curve were 33.8 sec-
onds and 50066.25MB, respectively. The codes has been open-sourced to
https://openi.pcl.ac.cn/OpenMedIA/pclmedia_FLARE23.

Keywords: FLARE2023 · Partial-labeled abdominal organ and cancer
segmentation · U-Net.

1 Introduction

The segmentation of abdominal organs and lesions has always been a classic
research task in medical image analysis and also plays a fundamental role in
facilitating medical practitioners in areas such as diagnosis, surgical planning,
and various clinical applications. In open datasets and challenges focused on in-
dividual organs, such as LiTS [2] and KiTS [11,12], the developed models have
consistently achieved impressive results, with state-of-the-art Dice Similarity Co-
efficient (DSC) scores consistently surpassing 0.95. Furthermore, researchers are
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also working towards the development of models with the capacity to concur-
rently segment multiple organs and lesions, ultimately augmenting the utility of
automated segmentation in medical practice. However, the existing open datasets
for multiple abdominal organs often fall short of meeting the demands for train-
ing comprehensive segmentation models encompassing all abdominal organs and
lesions. To illustrate, the AbdomenCT-1K dataset [21] covers only four abdom-
inal organs, while the BTCV dataset [15], though has thirteen organ labels,
comprises only 50 images, and none of these two datasets includes lesion seg-
mentation.

Addressing the time-consuming and labour-intensive nature of labelling tar-
gets for segmentation in extensive medical images is a significant challenge that
must be tackled in the development of medical image segmentation algorithms. A
viable solution is trying to make the most of labeled data for certain organs and
lesions, or even leveraging unlabeled data. From this perspective, FLARE2023
offers a dataset comprising 1800 unlabeled and 2200 partially labelled CT im-
ages, with the aim of encouraging participants to develop solutions that can
effectively perform simultaneous segmentation of thirteen abdominal organs and
cancer.

In recent years, extensive research has been conducted to address the problem
of partial-label segmentation for abdominal organs and cancer. Several methods
have emerged as promising solutions for this task. One approach is to achieve
dynamic and diverse object segmentation by incorporating with adaptive fil-
ters during the decoding or output stages within a unified encoding-decoding
architecture. Notable examples of this approach include DoDNet [31] and the
conditional nnU-Net [30]. Another prevalent architectural design tailored to this
domain is the implementation of a multi-head decoder. For instance, models
like MFUnetr [8] incorporate separate segmentation heads for both full and
partial organ segmentation. In terms of learning strategies, researchers have ex-
plored various methods to utilize the unlabeled data. These strategies encompass
multi-stage training, model distillation and integration, semi-supervised learn-
ing method such as pseudo label generation, sometimes even combining multiple
strategies. It is noteworthy that the FLARE2022 conference proceedings [17]
feature an extensive array of solutions that exemplify the practical application
of these methods.

Moreover, self-supervised learning methods offer a practical approach to this
task. One widely used strategy is the pre-training and fine-tuning of transformer-
based networks. During the pre-training stage, an abundance of unlabeled images
can be leveraged to equip the transformer encoder with the ability to comprehend
input images and extract meaningful features. An illustrative example is Swin
UNETR [26], which achieved state-of-the-art results on BTCV [15] and MSD [1]
datasets after pre-training on 5050 unlabeled data. Similarly, UNETR [9], which
also employs a vision transformer as the encoder, can employ this self-supervised
learning approach.

At the outset, we embarked on a self-supervised learning approach with 3D
transformer-based networks, specifically Swin UNETR and UNETR. In parallel,
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we supervised trained a 3D U-Net model using a limited portion of labelled data
for comparison. However, it became evident that the GPU memory consumption
of 3D models far exceeded the specified 4GB. As a result, we pivoted directly to
a different strategy, opting for the classic 2D UNet architecture and embracing
a semi-supervised training strategy. This involved initial training on unlabeled
data with pseudo labels generated by 3D U-Net, and the model was sequentially
trained on data with varying label patterns. Ultimately, this revised approach
yielded a model that surpassed our initial 3D models in terms of both segmen-
tation performance and inference efficiency. In this paper, we will discuss our
solution and contributions from the following aspects:

– We adopted various strategies and trained multiple networks to address this
task, including transformer-based Swin UNETR and UNETR, as well as
CNN-based 3D and 2D U-Net models for this task. We conducted compre-
hensive comparisons and in-depth analyses of the results derived from these
varied approaches.

– To facilitate training on partially-labeled data, we devised a dual decoding
structure based on the 2D U-Net architecture. This design enables us to fix
certain parameters while updating others during different training steps.

– In our comparison between 2D models trained with and without unlabeled
data, we observed that even the model was trained with inaccurate pseudo
labels of unlabeled data, it led to an improvement in the model’s perfor-
mance.

2 Method

Fig. 1 presents an overview of our method. Given the evolution of our method,
transitioning from a transformer-based to a CNN-based approach and from 3D
to 2D, it is structured into two distinct stages: the 3D model training stage
(Fig. 1(b)) and the 2D model training stage (Fig. 1(d)). Within each training
stage, several steps were undertaken, and each step is trained on a subset as
defined in Fig. 1(a) of the training data. Notably, the 3D models play a pivotal
role in generating pseudo labels for the subsequent training of the 2D model, as
illustrated in Fig. 1(c).

2.1 Data Partition.

There are a total of fourteen classes to be segmented in the FLARE2023 task,
where labels 1 to 13 correspond to thirteen abdominal organs, and label 14
corresponds to cancer. The training data can be categorized into different subsets
based on their label patterns, as demonstrated in Figure 1(a):

– Du: 1800 unlabeled images.
– Dl1: 250 images with labels for all thirteen organs (labels 1 to 13).
– Dl2: 458 images with labels for only five organs (labels 1, 2, 3, 4, and 13),

representing the liver, right kidney, spleen, pancreas, and left kidney, respec-
tively.
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Fig. 1. Visualization of our data partitioning method and training strategy. (a) Data
Partitioning. The entire training dataset D has been segmented into five distinct subsets
Du, Dl1, Dl2, Dl3, and Dl4. Specifically, Do13, Do5, and Dc represent data containing 13
organ labels, 5 organ labels, and cancer labels, respectively. (b) Training and Inference
Process for 3D Models. Transformer-based models underwent four training steps, while
the 3D U-Net skipped the first two steps. (c) Pseudo Label Generation with 3D Models.
The trained 3D U-Net Mc and Mo2 are employed to generate pseudo labels for cancer
and organs in images from datasets Du and Dl3. These images with pseudo labels are
denoted as D′

u and D′
l3. (d) Training Process for 2D U-Net. In the first two training

steps, all model parameters were updated, while in steps 3 and 4, only some of the
model parameters were updated.
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– Dl3: 604 images with labels for the same five organs as Dl2, as well as cancer
(label 1, 2, 3, 4, 13 and 14).

– Dl4: 888 images with label exclusively for cancer (label 14).

Therefore, the complete training dataset D is the union of Du, Dl1, Dl2, Dl3, and
Dl4, with no overlap between these subsets. Additionally, for training purposes,
we denote Dl1 as Do13, the union of Dl1, Dl2, and Dl3 as Do5, and the union
of Dl3 and Dl4 as Dc. These subsets represent data containing thirteen organ
labels, five organ labels, and cancer labels, respectively. It’s worth noting that
within Do5 and Do13 subsets, not all images have labels as described above.
There are instances where certain organs are missing, resulting in some images
lacking one or several labels corresponding to the absent organs.

2.2 Pre-processing

For the 3D models, we applied uniform pre-processing to ensure consistent ori-
entation, intensity range, and spacing for all input images:

– Orientation: The orientations of 3D images were standardized using the
’RAS’ axcodes.

– Scale Intensity Range: The values of image voxels were clipped to [−200, 300]
and then normalized to [0, 1].

– Spacing: The spacings were resampled to a uniform spacing of 1mm×1mm×
1mm using bilinear interpolation for images and nearest neighbour interpo-
lation for labels.

For the 2D models, the pre-processing steps were similar but with some
parameter differences. Specifically, the values of image voxels were clipped to
[−200, 300] when scaling the intensity ranges. Besides, in the training stage,
images were resampled to the spacing of 1mm× 1mm on the height and width
dimensions, while the depth dimension remained unchanged. However, during
inference, images were resampled to the spacing of 1mm× 1mm× 2.5mm. This
adjustment aimed to prevent long inference times caused by some images with
small spacing and an excessive number of slices. After these transformations,
the images were sliced into 2D samples along the depth dimension to prepare
for training.

2.3 Proposed Method

Our approach comprises two primary stages: 3D model training and 2D model
training. Initially, we aimed to develop our model based on state-of-the-art archi-
tectures like Swin UNETR [26] or UNETR [9]. Unfortunately, the performance of
these 3D transformer-based models did not meet our expectations and even un-
derperformed in comparison to 3D U-Net [4], as detailed in Sec 4.1. Furthermore,
these 3D transformer-based models need excessive GPU memory consumption
and long running times, making them cost-ineffective to optimize. Consequently,
we made the decision to pivot towards solutions rooted in the conventional 2D
U-Net [24] architecture. To maximize the utilization of the unlabeled data, we
leveraged the trained 3D models to generate pseudo labels for 2D model training.
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3D Training Stage. The training process of our 3D models is illustrated in Fig.
1(b). For transformer-based networks, specifically Swin UNETR and UNETR,
we initiated the training by pre-training their transformer encoders using the
MAE method, as described in [10,3], on the complete training dataset D, then
we fixed the parameters of the transformer encoders throughout the subsequent
steps.

Given that our image data was partially labeled, we pursued the training of
two separate models—one for predicting cancer labels and the other for organ
labels. These two training processes occurred in parallel. Building upon the pre-
trained encoder, one model underwent fine-tuning solely on the dataset Dc to
yield the cancer model Mc. Concurrently, another model was initially fine-tuned
on the dataset Do5 to obtain model Mo1, which was designed to predict labels for
five specific organs. Subsequently, model Mo1 underwent continuous fine-tuning
on the dataset Do13, ultimately yielding the comprehensive organ model Mo2,
which is capable of predicting labels for all organs.

In contrast, the 3D U-Net did not undergo a pre-training phase or training
on dataset Do5. Instead, we directly trained two distinct models, Mc and Mo2,
for the segmentation of cancer and organs by utilizing the datasets Dc and Do13,
respectively.

Cancer 
Decoder

Organ
Decoder

Conv 3×3 – BN – LeakyReLU

MaxPool 2×2 UpSample 2×2

Conv 1×1

Skip Connections

Skip Connections

Image

Cancer Label

Organ Labels

16×224×224
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128×32×32

256×16×16

1×224×224

13×224×224

Fig. 2. The network architecture of our proposed dual-decoding U-Net. In this configu-
ration, the decoder comprises two branches in the final two upsampling stages, enabling
the network to simultaneously train on data labeled for both organs and cancers, and
generate corresponding labels for both.

2D Training Stage. In light of the insights gained from the training of our 3D
models and with the aim of further enhancing efficiency, we have transitioned
away from training separate models for cancer and organs. Instead, we have
devised a network featuring a dual-decoding structure based on the 2D U-Net
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architecture. This design enables the model to produce labels for both cancer
and organs concurrently. We refer to the two decoders responsible for generating
these labels as the ’cancer decoder’ and the ’organ decoder’. A schematic rep-
resentation of this network is illustrate in Fig. 2. Furthermore, we have ensured
that the network’s parameters remain unaffected during training on different
types of data. This network structure provides the capability to simultaneously
extract features related to both cancer and organs from images, while also al-
lowing us to leverage unlabeled data.

To made the use of models Mc and Mo1 from the 3D U-Net version, we
utilized them to predict pseudo labels for all images within Dl3 and unlabeled
images in Du (Fig. 1(c)). It is important to note that within Dl3, only pseudo
labels for the eight remaining organs were used, as the other five organs already
had ground truth labels. For clarity, we denote datasets Du and Dl3 with pseudo
labels as D′

u and D′
l3, respectively.

The training process for this 2D model consists of four steps. In the first
and second steps, the entire network was trained using datasets D′

u and D′
l3,

respectively. Moving to the third step, training was conducted on dataset Dl1,
which includes thirteen organ labels. The parameters of the network were fixed
in this step, except for those of organ decoder. The fourth step is similar to the
third step, but dataset Dl4 was used. In this case, the parameters of the cancer
decoder updated, while keeping the other parameters fixed.

Loss Function. We used the summation between Dice loss [22] and cross-
entropy loss because compound loss functions have been proven to be robust in
various medical image segmentation tasks [16]. The loss function is calculated
according to the following formula:

L (G,P ) = Ldice (G,P ) + Lce (G,P )

=

1− 2

J

J∑
j=1

∑I
i=1 gi,jpi,j∑I

i=1 g
2
i,j +

∑I
i=1 p

2
i,j

+

−1

I

I∑
i=1

J∑
j=1

gi,j log pi,j

 (1)

where I denotes the total number of pixels, J denotes the number of classes. G
and P respectively represent the sets of pixels in the ground truth and prediction.
For any pixel gi,j ∈ G and its corresponding prediction pi,j ∈ P , gi,j = 1 if the
i-th pixel is classified into the j-th class and gi,j = 0 if not, pi,j is the predicted
probability of the i-th pixel belonging to class j.

2.4 Post-processing

In our method, whether 3D or 2D models, the initial model outputs provide
either cancer labels or organ labels which do not encompass all fourteen labels.
The comprehensive predicted results, including all fourteen labels, were achieved
by overlaying the cancer labels onto the organ labels.

To ensure that the final prediction results align with the original input image,
the inverse transforms of the orientation and spacing during the pre-processing
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were performed on the final outputs. Besides, no additional post-processing was
applied.

3 Experiments

3.1 Dataset and Evaluation Measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [19][20],
aiming to aim to promote the development of foundation models in abdomi-
nal disease analysis. The segmentation targets cover 13 organs and various ab-
dominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [5], LiTS [2], MSD [25],
KiTS [11,12], autoPET [7,6], TotalSegmentator [28], and AbdomenCT-1K [21].
The training set includes 4000 abdomen CT scans where 2200 CT scans with
partial labels and 1800 CT scans without labels. The validation and testing sets
include 100 and 400 CT scans, respectively, which cover various abdominal can-
cer types, such as liver cancer, kidney cancer, pancreas cancer, colon cancer,
gastric cancer, and so on. The organ annotation process used ITK-SNAP [29],
nnU-Net [14], and MedSAM [18].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation Details

Table 1. Development environments and requirements.

System Ubuntu 20.04.5 LTS
CPU Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz
RAM 4 × 16 DDR4 2933 MHz
GPU (number and type) Two NVIDIA V100 32G
CUDA version 12.0
Programming language Python 3.8.13
Deep learning framework torch 1.13.0, monai 1.1.0
Specific dependencies NA
Code NA

Details regarding the development environments and requirements are pre-
sented in Table 1. Our method was implemented using PyTorch4 and MONAI5.
4 https://pytorch.org/
5 https://monai.io/
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We leveraged modules and functions from MONAI for pre-processing and post-
processing during both training and inference.

The non-random preprocessing, as introduced in Sec 2.2, was consistently
applied during both training and inference. Additionally, for the purpose of data
augmentation during training, several other transforms were employed:

– Crop Foreground: All input images underwent cropping based on their image
intensity. Only the largest bounding box containing voxel values greater than
0 within the image was retained.

– Randomly Crop Samples: For 3D models, input images were randomly cropped
into two patches of size 128× 128× 128. For 2D models, input images were
randomly cropped into samples of size 224× 224.

– Gaussian Noise: Gaussian noise with a standard deviation of 0.05 was ran-
domly added with a probability of 0.5.

– Intensity Scaling and Shifting: Image intensities were randomly scaled by
a factor of 0.1 and shifted with randomly selected offsets from the range
[−0.1, 0.1]. Both of these operations occurred with a probability of 0.5.

The training protocols for 3D and 2D U-Net models are outlined in Table 2
and Table 3, respectively. In the case of the 3D U-Net, we selected the model with
the lowest Dice loss as the optimal model. As for the 2D U-Net, approximately
20% of the slices were designated as validation data, ensuring that slices from
the same image were either included in the validation set or the training set. The
optimal model for the 2D U-Net was chosen based on the Dice score achieved
on the validation data.

Table 2. Training protocols for 3D U-Net.

Training Model cancer model Mc organ model Mo2

Network initialization random
Batch size 4
Patch size 128× 128× 128

Number of data (cases) 1492 250
Total epochs 60 250
Optimizer AdamW, weight decay 10−5

Initial learning rate (lr) 5× 10−4

Lr schedule warm up of 5 epochs warm up of 10 epochs
Training time 88 hours 32 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 1.439M
Number of flops 21.9G



10 Zhiyu Ye et al.

Table 3. The training protocols for the 2D U-Net models M1 to M4 correspond to the
four steps outlined in Fig. 1(d).

Training Model M1 M2 M3 M4

Network initialization random M1 M2 M3

Batch size 128
Patch size 224× 224

Number of data (slices) 330828 123698 64121 349701
Total epochs 20 30 60 20
Optimizer AdamW, weight decay 10−5

Initial learning rate (lr) 10−4 5× 10−4 5× 10−4 10−4

Lr schedule polynomial decay with power 0.9
Training time 24.5 hours 9 hours 9.5 hours 26 hours
Loss function Dice loss and cross-entropy loss
Number of model parameters 2.388M
Number of flops 26G

4 Results and Discussion

4.1 Quantitative Results on Validation Set

Results of the Submitted Solution. The validation results of our submitted
solution can be found in Table 4. Regrettably, we did not discover that we had
accidentally included the 50 validation cases with ground truth in our training
data until writing this paper, despite our initial intent to use this data solely for
selecting the optimal model. As a result, the submitted model’s performance was
unfairly influenced. Consequently, we retrained our models entirely from scratch.
The results of the retraining models are presented in subsequent ablation studies,
and these results are truly noteworthy and thought-provoking.

Ablation Studies. In this part, we present a comparative analysis of the per-
formance of our 3D and 2D models on validation data.

Table 5 displays the online validation results for the 3D models Swin UN-
ETR, UNETR, and U-Net. Despite Swin UNETR and UNETR being pre-trained
on the entire training dataset, their performance falls significantly short of that
achieved by the 3D U-Net model. From the table, it is evident that the av-
erage DSC and NSD)scores for the 3D U-Net across all fourteen classes are
approximately 4-6% higher compared to the other two models. Regarding can-
cer segmentation specifically, the DSC score of 3D U-Net surpasses that of Swin
UNETR by 0.14% and UNETR by 6.8%, respectively. Furthermore, while Swin
UNETR outperforms UNETR marginally in terms of the results, Swin UNETR
consumes significantly more GPU memory and takes longer running times during
both training and inference when compared to UNETR.

For 2D models, our primary focus was to assess the influence of utilizing
unlabeled data on model performance, and the results are presented in Table 6.
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Table 4. Quantitative evaluation results of our submitted solution. The public valida-
tion denotes the performance on the 50 validation cases with ground truth. The online
validation denotes the leaderboard results. The Testing results will be released during
MICCAI.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.45 ± 0.42 99.58 ± 0.50 97.90 98.19 95.38 94.99
Right Kidney 97.12 ± 1.74 98.67 ± 2.28 94.08 94.80 92.69 92.28
Spleen 97.78 ± 0.62 99.13 ± 1.26 95.48 95.58 93.83 92.26
Pancreas 88.32 ± 3.67 98.41 ± 1.33 79.33 91.52 72.84 85.67
Aorta 95.87 ± 3.77 98.38 ± 2.69 94.85 96.80 94.80 96.88
Inferior vena cava 92.37 ± 3.77 94.91 ± 4.35 89.61 90.58 87.77 87.991
Right adrenal gland 82.98 ± 10.86 94.70 ± 8.19 78.43 91.12 68.41 80.90
Left adrenal gland 81.62 ± 10.29 93.86 ± 7.59 73.28 84.33 64.16 74.89
Gallbladder 91.80 ± 13.78 94.10 ± 14.02 83.78 84.37 70.54 69.42
Esophagus 86.09 ± 5.16 96.46 ± 3.64 81.50 92.84 79.97 90.63
Stomach 95.38 ± 1.87 98.60 ± 1.66 91.38 92.75 84.17 83.96
Duodenum 87.06 ± 5.94 99.05 ± 1.20 76.00 92.31 64.53 84.15
Left kidney 96.53 ± 2.27 97.64 ± 3.89 93.23 93.79 91.67 91.20
Tumor 87.19 ± 8.30 86.22 ± 10.03 57.66 52.38 17.51 9.66
Average 91.33 ± 2.74 96.41 ± 3.56 84.75 89.38 76.90 80.98

Table 5. Online validation results of Swin UNETR, UNETR and 3D U-Net.

Target Swin UNETR UNETR 3D U-Net
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 94.24 94.55 94.22 94.68 94.59 96.25
Right Kidney 83.78 84.95 88.89 90.57 87.71 89.85
Spleen 91.63 92.36 89.33 89.32 90.51 91.20
Pancreas 70.15 85.08 69.05 85.28 75.58 91.09
Aorta 86.79 88.84 86.74 86.29 92.81 95.61
Inferior vena cava 85.13 86.81 81.54 79.08 89.34 91.21
Right adrenal gland 70.23 87.18 65.12 82.13 71.46 88.48
Left adrenal gland 61.88 77.92 60.36 75.11 68.17 85.26
Gallbladder 69.90 66.73 64.68 57.81 70.44 66.65
Esophagus 69.07 83.32 67.26 83.35 76.59 90.10
Stomach 82.65 84.99 78.77 80.90 86.51 90.09
Duodenum 66.96 84.94 58.51 81.98 73.42 89.93
Left kidney 78.41 79.65 84.72 86.27 86.68 88.79
Tumor 11.34 5.99 14.67 6.18 21.47 11.65
Average 73.01 78.81 71.70 77.07 77.52 83.30

The model that excluded unlabeled data was trained following the steps outlined
in Fig. 1(d), omitting step 1. From the table, it is evident that the model’s per-
formance, when trained with unlabeled data, does not surpass that of the model
trained without unlabeled data. In fact, the overall DSC score has decreased by
2.63%. Notably, the inclusion of unlabeled data resulted in a significant decrease
in DSC scores for all organs, except for the liver. This decrease was particu-
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Table 6. Comparison of quantitative evaluation results in online validation between
models trained with and without unlabeled data.

Model trained w/o unlabeled data with unlabeled data
Target DSC(%) NSD(%) DSC(%) NSD(%)
Liver 96.67 95.62 96.88 95.19
Right Kidney 89.24 88.3 88.72 87.69
Spleen 93.15 91.24 93.06 91.1
Pancreas 78.54 90.39 74.63 85.99
Aorta 94.45 96.66 91.97 94.3
Inferior vena cava 90.41 91.65 87.46 88.05
Right adrenal gland 69.89 84.98 68.23 80.64
Left adrenal gland 67.68 79.08 59.73 72.85
Gallbladder 74.79 72.45 74.06 70.73
Esophagus 79.05 91.35 76.07 89.01
Stomach 87.59 87.17 85.19 85.89
Duodenum 72.72 87.95 65.12 86.24
Left kidney 87.64 86.87 83.86 83.44
Tumor 33.22 23.32 33.31 23.1
Average 79.65 83.36 77.02 81.02

larly pronounced in the left adrenal gland and duodenum. However, it is worth
mentioning that unlabeled data did lead to a slight improvement in cancer seg-
mentation, with online validation DSC scores 0.11% higher than those achieved
by models trained exclusively on labeled data. This performance disparity may
be attributed to the absence of filtering or restrictions applied to the pseudo
labels generated from unlabeled data. It is worth noting that the 3D U-Net
model used for generating these pseudo labels demonstrated limited reliability,
as evidenced by its average DSC score, which is only 77.52% in online valida-
tion. Consequently, during the final training steps with labeled data, where most
model parameters were fixed and only certain parameters in decoder were up-
dated, the model’s performance was significantly influenced by the data quality
used in the initial training steps. Additionally, the unlabeled data comprises a
portion of full-body CT scans, while the validation set exclusively consists of
abdominal CT scans. This divergence in data distribution can also contribute
to the decline in model performance when unlabeled data was utilized. In the
context of cancer segmentation, the considerable variation in the number, size,
and location of cancer lesions compared to organs is critical. Therefore, even
if the pseudo labels for unlabeled data are not highly accurate, a substantial
volume of anisotropic data may still contribute to improving the model’s ability
to segment cancer to some extent.

4.2 Qualitative Results on Validation Set

Fig. 3 presents four segmentation results from the validation set. Specifically,
Case ♯00053 and ♯0038 have relatively high DSC scores, while Case ♯0067 and
♯0021 have relatively low DSC scores. The yellow boxes in the first three lines
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Case #FLARETs_0053 (sclice #34)

Case #FLARETs_0038 (sclice #196)

Case #FLARETs_0067 (sclice #21)

Case #FLARETs_0021 (sclice #110) DSC: 59.12 DSC: 71.29

DSC: 73.70DSC: 69.64

DSC: 85.88 DSC: 88.68

DSC: 88.44 DSC: 89.43

Image Ground Truth Model trained w/o 
unlabeled data

Model trained with 
unlabeled data

Fig. 3. Visualizations of segmentation results. The top two rows showcase two examples
with good segmentation results, while the bottom two rows display two instances with
bad segmentation results in the validation set. The DSC scores (%) are calculated for
cases, not for slices. Areas with notable differences between the model’s segmentation
and ground truth have been highlighted within yellow boxes.

signify that the trained model encounters difficulties in cancer segmentation.
When cancer lesions are large or significantly alter the original organ shape,
achieving accurate segmentation becomes a challenging task. In addition, these
four examples collectively illustrate that models trained with unlabeled data ex-
hibit greater stability in organ segmentation compared to models trained without
unlabeled data. This finding aligns with the conclusion presented in Table 6.

4.3 Segmentation Efficiency Results on Validation Set

Though our submitted model did not achieve fairness in validation results, it is
essential to note that its network structure remained unchanged in the retrained
model, ensuring the validity and consistency of segmentation efficiency results.
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Table 7. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 50.82 3012 41724
0051 (512, 512, 100) 34.39 3860 53855
0017 (512, 512, 150) 48.45 4642 56855
0019 (512, 512, 215) 42.4 5360 42851
0099 (512, 512, 334) 38.16 7152 73287
0063 (512, 512, 448) 33.82 8796 72601
0048 (512, 512, 499) 35.92 9492 78669
0029 (512, 512, 554) 52.49 10424 121664

Table 7 presents the segmentation efficiency for eight validation cases, ar-
ranged in order of increasing image depths from top to bottom. Notably, GPU
and total memory consumption increased as the number of image layers in-
creased, with only Case ♯0001 and Case ♯0051 utilizing the maximum GPU
memory within the recommended 4GB limit. Additionally, the running times do
not exhibit consistent changes with varying image sizes. This discrepancy arises
because all images were reshaped to have identical spacing before prediction, re-
sulting in inconsistent numbers of slices to be inferred compared to the original
images.

It’s important to mention that in post-processing, our initial approach was
to resize the predicted labels using nearest-neighbor interpolation, an opera-
tion suitable for CPU. However, we faced a challenge that the orientations of
images were not consistently aligned. We had uniformly applied MONAI mod-
ules to adjust the orientation during pre-processing, and only MONAI’s inverse
modules were capable of reversing this transformation. Since both pre- and post-
processing operations in MONAI rely on GPU, this approach resulted in nearly
doubling the GPU memory consumption.

4.4 Results on Final Testing Set

This is a placeholder. We will send you the testing results during MICCAI
(2023.10.8).

4.5 Limitation and Future Work

Cancer segmentation remains a persistent challenge in our research, with re-
sults that continue to fall short of expectations. The intricacies of training high-
performing models on datasets characterized by inconsistent annotations and
anisotropic images represent a compelling and enduring topic in the field of
medical image analysis. Further exploration and innovation in this domain are
warranted to advance the state-of-the-art and improve the accuracy of cancer
segmentation together with organ segmentation.



Cascaded Dual-decoding U-Net 15

In the analysis in Sec 4.1, we observed that the quality of pseudo labels from
unlabeled data could influence model performance in our approach. Although
we were provided with pseudo labels generated by the FLARE22 winning algo-
rithm [13] and the best-accuracy-algorithm [27], we did not incorporate them into
our work. Additionally, our method comprises multiple training steps, yet our ab-
lation analysis solely focused on the utilization of unlabeled data. Furthermore,
we did not conduct ablation experiments to assess the impact of our designed
dual-decoding network framework. As a result, future research can also explore
the effects of varying pseudo label quality on model performance. Moreover, in-
vestigations can be extended to evaluate the influence of different methodological
steps and network structures on model performance. This comprehensive anal-
ysis can provide a deeper understanding of the factors contributing to model
effectiveness.

5 Conclusion

In the FLARE2023 challenge, we presented a cascaded dual-decoding U-Net solu-
tion for this partial-labeled abdominal organ and cancer segmentation. Through-
out our research, we explored various model architectures, including both transformer-
based and CNN-based models, as well as 3D and 2D models. Through continuous
analysis of results and strategy adjustments, we ultimately adopted a designed
2D dual-coding U-Net, utilizing 3D U-Net for pseudo label generation and con-
ducting multi-step iterative training. We also conducted an in-depth analysis of
the influence of unlabeled data on model performance. Interestingly, our find-
ings demonstrated that pseudo labels of low quality may not only fail to improve
model performance but can even degrade the model’s organ segmentation perfor-
mance, as indicated by the results of online validation. In conclusion, our model
trained without the use of unlabeled data achieved average DSC and NSD scores
of 79.65% and 83.36%, respectively, in online validation.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2023 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention. We thank all the data owners for making the CT scans publicly
available and CodaLab [23] for hosting the challenge platform. This work is
supported in part by the Major Key Project of PCL (grant No. PCL2023AS7-1)
and the National Natural Science Foundation of China (grant No. U21A20523).
The computing resources of Pengcheng Cloudbrain are used in this research. We
acknowledge the support provided by OpenI Community6.

6 https://git.openi.org.cn

https://git.openi.org.cn


16 Zhiyu Ye et al.

References

1. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman,
B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., et al.: The medical
segmentation decathlon. Nature Communications 13(1), 4128 (2022) 2

2. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,
Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, I., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,
Shit, S., Hu, X., Lipková, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hülsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jäger, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)
1, 8

3. Chen, Z., Agarwal, D., Aggarwal, K., Safta, W., Balan, M.M., Brown, K.: Masked
image modeling advances 3d medical image analysis. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1970–
1980 (2023) 6

4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net:
learning dense volumetric segmentation from sparse annotation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
424–432. Springer (2016) 5

5. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045–1057 (2013) 8

6. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye,
J., He, J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully au-
tomated lesion segmentation in oncologic pet/ct imaging. preprint at Research
Square (Nature Portfolio ) (2023). https://doi.org/https://doi.org/10.21203/
rs.3.rs-2572595/v1 8

7. Gatidis, S., Hepp, T., Früh, M., La Fougère, C., Nikolaou, K., Pfannenberg, C.,
Schölkopf, B., Küstner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022) 8

8. Hao, Q., Tian, S., Yu, L., Wang, J.: Mfunetr: A transformer-based multi-task learn-
ing network for multi-organ segmentation from partially labeled datasets. Biomed-
ical Signal Processing and Control 85, 105081 (2023) 2

9. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. pp. 574–584 (2022) 2, 5

https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1


Cascaded Dual-decoding U-Net 17

10. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 16000–16009 (2022) 6

11. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F., Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E., Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced
ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021) 1, 8

12. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 1, 8

13. Huang, Z., Wang, H., Ye, J., Niu, J., Tu, C., Yang, Y., Du, S., Deng, Z., Gu, L.,
He, J.: Revisiting nnu-net for iterative pseudo labeling and efficient sliding win-
dow inference. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 178–189. Springer (2022) 15

14. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 8

15. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-
atlas labeling beyond the cranial vault–workshop and challenge. In: Proc. MICCAI
Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge. vol. 5, p. 12
(2015) 2

16. Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss
odyssey in medical image segmentation. Medical Image Analysis 71, 102035 (2021)
7

17. Ma, J., Wang, B. (eds.): Fast and Low-Resource Semi-supervised Abdominal Or-
gan Segmentation - MICCAI 2022 Challenge, FLARE 2022, Held in Conjunc-
tion with MICCAI 2022, Singapore, September 22, 2022, Proceedings, Lecture
Notes in Computer Science, vol. 13816. Springer (2022). https://doi.org/10.
1007/978-3-031-23911-3, https://doi.org/10.1007/978-3-031-23911-3 2

18. Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint
arXiv:2304.12306 (2023) 8

19. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Štern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022) 8

20. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. arXiv preprint arXiv:2308.05862 (2023) 8

https://doi.org/10.1007/978-3-031-23911-3
https://doi.org/10.1007/978-3-031-23911-3
https://doi.org/10.1007/978-3-031-23911-3
https://doi.org/10.1007/978-3-031-23911-3
https://doi.org/10.1007/978-3-031-23911-3


18 Zhiyu Ye et al.

21. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022) 2, 8

22. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV). pp. 565–571. IEEE (2016) 7

23. Pavao, A., Guyon, I., Letournel, A.C., Tran, D.T., Baro, X., Escalante, H.J., Es-
calera, S., Thomas, T., Xu, Z.: Codalab competitions: An open source platform to
organize scientific challenges. Journal of Machine Learning Research 24(198), 1–6
(2023) 15

24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241 (2015) 5

25. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019) 8

26. Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V.,
Hatamizadeh, A.: Self-supervised pre-training of swin transformers for 3d medi-
cal image analysis. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 20730–20740 (2022) 2, 5

27. Wang, E., Zhao, Y., Wu, Y.: Cascade dual-decoders network for abdominal organs
segmentation. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 202–213. Springer (2022) 15

28. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmen-
tator: Robust segmentation of 104 anatomic structures in ct images. Radiology:
Artificial Intelligence 5(5), e230024 (2023) 8

29. Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342–3345 (2016) 8

30. Zhang, G., Yang, Z., Huo, B., Chai, S., Jiang, S.: Multiorgan segmentation from
partially labeled datasets with conditional nnu-net. Computers in Biology and
Medicine 136, 104658 (2021) 2

31. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Dodnet: Learning to segment multi-organ and
tumors from multiple partially labeled datasets. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1195–1204 (2021) 2



Cascaded Dual-decoding U-Net 19

Table 8. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 3
Author affiliations, Email, and ORCID Yes
Corresponding author is marked Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Fig. 1 & 2
Pre-processing Page 5
Strategies to use the partial label Page 5-7
Strategies to use the unlabeled images Page 5-7
Strategies to improve model inference Page 6-7
Post-processing Page 7
Dataset and evaluation metric section is presented Page 7-8
Environment setting table is provided Table 1
Training protocol table is provided Table 2 & 3
Ablation study Page 10-12
Efficiency evaluation results are provided Table 7
Visualized segmentation example is provided Figure 3
Limitation and future work are presented Yes
Reference format is consistent Yes


