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ABSTRACT

To sample from a general target distribution p, o e~/* beyond the isoperimetric
condition, [Huang et al.| (2023) proposed to perform sampling through reverse
diffusion, giving rise to Diffusion-based Monte Carlo (DMC). Specifically, DMC
follows the reverse SDE of a diffusion process that transforms the target distribution
to the standard Gaussian, utilizing a non-parametric score estimation. However,
the original DMC algorithm encountered high gradient complexityﬂ resulting
in an exponential dependency on the error tolerance € of the obtained samples.
In this paper, we demonstrate that the high complexity of the original DMC
algorithm originates from its redundant design of score estimation, and proposed
a more efficient DMC algorithm, called RS-DMC, based on a novel recursive
score estimation method. In particular, we first divide the entire diffusion process
into multiple segments and then formulate the score estimation step (at any time
step) as a series of interconnected mean estimation and sampling subproblems
accordingly, which are correlated in a recursive manner. Importantly, we show
that with a proper design of the segment decomposition, all sampling subproblems
will only need to tackle a strongly log-concave distribution, which can be very
efficient to solve using the standard sampler (e.g., Langevin Monte Carlo) with a
provably rapid convergence rate. As a result, we prove that the gradient complexity
of RS-DMC only has a quasi-polynomial dependency on e, which significantly
improves exponential gradient complexity in [Huang et al.| (2023). Furthermore,
under commonly used dissipative conditions, our algorithm is provably much faster
than the popular Langevin-based algorithms. Our algorithm design and theoretical
framework illuminate a novel direction for addressing sampling problems, which
could be of broader applicability in the community.

1 INTRODUCTION

Sampling problems, i.e., generating samples from a given target distribution p. o exp(—f.),
have received increasing attention in recent years. For resolving this problem, a popular option
is to apply gradient-based Markov chain Monte Carlo (MCMC) methods, such as Unadjusted
Langevin Algorithms (ULA) (Neal, [1992; Roberts & Tweedie, [1996), Underdamped Langevin
Dynamics (ULD) (Cheng et al.l 2018} [Ma et al.| 2021} Mou et al.l 2021)), Metropolis-Adjusted
Langevin Algorithm (MALA) (Roberts & Stramer, 2002} Xifara et al., 2014), and Hamiltonian Monte
Carlo (HMC) (Duane et al.l |1987; Neal, [2010). In particular, these algorithms can be seen as the
discretization of the continuous Langevin dynamics (LD) and its variants (Ma et al., 2015}, which will
converge to a unique stationary distribution that follows p. o exp(— f.), under regularity conditions
on the energy function f,(x) (Roberts & Tweedie, [1996).

However, the convergence rate of the Langevin-based algorithms heavily depends on the target
distribution p,: guaranteeing the convergence in polynomial time requiring p, to have some nice
properties, e.g., being strongly log-concave, satisfying log-Sobolev or Poincaré inequality with a
large coefficient. However, for more general non-log-concave distributions, the convergence rate may
exponentially depend on the problem dimension (Raginsky et al., 2017; [Holzmiiller & Bach) 2023)
(i.e., ~ exp(d)), or even the convergence itself (to p,.) cannot be guaranteed (one can only guarantee

'We denote gradient complexity as the required number of gradient calculations to achieve at most e sampling
error.
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to converge to some locally stationary distribution (Balasubramanian et al.| 2022)), implying that the
Langevin-based algorithms are extremely inefficient for solving such hard sampling problems. To
this end, we are interested in addressing the following question:

Can we develop a new sampling algorithm that enjoys a non-exponential conver-
gence rate for sampling general non-log-concave distributions?

To address this problem, we are inspired by several recent studies, including Montanari| (2023));
Huang et al.| (2023)), that attempt to design samplers based on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al.| 2020; |Vargas et al., [2023)), which we refer to as the diffusion-based Monte Carlo
(DMC). In particular, the algorithm developed in|Huang et al.|(2023) is based on the reverse process
of the Ornstein-Uhlenbeck (OU) process, which starts from the target distribution p. and converges
to a standard Gaussian distribution. The mathematical formula of the OU process and its reverse
process are given as follows (Anderson, |1982} [Song et al., [2020):

dx; = —x,dt + V2dB,, x¢ ~ po(x) = p., (OU Process)
dx;” = [xf + 2V long_t(xf)}dt +2dB;,, x5 ~ pr(x) =~ N(0,I), (Reverse Process)

where B; denotes the Brownian term, p;(x) denotes the underlying distribution of the particle at
time ¢ along the OU process, T denotes the end time of the OU process, and V log p;(x) denotes
the score function of the distribution p,(x). In fact, the exponentially slow convergence rate of
the Langevin-based algorithms stems from the rather long mixing time of Langevin dynamics to
its stationary distribution, while in contrast, the OU process exhibits a much shorter mixing time.
Therefore, principally, if the reverse process of the OU process can be perfectly recovered, one can
avoid suffering from the issue of slow mixing of Langevin dynamics, and develop more efficient
sampling algorithms accordingly.

Then, the key to recovering (Reverse Process) is to obtain a good estimation for the score V log p, ()
for all t € [0, T]. Huang et al.[(2023)) proposed a score estimation method called reverse diffusion
sampling (RDS) based on an inner-loop ULA. However, it still suffers from the exponential depen-
dency with respect to the target sampling error, which requires exp ((’)(1 / e)) gradient complexity
to achieve the € sampling error in KLL divergence. The reason behind this is that RDS involves
many hard subproblems that need to sample non-log-concave distributions with bad isoperimetric
properties, which incurs huge gradient complexities in the desired Langevin algorithms.

In this work, we argue that the hard subproblems in [Huang et al.| (2023) are redundant or even
unnecessary, and propose a more efficient diffusion-based Monte Carlo method, called recursive score
DMC (RS-DMC), that only requires quasi-polynomial gradient complexity to sampling general
non-log-concave distributions. At the core of RS-DMC is a novel non-parametric method for score
estimation, which involves a series of interconnected mean estimation and sampling subproblems that
are correlated in a recursive manner. In particular, we first divide the entire forward process into sev-
eral segments starting from 0, S, ..., (K — 1)S, and estimate the scores {V log pxs(®) }r=0,.. . k-1
recursively. Given the segments, the score within each segment V log ps-(x) will be further
estimated according to the reference score V log prs (), where 7 € [0, S] can be arbitrarily chosen.
Importantly, given proper configuration of the segment length (i.e., S), we can show that all sampling
subproblems in the developed score estimation method are much easier, as long as the target distribu-
tion p, is log-smooth and has bounded second moment. Then, all intermediate target distributions are
guaranteed to be strongly log-concave, which can be sampled very efficiently via standard ULA. We
then summarize the main contributions of this paper as follows:

* We propose a new Diffusion Monte Carlo algorithm, called RS-DMC, for sampling general non-log-
concave distributions. At the core is a novel and efficient recursive score estimation algorithm. In
particular, based on a properly designed recursive structure, we show that the hard non-log-concave
sampling problem can be divided into a series of benign sampling subproblems that can be solved
very efficiently via standard ULA.

* We establish the convergence guarantee of the proposed RS-DMC algorithm under very mild
assumptions, which only require the target distribution to be log-smooth and to have a bounded
second moment. In contrast, to obtain provable convergence (to the target distribution), the
Langevin-based methods typically require additional isoperimetric conditions (e.g., Log-Sobolev
inequality, Poincaré inequality, etc). This justifies that our algorithm can be applied to a broader
class of distributions with rigorous theoretical convergence guarantees.
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* We prove that the gradient complexity of our algorithm is exp [O(log3 (d/e))] to achieve e sampling
error in KL divergence, which only has a quasi-polynomial dependency on the target error € and
dimension d. In contrast, under even stronger conditions in our work, the gradient complexity in
prior works either need exponential dependency in € (i.e., exp (O(1/e))) (Huang et al., 2023) or
exponential dependency in d, (i.e., exp (O(d))) (Raginsky et al., 2017; Xu et al., ZOISﬂ(which
requires the additional dissipative condition). This demonstrate the efficiency of our algorithm.

2 PRELIMINARIES

In this section, we will first introduce the notations and problem settings that are commonly used in
the following sections. We will then present some fundamental properties, such as the closed form of
the transition kernel and the expectation form of score functions along the OU process. Finally, we
will specify the assumptions that the target distribution is required in our algorithms and analysis.

Notations. We use lower case bold symbol x to denote the random vector, we use lower case
italicized bold symbol x to denote a fixed vector. We use || - || to denote the standard Euclidean
distance. We say a,, = poly(n) if a,, < O(n°) for some constant c.

The segmented OU process. We define N, ;, = [a, b] N N, for brevity. Suppose the length of each
segment is S € R, and we divide the entire forward process with length 7" into K € N segments
satisfying K = T'/S. In this condition, we can reformulate the previous SDE as

Xk,0 ~ P0,0 = Px when k = 0, else Xk,0 = Xk—1,8 ke N07K,1
ka,t = —Xkytdt + \/QdBt ke N07K,17t € [0, S],

where xj, ¢ denotes the random variable of the OU process at time (kS + t) with underlying density
Pkt Besides, we define the following conditional density, i.e., p(x, ¢k, (z|x"), which presents the
probability of obtaining xj ; = & when xx/ » = @’. The diagram of SDE (1)) is presented in Fig

The reverse segmented OU process. According to (Reverse Process)), the reverse process of the
segmented SDE () can be presented as

ey

Xjo0~Pr-1,5swhenk =K —1, elsex; o =%;,15 k€Nog_1
dxi, = [xi, +2Vlog pr.s—¢(x},)] dt + v2dB, k€ Nox_1,t€[0,9]

where particles satisfy x,‘;t = X}, s—+ with underlying density p,‘;t = p,s—+ forany k € Ny g1
and ¢t € [0, S]. To approximately solve the SDE with numerical methods, we first split each segment
into R intervals {[(r — 1)n,rn]}=1.... r, where 7 is the interval length and R = S/7. Then we can
replace the score function V log px, s+ as vj;, and for ¢ € [rn, (r + 1)7], we freeze the value of this
coefficient in the SDE at time (k, 1) . Then starting from the standard Gaussian distribution, we
consider the following new SDE:

X0~ Poo =N(0,I) whenk = K — 1, elsex; o = X315 k€Nox 1

(@)
dx;;t = X;c_,t + 2V]:U/"7J77 (XZU/WM)] dt + \/idBt ke NO,K*l; te [07 S}

where p, denotes the stationary distribution of the forward process. Similar to the segmented OU
process, we define the following conditional density, i.e., p@ O t,)(az\az’ ), which presents the

probability of obtaining x;~, = = when x;; ;, = z’. The diagram of SDE (2} is presented in Fig

Basic properties of the OU process. In the previous paragraph, we have demonstrated that SDE
is an alternative presentation of the OU process. Therefore, the properties in the OU process can be
directly introduced for this segmented version. First, the transition kernel in the k-th segment satisfies

_ 2
—llz— e "o

o\ —d/2
Pl (ko) (®|20) = (27 (1 — 7)) / -exp[ 2(1— e 2) ]’ VO<t<S.

Plugging the transition kernel into Tweedie’s formula, the score function can be reformulated as the
following lemma whose proof is deferred in Section [E]

>We omit the d-dependency in |[Huang et al.|(2023) and e-dependency in [Raginsky et al. (2017); [Xu et al.
(2018)) for the ease of presentation.
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Figure 1: The illustration of SDE and , covering the definitions in Section |[2{ The top of the figure
describes the underlying distribution of the segmented OU process, i.e., SDE (IJ), and the bottom presents the
corresponding distribution in the segmented OU process, i.e., SDE (2). For the intermediate part, the upper
half describes the gradients of the log densities along the forward SDE (), while the lower half describes
approximated scores used to update particles in the reverse SDE (2).

Lemma 2.1 (Lemma 1 of [Huang et al.| (2023)). For any k € Ny x_1 and t € [0, 5], the score
function can be written as

_ e (5-1)
T —e T
Viogpk,s—1(2) = Exgrge s (-f2) [—(1_6_2«5_,»)]

where the conditional density function qi, s—.(-|x) is defined as

| —6_(5‘“930”2)

2 (1 — 6*2(3*’5))

Qk,5—1(xo| ) o exp (10gpk,0($0) -

Therefore, to approximate the score V log px,s—ry(x) with an estimator v;. (), we can draw
samples from g 5_,(-|x) and calculate their empirical mean.

Assumptions. To guarantee the convergence in KL divergence, the Langevin-based methods require
the target distribution to satisfy certain isoperimetric properties such as Log-Sobolev inequality
(LSI) and Poincaré inequality (PI) or even strong log-concavity (Vempala & Wibisono, 2019;|Cheng
& Bartlett, 2018; Dwivedi et al.l 2018)) (the formal definitions of these conditions are deferred
to Section [A). Some other works consider milder assumptions such as modified LSI [Erdogdu &
Hosseinzadeh! (2021) and weak Poincaré inequality Mousavi-Hosseini et al.| (2023)), but they are only
the analytical continuation of LSI and PI, which still exhibit a huge gap with the general non-log-
concave distributions. [Huang et al.| (2023) requires the target distribution p, to have a heavier tail
than that of the Gaussian distribution.

Remarkably, our algorithm does not require any isoperimetric condition or condition on the tail
properties of p. to establish the convergence guarantee. We only require the following mild conditions
on the target distribution.

[A1] Forany k € Ny 1 and ¢ € [0, S], the score V log py, ; is L-Lipschitz.

[A2] The target distribution has a bounded second moment, i.e., M = E,,_[||-||*] < oo.

Assumption corresponds to the L-smoothness condition of the log density f, in traditional
ULA analysis. It is often used to ensure that numerical discretization is feasible. We emphasize that
Assumption[[A;]|can be easily relaxed to only assume the target distribution is smooth rather than the
entire OU process, based on the technique in (Chen et al.|(2023a)) (see their Lemmas 12 and 14). We
do not include this additional relaxation in this paper to make our analysis clearer. Assumption
are widely used in the common analysis of traditional gradient-based MCMC.
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3  PROPOSED METHODS

In this section, we introduce a new approach called Recursive Score Estimation (RSE) and describe the
proposed Recursive Score Diffusion-based Monte Carlo (RS-DMC) method. We start by discussing
the motivations and intuitions behind the use of recursion. Next, we provide implementation details
for the RSE process and emphasize the importance of selecting an appropriate segment length. Finally,
we present the RS-DMC method based on the RSE approach.

3.1 DIFFICULTIES OF THE VANILLA DMC

We consider the reverse segmented OU process, i.e., SDE[2]and begin with the original version of
DMC in|Huang et al.[(2023)), which can be seen as a special case of the reverse segmented OU process
with a large segment length S = 7" and a small number of segments K = 1. According to the reverse
SDE for the r-th iteration within one single segment, we need to estimate V log pg s—, to update
the particles. Specifically, by Lemma[2.1] we have

_ o= (S=rn)
xr e o
Vi1ogpo,s—rn(®) = Exgrgo sy (-l2) [_(1@‘4577))]

for any & € R?, where the conditional distribution q0,5—rn(-|x) is

2
oo
qo,5—rn (2ol ) o< exp <logp0,0(rco) T o2 ) ) (3
Since the analytic form Vlogpgo = —f. exists, we can use the ULA to draw samples from

¢o0,5—rn(-|2) and calculate the empirical mean to estimate V log pg s—ry ().

However, sampling from ¢o s—ry(-|z) is not an easy task. When r is very small, sampling
90,5—rn(-|x) via ULA is almost as difficult as sampling po (o) via ULA (see ), since the
additive quadratic term, whose coefficient is e 25— /2(1 — ¢=2(5=7) will be nearly negligible
in this case. This is because that S = T'is large and then e ~2(5=7) /2(1 — ¢=2(S=")) ~ exp(—2T)
becomes extremely small when 7 = O(T'). More specifically, as shown in[Huang et al.|(2023)), when
e~ 257 < 2L /(1 + 2L), the LSI parameter of go,s—,(-|&) can be as worse as exp ( — O(1/e)).
Then applying ULA for sampling this distribution needs a dramatically high gradient complexity that
is exponential in 1/e.

3.2 INTUITION OF THE RECURSION

Therefore, the key to avoiding sampling such a hard distribution is to restrict the segment length. By
Lemma it can be straightforwardly verified that if the segment length satisfies S < % log (2321 )
) ) 25 25

_Vmo log Qk7sfrn($0|15> = _v:co 1ngk,O(CL'O) + 1_c25° 1= m
where the last inequality follows from Assumption|[[A;] This implies that gy s, (2o|x) is strongly
log-concave for all < |.S/n|, which can be efficiently sampled via the standard ULA. However,
ULA requires to calculate the score function V4, log gx, s—rn (€o|2), which further needs to calculate
V log pi o(x) according to Lemma Different from the vanilla DMC where the formula of
V log po,o () is known, the score V [og py, o () in {@) is an unknown quantity, which also requires
to be estimated. In fact, based on our definition, we can rewrite py o(x) as py—1,s(x) (see Figure|l),
then applying Lemma we can again decompose the problem of estimating V log pj,_1 s(x) into
the subproblems of sampling gx_1 s (-|x) and the estimation of V log py_1,o(x), which is naturally
organized in a recursive manner. Therefore, by recursively adopting this subproblem decomposition,
we summarize the recursive process for approximating V log pi s—ry () as follows and illustrate the
diagram in Figure

“

* Step 1: We approximate the score V log p s—r(2) by a mean estimation with samples generated
by running ULA over the intermediate target distribution gy, g, (-|).

* Step 2: When running ULA for g g—(-|x), we estimate the score V log pr o = V log pr_1.g.

* Step 3: We jump to Step 1 to approximate the score V log pi,_1 s() via drawing samples from
gk—1,5(-|x), and continue the recursion.
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ULA to qx—1,5(-|@) ULA t0 gr,s5—rq (-|)
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Figure 2: The illustration of recursive score estimation (RSE). The upper half presents RSE from a local view,
which shows how to utilize the former score, e.g., V log po(x’) to update particles by ULA in the sampling
subproblem formulated by the latter score, e.g., V log px,s—+ (). The lower half presents RSE from a global
view, which is a series of interconnected mean estimation and sampling subproblems accordingly.

3.3 RECURSIVE SCORE ESTIMATION AND REVERSE DIFFUSION SAMPLING

Recursive Score Estimation. In the previous section, we explained the rough intuition behind
introducing recursion. By conducting the recursion, we need to solve a series of sampling and
mean estimation subproblems. Then, it is demanding to control the error propagation between these
subproblems in order to finally ensure small sampling errors. In particular, this amounts to the
adaptive adjustment of the sample numbers for mean estimation and iteration numbers for ULA
in solving sampling subproblems. Specifically, if we require score estimation v, : R* — R? to
satisfy

|V log pr,s—rn () — vzm(ac)H2 <e VxeR? ©)

with a high probability, then the sample number in Step 1 and the number of calls of Step 2 (the
iteration number of ULA) in Fig 2] will be two functions with respected to the target error €, denoted
as ny ,(€) and my, . (€) respectively. Furthermore, when Step 2 is introduced to update ULA, we rely
on an approximation of V log py, ¢ instead of the exact score. To ensure (E]) is met, the error resulting
from estimating V log py o should be typically smaller than €. We express this requirement as:

|V 1og pr,o() — v,:o(:c)H2 <lp,(e), Vz € RL

where [y, - (€) is a function of e that satisfies [y, . (¢) < e. Under this condition, we provide Alg ie.,
RSE, to calculate the score function for the r-th iteration at the k-th segment, i.e., V log pk,s,m(:c).

Quasi-polynomial Complexity. We consider the ideal case for interpreting the complexity of our
score estimation method. In particular, since the benign error propagation, i.e., Iy r(€) = ¢, is
almost proven in Lemma we suppose the number of calls to the recursive function, RSE(k —
1,0, ', k. (€)), is uniformly bounded by my ,-(€) - ny - (€) for all feasible (k, r) pairs when the RSE
algorithm is executed with input (k,r, x,€). Then, recall that we will conduct the recursion in at
most K rounds, the total gradient complexity for estimating one score will be

O(K) _

(M (€) - ngr(€)] = [mp.(€) _nk,T(E)]O(T/s) .

This formula highlights the importance of selecting a sufficiently large segment with length S to
reduce the number of recursive function calls and improve gradient complexity. In our analysis, we
set S = 1log (25+L), which is “just” small enough to ensure that all intermediate target distributions
in the sampling subproblems are strongly log-concave. In this condition, due to the choice of T’
is O(log(d/¢)) in general cases and my, () and ny () are typically polynomial w.r.t. the target
sampling error € and dimension d (see Theorem in Appendix [B), we would expect a quasi-
polynomial gradient complexity.

Diffusion-based Monte Carlo with Recursive Score Estimation. Then based on the RSE algorithm
in Alg|l} we can directly apply the DDPM (Ho et al., 2020) based method to perform the sampling,
giving rise to the Recursive Score Diffusion-based Monte Carlo (RS-DMC) method. We summarize
the proposed RS-DMC algorithm in Alg[2(the detailed setup of my ,-(-), 7. (+), lg,(-) are provided
in Theorem B.1]in Appendix [B).
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Algorithm 1 Recursive Score Estimation (approximate V log py s—rn(€)): RSE(k, 7, @, €)

1: Input: The segment number k& € Ny g _1, the iteration number r € Ny r_1, variable & requiring
the score function, error tolerance e.

2: if k = —1 then return —V f.(x)
3: Initial the returned vector v’ < 0
4: for i = 1to ny ,(¢) do
5: Draw x(, from an initial distribution ¢},
6: for j = 0tomy ,(e,2) —1do
7: v} + RSE (k — 1,0, 2,1, (e)) > Recursive score estimation V log px—1,5(2)
8: ifr Z0thent <+ S —rnelset’ + S > The gap of time since the last call
9: Update the particle
e e —e 2y
Ty =T+ T (“3 + 1_e—2tj> V27 €
zvloqu,s,m(w;\m)
10: Update the score estimation of v’ ~ V log py g—rn () with empirical mean as
—t'
v =v + ! T mm’f’r(e)
N (€) 1—e 2
return v’. > As the approximation of V log pi g— ()

Algorithm 2 Recursive Score Diffusion-based Monte Carlo (RS-DMC)

Input: Initial particle X3 g sampled from po., Terminal time T', Step size 7, required convergence
accuracy e;
for ¥ = K — 1 downto O do
Initialize the particle as T} < i1 5
forr=0to R —1do
Approximate the score, i.e., V10g py,s—ry () ,.,) by v' < RSE(k, 7, 2 .., l(€))
T i1y, & €'2E ., + (€7 — 1) v’ + € where & is sampled from N (0, (e* — 1) I4)

. —
Return: zj 5.

4 ANALYSIS OF RS-DMC

In this section, we will establish the convergence guarantee for RS-DMC and reveal how the gradient
complexity depends on the problem dimension and the target sampling error. We will also compare
the gradient complexity of RS-DMC with other sampling methods to justify its strength. Additionally,
we will provide a proof roadmap that briefly summarizes the critical theoretical techniques.

4.1 THEORETICAL RESULTS
The following theorem states that RS-DMC can provably converge to the target distribution in
KL-divergence with quasi-polynomial gradient complexity.

Theorem 4.1 (Gradient complexity of RS-DMC, informal). Under Assumptions let p§ g
be the distribution of the samples generated by RS-DMC, then there exists a collection of appropriate
hyperparameters ny y, My r, Tr, N, li. » and 1 such that with probability at least 1 — ¢, it holds that

KL (p. Hp&s) = O(€). Besides, the gradient complexity of RS-DMC is

exp [O (log3 ((Ld + M)/e) - max {loglog Z*,1} )], (6)

where Z denotes the maximum norm of particles which appears in Alg
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We defer the detailed configurations of ny, ,., my ., 7r, 7, I, { and relative constants in the formal
version of this theorem, i.e., Theorem [B.T] Appendix [B] and Table 2] in Appendix [A] respectively.
Then, we show a comparison between our method and previous work.

Comparison with ULA. The gradient complexity of ULA has been well studied for sampling the
non-log-concave distribution. However, in order to prove the convergence in KL divergence or
TV distance, they typically require additional isoperimetric conditions, such as Log-Soboleve and
Poincaré inequality (see Definitions E] and E]) In partlcular when p, satisfies LSI with parameter «,
Vempala & Wibisono| (2019) proved the O (de ) in KL convergence. However, for general
non-log-concave distributions, « is not dimension- free For instance, under the Dissipative condition
(Halel 2010), « can be as worse as exp(—O(d)) (Raginsky et al., [2017), leading to a exp(O(d))
gradient complexity results (Xu et al., 2018).

When the isoperimetric condition is absent, [Balasubramanian et al.|(2022) proved the convergence of

ULA based on the Fisher information measure, i.e., FI (p||p.) := E,[||V log(p/p)||*]. they showed
that ULA can generate the samples that satisfy FI (p||p.) < € for some small error tolerance €. How-
ever, it may be unclear what can be entailed by such a guarantee FI (p||p.) < e. It has demonstrated
that, in some cases, even if the Fisher information FI (p||p.) is very small, the total variation dis-
tance/KL divergence remains bounded away from zero. This suggests that the convergence guarantee
in Fisher information might be weaker than that in KL divergence (i.e., our convergence guarantee).

Comparison with RDS. Then we make a detailed comparison with RDS in (Huang et al., [2023)),
which is the most similar algorithm compared to ours. Firstly, we would like to strengthen again that
our convergence results are obtained on a milder assumption, while Huang et al.[(2023)) additionally
requires the target distribution to have a heavier tail. Besides, as discussed in the introduction section,
RDS has a much worse gradient complexity since it performs all score estimation straightforwardly,
while RS-DMC is based on a recursive structure. Consequently, RDS involves many hard sampling
subproblems that take exponential time to solve, while RS-DMC only involves strongly log-concave
subsampling problems that can be efficiently solved within polynomial time. As a result, the gradient
complexity of RDS is proved to be poly(d) - poly(1/e) - exp (O(1/¢)), which is significantly worse
than the quasi-polynomial gradient complexity of RS-DMC.

4.2 PROOF SKETCH

In this section, we aim to highlight the technical innovations by presenting the roadmap of our
analysis. Due to space constraints, we have included the technical details in the Appendix.

Firstly, by requiring Novikov’s conditions, we can establish an upper bound on the KL divergence
gap between the target distribution p, and the underlying distribution of output particles, i.e., pg g, by

Girsanov’s Theorem which demonstrates
K—1R-1

2
KL (p*Hp() S) <KL (pK IS”pK 10 +2 / [‘VIogka r?}(xk r’q) v;v_,rn(xlz_,rn)H ] di
Term 1 k=0 r=0
Term 3
K—-1R-1 n 9
+2 / E(xk trn? xp- T] |:||V 10gpkz,S—(t+rn) (XI:t+rn) -V lngk,S*T’n(XErn)” ] dt
k=0 r=0"0

Term 2
Although Novikov’s condition may not be met in general, we employ techniques in [Chen et al.
(2023a)) and sidestep this issue by utilizing a differential inequality argument as shown in Lemma [F.3]

Upper bound Term 1. Intuitively, Term 1 appears since we utilize the standard Gaussian to initialize
the reverse OU process (SDE (2)) rather than p 1 5 which can hardly be sampled from directly
in practice. Therefore, the first term can be bounded using exponential mixing of the forward
(Ornstein-Uhlenbeck) process towards the standard Gaussian in Lemma@ ie.,

KL (pr—1,5llPk —1,0) < KL (psllpic1,0) exp(—KS) < (Ld + M) exp(—KS),
where pi:_ o = N(0, I) as shown SDE .
Upper bound Term 2. Term 2 corresponds to the discretization error, which has been successfully

addressed in previous work |Chen et al.|(2023bga). By utilizing the unique structure of the Ornstein-
Uhlenbeck process, they managed to limit both the time and space discretization errors, which
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decrease as 17 becomes smaller. To ensure the completeness of our proof, we have included it in
Lemma[D.4] utilizing the segmented notation.

Upper bound Term 3. Term 3 represents the accuracy of the score estimation. In diffusion models,
due to the parameterization of the target density, this term is trained by a neural network and assumed
to be less than € to ensure the convergence of the reverse process. However, in RS-DMC, the score
estimation is obtained using a non-parametric approach, i.e., Alg[I} To this end, we can provide
rigorous high probability bound for this term under Alg[I] which is stated in Lemma[E10]

Roughly speaking, for Algwith input each (k,r, x, €), suppose the score estimation of V log py ¢
is given as v} , satisfying the following event

N [IViogprol) = vizio@)||* < ter(e)

x’ €Sy, (x,€)

where Sy, (, €) denotes the set of particles appear in Algexcept for the recursion. In this condition,
Lemma [E.7] provides the upper bound of score estimation error as:

26—2(5—7"77) 2

2 < )
T (1 —e2s—rm)?

1
(e) Z X; +Ex’Nq;«,s_m('|m) [X,]

Nrk i=1

Ny g (€)
|}V1:Tn(w) —Vlogpk,s,m(a:)H H

Term 3.1

92— 2(S—rn) , , 2
+ (1 — e—2(5—rm)? ' H - EXWQL,S,,.,,HE) x] + Eoer mgye 5y (1) [x']
Term 3.2
where q;c,S—rn<'|w> is the underlying distribution of output particles, i.e., x:nk (o (€)) in Alg

Considering that the distribution g s_,, is strongly log-concave (given in Eq. 4) and we can get
a lower bound on the strongly log-concave constant (see Lemma . Therefore, g, g_,., also
satisfies the log-Sobolev inequality due to Lemma[F:8] which can imply the variance upper bound
(see Lemma[F.IT)). Then, in our proof, we directly make use of the Sobolev inequality to derive the
high-probability bound (or concentration results) for estimating the mean of ¢, 5_,., (/) in Term
3.1 with Lemmaby selecting sufficiently large ny, ,(¢). Besides, Term 3.2 can be upper bounded
by KL(q}, gy, (-|)]|gk,5—rn(-|)), which can be well controlled by conducting the ULA with a
sufficiently large iteration number my, ,-(¢). Therefore, by conducting the following decomposition

P[ ||V 10g pr,s—rn (i) = Vi (@) | * < €]

200 ) [Vlospole) viale)* <tnta)]

' €Sy (x,€)

We only need to use this proof process recursively with a proper choice of § (9 as a function of ¢) to
get the bound:

P[ Hvlogpkws_”l(w;rn) - Vl:rn(a:Zrn)’F S 6] Z 1— 6

which implies Term 3 < O(e) with a probability at least 1 —e. Due to the large amount of computation,
we defer the details of the recursive proof procedure and the choice of § to the Appendix

5 CONCLUSION

In this paper, we propose a novel non-parametric score estimation algorithm, i.e., RSE, presented
in Alg[I]and derive its corresponding reverse diffusion sampling algorithm, i.e., RS-DMC, and
outlined in Alg[2] By introducing the segment length S to balance the challenges of score estimation
and recursive calls, RS-DMC exhibits several advantages over Langevin-based MCMC, e.g., ULA,
ULD, and MALA. It can achieve KL convergence beyond isoperimetric target distributions with a
quasi-polynomial gradient complexity, i.e.,

exp [(’)(log?’(d/e) -max {loglog Z*,1})].

Additionally, the theoretical result also demonstrates the efficiency of RS-DMC in challenging
sampling tasks. To the best of our knowledge, this is the first work that eliminates the exponential
dependence with only smoothness and the second moment bounded assumptions.
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A NOTATIONS

In this section, we summarize the notations defined in Section [2] in Table [I] for easy reference
and cross-checking. Additionally, another important notation is the score estimation, denoted as
V;c_,m’ which is used to approximate V log py, s—r,. When r = 0, v}, is expected to approximate
V log pr,s which is not explicitly defined in SDE|[I| However, sine X g = Xp41,0 in Eqm the
underlying distributions, i.e., py s and px1,0, are equal, and v, ¢ can be considered as the score
estimation of V log py1,0. For V log pg o, which can be calculated exactly as V f,, we define

v o(x) = Vlogpoo(x) = =V fi(x) @)

as a complement.

12
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Symbols Description
Do2 The density function of the centered Gaussian distribution, i.e., N (0, 02I).
Ds» 0,0 The target density function (initial distribution of the forward process)
{Xk’t}keNo e 1,4€[0,8] The forward process, i.e., SDE
Dkt The density function of Xy, 4, 1.€., Xg,t ~ Pkt
DPoo The density function of the stationary distribution of the forward process

{X{ JreNo x_1.tejo.s)  The practical reverse process following from SDE with initial distribution p,
Dy The density function of x;_,, i.e., X, ~ D},

Table 1: The list of notations defined in Secti0n|2|, where N, 4 is denoted as the set of natural numbers
froma € N, toany b € N,.

Constant symbol Value | Constant symbol Value
Cy, ot —2 Cma log S2M-32 -5L) + M - 3L
Ch 20.5%.C ! Crm 27.3%.5% . Crun Gy 10
Clut log (229 ) + log (2max {log Z, 1 }) Clu,2 70/5% +10/S
Cu,:; QCUJ/S S 1/2 log((2L+ 1)/2.[/)

Table 2: Constant List independent with € and d.

Isopermetric conditions and assumptions. According to the classical theory of Markov chains
and diffusion processes, some conditions can lead to fast convergence over time without being as
strict as log concavity. Isoperimetric inequalities, such as the log-Sobolev inequality (LSI) or the
Poincaré inequality (PI), are examples of these conditions defined as follows.

Definition 1 (Logarithmic Sobolev inequality). A distribution with density function p satisfies the
log-Sobolev inequality with a constant p > 0 if for all smooth function g: R* — R with E, [¢%] < oo,

E, [9°log ¢*] — B, [¢%] logE, [¢] < 207'E, [|Vgl*] -

By supposing g = 1 + €g with ¢ — 0, a weaker isoperimetric inequality, i.e., PI can be defined Menz
& Schlichting| (2014).

Definition 2 (Poincaré inequality). A distribution with density function p satisfies the Poincaré
inequality with a constant ;1 > 0 if for all smooth function §: R* — R,

Var(g) < o', [ V3]°]
We also provide a list of constants used in our following proof in Table 2]to prevent confusion.

B PROOF OF THEOREM [4.1]

Theorem B.1. The formal version of Theorem[d.1)In Alg 2] suppose we set

S =1/2-log(1+1/2L), K =2log[(Ld+ M)/¢]-S™!,
n=0C,(M+d)~te, R=S/n,

l(e) = 10e, Ik, (€) = €/960,

ng(€) = Cy - (d+ M)e? - max{d, —2log §},

My (6,2) = Cpy - (d+ M)?e - max{log ||z||?, 1},

T, = 275 . 372 . eZ(Sfrn) <1 o 672(5’77"77))2 . d71€

13
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where ¢ satisfies

5= o 2, LA+ MY C,Se og-? (LA MY Ld+M
IR 8 € pow 4(d+ M) 8 € pow € ’

Ld+M 2 Ld+M
—Cuzlog——— Cu,S) yglog——+ 1) ;

and the initial underlying distribution q, of the Algwith input (k,r, x, €) satisfies

x — e (S—rmg|?
Q6(xl) X €exp <_ H2(1 _ 6—2(S—T‘n)|)| > B

we have
P [KL (po,s]Ips) = O(e)] = 1 -«
In this condition, the gradient complexity will be
exp [O (log” (Ld + M) /e) - max {loglog Z%,1})]

where Z is the maximal norm of particles appeared in Alg 2}
Proof of Theorem[B.1] According to Lemma suppose Xy = X ,s—+ whose SDE can be pre-
sented as

XXO ~pg_1,s whenk = K — 1, else XEO = Xk<_+1,S ke Nox_1

dxj, =[xk, + 2V 1og pr,s—¢ (x5 )] dt + V2dB; ke Ngx_1,t€]0,5]
due to|Chen et al.{(2023b). Then, we have KL (p. Hpofs) =KL (ﬁQSHpOfS) which satisfies

KL (po,s|po,s) <KL (Pr—1,0llpx-1,0)

Term 1

K—-1R-1 n 9
+ Z /; E(*k,t-;-mq*k,m) [HVIngk,S—(t-‘rWI)(&kvtﬂL”l) - Vzrn(&kvrn)H ] dt.
k=0 r=0
3
Upper bound Term 1. Term 1 can be upper-bounded as
Term 1 = KL (pr—1,5[[pk-1,0) < (Ld + M) - exp (K 5/2)
with Lemma@when p§_170 is chosen as the standard Gaussian. Therefore, we choose
1. 2L+1 Ld+M (1, 2041\' Ld+ M
=—1 K=2log— - [ =1 d KS>2log—
§=gle—r— B <2°g2L)’an 52 2log ——
which make the inequality Term 1 < e establish.
For the remaining term of RHS of Eq[8] it can be decomposed as follows:
K—1R-1 .y )
Z Z / ]E(’A‘kthrTm’A‘k.rn) U|VIngk75—(t+rn) (kat+T") - Vl{c_mn(kan)u :| dt
k=0 r=0 "0
K—1R-1 .y )
<2 Z / E {HVIngk,Sf(tJrrn) ()A(k,t-‘rrn) - VIngk,S—rn(&k,rn)H ] dt
k=0 r=0 70 9)
Term 2
K—1R-1 g )
+2 Z Z/ LTE SR - {HVIOng;S—W(ﬁk;m) - V;c_,rn(ik,m)H } dt
k=0 r=00
Term 3

14
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Upper bound Term 2. This term is mainly from the discretization error in the reverse process.
Therefore, its analysis is highly related to|Chen et al.| (2023bfal). To ensure the completeness of our
proof, we have included it in our analysis, utilizing the segmented notation presented in Section [A]
Specifically, we have

K—-1R-1

" . . 2
Term2 <4 ) Y~ / E [||V10gpk,5—(t+m) (Rkt47n) = V108 Pre s (t-rm) Koo | }
k=0 r=0 "0
K—-1R-1 n 2
sy y e |
k=0 r=0 "0
K-1R-1 .,
=5 vh oy M CIETME RS
0

k=0 r=0

Pk,S—(t+rn) (ﬁk,rn)
Pk,S—ry (kk,rn)

dt

HVlog

Hv log pk,Sfrn(Xk:rn)
Pk,S—(t+rn) (Xk,rn)

1)

where the last inequality follows from Assumption|[[A;]} Combining this result with Lemma[D.4]
when the stepsize, i.e., 1) of the reverse process is 1 = C,,(M + d) e, then it has Term 2 < e.

Upper bound Term 3. Due to the randomness of vj ., we consider a high probability bound,
which is formulated as

Pl () V108 Pks—r(Xiy) = Vi Xi)||” < 106 >1—¢ (10)

k€No k-1
T’GN(),R_l

which means we choose (€) = 10e. Lemma demonstrate that under the following settings, i.e.,
li,r(€) = €/960,
ng(€) = Cy - (d+ M)e? - max{d, —2log J},
myr(6,2) = Cpy - (d+ M)?e - max{log || z|%, 1},

where § satisfies

5 mpow (2, — 2 1og LAX MY o (_CaSE o (LA MY (Lt M
_pW 7Sg € pW4(d+M) g € pW € 9

Ld+ M 2 Ld+ M
~Cuztog P - 0,0} Srog HE 1)

Eq[I0|can be achieved with a gradient complexity:
exp [O (log” (Ld + M) /e) - max {loglog Z*,1})]

where Z is the maximal norm of particles appeared in Alg[2] All constants can be found in Table[2]
In this condition, we have

T Ld+ M ~
Term 3 < 4- ra (n-10¢) < 40elog; = O(e).
€

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL (po,s]|pf.s) = O(e).
The proof is completed. O

Corollary B.2. Suppose we set all parameters except for 6 to be the same as that in Theorem|[B.1}
and define

5 oo (2. 210, LM CySed' | o (Ldt MY (Lt M
I POW\a@+ar) ¢ pe e )’

Ld+ M 2 Ld+ M
—~Cuzlog =—— - 3) glog =+ 1) :
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we have ~
P [KL (po.s]Inis) = O(e)] = 1-¢"

In this condition, the gradient complexity will be

Ld+M\® Ld+M 1
@) (max{(log“) ,logd; -logél} ~max{loglog22,1}>]
€ €

where Z is the maximal norm of particles appeared in Alg[2}

exp

Proof. In this corollary, we follow the same proof roadmap as that shown in Theorem[B.1} Combining
Eq[8]and Eq[9] we have

KL (po,slps,s) <KL (pr-1,0llpx—1,0)

K—-1R-1

K . . 2
<2 / E [HV10gpk,s—(t+m)(xk,t+m) — V108 Pk, s—rn(Xkrn)|| ] dt
k=0 r=0 0 (11)
Term 2
K—1R-—1 n 5
+2 / B4 k) [HWOng,S—m(ﬁk,m) = Vi R | ]dt
k=0 r=0 "0

Term 3

It should be noted that the techniques for upper-bounding Term 1 and Term 2 are the same as that in
Theorem [B.11

Upper bound Term 3. Due to the randomness of v,‘c_,m, we consider a high probability bound,
which is formulated as

Pl () [[Viogprs—rn(Xim) — Vi ()| < 10e] >1 -6, (12)

k€Ng, k1
r€No rR—1

which means we choose {(¢) = 10e. Lemmademonstrate that under the following settings, i.e.,
li,r(€) = €/960,
ng(€) = Cp - (d+ M)e 2 - max{d, —2log d},
my(€, @) = Cpy - (d+ M)*e? - max{log || z|*, 1},

where § satisfies

5 —po 2_310 Ld+ M . Cy,Sed’ Nog~2 Ld+ M o Ld+ M
—pW 9 S g € pW 4(d+M) g € pW € 9

Ld+ M 2 Ld+ M
—Cly 2 log - C’u73> g log — + 1> ,

Eq[I2]can be achieved with a gradient complexity:

3
exp [O <max { (log Ld:_]\/[> ,log M 'log;/} - max {loglogZQ, 1}>]

where Z is the maximal norm of particles appeared in Alg[2] All constants can be found in Table 2}
In this condition, we have

T L -
Term 3 < 4- v (- 10¢) < 40elog ———— = O(e).
€

Combining the upper bound of Term 1, Term 2 and Term 3, we have

KL (fo.s[phs) = Oe)-
The proof is completed. O
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C LEMMAS FOR BOUNDING INITIALIZATION ERROR

Lemma C.1 (Lemma 11 in|[Vempala & Wibisono (2019)). Suppose p < exp(—f) and f: R? — R
is L-gradient Lipschitz continuous function. Then, we have

Exep [IV/G0I] < Ld

Lemma C.2. Under the notation in Section EI suppose p x exp(—f) satisfies Assumption
and|[A5]) then we have
KL (pll¢1) < Ld + M

Proof. From the analytic form of the standard Gaussian, we have V2 log ¢o; = I. Combining this
fact with Lemma|[F.4] we have
’v log p(x)

KL (o) <5 [ @) [v1og 22

< [s@) V@) de+ [ pla) ol dz < La+ ot

where the last inequality follows from Lemma [C.I] and Assumption Hence, the proof is
completed. O

Lemma C.3 (Variant of Theorem 4 in|Vempala & Wibisono|(2019)). Under the notation in Section E]
suppose pr 1,0 is chosen as the standard Gaussian distribution. Then, we have

KL (pr—1,5||psc) < (Ld+ M) - exp (—KS/2).

Proof. Suppose another random variable z; := X |45 +—|¢/5].5 Where X, ¢ is shown in SDEEI, we
have
dz; = —z,dt + \@dBt, Zo = X0,0,
()

where the underlying distribution of x¢ ¢ satisfies po,o = p« x exp(—f«). If we denote z; ~ p;””,
then Fokker-Planck equation of the previous SDE will be

(2)
o”(2) =V - (7 (2)%) + 20l (2) = V (p?)(z)wogw) .

exp (—3l|z[|)

It implies that the stationary distribution is standard Gaussian, i.e., p((m) x exp(—1/2 - ||z||?). Then,
we consider the KL convergence of (zt)t>0, and have

() )1.(2)
dKL ( p;”||pss (=
dt dt poo z) poo (Z)
(2) (2) @ (| "
= /V ' (pEZ)(Z)Vlog pEZ)(Z)> log pEZ)( )dz - /ng)(Z) Vo pl(fz)(Z)
P (2) ) (2) peo’ (2)

Combining the fact V2(— log p(z)) I and Lemma we have

(2)
z P z D z
KL (p7p2)) < /p£><z> Vlog 2L )
P’ (2)
Plugging this inequality into Eq[I3] we have
dKL (p(”[[p& © )| 1
z p z z z
(d):—/pi (2 |10 25 |z < L (7152
t s (2)

Integrating implies the desired bound,i.e.,
KL (p71p2)) <exp (—1/2) - KL (o 1p2)) < (Ld+ M) - exp (~1/2)

where the last inequality follows from Lemma|[C.2} It implies KL divergence between the underlying
distribution of xx 1,5 and po is

KL (pic1,5]1pe) = KL (pZ511p2) < (Ld + M) - exp (~K5/2)
Hence, the proof is completed. O
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D LEMMAS FOR BOUNDING DISCRETIZATION ERROR.

Lemma D.1 (Lemma C.11 in|Lee et al.{(2022)). Suppose that p(x) e~ 1 ®) is a probability density
function on R?, where f(x) is L-smooth, and let > (x) be the density function of N'(0, 021,). Then
for L < #, it has

p(z)
(p* @o2) ()
Lemma D.2 (Lemma 9 in [Chen et al.| (2023b)). Under the notation in Section [A] suppose that
Assumptionand hold. For any k € No x_1 and t € [0, 5], we have

1. Moment bound, i.e.,

HVIog

‘ < 6Lod"/? + 2Lo% |V f(x)| .

E [||x,mu2} <dv M.

2. Score function bound, i.e.,
E [V 1og pr.s(x0.0) 7] < L.

Lemma D.3 (Variant of Lemma 10 in|Chen et al.| (2023b))). Under the notation in Section @Suppose
thatAssumptionholds. Forany k € {0,1,..., K —1}and 0 < s <t < S, we have

E [0 = xesl*] <2(M +d)- (¢ = 5)* +4d- (t = 5)

t
/ Xk,rd’l“
S

+4d.(t—s)g2/:1E[xk,T||2} dr-(t—s)+4d-(t—s)

Proof. According to the forward process, we have

. 2
<9 l(/ [P dr)

QM +d)-(t—s)>+4d-(t—s),
where the third inequality follows from Holder’s inequality and the last one follows from Lemma[D.2}
Hence, the proof is completed. O

2 2

t
E |[|xz.: — xk7s||2] =E / —xprdr + V2 (B — By) +4||B; — B,

e

Lemma D.4 (Errors from the discretization). Under the notation in Section[A] if the step size of the

outer loops satisfies
n < Cl(d + M)_lev
then, forany k € {0,1,..., K — 1}, r€{0,1,...,R— 1} and t € [0,7)], we have

2
‘1<4e.

+E |:L2 ||5(k,t+7’77 - ﬁk,rn”ﬂ . (14)

Pk,S—rn ()A(k,rn)
Ph,S—(t+rn) (Xk,rn)

E [LQ ||)A(k,t+rn - )A(k,rn||2:| + E

HVIog

Proof. We consider the following formulation with any ¢ € [0, 7],
’2

Upper bound Term 2.1.  To establish the connection between py sy and pg s (¢4rr), due to the
transition kernel of the forward process (OU process), we have

Prs—r(@) = / Prs—omin(®) - Pl (k8 — )y, (S — (r + 1)) dy

Term 2 = E

Hv IOg Pk,S—rn (Xk:rn)
Pk, S—(t4rm) (Xk,rn)

Term 2.1

d Nz — e tyl?
= / Prs—(ratn) () - (27 (L= e7)) % -exp [M] W s
4 B o 2
:/Btdpk,S—(rn+t)(6tz) ~(2r(1- eizt))_i Y lg(ﬂﬁ—it)] dz

18
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where the last equation follows from setting z := e ~*y. We define

/ . td t
Pr.s—(rm+)(2) = € Dres—(ryr) (€°2)
which is also a density function. Therefore, for each element Xy, ,,, = «, we have

2

2 /
_ T x P _ T
HVlogp’“’S(’""*”()‘ <2 v1ogp’fs(’—’7+t>() 2|7 10g Prs=tmen(®)
pk,S—m(w) pk: S—(rn+t) (:B) pk,S—rn(w)
2
r T p/ _(r xr
-9 ngpfs—”“)() +2{|Vlog k.S (n+t)( )
P, s rn+t)($) Pr,s—(rn+t) ¥ P(1- e—2t)(T)

where the last inequality follows from Eq[I3] For the first term, we have

Pk,S—(rn+t) (z

Vliog — = ||V 10g pr,s—(rnrt) (@) — €' - V10g pr s (gt (€' @) |

)
Ple,s—(rn+t)(®)
HVlOng S—(rm) (®) — €V 108 i 5 (rmt) (@) (16)

||V log pr,s— (i) () — V108 P, s (rye) (€72 |
= (et —1) - [|[V1og pk,s—(rntt)(@)|| + € - (e" = 1)L ||z .

To upper bound the latter term, we expect to employ Lemma[D.I] However, it requires a specific
condition which denotes the smoothness of —V log pj. (rn+t) should be upper bounded with the

variance of p(j_-2¢ as
1

< - -
= — ey’

11
7 < min
{4L 2}

Since the smoothness of —V log py, s_(ry¢), i.€., Assumption , implies —V log p), S—(

H—V2 og pi. s (ra+1)

which can be achieved by setting

i) 18
e2t [-smooth. Besides, there are

11 1 1
t<n< <log 1+ = d ¥'L< —— .
= mm{4L 2} = Og( +2L> T Ty

Therefore, we have
HVIOgP;g,S—(mH) (z) — Vlog (P%,S—(mﬂ) * 90(1—6‘2")) (x)H
§662thd1/2 +2e3'L(1 —e™?) HVIogpk_,S,(mH)(etw)H
SGethmdl/z +2L-el(e? — 1) HV logphs_(m”)(w)” (17)
+2L- et(€2t —-1) ||V10gpk,sf(m+t)(€tl‘) — Vl1og i s—(rn+t) (l‘)”
SG@Qthdl/Q + 2L - ef(e* —1) HVIogp;€ S—(rn+t) (T ||
+2L7 - et (e® —1)(ef = 1) ||z|,
where the first inequality follows from Lemma[D:1] the last inequality follows from Assumption[[A1]}

Due to the range, i.e., n < 1/2, we have the following inequalities

3
e <M <144n<3, 1—e2<2t<2y and et§6"§1+§-77

In this condition, Eq |E| can be reformulated as
2

2
ol =207 IV iopes @)+ ¢ (e 1222

V log DhS=(rmtt) 0 ()
pk,S—(rn+t) (

<50 ||V 10g pi.s— ity (@)]|” + 141797 ||2?,

19
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and Eq[I7)implies
2
HVIng;c.,Sf(mH)(@ — Vlog (p;c,S—(ert) * ¢(1_e—2t)> (:B)H
<3- [6264%2(1 — e ?d+4AL%e* (e*' — 1)? ||V 1og pr,5— (ry+1) (m)||2 +4L%* (e* —1)2(e! — 1)? ||a:||2]
<3- [23 -3 L%nd + 20 - 3L20% ||V log pr,s— (s (@)]|* + 3% - 21 L4y lelQ]

2
<2%-3°Lnd +2° - 32 L%* | Vlog pr.s (o ()] + 3" - L2 | ?,

where the last inequality follows from L < 1/4. Hence, suppose L > 1 without loss of generality,
we have

2 2

p;c,Sf(rnth) ()A(k,rn)
Pk,S—rn ()A(k,rn)

Pk,S—(rn+t) ()A(k,rn)
Pﬁc,sf(mﬂ) (Xk,rn

Vlog +E |||V]og

Term2.1<2- | E ‘

< 208712 + 25 B2 LAPE |||V 10g sy Rk ||*] + 22 - 38U L20°E [ |40 ]
. 2 . .
< 2ML%nd + 2B LR [Hvbgpkvs*(mﬂ) (Xk7r7l+t)H } +28 LY |:HX’€>T77-H - Xk,m”ﬂ
+ 210 LA (|| 1]
Therefore, we have

~ ~ 2
Term 2 <21 L.2)d + 210 L2E [||xk,,.,,|\2} o3 22R [Hv 108 k.5 ) Rk ) | }

+ (2L + 1) L2E [[Rerst = Sl
<2ML%nd + 2L n* (M + d) + 23 LPnd + 2'°L? (2(M + d)n* + 4dn)

where the last inequality follows from Lemma [D.2]and Lemma[D.3] To diminish the discretization
error, we require the step size of backward sampling, i.e., 1 satisfies

n <2 WL2d e
n<27° L7 (d+ M)™%° 5
- n <2765, [~1.54-05.05

n S 276L70.5 (d + M)70.5 60'5
n <2 BL72d e

2M%nd < e

210 L2 (d+ M) < e

913, L3772d <e

210 L% (2(M + d)n® + 4dn) < €

Specifically, if we choose
n<27MLT2(d+ M) e=Cp(d+ M) e,
we have
pk:,Sfrn(kk:,rn)
Phe,S—(t+rn) (Xk,rn)

E [Lz ||)A(k,t+rn - )A(k,rn||2:| + E

2
[ <

and the proof is completed. O

HVIog

E LEMMAS FOR BOUNDING SCORE ESTIMATION ERROR

Lemma E.1 (Recursive Form of Score Functions). Under the notation in Section[A] for any k €
No, k-1 andt € [0, 5], the score function can be written as

— e (S=t)x!
€T e X
Valogpr,s—i(x) = Ex’qu,s—tHE) [_MM]

where the conditional density function qi, s—.(-|x) is defined as

LN

/ !
gk, s—t(x'|x) ox exp (V log pro(x") 5 (1 - 672(Sft))

20
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Proof. When the OU process, i.e., SDE is selected as the forward path, for any k£ € Ng x and
t € [0, 5], the transition kernel has a closed form, i.e.,

— || — e~tao |

pk,to(wlwo>:(2ﬂ(1—e‘”))d/z'exp[ 20— ) 1 ThErEs

In this condition, we have

Pr,5—t(T) Z/dpk,o(wo) 'pk,s—t|0(w|$0)dwo
R

s )} g [l
- /]Rd Pro(®o) - (27T (1 -7 t)>> P l 2 (1 — 6*2(54)) 4o

Plugging this formulation into the following equation

\Y% k.S—t\XL
Ve logprs—i(x) = p’it()v
pl@Sft(w)
we have
d/2 —Hm—ef(sft)zo 2

\v4 f]Rd pk,O(:CO) . (2ﬂ— (1 _ 6_2(S_t)))7 - exXp |:2(162(Sf)):| d$0

e\ —d/2 e (5=t |2
fRd pro(@o) - (27r (1 _e—2(8 t))) - exp {Q(leﬂsﬂo)'] dxg
—||e—e= S g, (8-t
Feeprota)-esp (L= (gt a,
= —||z—e~(S-tg i
Jra Pro(0) - exp (Q(l—e—w—f;))”> o

x —e 5tx,
“Exomar s o(|2) T 1= e26-0)

Ve logprs—i(x) =

(18)
where the density function g7 (-|x) is defined as
oo |
Pr,o(mo) - exp To(i—e 20
k.5t (o|2) = :
“Jo=cC0a0]
Jia Pro(@o) - exp (i e ) dao
= — 5|
X exp _.fk,O(mO) - 2 (1 — 672(5715)) ’
where py, o x exp(—fx,0). Hence, the proof is completed. O

Lemma E.2 (Strong log-concavity and L-smoothness of the auxiliary targets). Under the notation in
Section@for anyk € Ng g1, 7 € No p—1 and x € R, we define the auxiliary target distribution

as
e — eS|
2125 )

k5 —rn('|) ¢ exp (V log pr,o(z’)

We define
6—2(S—rn)

1 — e—2(S=rn)

e—2(S—rn)

3
and L’I‘ = im

. 1
por = 2
Then, we have
w I < —V?log qkys,m(w’|m) <L.I

when the segment length S satisfies S = % log (23;1 )

21
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Proof. We begin with the formulation of V2 log gi s, i.e.,

2 / 2 / e~2(5=rm)
-V log q1€7577\n(x |:B) =-V logpk7()(w ) + mI (19)
By supposing S = 1 5 log (2L+1) we have
6—2(5—7'7]) e—28

1 o 672(57,’,7’) Z 1 — 6725 = 2L 2 2 HVQ logpk;’oH .

Plugging this inequality into Eq[T9} we have

) , 672(871‘17) (S—rn)
= Vopro(@') + =5y 1 <HV log pro( ||+ez<sm)) T

I=1L.1I.

Besides, it
—2(S—rn) —2(S—rn)
2 / € 2 ’ e
— Vipro(z )+’Iijgigaijﬁj'l>i (HV710ngp(m ”|*1__e_2“;4m)> I
1 e—2(5—rn)
=5 T L=l

Hence, the proof is completed. O

E.1 SCORE ESTIMATION ERROR FROM EMPIRICAL MEAN

Lemma E.3. With a little abuse of notation, for each i € Ny, . in Alg|Z| we denote the underlying
distribution of output particles as x; ~ q; 5_,.,, and suppose it satisfies LSI with the constant ..

Then, for any x € RY, we have

Nk, r
P DX+ By e K] <26 210
n’” i=1 !
by requiring the sample number ny, . to satisfy
npn > max {d, —210g 5}
p€’
Proof. For any € R?, we set
Nk, r Nk, r
’ /. o /
b = ]quf Serm (-|x) [X] and o = E{X;}:Lfir ;C(T;k 227( |z) [ EXi E lez‘| H .
- 1= 1=

We begin with the following probability

sy 2 o' 2
]P n v X +E ! o > +€,
(<} ~a ) ) H Z i)y o (Cle) [X] (nm
(20)
Nk, r
{ }nk " r(ng ) (|m) [ ZX; — nk’,'r'b/ 2 O'/ +nk7r6/]
k S—rn i—1

To lower bound this probability, we expect to utilize Lemma [F.9| which requires the following two
conditions:

» The distribution of >_7"*}" x/ satisfies LSI, and its LSI constant can be obtained.

* The formulation || >/ x} — ng,b'|| > 0’ + ng €’ can be presented as ' > E[F] + bias
where F'is a 1-Lipschitz functlon

22
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For the first condition, by employing Lemma[F:3] we have that the LSI constant of

N, r
Z X; ~ q;c,S—rn(’|w) * Q;,S—rn('h}) Teox Q;C,S—rn("x)
i=1 o
is y)./ny. . For the second condition, we set the function F (z) = ||z — ny,.b'| : RY — R is

1-Lipschitz because
Pl = s F@ = F@ 2] lyll]
| ||Lip =su = su
|z -yl a2y (@ —y)ll
Besides, we have

Nk,r Nk,r Nk, r
F(in) = Zx;fn;wb’ and E F<Zx>] =0
i=1 i=1

where the second equation follows from the definition of o’. Therefore, with Lemma|[F.9} we have

Tk, r 112
Z My € "N,
{x . ;C(gk T)( |z) [ X; — nk,rb/ > 0'/ + ’I’Lk7,,,6/‘| < exp ( r 5 T) . (21)
rn °

=1

i=1

Then, we consider the range of ¢’ and have

Nk, r

1
! - r n (n I X, — b/
o ng, { } ke k(s}i:;(lm) Ny ; 4
(22)
”k r
ng r
<npp - 4| var \/ N pvar (x ’ [ ——
<nk L— ) /,L,,,
the first inequality follows from Holder’s inequality and the last follows from Lemma[F.11] Combining
Eq[2T]and Eq[22] it has
T, 2 d 2 ! 6/an
P, .. ’(n By » > ! < LA LA
{X/L}mklr k(Sk :3,( |z) k- Z X + s TW( |z) 1X [ } - ‘u;nnk’,« te = OXPp ( 2 >
By requiring
d Hl /2
- <¢? and — Hr& R o0 (23)
/’Lrnk,r
we have
Nk,r
P[ nkTZX +Equks m(lm)[ /} §2€/]
i=1
Mo,
:1_Pl nkrzx +Ex,quS rrl(lm)[ } 226/121_6'
i=1
Noted that Eq. @implies the sample number 7y, ,- should satisfy
2log st
N = W and N = W
Hence, the proof is completed. O

E.2  SCORE ESTIMATION ERROR FROM MEAN GAP
Lemma E.4. For any given (k,r,x) in Alg[I] suppose the distribution qy, s, (-|) satisfies
MTI = *VQ IOg Qk,Sfrn('h:) = LrIv
and x!; ~ q;(-|x) corresponds to Line 9 ofAlg If0 < 7. < i,/ (8L?), we have
KL (¢} 41 () |gr,s—rq (12)) < €™ KL (¢ (-|2) | ar,s—rn(-|2)) + 28L7d7?
when the score estimation satisfies |V log po — v'|| . < Lyv/2dT,.

23



Under review as a conference paper at ICLR 2024

Proof. Suppose the loop in Line 6 of Alg[I]aims to draw a sample from the target distribution
Qk,5—rn(-|2) satisfying
L)

qr,5—rn(@'x) o< exp(—gr,-(z)) = exp <_fk,0(m/) | 2(1 — e—2(5—)

The score function of the target, i.e., Vg ,(x'), satisfies

_e—(S—TU)a; + 6_2(S_T77)wl
1— 672(577"77)

Vorr(x') =V frola') +

At the j-th iteration corresponding to Line 9 in Alg[I] The previous score is approximated by
,e*(S*Tn)x + 6*2(3*”7)33/

POIN (o]
Vi'(z') =v'(z") + [ o2—m)

where v'(-) is used to approximate V log py o(-) by calling Algrecursively. Suppose x/; = zo, the
j-th iteration is equivalent to the following SDE

dz; = —Vg'(2z0)dt + V2dB,,

we denote the underlying distribution of z, as ¢;. Similarly, we set qo; as the joint distribution of
(2o, zt), and have

qot (20, 2t) = qo(20) - qrjo(2t|20).
According to the Fokker-Planck equation, we have

Aearjo(2e120) = V- (qej0 (2t 20) - V' (20)) + Agyo(2t]20)

In this condition, we have

g0zt |2
() = [ PHEE) gz

:/ [V ’ (QtIO(zt|ZO) : Vgl(zo)) + Af1t|0(zt|20)] “qo(20)dzo
v (qt<zt> / qo|t<zo|zt>v9'<zo>dzo) T Ag(z).

For abbreviation, we suppose

¢(") = Qi s—ry(-|x) and g. = g,

With these notations, the dynamic of the KL divergence between ¢; and g, is

OKL () = [ 00w 22z

= [+ [t ([ antaalzn 9 aa)aza + Dot )] g 24580,

4+ (2t)
=_ /qt(zt) <HVIOg‘ Zi((z)) ‘2 + </q0|t(zo|zt)Vg’(zo)dzo + Vlog g.(z:), Vlog a(2) >> dz;

Q*(Zt)

=— z OMQZ 20, 2 "(z9) — z a(21) 20, 2
—— [tz |10 ZE it [ a0, ) (Vi (20) ~ Vi), V1o EE Y (s, 0
<2 / a(z) ‘wog Zzt)) ‘ dz + / doc(20,22) V9 (20) — V. (20)[12 d(0, 20)
2
<=3 [t |[F10 LEN 2 [ a0, 20 19 20) — T 2ol a0, 20
2 / G0t (20, 20) |V (20) — Vi (20) |2 d(20, 20).

(24)
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Upper bound the first term in Eq[24]  The target distribution ¢, satisfies z,--strong convexity, i.e.,
prd < =V?log qi 5 (x'|T) = —V? log(g.(x)),
It means g, satisfies LSI with the constant u,. due to Lemmallﬂ Hence, we have

*%/Qt(zt)

Upper bound the second term in Eq @ We assume that there is a uniform upper bound ¢,
satisfying

IVg'(z) = Vgu(2) < ¢y = /th(Zo,Zt) IVg (20) = Vagu(20)|” d(20, ) < €. (26)

qi(zt)
qx (zt)

V log

2 31
‘ < KL (gq.). 25)

Upper bound the third term in Eq Due to the monotonicity of e~ */(1 — ™), we have
e—2(S—rn) e—2n

< <p!
1—e206-m) = 1—¢2n ="

2L <

where we suppose 7 < 1/2 without loss of the generality to establish the last inequality. Hence, the
target distribution g, satisfies

—2(S rn)
—V?logg. = —V° log qk,5—ry(-|T) = —V?log pro + 1= o2
2(S—rn) .
=||V? log pr.o|| I + m[ =L I =< (L+n "I,

where the last inequality follows from Assumption|[[A;]] This result implies the smoothness of g.,
and we have

/ dor(20, 20) [ Vgu(20) — Vigu(z0) 1% d(zo0, 1)

<22 [ (a0, 20 20 = 20l Ao, 2) = 22 B, |19 )+ Ve |

=12+ (2td + B, [IVg'(20) — V. (20) + V. (20)|*) @7
<212 (1d + 2 + 1Py, | Vg (20))

2 2 2,2 3 2 8L4t2
<2L2dt + 2L2ext? + AL2dt* + ——KL (qollq) ,

T

where the last inequality follows from Lemma [F.12]

Hence, Combining Eq Eq Eq Eqwith t <7, <1/(2L,) and 63 < 2L2dr,, we have
142

3ty 16L )
OiKL (g:llg.) < — “SEKL (qillg.) + 2€2 + KL (qollq.) + AL%dt + 4L2€2¢% + 8L3d1?

6L4 2 .
KL (¢||q.) + 4L2dr,. + — Tr gy, (qollqs) + 4L2dr, + 8LAdr2 + 8L3dr?
7

T

gf?’“’"

16 L2t2

3
< — “5"KL (gellg.) + =KL (qollq.) + 14Ldr;.

r

Multiplying both sides by exp(

) then the previous inequality can be written as

d Sprt JM 16L£ 7,.2
(KL (gl < ( KL gl + 1422 dﬂ«)-

Integrating from ¢ = 0 to ¢ = 7,-, we have

2 Buprr 16 L4172
< 2 . _ rTr
KL (gt/lg+) — KL(qollq*)_?wr (6 2 1) ( o KL (qollq+) + 14L; dn)

SMTTT

16L472
<27, - ( rTr KL (gol|q«) + 14L dTT>

(s
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where the last inequality establishes due to the fact e < 1 4 2c when 0 < ¢ < % e <10 It
means we have

320473
il ) KL (qoflg.) + e~ 25 - 28L2dr2.

KL (q:lg.) < e~ 57 . (1 *

T

4.3
14 32L;T; <14 Lo T < R 673#!72‘1'7‘ <1.

Hence, there is
KL (g¢lg.) < e™* ™KL (gollgs) + 28L7dr?, (28)

and the proof is completed. O
Lemma E.5. In Alg suppose the input is (k,r,x,€) and k > 0, if we choose the initial distribution

of the inner loop to be
! (! ||m_e—(S—N7)x/||2
QO(w ) X exp | — 2(1 — E_Q(S_rn)) )

then suppose qi, s—r(-|x) satisfies LSI with the constant . and L, smoothness. Their KL divergence
can be upper-bounded as

L2M de® Me=*
log KL (¢)(") gk, 5y (12)) < log|]|* +log [ 1o s} i

Proof. According to Lemrna the density g s—ry(:|) can be presented as

lece ey

21— e25-m)

qk,Sfrn(w,kc) X exXp <_fk,0(wl)

where fi o(x’") = Vlog pi.o(2’). Since it satisfies LSI with the constant, .i.e, 4, due to Deﬁnition
we have

KL (g5 ()| ar, 5 - (-|)) < z;r

- / &) |V fro(@) | da’
(29)
<t ( / d(@) |V fio(@’) — V fio(0)] da’ + / d(=') ||ka,o<o>||2dw’) .

For the first term, we have
2
/ 6@ [V fro(') — ¥ oo (0] da’
<2 [a@) @) da’ = 12 By [IxIP] = 22+ [Var(x) + [Bx]

where the first inequality follows from The high-dimensional Gaussian distribution, i.e., ¢,
satisfies

|Eq x| = €~ & and Var(x') <d- (62<S*m> - 1) ,

where the last inequality follows from Lemma [F.TT] hence we have

/%(w’) IV fio(@') = V fro(0)|* da’ < L7 - S~ (d + [l2]|?). (30)

Then we consider to bound the second term of Eq @ According to the definition of V f, o, with the
transition kernel of the OU process, we have

Vpro(z')
_ / — 1 /! — )
Vfro(®') = Viogpro(z') pro(@)

—Ne—e "5z 2 _,—kS
Jga P<(x0) 'eXp< ||2(1,e—2k5‘(;|| ) : (- (f_:z(Tm%)) dao

“oxn [~z Sl 4
fRd p«(o) - exp 2(1_e—29) Zo
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Therefore, we have

__—2kS 2 kS 2
fRd P*(iBO) -exp( 25(1_6_\&%@ ) : (16_6—205‘95)(1130

—e—2kS || ]|2
fRd P«(@o) - exp (%) dzg
—e—2KS || o 112
S pe(@o) - exp (WM) dx

(fRd P« (T0) - exp (%M) dx0>2

e —e 5 || )
Sl—e—%s -M - </de*(w0).exp<2(1_e_2ks) dxg
(31)

where the first inequality follows from Holders’ inequality, the second inequality follows from[A5]
With, the following range:

IV f1.0(0)|* =

kS )
Sm : /p*(:co) laol|” daso -

e—ZkS —kS -S

e e
1 — e—2kS < 1 — e—2kS < 1 —e28

we plug Eq[30]and Eq[31]into Eq[29]and obtain

log KL (g6 ()llak,5—rn (12)) <log [+ (L7 (d+ |l2]”)

e—kS _e—2kS H1130||2 -1
+1 — e—2kS M </ﬂ;{d p«(T0) - exp (42 (1 — e—2kS) ) dwo)

Without loss of generality, we suppose both RHS of Eq[30|and Eq[3T]are larger than 1. Then, we have
log KL. (q0(-) | x5 -rn ()

<1 (L7 5(s—rn) e "8 2 1 —e %5 |0 ||?
<log | g M- 55 - (d+||2]7)| —log de*(mo)~exp 2(1 = e2kS) dao
[L2M e’ 2 e~ 2kS 2
<log e T omzs d+l=l) +m‘/ﬂwp*(wo) llzol|” dao
[L2M e® 9 Me™% 2 LM de® Me™*
Slog_ 2 -m-(dJerH )}+W§10g”$” +log{ 2 .1—6_QS:|+1—6_25.
Hence, the proof is completed. O

Corollary E.6. For any given (k,r) in Algana’ x € RY, suppose the distribution qi s (-|)
satisfies

MTI j 7v2 10g qk,S—rn('|m) j LrIv

and Xy ~ ¢(-|@). If0 < 7 < p,/(8L3), we have
, 32L2dr,
KL (¢}llg.) < exp (—pe75) - KL (gflla.) + e

when the score estimation satisfies ||V log pro — v'|| . < Lyv/2dr,.

Proof. Due to the range 0 < 7. < p,./ 8L%, we have p,. 7, < 1/8. In this condition, we have

1 —exp (7,“7"7—7’) > g © Ty
Plugging this into the following inequality obtained by the recursion of Eq.[28] we have
28L2dr?
(1 —exp (—pr7r))
32L2dr,
tr

KL (¢jllg.) <exp (—pr7j) - KL (g5llg+) +

<exp (_MrTr.j) - KL (q6||Q*) +
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In this condition, if we require the KL divergence to satisfy KL (qg ||Q*) < ¢, a sufficient condition is
that

€ . €
oxp (—p;7j) - KL (gpllg-) < 5 and <y
which is equivalent to
fir€ . 2KL (gp/g+)
r < d j> -1 .
= 64L2d and J= T o8 €

According to the upper bound of KL (g |¢.) shown in Lemma|[E.5] we require

) 1 1 ||| ) 2L2M de® Me%
jzrm' og —— +log 2 T_c0s T {25 |

E.3 CORE LEMMAS

Lemma E.7. In Algfor anyk € Ng 1,7 € Nop—1 and x € R?, we have

P [Hv,fm(a:) — Vlog;z);¢75~_7«,7(a:)|}2 < 10€:| >1-94

by requiring the segment length S, the sample number ny, . and the step size of inner loops T, and
the iteration number of inner loops my, , satisfy

1. 2L+1 4
= —1 r >
S=3loe 5 M 2 T

-max {d, —2logd},

Ly

B 64L2d d||z|?
"= 64L2d

_ e2(5—mm) . S| bl | B
(1—e” Je and my, > (1 =25 [log 12—y

+ Cm,l )

where C, 1 = log (QM 32 5L) + M - 3L. In this condition that choosing the T, to its upper bound,
we required the score estimation in the inner loop satisfies

67(571"77) €05

[V logpro(x') — Vi, ()] < 3

Proof. With a little abuse of notation, for each loop it € Ny p, . in Line 4 of Alg|l] l we denote the
underlying distribution of output particles as x; ~ qk g 7,17( |z) forany k € No 1,7 € No p—1

and & € R? in this lemma. According to Line 10 in Algl we have
2
Hvl:rn(x) - VlnghS—m(x)H

1 &/ x-— e~ (S—rmx! x — e (S—Tm)x! ?
Z (_162(5”1)) ~ Exrngi sy () {_162(5”1)}

Tk 53
2
672(577“77) Ny, k
T (- e25-m)? || nea ZX ~Exngy syl [X] )
2
26—2(5—7"77) 1 Nor k
< : E,.. /
T (1= e2s=rm)? nTkZX B o, Clo) [X]

2e—2(S—rn)

- (1= e2s=rm)?

2
' H—Ex/~q;,s,m<-|m> XT 4 Exrgi s 1) [X’]H

In the following, we respectively upper bound the concentration error and the mean gap between
.. 5—ry (|2) and gy s—ry (+|) corresponding to the former and the latter term in Eq
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Upper bound the concentration error. The choice of 5, i.e., S = log (
demonstrate that suppose

Lemma .

e—2(5—rn) 3 e—2(S—rn)
Hr = )

1
3 1o L= T e
Then, we have
prd = =V?log gy sy (x'|x) < L, 1.
According to Algl we utilize ULA as the inner loop (Line 4 — Line 9) to sample from gy g (:|).

By requiring the step size, i.e., 7, to sat1sfy 7 < 1/L,., with Lemma we know that the underlying
distribution of output pamcles of the inner loops satisfies, i.e., g S—rn( |x) satisfies LSI with a
constant ). satisfying

o —2(S—rn)

ms . -

TS — )’
In this condition, we employ Lemma [E.3] by requiring
4

Nk,r 26(1 — 672(57”7))

1 —(8—rn) 2
2;} . <(1 — 6—2(3—”7))6045) -max {d,—2logd}.

-max {d, —2log d}

and obtain
2

< 2e

P

:Pl

Upper bound the mean gap. According to Lemma [E.2)and Lemma [F.4] we know i, 5y (€| 2)
satisfies LSI with constant

92e—2(5—rn) Tk
nr k

(1= e25=rm)? ZX + Bngp o, Cle) [X]

‘ Nk

(1 _ e—2(S—rn)>€0 5
e*(S*WI)

ZX —I-Ex/qus rn(lw)[ ] <

]21_5.

Ny k

—2(S-rn)
B —
= o = e25=my
By introducing the optimal coupling between gy s—r,(-|z) and g}, g_,., (|Z), we have
2

Bt oyt BT+ B o) X
(33)

2
SWQQ (q;c,S—rn("m)a Qk’,S—Tn('|m)) < ;KL (q;c,S—rn("m)||qk,S—r7]('|m)) )

where the last inequality follows from Talagrand inequality [Vempala & Wibisono| (2019). Hence, the
mean gap can be upper-bounded as

2¢—2(S—=rn)

(1 — e—2(5-rm)?

2
' H—Ex’Nq;,s_T,?(~\w) X+ g s () [X'}H

2672(54 ]) 2 ( / ( | )H ( ‘ ))
< . — B I q / P
(I — € 2(S 77)) [y k7S n Qk,S—m]

8
SmKL (k.5 rn 1) |k, 51 (-|22)) .

To provide e-level upper bound, we expect the required accuracy of KL convergence of inner loops to
satisfy

KL (g5 (|2)[[g1,5-rn (-[2)) < (1= €72 D)e.
According to Corollary to achieve such accuracy, we require the step size and the iteration
number of inner loops to satisfy

T < 64ILZEd (1 — e 257))e  and
1 64L2d | Pk g (M de Me=$
Mpy > — - - |log ————— + 1o .
k, pr (1 —e2(5-m)e & (1 —e28=m)e % 1—e 25 1—e25
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To simplify notation, we suppose L > 1 without loss of generality, and we the following equations:

o
(1—e25)"" = (2L 4 1),

Lo o s_ oo (1, 20+1) _ [2L+1
=% TP\ T ) TV o

which implies

dl|||* 2
||| 2 2011 2
>log———c——— +1 2M - —L - -(2L+1 M-(2L+1)-
=108 a1 08 12 op R+ M-CLEY o
1 d|| || 2L2M e Me=3
T e 2s)e + pz 1-_e28 T {25

Therefore, we only require my, , satisfies

1 64L2d d||z|?
me,r Z (1

. . C.,
fr (1 —e=25=m)e —e25=rm)e " 71:|

where C,, 1 = log (2M - 3% -5L) + M - 3L. For simplicity, we choose 7, as its upper bound and
lower bound, respectively. In this condition, we still require

—(S—=rn) 0.5 1 1 — e—2(S—rn)
[V 1ogpro—v'|| < £ ¢ < \/,ur( € ) ce < Lo+/2dT1,

8 ~ 4 2
where the first inequality follows from the range of p,., and the last inequality is satisfied when we
choose 7. to its upper bound. Hence, the proof is completed. O

Lemma E.8 (Errors from fine-grained score estimation). Under the notation in Section A} suppose
the step size satisfy n = Cy,(d + M)~ '€, we have

P [HVIogpkys,m(:c) - V;:m(w)Hz < 10¢, Ve € Rd}

)

) ng,r(10€)-my, - (10€,2)

Z(l - 6) . <w’€élkl,i}%w,e)lp [HVIngk*O(xl) B V?—LO("B/)H2 < 9766:|

where Sy, (¢, 10€) denotes the set of particles appear in Alg[I|when the input is (k,r,x, 10¢). For
any (k,r) € No k1 X No r_1 by requiring
(d+ M) - max{d, —2log d}
(10€)?
(d+ M)3 - max{log ||=||?,1}
(10¢)3

ng,r(10€) = C), -

where C,, =2°.52. C’n_l,

myr(10e, ) = Cp, - where C,, =2°-3%.5%. Cm,lCn*m.

Proof. According to Line 9 of Alg|l} for any & € R?, the score estimation V?m is constructed by
estimating the mean in RHS of the Tollowing expectation using 7y, samples (i.e., calculating the
empirical mean):

— e (S=rn)y/

x—e x

V108 Pk, 5 (@) =Eongi s (1) l_ (1- 62(57‘77))1 o
/ / Ha: — e—(S—rn)m/||2

where g 5—ryp(2'|2) xxexp | log pro(x’) — 2= m) |- (35)

Then in order to guarantee an accurate estimation for V4 log pr, s—ry (), i.e., denoted by V,‘:m(a:),
with Lemma|E.7| we require
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1. Get a precise estimation for V log pi o(2), in order to guarantee that the estimation for
V 1og q,s—rn (' |2) is accurate. In particular, we require
ef(Sfrn) 05

||V10gpk,0(33;,j) *Vlj—l,o(mg,j)n < 3

2. Based on the Vlog g sy (2'|x), we run ULA with appropriate step size 7, and iteration
number my, ,. satisfying

2

Hor . _ —2(S—rn) i X 64er . 2Co

s 64L2d “ e and mir 2 pr o (1 —e=2(5=mm)e log (1 —e—2(5-rm)e

(36)

to generate samples =’ whose underlying distribution gj, 5_,., (/) is sufficiently close to

qk,S—rn(w/‘x)a i-e~,
KL (6,5 () g5y (|2)) < (1= 2E e,
3. Generate a sufficient number of samples satisfying

4
Mhr 2 T oma(5 )

-max {d,—2logd}. (37)
such that the empirical estimation of the expectation in (34) is accurate, i.e.,
P (1108 pr5-rg (@) = Tnrg(@) |* < 10¢]

1 Nk, r [ T — e(s’l’ﬂ)m;)mkm‘|

=P

D

=1

‘v Ingk,S—rn(w) - N

Due to the fact rn > 0, the first condition can be achieved by requiring

9 (05 5L (05 oS5 ,—(S—rn) 05
V1 Y vE r <\/>.<1/.: < ,
H ngk,o(wz,]) kal,O(wz,])H = 3 g = oL +1 R S = 3

where the second inequality is established by supposing L > 1 without loss of generality, and the last
equation follows from the choice of S.

To investigate the setting of hyper-parameters, i.e., the number of samples for empirical mean
estimation 7y, and the number of iterations for ULA my, ,.. We first reformulate them as two
functions, i.e.,

(d+ M) - max{d, —2logd}
(10¢)2
(d+ M)? - max{log ||z||?, 1}
(10€)3
since this presentation helps to explain the connection between them and the input of Alg[I] Different

from the results shown in Lemma|E.7| ny, ,(-) and my, (-, -) is independent with & and r. However,
these choices will still make Eq[36[and Eq[37|establish, because

1k (10€) = Cy, - where C,, =2°.5%. C’n_l,

my.r(10e, ) = Oy, - where Cp, =2°-3%-5%. Cp, 1 C; 10

16 (d+ M) 16
(106) =— . 20 d,—2logd} > — - d,—2logd
1, (10€) ; Cre max { ogd} > ” max { 0gd}
o 16 4 —2loe 8t > 10 d,~2log§
7m.max{ ,—2log }7m-max{ ,—2logd}

d+M)3 Cp L2 /d\"’°
mu»(10€, ) =576 - % 01.’51 -max{log |z|%,1} > 64 - == - () : Cm,1 - max{log [|z||%, 1}
n Hy €n
L2 d_ d L2 d d||z|?
>64 - — - —log — - Cp, 1 - max{log l|l||?, 1} > 64 - —5 - — | log dll=" +Cma
pZoen e pi en en
L Ukl
>64. L . 1 Chn
R e <°g el —e2m) T Om
64L2d d||z|?
> ot ety (98 Gy + O
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with the proper choice of step size, i.e., n = C,(d + M)~ 'e. With these settings, Lemma
demonstrates that

P [HVlogpk,sfm(m) — Vi (@)]|? < 10¢,Va € Rd‘

ﬂ |V log pro(x’) — V;;l,o(w/)Hz < 966} >1-0.

x’ €Sy, - (x,10¢)

where S, (¢, 10€) denotes the set of particles appear in Algwhen the input is (k, 7, &, 10¢) except
for the recursion. It satisfies |S,,.(x, 10¢)| = ny - (10¢) - my, - (10¢, ). Furthermore, we have

P [HVIOng,sfm(m) - V;V_»Tﬁ(w)HQ < 106]

>P ||V10gpk7s,m(a:) — v;?,m(w)H2 < 106’ m HVIogpk,()(:z:') — vf_l,o(w')HQ < %
@’/ €Sy, (x,10¢)
P [ ﬂ HVIOng,o(m/) - V;;Lo(ml)HQ < 966]
x’ €Sy, - (x,10€)
>(1-06)-P [ N [Viegpro(a) —vitio@)| < %] :
@’/ €Sy (x,10¢)
(38)
Considering that for each :c; s the score estimation, i.e., v,‘:_LO (m; j) is independent, hence, we have
2 €
Pl () [[Viegpro(@) = vicio@)| < o5
/€Sy, (2,10€)
2 €
= I [IViosmole) — vitiol@)] < o] (39)

x’ €Sy, (2,10¢)

[Sk,r(x,€)]
> ‘ IP’[ V1 NvE (] i}
= <w,€é§13m’e) H og pro(x') — Vi o(T )H 9%

IN

Therefore, combining Eq[38]and Eq[39] we have
2
P [ |Vlogpk7g_m(m) - v,:,,.n(a:)H < 10€:|

9 € ng,r(10€)-my, . (10e,x)
>(1-9) - . P [ VAl N , < £ |
>( ) (w’eéf,lf%m,e) [V 1og pro(x') — vi_y ()| < =
and the proof is completed. -

Corollary E.9 (Errors from coarse-grained score estimation). Under the notation in Section @
suppose the step size satisfy n = C1(d + M)~ e, we have

P [[[V 108 p11,0(®) — Vi(@)||” < 10¢, ¥ € RY]

)

)nkyo(los)-mkﬁo(10s,:1:) (40)

. 2 €
20-0)-(_ g, , P [V 108mofe) ~ v 10t < ]

where Sy, o(x, 10€) denotes the set of particles appear in Algwhen the input is (k,0, x, 10¢). For
any k € Ny g _1 by requiring
(d+ M) - max{d, —2log d}
(10¢)?
(d+ M)3 - max{log ||z||?,1}
(10¢)3

ng.0(10€) = C), -

where C, =2°.5%-C,",

my0(10e, ) = Cp, - where  Cp, =2°.3%.5%-C,, 1 C;7 1.

Besides, for any x € R?, we have
P [ |V log po,o(z’) — VL_LO(:B')H2 < 9—667Vw’ € Rd} =1
by requiring V_1 o(x') = —V f.(2), which corresponds to Line 2 in Alg
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Proof. When k > 0, plugging r = 0 into Lemma [E-8] we can obtain the result except inequality
Eq[0] Instead, we have

P {||Vlogpk75(m) - v,ﬁo(m)H2 < 10¢,Vx € Rd}
) € n,0(10€)my 0 (10e,z)  (41)
>(1-4)- (m/eéﬁr{m,e)P [HVIOng,O(fE/) — Vi@ < %D :
Since the forward process, i.e., SDEEI, satisfies X, g = Xg+1,0, We have

—d/2 — ||z — e~ DSy 2
Pis(®) = e o) = /p*(y)~ (% (1 B 6_2(k+1)8>) P [ 2”(1 - 6—2(k+1)S)H ] dy,

which means V log pi..s = V log py41,0. Therefore, Eq@lis established.

When k = 0, due to the definition of v_; o in Eq |Z], we know qu@is established. Hence, the proof
is completed. O

Lemma E.10 (Errors from score estimation). Under the notation in Section[A] suppose the step size
satisfy n = Cy(d + M)~ e, we have

P m HVlogphS,m(me) — Vl:rn(wzm)w <10e| >1—¢

k€No k-1
r€No, rR—1

with Alg[I| by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

Ld+ M\®
O<<10g+) -max{loglog22,1}>
€

where Z is the maximal norm of particles that appear in Alg[2}

exp

)

Proof. We begin with lower bounding the following probability with (7, j) € Ng x—1 %X No r—1 and
(i,7) # (0,0),

P [HVIogpk,g,m(mgm) — v,‘c_!m(a:gm)H2 < 106:| :

In the following part of this Lemma, we set = C,,(d + M)~ 'e and denote § as a tiny positive
constant waiting for determining. With Lemma|E.8] we have

P [HVIogpk’S,m(mk‘_,m) - v,:m(m;;m)HQ < 1()5]

10¢ nk,r(l()E)'mk,r(loe’m}:Tn)
. / — N2
2(1 - 5) . <mlesk,7‘r<na}§7‘n’loe)lp |:HVIngk’0(m ) - Vk_l’O(w )H S 960:|>

(42)
Then, if k& > 1, for each item of the latter term, supposing 10¢’ = €/96, Lemma shows

B [||V1ogpro(@) = viti0(@)] < 52| =P [[[Viogpro(@) = vit 10 < 10¢]

’ nk,yo(l()e/)-mkﬂ.(IOe',m/)
>(1-4)- i P ||| Viogproro(@”) = viiao(@")|]* < =
>( ) <m,,esk7rf1‘tr(lm,yme,) [H ogpr—1.0(x") = vi_ao(x")||” < o
=(1-6)- min P [HVIOngfl 0(313//) —vi, O(m”)HZ < ;] ny,0(€e/96)-my o(e/96,2")
x' €S _1,0(x’,€/96) ’ ’ ~ 96 - 960

Only particles that appear in the iteration will appear in powers of Eq[@2} To simplify the notation,
we set Z as the upper bound of the norm of particles appear in Alg[2]
(d+ M)3 - max{2log Z,1}

mp,r(10€, &) < my, . (10€) = Cyy, - (10¢)3

and  uk,;(€) = ng,r(€) - M, (€).
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Plugging this inequality into Eq[@2} we have

P [V 108 pr.s—ro (@) = ViEen (@I < 10¢]

- (106) 9 10€ uk,w‘(loe)'“k,o(ﬁ)
wg. ~(10€ " — "
2(1 — 5) k, . (P [HVlngk—l,O(w ) - Vk—Q,O(w )H S (960)2:|) '
Using Lemma[E.9|recursively, we will have

P [HVIogpk,s_m(mzm) — vﬁrn(mzm)HQ < 106]

>(1— 5)1+ukvr(10€)+ukvr(106)-%,0(%)+..A+uk_’r(we)-1‘[§:k uiyg(wl%i’“)

- 2 10e
(]P {HVlogpo,o(m/) — v_170(m')|| < W,Vm/ eR?

10 2 10
—(1— 5)1+uk,,,,(106)+uk,r(105)-uk,0(968)+4..+uk=,«(105)-ni=k ui)g(%ok;iﬂ)

ug,(10€) TTi_y ui 0 (ﬁ)
:|> 43)

2
10e 10e
>1-46- (1 + wk,r (10€) + ug,r(10€) - ur,0 (%> + ...+ uk,r(10¢) guzo (960ki+1>>

where the third inequality follows from the case k¥ = 0 in Lemma[E.9]and the last inequality follows
from union bound.

Then, we start to upper bound the coefficient of 6. According to Lemma|E.8|and Lemma[E.9] it can be
noted that the function uy () is independent with k and r. It is actually because we provide a union
bound for the sample number 7y, ,- and the iteration number my, ,, when (k,7) € Ng g1 X Ng p_1.
Therefore, the explicit form of the uniformed u is defined as

u(10€) = C,C,y, - (d +m3)* - max{d,log(1/6?)} - max{2log Z, 1} -(10¢) >

independent with e

Then, we have
10 10 ,
u (968> = u(10¢) - 960° and (96&.) = u(10¢) - 960°.

Combining this result with Eq[#3] we obtain

2
10e 10¢
1+ ug,r(10€) + ug - (10€) - ug o (960) + ...+ Uk, (10€) - ]_:][C“LO (960k—z+1)

2 2
10e k—it1
< (k+1) - u(10€) - llu (%OWM> = (k+1)-u(10€) - 11 (u(10¢) - 960 )
= (k+41) - 960%°* =1 . (10e)* < K - 960> K =DE=2) _4(10¢) K1,
Considering that K = 2/S - log[(Ld + M) /€], to bound RHS of the previous inequality, we have
log (9602'5(K*1)(K*2) : u(loe)Kfl) =2.5(K — 1)(K — 2)1og(960) + (K — 1) log(u(10¢))

2

Ld+M\> 2. Ld+M
Slogi +

1
g log ——— - <log CnChy + 4log(d 4+ M) + logd + log (2 log 6)
€

+log (2 max {log Z, ;}) +10g(107°) + 5log 1) )
To make the result more clear, we set
Cy,1 = log(C,Cy,) + log 2 + log (2 max {log Z, ;}) —5log10
which is independent with d, € and 4. Then, it has
log (96025502 y(106) 1)

70 Ld+M\?* 2  Ld+M 1 1
(10g+> +§log;~ |:Cu,1+510g(d+M)—|—loglog5+510g .
€ €

< 2.5-10g(960) - (

S5
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which means
9602.5(K71)(K72) . U(].OG)K71

70 Ld+M\*> 2. Ld+M 1 1
<exp[ <logj) +§log%- <Cu,1+510g(d+M)+loglog6+510g€>]

S2
Ld+ M 70 10 Ld+M 2 1 2Cuq
< _— — + — | log——— + — loglog — :
—pow( p ’((s2+ S) o8 hglslesst —g ))
(44)
where the last inequality suppose L > 1 as the previous settings. To simplify notation, we set
. 70 10 . 2Cu,1
Cu72 = ? + § and Cu,3 = T
Plugging this result into Eq[3] we have
2
P [HVIngka—"'"(mZTW) - Vl:rn(mzﬂl)n < 106]
Ld+ M Ld+M 2 1 @5)
>1—-6-K-pow <+,C’u‘glogJr + gloglogg +C’u_3> .
; c ;

With these conditions, we can lower bound score estimation errors along Alg[2] That is

2
P ﬂ HV1ogpk~,S—”7(mkfrn) - Vl:rn(wktrn)H S 106
k€No k-1
r€Ng, r—1

= T P[IV08prs m(@is) — vin (i) < 10

kENo,K_1
r€No, r—1

where the first inequality establishes because the random variables, vzm, are independent for each
(k,r) pair. By introducing Eq[45] we have

H P [HVIOngaS—W?(m:’m) - VI:rn(wEm)HQ < 106]

keNg k1

r€Ng, R—1
Ld+ M Ld+M 2 1 KR
> — . . w - s u
> (1 6-K pow( . ,Cy,2log . + Sloglog6 + C, 3)) 46)
2175-K2R.pow(LdJrM,Cu,glongJrM+%loglog‘%+0u73)
€
2

:175-4(d+M) lo LatM - pow Ld+M,Cuglong+M+gloglogl+0w3

SChe € ’ € S 0 ’

where the first inequality follows from Eq [5] and the second inequality follows from the union
bound, and the last inequality follows from the combination of the choice of the step size, i.e.,
n = Cy(d + M)~ 'e and the definition of K and R, i.e.,

T 2 Co S Sd+ M)
K=—=—-log—, R=—=———".
S S o8 € n Chpe
It means when ¢ is small enough, we can control the recursive error with a high probability, i.e.,
2
[T PIViognksrm(@in,) — Vi, @i,)|* <10 21— (47)

k€N k-1
r€No,r—1

Compared with Eq[46] Eq[7]can be achieved by requiring

4(d + M) Ld+ M\? Ld+ M Ld+ M
log - pow ; Cu,2 log
SChre € €

+Cu73) Spow (Ld—:M 2 1) e

Z loglog =
7508035

defined as C'
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which can be obtained by requiring

Ld+M 2

C’Bd(flogé)%log < <e & (—logd)s log £ C’E 3
B
o 2PN gl g w
ST e 808 = %8 o
We suppose § = €/Cp - a~2/S108((Ld+M)/€) an( the last inequality of Eqbecomes
2 Ld+ M 2 Ld+ M 2 Ld+ M
LHS = Elog; - log {logC;B + glog; ~10ga] < glog; -loga = RHS,

which is hold if we require

2 Ld+ M\?**
aZmax{ CB’<d+) ,1}.
€ €

Because in this condition, we have

C 2 Ld+ M 2 3
log—BJr—log; ~log;a§logg+(1oga)2 < 22,29 _ 4 when a >1,
€ S € 2 5 5
where the first inequality follows from the monotonicity of function log(-). Therefore, we have

2 Ld+ M
log log%—i—glog%-loga <loga

and Eq {48 establishes. Without loss of generality, we suppose 3C'p /e dominates the lower bound of
a. Hence, the choice of § can be determined.

After determining the choice of §, the only problem left is the gradient complexity of Alg[2l The
number of gradients calculated in Alg [Z]is equal to the number of calls for v_; . According to Eq @
we can easily note that the number of calls of v_; g is

: 10¢ - 10¢
Uk77-(106) . H U@O W = U(IOE) H u W
i=k i=k

for each (k, r) pair. We can upper bound RHS of the previous equation as

2

u(10¢) llu <9601k0_€i+1> = u(10¢) - [ ] (u(10¢) - 960%~+1)

i=k
:9602.5k(k§—1) . u(loe)k S 9602.5(K—1)(K—2) . u(lOE)K_l.

Combining this result with the total number of (k, ) pair, i.e., 7'/, the total gradient complexity can
be relaxed as

T X
E X 9602.5k(k—1) X u(loE)k S K2R X 9602.5(K—1)(K—2) X U(lOE)K_l
4(d+ M Ld+ M\? Ld+ M Ld+M 2 1
< (d+ M) lo + - -pow ;, Cy,2log ~at M + < loglog -+ Cy 3
SChe S 1)
= Cp - (—log§) & los 25 < g = Cp - qflos B

(49)
where the first inequality follows from the fact 7'/ = K R, the second inequality follows from the
combination of the choice of the step size, i.e.,n = Cy(d + M )_16 and the definition of K and R,
ie.,

T 2 Co S S(d+ M)

ST 5% n Cre
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and the last inequality follows from Choosing a as its lower bound, i.e., 2Cg /e, RHS of Eq@

satisfies
Ld+ Ld+M

M Alog
€ 2 S €
< ( CB>
€

< ow [B@HM) ( Ld+ M ? 4, Ld+M
W —_— — p— S —
=P SCye? & € 'S & €

Ld+ M 4C, Ld+ M\? 4C, 5 Ld+ M
W = | log + =~ | log
€ € €

Ld+M

2 Ld+M
CB.aSIOg € :CB<

2C,B)glog

€

(50)

S S

o(v2))

If we consider the effect of the norm of particles since we have
2Cu,1
S
Combining this result with Eq[50] the proof is completed. O

= exp

Cus = = O ((max {loglog Z°,1})) ,

Lemma E.11. Under the notation in SectionEl suppose the step size satisfy n = Cp,(d+ M )~ le, we
have

P ﬂ HVlogpk,S,m(wgrn) — v,:rn(mgrn)|‘2 <10e| >1-¢

k€No k-1
r€Ng, R—1

with Alg[I| by properly choosing the number for mean estimations and ULA iterations. The total
gradient complexity will be at most

Ld+M\®  Ld+M 1
exp (O (max{(log :) ,log% ~log6/} - max {loglog Z2, 1})) ,

where Z is the maximal norm of particles appeared in Alg 2]

Proof. In this lemma, we follow the same proof roadmap as that shown in Lemma[E.T0] According
to Eq[6] we have

H P [HV]ogpk,s,m(:c;;m) - v;‘;m(m,‘;m)ﬂz < 105}

keNg k-1
r€Ng R—1
2
>1-6- A(d + M) lo Li+ M - pow LdJrM,Cuglog Ld+ M + zloglog1 +Cus
SChre € ’ S ) ’

where the parameter ¢ satisfies Lemma [E.8|under certain conditions. It means we can control the
recursive error with a high probability, i.e.,

[T P[IViogprs (@i, = Vi @i, <10 214" (51)

k€No, k-1
r€No,r—1

when § satisfies

2
Hd+ M) log Ld+ M~ pow Ld+ M ,Cu,2log Ld+ M + Cu,3 | -dpow Ld+ M, 2 log log 1 <yd.
SChe € € € € S 1

defined as C'g

We can reformulate the above inequality as follows.

: - !
Cpd(—logd)3 e 252 _ 5 o (Llogg)les it o 0
Cpo
DI S 25 L RV S (52)
S 0g B og Og5 < log CBé‘
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o2/ S og((Ld+M)/e)

By requiring 6 = ¢'/Cp , the last inequality of the above can be written as

2 Ld+ M 2 Ld+ M 2 Ld+ M
LHS:—log; log logc——f——l ;Joga §—10g;~loga:RHS,
S o’ S € S €
when the choice of a satisfies
205 (Ld+ M\**®
a>max{ =B (FEEAY T L (53)
o €
Since we have
C 2 Ld+ M 2 3
log =2 + Z log s loga<log + (loga)? < 2420~ when a>1,
o’ S € ) )
where the first inequality follows from the monotomclty of function log(-). Then, it has
C 2 Ld+ M
log 1og—B + —log; -loga| <loga
o’ S €
and Eq[52]establishes.

To achieve the accurate score estimation with a high probability shown in Eq[51] the total gradient

complexity will be

I-9602*’)’“’“—1)-u(loe) <Cp-a¥'®

Ld+1\/l

n
shown in Eq[9] Plugging the choice of a (Eq[53) into the above inequality, we have

2Cp 2 Ld+ M Ld+ M 4 Ld+ M
. , pow .5'21 .

5 5

Ld+1\/[
1
Cp - a8 CB-max{pow<

5 g8 gz l8

Term Comp.1 Term Comp.2

(QCB 4 Ld+M) (Ld+M 4 Ld—|—M>
< max ¢ pow ,Cp - pow
€

It can be easily noted that Term Comp.2 will be dominated by Term Comp.1. Then, we provide the
upper bound of Comp.1 as

log (Comp.1) %1 og Ld+ M (logQC’B + log(l/&'))
%long+M-(lo Si‘ d+ +210g10ng:—M
+log Ld :_ M (Cu,Q log Ld :_ M + Cu,g) + 10g(1/5’))

3
=0 <max{<long+M) 7long_F]\/[.logl})7
€ € &’
/ Ld+M\®  Ld+M 1
= < exp ((9 (max { <log i ) ,log A log 5/})) .
€ €

Hence, the proof is completed. O

which means

CB 'G%bg =

F AUXILIARY LEMMAS

F.1 THE CHAIN RULE OF KL DIVERGENCE

Lemma F.1 (Lemma 6 in[Chen et al.| (2023a)). Consider the following two Itd processes,
dx; =f1 (x¢,t)dt + g(t)dB;, x0 = a,
dy: =fo(ye, t)dt + g(t)dBi,  yo =a,

where f1, fo: R — Rand g: R — R are continuous functions and may depend on a. We assume
the uniqueness and regularity conditions:
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e The two SDEs have unique solutions.
* X,y admit densities p;, q; € C%(R?) fort > 0.

Define the relative Fisher information between p; and q; by

2
o pi(x)
FL(ptllq:) = /pt(w) ‘Vlog (@) ’ dz.
Then for any t > 0, the evolution of KL (p¢||q:) is given by
o) 2(t
KL Gua) =~ P10 + B [ i(x0) - fob 0. V10 22 ).

Lemma[F]is applied to show the KL convergence between the underlying distribution of the SDEs
that have the same diffusion term and a bounded difference between their drift terms.

Lemma F.2 (Lemma 7 in|Chen et al.|(2023a)). Under the notation in SectionE] fork € No g1 and
r € No r—1, consider the reverse SDE starting from xzm =a

A%y = [Rie + 2V Iog prs—¢(Rpe)] dt + V2dB,, x5, =a (54)

and its discrete approximation
dxj, = [th +2Vi (xzm)} dt +v/2dB,, X,;,,7 =a (55)
for time t € [kn, (k + 1)n]. Let py, 4|y be the density of X ; given Xy, v,y and P} 1|y be the density of

— o —
X} ¢ gIven Xy .. Then, we have

s For any a € RY, the two processes satisfy the uniqueness and regularity condition
stated in Lemma [F1) which means SDE [54] and SDE [53] have unique solutions and
Protien(10), Dy (10) € C2(RD) for t € (v, (7 + L)

o Fora.e., a € R% we have
1im+ KL (ﬁkyt‘m(-|a)||;5k7t|m(~|a)) =0.

t—rn

Lemma F.3 (Variant of Proposition 8 in|Chen et al.[(2023a)). Under the notation in Section E| and
Algorithm|2| we have

KL (po,slpd.s) <KL (Pr—1,0llPk_1.0)
K—1R-1

K . . 2

+ Z Z/ E(*k,”ﬂnvf‘kmn) [HVInghS—(HM) (katJF"'TI) - VZTW(XICV”I)H :| dt.
k=0 r=0 "0

Proof. Under the notation in Section|A] for k € No 1 and r € No g1, let py, 4, be the density

of Xj; given Xy, ., and pl?tlm be the density of x;, given x;,,. According to Lemma and
— —
Lemma@ for any xj,, = a, we have

d R
SKL (P Cl@)][P 1y (la))
R Dty (X[@)
= —FI (pk,t|m('|a)|\p§t\m('|a)) + 2Ex 5y 4100 (-la) [<VI0gpk,S—t(X) — Vim(a), Viog L s s
2
< By s (1) {HVIOng,S—t(X) ~ Vi (a)] } :
Due to Lemma for any a € R9, we have

lim KL (P gpeg () 19511, () ) =0,

t—rny
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which implies

t
KL (Bron (10) 6 0 (10)) = [ Bt (19 08150 = viy ()]

™

Integrating both sides of the equation, we have

t
Esirapin [ KL (Brtpen CRbon) [P CRrn) ) | < / B[ 108 -1 () = Vi )] o
According to the chain rule of KL divergence|Chen et al.|(2023a), we have

KL (ﬁk,(r+1)n||pZ(r+1)n)

< KL (b, 195 n) + Eseorsesen KL (Bt CRrn) 19513010 R )|

< KL (pr,rnPir) + /077 LIRS S [HVInglc,S—(t-&-rn) (R t4rn) — Vl:m(ik-,m)HQ} dt

Summing over r € {0,1,..., R — 1}, it has

KL (P rnllpi ry) < KL (Pr,

~ ~ 2
E(*k‘wm,ﬁk,m) |:||VIngk,S—(t+rn) (Xk,t+r77) - V;e_,rn(xk,rn)H ] dt

Similarly, by considering all segments, we have

KL (po,sllpds) <KL (Pr—1,0llPk_1.0)
K—-1R-1

+ Z Z/ (R t-rn Kk, rm) [HngPk S—(t+rn) Rk t4rn) — Vi, N (b H }

k=0 r=0
O

Lemma F.4 (Variant of Lemma 10 in (Cheng & Bartlett| (2018)). Suppose — log p. is m-strongly
convex function, for any distribution with density function p, we have

1 p(x)
KL (o) < 5= [ ota) |[Vios 220

By choosing p(x) = g*(z)p.(z)/E,, [9(x)] for the test function g: R* — R and E,,, [¢*(x)] <
00, we have

2
‘ dex.

’V]og

2
Ey. [9°1ogg%] — E,. [¢%] 10gE,. [¢°] < —E,. [|Vg|*].
which implies p, satisfies m-log-Sobolev inequality.
Lemma FE.5. (Corollary 3.1 in|Chafai (2004) ) If v, U satisfy LSI with constants o, & > 0, respectively,
then v * i satisfies LSI with constant (L + 1)~

Lemma F.6 (Lemma 16 in |Vempala & Wibisono| (2019)). Suppose a probability distribution p
satisfies LSI with constant ji > 0. Let a map T': R — R%, be a differentiable L-Lipschitz map. Then,
p = Typ satisfies LSI with constant j1/ L?

Lemma F.7 (Lemma 17 in |Vempala & Wibisono| (2019)). Suppose a probability distribution p
satisfies LSI with a constant pi. For any t > 0, the probability distribution p; = p * N'(0,tI) satisfies
LSI with the constant (u=! +¢)~1

Lemma F.8 (Theorem 8 inVempala & Wibisono|(2019)). Suppose p < exp(—f) is u strongly log
concave and L-smooth. If we conduct ULA with the step size satisfying n < 1/L, then, for any
iteration number, the underlying distribution of the output particle satisfies LSI with a constant larger
than /2.

Proof. Suppose we run ULA from x( ~ pg to xj, ~ pi where the LSI constant of pj, is denoted as
1x- When the step size of ULA satisfies 0 < 1 < 1/L, due to the strong convexity of p, the map
x — x — nV f(x) is (1 — nu)-Lipschitz. Combining the LSI property of p; and Lemma [F.6] the
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distribution of x5 — nV f(xy) satisfies LSI with a constant ;. /(1 — nu)?. Then, by Lemma |F.7}
Xp+1 = X — an(Xk) + \/2’17./\[(0, I) ~ Dk+1 satisfies /,L]H_l-LSI with
)2
LI k10
HE+1 Mk
For any k, if there is p > p/2, with the setting of n, i.e., n < 1/L < 1/pu, then
)2
LI Uk /D)
HE+1 /2

It means for any k' > k, we have s > 1/2. By requiring the LSI constant of initial distribution,
i.e., po to satisfy 1o > p/2, we have the underlying distribution of the output particle satisfies LSI
with a constant larger than 11/2. Hence, the proof is completed. O

+ 2.

2
+2n=;—2n(1—w)§*

Lemma F.9. If v satisfies a log-Sobolev inequality with log-Sobolev constant y then every 1-Lipschitz
Sfunction f is integrable with respect to v and satisfies the concentration inequality

V{2 B lf] + 1} < exp (—’“‘;)

Proof. According to Lemma [F.10] it suffices to prove that for any 1-Lipschitz function f with
expectation E, [f] = 0,
E [M] < A/ 2p)

To prove this, it suffices, by a routine truncation and smoothing argument, to prove it for bounded,
smooth, compactly supported functions f such that ||V f|| < 1. Assume that f is such a function.
Then for every A > 0 the log-Sobolev inequality implies

) 2
w0 <35 [foe ]
I
which is written as

E, [A\feM] —E, [M] 1ogE [M] < —E IV 717 ]

With the notation ¢(A) = E [e*] and 1/(X) = log ¢(\), the above inequality can be reformulated as
)\2
AP (A) <p(A) logp(A) + %

E, [IV/]* V]
)\2
<p(A)logp(A) + ﬁs&(&
where the last step follows from the fact ||V f|| < 1. Dividing both sides by A%¢()\) gives

(1og(<ﬂ(A)))/ <L
A ~2u
Denoting that the limiting value M [a=0= limy_,g+ % =E,[f] = 0, we have
log(p(A) _ /A (10g(@(f)))’dt <X
A 0 t - 2‘UJ7
which implies that

A2 A2
AN < —=pN)< —
b0 < 3 = o) <o (5]
Then the proof can be completed by a trivial argument of Lemma [F.10} O

Lemma F.10. Let x be a real random variable. If there exist constants C, A < oo such that
E [e)‘x] < CeN forall X > 0 then

2
IP’{x>t}<CeXp( éfA)
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L L]

Figure 3: The 1000 particles sampled from the target distribution, which utilized as the criterion by
using MMD

Az

Proof. According to the non-decreasing property of exponential function e**, we have

A At E[e/\x] 2
P{xzt}:P{e *>e ’}STSCeXp(A)\ —)\t),

The first inequality follows from Markov inequality, and the second follows from the given conditions.
By minimizing the RHS, i.e., choosing A = t/(2A), the proof is completed. O

Lemma F.11. Suppose q is a distribution which satisfies LSI with constant p, then its variance
satisfies
2 d
[ @)z~ P de < .

Proof. 1t is known that LSI implies Poincaré inequality with the same constant, i.e., i, which means
if for all smooth function g: R — R,

1
var, (9(x) < By |IVg(3) )]

In this condition, we suppose b = E,[x], and have the following equation

/Q(fﬂ) lz - Eq [x]|* da = /Q(w) |z - b]|* dz
:/Zd:q(g; L= b)) dw—Z/ (@, e:) — (b)) dw
_Z/ ((, e;) — By [(x,€,)])° da = Zvarq gi(x

where g;(x) is defined as g;(x) := (x, e;) and e; is a one-hot vector ( the i-th element of e; is 1
others are 0). Combining this equation and Poincaré inequality, for each ¢, we have

var, (0:x) < B, [Jes]?] = .

Hence, the proof is completed. O

Lemma F.12. (Lemma 12 in|Vempala & Wibisono| (2019)) Suppose p < exp(—f) satisfies Tala-
grand’s inequality with constant i and is L-smooth. For any p/,

Ey [IV/)I17] < —KL ¥/llp) +2Ld.

G EMPIRICAL RESULTS

Problem settings. We consider the target distribution defined on R? to be a mixture of Gaussian
distributions with 6 modals. Meanwhile, we draw 1, 000 particles from the target distribution shown
in Fig El and used MMD (with RBF kernel) as the metric.
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Figure 4: MMD results for ULA, DMC, and RS-DMC for the different gradient complexity. Experimental
results show that ULA attains a slow convergence rate with a high sampling error. Both DMC and RS-DMC
converge rapidly but RS-DMC can achieve smaller sampling errors than DMC, even with lower gradient
complexities. In particular, RS-DCM with 800 gradient complexity can outperform DCM with over 3000
gradient complexity.

We compare the MMDs among three sample algorithms including ULA [Neal| (1992)); [Roberts &
(1996), DMC [Huang et al.| (2023), and RS-DMC when the number of gradient oracles are
{200, 400, 600, 800, 1600, 3200}. Besides, we tuned hyper-parameters for all three algorithms and
left their optimal choice in our code given in the latest supplementary material. Then, we show the
final MMDs in Fig[4]

Besides, to compare the behaviors of the three methods, we illustrate the particles when the algorithms
return for different gradient complexity in Fig[5] We note that

* ULA will quickly fall into some specific modals with an extremely high sampling error,
measured in Maximum Mean Discrepancy (MMD), and is significantly worse than DMC
and RS-DMC.

* DMC will quickly cover the different modals. However, converging to their means will be
slower than RS-DMC.

* RS-DMCwill quickly cover the different modes and converge to their means. Compared to
DMC, it requires much fewer gradient complexities to achieve a similar sampling error. For
instance, RS-DMC with 800 gradient complexity can outperform DMC with over 3200.

Explanation about the resemblance of modals’ variances. In the previous experiments, all
parameters were tuned to achieve a lower MMD. However, in some cases, MMD may not be able
to perfectly characterize the sampling performance, while some statistical information, e.g., the
resemblance of variances of modals may be obfuscated. In order to mitigate this issue, we further
conduct the experiments with a different set of hyperparameters such that the generated samples
can be reasonably closer to the ground truth. In particular, we set the gradient complexity as 200
and generate samples using ULA, DMC, and RS-DMC. The distribution of the output particles is
visualized in Fig[6] The comparisons of MMD and variance estimations of different modals are
shown in Table 3]and Table ] respectively. Then it can be clearly observed that

* RS-DMChas better coverage than ULA and DMC, which is measured by MMD (see Fig|[6]
and Table [3).

* RS-DMChas better concentration than ULA and DMC, which is measured by the variance
of modals (see Table[d] where the variance of RS-DMC is closer to that of the ground truth
samples for almost all modals).

This again demonstrates the superior performance of RS-DMCcompared to baseline algorithms.
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Figure 5: Illustration of the returned particles for ULA, DMC, and RS-DMC. The first row is returned by ULA,
the second is DMC and the last is from RS-DMC. Experimental results show that ULA converges fast in the
local regions of modes, while it suffers from the problem of covering all modes. DMC can cover most modes
with few gradient oracles but converge slowly in local regions. RS-DMC takes advantage of both ULA and
DMC, which can cover most modes and admit a relatively faster local convergence.
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ground truth ULA output DMC output RS-DMC output

Figure 6: Distribution of the samples generated by ULA, DMC, and RS-DMC, where the gradient complexity

is set to be 200.

ULA DMC RS-DMC

MMD loss

1.386 0.129

0.112

Table 3: The comparison of MMD in the good resemblance of modals’ variances when gradient complexity is

chosen as 200.

Var ULA DMC RS-DMC ground truth
Modal 0 0.0337 0.0337  0.0332 0.0217
Modal 1 0.0574 0.0311 0.0314 0.0188
Modal 2 0.0459 0.0299  0.0324 0.0196
Modal 3  0.0394 0.0338  0.0287 0.0184
Modal 4 0.0449 0.0330  0.0289 0.0174
Modal 5 0.0409 0.0321 0.0306 0.0220

Table 4: The comparison of variance of different modals when gradient complexity is chosen as 200. The
experimental results show both DMC and RS-DMCcan achieve better variance estimation. In some remote
modals, the gap between ULA and DMC/RS-DMCwill be even larger than that between RS-DMCand ground

truth.
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