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ABSTRACT

Obtaining finite-sample guarantees for predictive models is crucial for settings
where decisions have to be made under uncertainty. This has motivated works
where models are trained, then recalibrated to yield coverage guarantees. How-
ever, doing so often significantly increases model entropy, i.e., it becomes less
sharp, making the model less useful. To mitigate this, recent works have in-
creasingly attempted to achieve a balance between good calibration and sharp-
ness. However, these methods often involve deriving completely new, poorly
understood loss functions or employing a complex and computationally inten-
sive training pipeline. Moreover, the trade-off between sharpness and calibration
is frequently unclear for these methods. In this work, we argue for making the
trade-off explicit by choosing the sharpest model subject to some pre-set miscal-
ibration tolerance. To achieve this, we present a simple yet effective approach
that combines two established metrics in a novel fashion: we minimize the pinball
loss while controlling for calibration using a held-out dataset. Coincidentally, our
method motivates a hitherto unexplored analysis: we explicitly compute the Pareto
front achieved across methods in terms of sharpness and calibration, and compare
performance against this Pareto front. Our approach consistently outperforms var-
ious state-of-the-art methods in terms of various Pareto front-related metrics, even
though the competing methods are more complex and computationally expensive.

1 INTRODUCTION

In real-world settings, observations frequently come with some form of aleatoric uncertainty. In
such settings, we would ideally like to predict the full statistics of a variable, e.g., to better assess the
risk associated with an underlying decision. To address this, various types of stochastic models have
been proposed, ranging from Bayesian techniques (MacKay, 2002; Rasmussen & Williams, 2006)
to quantile regression (Padilla et al., 2022) and deep ensembles (Lakshminarayanan et al., 2017).
However, these methods tend to be miscalibrated when used out of the box, i.e., there is a mismatch
between predictive intervals and their respective coverage. This is most frequently addressed by
performing some form of post-hoc calibration. Typically, calibration techniques employ a held-out
dataset to map model predictions to statistically valid probability distributions (Niculescu-Mizil &
Caruana, 2005).

Though calibration has seen increasing interest in recent years (Guo et al., 2017; Kuleshov et al.,
2018; Vovk et al., 2020; Roman et al., 2021; Zhao et al., 2021), the underlying methods present
several drawbacks. Most methods recalibrate the existing model by some form of post-hoc process-
ing. This can severely distort the model output distribution, leading to unnecessarily underconfident
predictions. A related problem is that recalibration approaches often disregard sharpness, i.e., the
ability to make predictions with low entropy. This is especially desirable in practice, as high-entropy
predictions typically have a significant predictive error, rendering them of little value, even when
perfectly calibrated.

To address the loss of sharpness that typically comes with post-hoc calibration, there has been an
increasing number of works that attempt to strike a balance between both, e.g., (Kumar et al., 2018;
Chung et al., 2021; Kuleshov & Deshpande, 2022; Berta et al., 2025). This is achieved by optimizing
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Figure 1: Our method aims to find the sharpest model subject to some miscalibration tolerance ϵ. It
trains a model using the pinball loss and selects the best one observed during training.(1a) Validation
ECE during training. A new candidate optimal model is selected only if the miscalibration error is
below ϵ. Instances where the candidate optimal model is updated are highlighted by the red vertical
lines. (1b) Sharpness on the validation set during training. The candidate optimal model is updated
only if it improves upon the current best sharpness, while its miscalibration error remains below ϵ.
(1c) ECE vs sharpness on test data for multiple seeds. Our method stays below the miscalibration
tolerance ϵ and yields the best calibration/sharpness trade-off.

the model while still attempting to achieve perfect calibration (Kumar et al., 2018; Berta et al., 2025)
or minimizing a loss function that implicitly trades off calibration and sharpness (Chung et al., 2021;
Kuleshov & Deshpande, 2022). However, no method exists that attempts to trade off calibration and
sharpness by imposing a maximal miscalibration error. Perhaps somewhat surprisingly, there have
been few efforts that map the Pareto front of models that achieve the best sharpness-calibration
trade-off.

Motivated by the shortcomings mentioned above, we present Calibration-Guided Quantile Regres-
sion (CGQR). Our method achieves an explicit trade-off between calibration and sharpness by al-
lowing miscalibration up to some pre-specified tolerance. This is achieved by training the model
using simultaneous quantile regression, which enables an explicit trade-off between calibration and
sharpness. Our approach offers finite-sample guarantees similar to those of conventional calibra-
tion methods, and demonstrates how the miscalibration error decreases with increasing data size.
By performing a thorough analysis of the calibration-sharpness Pareto front, we conclude that the
simultaneous pinball loss frequently achieves the Pareto optimal trade-off compared to more com-
putationally expensive training pipelines and losses engineered to achieve a good trade-off.

The remainder of this paper is structured as follows. In Section 2, we review the background rel-
evant to this paper, after which we formally state the problem of maximizing sharpness subject to
calibration. Section 3 introduces our method and presents corresponding finite-sample guarantees.
We present experimental results, in Section 4, after which we discuss related work, in Section 5. We
discuss our method and its limitations in Section 6 and conclude the paper with Section 7.

2 BACKGROUND

2.1 NOTATION

In this paper, we consider a regression task, where the ground-truth distribution is characterized by
its input distribution FX(·) and conditional output cumulative density function F (· | X). We use
q∗(·, τ) and f(· | X) to denote the corresponding conditional τ -quantile and probability density
functions, respectively. Unless otherwise stated, we use E and P to denote the expected value
and probability of an event under the joint distribution, i.e., P := Px∼FX(·), y∼F (·|x) and E :=
Ex∼FX(·), y∼F (·|x). For a finite dataset D, we use ED := E(x,y)∼D and PD := P(x,y)∼D to denote
the expected value and probability with respect to D, respectively.
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2.2 CALIBRATION AND SHARPNESS

Calibration refers to the ability of a model to output distributions that agree with the observed data.
While different notions of calibration with varying strengths exist (Zhao et al., 2020), this paper
focuses on average calibration, which is arguably one of the most studied forms, and is henceforth
referred to simply as calibration.
Definition 2.1 (Calibration). A model q̂ is said to be (average) calibrated if the corresponding
predictive quantiles satisfy

P (q̂(X, τ) ≤ Y ) = τ, ∀ τ ∈ [0, 1]. (1)

Intuitively, a model is calibrated if the predictive quantile agrees with the observed coverage fre-
quency on average over the ground truth distribution.

Generally, achieving perfect calibration is impossible with a finite sample size. Instead, the best we
can settle for is minimizing the expected calibration error (ECE), given by

ECE(q̂) =
∫ 1

τ=0

|P (q̂(X, τ) ≤ Y )− τ | dτ. (2)

Note that, if a single quantile level is of higher importance than others, (2) can be modified straight-
forwardly to reflect this by employing a weighted integral Kuleshov et al. (2018). We denote the
empirical counterpart of ECE on a finite dataset D by

ÊCED(q̂) =

∫ 1

τ=0

1

|D|
∑

(xi,yi)∈D

|(q̂(xi, τ) ≤ yi)− τ | dτ. (3)

A common way of minimizing the ECE of a pre-trained model is by applying recalibration (Gneit-
ing et al., 2007; Kuleshov et al., 2018), where the predicted quantile levels are projected to new
levels that correspond to correct average quantiles on a held-out dataset. This procedure effectively
yields an empirical ECE (3) of zero over the held-out dataset, and comes with finite-sample guar-
antees for future ground truth observations (Vovk et al., 2020). However, a drawback of applying
recalibration is that it can severely deform the output distribution of the model, leading to the loss
of desirable properties obtained during training, e.g., low-entropy output distributions. To contend
with this, calibrated models are typically also evaluated by measuring the concentration of the output
distributions. This property is known as sharpness.
Definition 2.2. For two models q̂ and q̂′, we say that q̂ has higher sharpness than q̂′ if its output
distributions have lower entropy on average.

Hence, sharpness is a model-dependent quantity and does not depend on the con-
ditional ground truth distribution. The gold standard when designing (approxi-
mately) calibrated models has become to achieve good sharpness subject to calibration
(Gneiting et al., 2007; Kuleshov et al., 2018; Chung et al., 2021). In practice, it is common to
measure sharpness using different proxy metrics instead of entropy (Gneiting et al., 2007). In this
paper, we evaluate sharpness using the average length of the centered 95% confidence interval:

IL(q̂) = E
[
q̂(x, 0.975)− q̂(x, 0.025)

]
. (4)

This metric is particularly interesting in practice, as it measures the tightness of confidence intervals,
a tool commonly used to assess risk.

2.3 QUANTILE REGRESSION

Quantile regression (Koenker & Bassett, 1978) is a well-established tool for modeling quantile func-
tions. It trains a model by applying the pinball loss, also commonly known as the quantile loss or
check score, which is given by

lτ (q̂, τ) =

{
τ (y − q̂(x, τ)) if y ≥ q̂(x, τ)

(1− τ) (q̂(x, τ)− y) if y < q̂(x, τ).
(5)

3
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Intuitively, the pinball loss penalizes the weighted L1 distance in an asymmetric fashion, where the
weights correspond to the desired quantile τ and 1 − τ . In this paper, we train a model to have a
small pinball loss for any quantile level τ . To this end, we marginalize over τ , obtaining the loss

L(q̂) =

∫ 1

τ=0

lτ (q̂, τ). (6)

Training a model by minimizing (6) is commonly known as simultaneous quantile regression (Bon-
dell et al., 2010), and comes with many benefits. It accounts for multimodality, heteroskedasticity,
and asymmetry in the data distribution by modeling each quantile separately. Moreover, if q̂ is
continuous in τ , minimizing (6) implicitly regularizes the difference between quantiles of differ-
ent levels τ (Schnabel & Eilers, 2013). A further advantage of training a model in this manner
(6) corresponds to a proper scoring rule (Gneiting & Raftery, 2007), meaning that the ground truth
distribution minimizes this loss.

Importantly, (6) implicitly trades off calibration and sharpness. This can be best seen by analyzing
the pinball loss for a single quantile level τ and small miscalibration errors as follows: Assume
q̂(X, τ) > q(X, τ) without loss of generality. The expected pinball loss then allows a partition into
a model-dependent and a model-free component:

E[lτ (q(X, τ), Y )] = E

[∫ q̂(X,τ)

q(X,τ)

(
F (u | X)− τ

)
du

]
︸ ︷︷ ︸

Model-dependent

+E[lτ (q(X, τ), Y )]︸ ︷︷ ︸
Irreducible

. (7)

By applying a first-order approximation to the model-dependent term (see Appendix A), we obtain

E

[∫ q̂(X,τ)

q(X,τ)

(
F (u | X)− τ

)
du

]
≈ E

[
(F (q̂(X, τ) | X)− τ)2

f (q(X, τ)+ | X)

]
. (8)

The numerator (F (q̂(X) | X)− τ)2 is the square of the conditional calibration error. It corresponds
to a much stronger notion of calibration than average calibration, in that, if minimized, it agrees
perfectly with the ground truth. It is related to the ECE (2) as

ECE(q̂) =
∫ 1

τ=0

E [F (q̂(X) | X)− τ ] dτ (9)

In other words, if the expected pinball loss is minimized for all τ , then the model is perfectly cal-
ibrated. However, if F (q̂(X) | X) − τ ̸= 0, the ECE of the model is potentially nonzero. In
this case, the loss attempts to simultaneously maximize the denominator f (q(X, τ)+ | X), which
in turn encourages the quantiles to cluster around areas of high likelihood, mimicking the entropy
of the ground truth, and discouraging unnecessarily high entropy. As we show in Section 4, this
trade-off becomes apparent when we explicitly try to reach a good trade-off between calibration and
sharpness.

2.4 PARETO FRONT EVALUATION

In this paper, we aim to analyze the trade-off between calibration and sharpness, two concurrent
objectives in optimization. To do so, we resort to computing the Pareto front across models.

Let M = {q̂1, . . . , q̂N} be a set of models, and let ECEi := ECE(q̂i) and ILi := IL(q̂i) denote their
respective calibration and sharpness values. The corresponding Pareto front is the subset of points
in calibration and sharpness space where no point is dominated by another in both calibration and
sharpness metrics simultaneously. Formally, this is given by the models i that satisfy

P(M) =
{
(ECEi, ILi)

∣∣∣ ECEi < ECEj ∨ ILi < ILj ∀ j, i ̸= j
}
. (10)

For any subset P̂ ⊂ M, there exist several metrics that measure how well it approximates the
true Pareto front P (Audet et al., 2021). In this paper, we consider three common indicators: the
hypervolume (HV), the generational distance (GD), the inverse generational distance (IGD). We
describe these metrics in the following.

4
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The HV measures the area between a reference point and the approximated Pareto front P̂ generated
by each model in a subset corresponding to a specific loss. In this paper, we employ the maximal
calibration error and interval length observed across models as a reference point. Assuming that
ECEj < ECEj+1 for all ECEj ∈ P̂ , the hypervolume is given by

HV(P̂) =

|P̂|∑
i=1

(ILmax − ILi)
(
ECEi+1 − ECEi

)
, with ECE|P̂|+1 := ECEmax. (11)

Intuitively, the hypervolume measures the convergence of an approximate Pareto front to the true
one, as well as the diversity of the approximation. The closer the ratio HV(P̂)/HV(P) is to one,
the better the approximation.

A drawback of the HV is that it does not measure the uniformity of the approximation P̂ , i.e., how
spread out it is compared to the true Pareto front. To measure this, we additionally report the GD
and IGD metrics, given by

GD(P̂,P) =

 1

|P̂|

∑
z∈P̂

min
u∈P

∥z − u∥22


1
2

, IGD(P̂,P) =

(
1

|P|
∑
z∈P

min
u∈P̂

∥z − u∥22

) 1
2

,

Unlike the HV distance, these metrics measure how spread out an approximation of P̂ is compared
to P .

3 PROBLEM STATEMENT AND METHOD

3.1 PROBLEM STATEMENT

In this paper, we consider the problem of achieving an explicit trade-off between calibration and
sharpness for various permissible levels of miscalibration. More specifically, given a model archi-
tecture qθ and some miscalibration tolerance ϵ, we seek to find model parameters θ∗ that (approxi-
mately) satisfy

θ∗ = argmin
θ

IL(qθ), s.t. ECE(qθ) ≤ ϵ. (12)

Note that if we vary ϵ from 0 to 1, the solutions of (12) lie on the Pareto front of calibration and
sharpness values. Hence, our goal is aligned with approximating the Pareto front that quantifies the
best trade-off between calibration and sharpness.

3.2 CALIBRATION-GUIDED QUANTILE REGRESSION

We now describe our approach, which aims to minimize sharpness subject to some miscalibration
error ϵ, as shown in (12). To find the (approximately) optimal parameters θ∗, we minimize the pinball
loss, allowing us to leverage the calibration-sharpness trade-off described in Section 2.3. As shown
later, in Section 4, this trade-off is considerably superior to that obtained by other state-of-the-art
approaches for a broad spectrum of miscalibration tolerances ϵ.

Our approach requires the specification of a miscalibration tolerance ϵ, to be decided by practition-
ers. We first split the data set into a training set Dtr and a validation set Dval. The training data
set Dtr is used exclusively to optimize the candidate model using the pinball loss. The validation
set Dval, by contrast, is used to check calibration and sharpness, which we in turn use to discrim-
inate among candidate models. Given some initial model parameters θ, we then initialize the best
model parameters as θ∗ = θ. Given ϵ, we then perform multiple gradient descent steps to optimize
the pinball loss EDtr [

∫ 1

τ=0
lτ (q̂θ, Y )dτ ]. However, unlike in standard training, after every iteration,

we check if the current model ˆ̂qθ respects the miscalibration tolerance on the validation dataset
Dval, i.e., ÊCEDval(q̂θ) ≤ ϵ. If this is not the case, we proceed to do another optimization step.
Otherwise, we check if the average interval length is smaller than for the best model stored, i.e.,
ILDval(q̂θ) < ILDval(q̂θ∗). If this is the case, we set the best parameters to θ∗ = θ. This procedure is
repeated until convergence has been reached or a pre-specified number of steps has been taken. This
is outlined in Algorithm 1.

5
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Algorithm 1 Calibration-Guided Quantile Regression

Input: Parametric model q̂θ, data D, miscalibration tolerance ϵ
1: Split D into training data Dtr and validation data Dval
2: Initialize θ∗ = θ
3: while not converged do
4: Update θ by performing gradient descent on EDtr

[∫ 1

τ=0
lτ (q̂θ, Y )dτ

]
5: if ÊCEDval(q̂θ) ≤ ϵ and ILDval(q̂θ) < ILDval(q̂θ∗) then
6: Set θ∗ = θ
7: end if
8: end while
9: return q̂θ∗

3.3 THEORETICAL RESULTS

Our algorithm provides finite-sample guarantees that can be computed straightforwardly based on
the miscalibration tolerance ϵ, the validation data set size |Dval|, and the number of models m(ϵ)
with miscalibration error below ϵ observed during training. To this end, we require the following
assumption on the dataset distribution.

Assumption 3.1. For any finite number of samples Xi, Yi, from the ground truth distribution, Yi

are exchangeable random variables and almost surely distinct.

Assumption 3.1 is relatively mild and is satisfied, e.g., by settings where the output is iid and per-
turbed by Gaussian noise.

Theorem 3.2. Let Assumption 3.1 hold. For some tolerance parameter ϵ, let θ∗ be the optimal model
parameters obtained with Algorithm 1. Furthermore, let m(ϵ) be the total number of parameters θ
observed during training that satisfy

ÊCEDval(qθ) ≤ ϵ.

Then, for any 0 < γ < 1, with probability at least 1− 2m(ϵ) exp
(
−2γ2|Dval|

)
,

ECE(q̂θ∗) ≤ ϵ+
1

|Dval|
+ γ. (13)

Theorem 3.2 indicates that there is an interplay between the number of models m(ϵ) out of which
we pick θ∗ and the size of the validation data set Dval. If Algorithm 1 encounters more models m(ϵ)
that satisfy the miscalibration tolerance, the sharpness on the test set will potentially improve while
calibration will potentially suffer. However, this can be offset by having a larger validation set Dval,
as it yields a more robust calibration guarantee, allowing for a greater number of models m(ϵ) to
be compared. We note that m(ϵ) can be reduced artificially, e.g., by randomly discarding a model
without comparing it, though this comes at the expense of model sharpness.

4 EXPERIMENTS

We evaluate the performance of our approach on various regression tasks from open-source repos-
itories and a real-world nuclear fusion prediction problem. Next, we describe the regression tasks,
followed by an outline of the training procedure and baseline comparisons.

Datasets from Open-Source Repositories We consider the regression tasks associated with the
following datasets, available from the UCI, OpenML, and Kaggle repositories: concrete (Yeh, 1998),
kin8nm (Dua & Graff, 2017a), naval (Coraddu et al., 2016), power (Dua & Graff, 2017b), protein
(Rana, 2013), diamonds (Wickham et al., 2025), Facebook comment volume II (Singh, 2015), and
elevator (Axenie & Bortoli, 2020). The dataset sizes range from |D| = 307 (naval) all the way to
|D| = 112, 000 (elevator).
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Table 1: Pareto front metrics in calibration and sharpness space. We report the IGD, GD, and
normalized HV, as described in Subsection 2.4, averaged across all datasets. Lower is better for GD
and IGD, higher is better for HV. Our method (CGQR) is evaluated, along with Cali, Interval and
Model Agnostic Quantile Regression (MAQR) Chung et al. (2021), CaliPSo Capone et al. (2025),
and QRT Dheur & Ben taieb (2024). Lower is better for all metrics. The best results across methods
are highlighted in bold.

CGQR CALI INTERVAL MAQR CALIPSO QRT

IGD (↓) 0.03±0.04 0.35±0.04 0.49±0.04 0.62±0.04 0.51±0.04 0.49±0.07
GD (↓) 0.20±0.02 0.35±0.03 0.38±0.06 0.59±0.06 0.30±0.05 6.27±2.16
HV (↑) 0.92 ± 0.01 0.82 ± 0.01 0.73 ± 0.01 0.51 ± 0.02 0.67 ± 0.02 0.78 ± 0.02

Nuclear Fusion Dataset We additionally consider a nuclear fusion regression task, which corre-
sponds to a dataset obtained from the DIII-D tokamak (Holcomb & for the DIII-D Team, 2024).
The plasma dynamics in tokamaks are notoriously difficult to predict in general due to their high de-
gree of stochasticity and poorly understood physics, eliciting an increased interest in using machine
learning techniques for prediction (Char et al., 2023; Seo et al., 2024; Sonker et al., 2025). The
dataset we use corresponds to a one-step prediction model. It consists of approximately 1.7 million
input-output pairs. Each input has d = 35 dimensions, consisting of various states and actuators
(see Appendix D). The target variable is the principal component of the rotation profile at the next
time step. Predicting the distribution of the rotation profile is generally useful, as controlling helps
improve the stability of the plasma (Richner et al., 2024).

4.1 SETUP AND BASELINES

For all tasks, we consider miscalibration errors of ϵ ∈ (0, 0.15). As a model q̂, we employ an 8-layer
neural network with 256 hidden dimensions and residual connections. Although we experimented
with smaller architectures, we observed that they consistently lacked expressivity, yielding less com-
petitive Pareto fronts (see Appendix C). We additionally compare our approach against five different
baselines: the calibration loss (Cali), interval loss (Interval), and model-agnostic quantile regres-
sion (MAQR) from Chung et al. (2021), quantile recalibration training (QRT) (Dheur & Ben taieb,
2024), and calibrated predictive models with sharpness as loss function (CaliPSo) (Capone et al.,
2025). The Cali and Interval baselines minimize surrogate losses that balance calibration and sharp-
ness. MAQR trains a neural network to predict the mean of the data, then trains a quantile model
on the residuals binned by proximity. QRT employs a smoothened calibration procedure, then dif-
ferentiates through calibration during training, which uses a negative log likelihood loss. Similarly,
CaliPSo constructs a differentiable model that stays calibrated on the training data, then attempts to
maximize its sharpness. A detailed description of the baselines is given in Appendix E.

We employ the same architecture across all methods, with the difference that, for QRT, the network
outputs two quantities (mean and variance) instead of one. To assess how closely each method ap-
proximates the Pareto front, we store models that achieve the highest sharpness subject to a miscal-
ibration constraint on the validation data, following a similar approach to ours. For the open-source
datasets, we employ a train/validation/test data split of 80/10/10, except for the Facebook and ele-
vator datasets, where we employ a split of 25/25/50 to alleviate computational costs. For the fusion
dataset, we sample only |D| = 200, 000 points from the full data set per seed, and carry out experi-
ments using a 25/25/50. We run 5 different seeds per dataset except for the Facebook, elevator, and
fusion datasets, where we use 3 seeds.

For every seed, we compute the set of Pareto-optimal solutions by pooling the models obtained
by each method and discarding those that are dominated in both calibration and sharpness. We
then quantify how well each method approximates the Pareto front using the metrics described in
Subsection 2.4.

7
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Figure 2: Test time performance of methods in terms of ECE (x-axis) vs Sharpness (y-axis) for
different datasets. The number in Lower is better for both metrics. The numbers in brackets indicate
the dataset size. Our approach is consistently close to the Pareto front, regardless of dataset size.

4.2 RESULTS

The ECE and sharpness of the different models across all seeds is shown in Fig. 4. The summary
of the Pareto front metrics is shown in Table 1. The full table is in Appendix G. Our approach
consistently achieves the best or close to best hypervolume, indicating that it encloses a space similar
to that of the Pareto front. The only method that performs comparably, albeit slightly worse, is Cali,
which trains the model by minimizing a weighted sum that penalizes poor ECE and sharpness.
Our approach also consistently reaches a remarkably high ECE. This is due to how the pinball loss
weights calibration and sharpness, as discussed in Section 2.3. To reach even higher calibration,
an isotonic recalibration approach can be employed (Kuleshov et al., 2018). However, we observed
that this often only marginally improves calibration, while markedly deteriorating sharpness (see
Appendix F).
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5 RELATED WORK

5.1 CALIBRATED MODELS

Calibration was initially developed in the context of classification, where it was most commonly
achieved using Platt scaling (Platt et al., 1999) and isotonic regression (Niculescu-Mizil & Caruana,
2005). More recently, different variants of logistic regression have been used to obtain calibration,
such as temperature scaling (Guo et al., 2017), beta calibration (Kull et al., 2017), and Dirichlet
calibration (Kull et al., 2019). In the context of regression, Kuleshov et al. (2018) presented an
isotonic regression-based calibration approach for neural networks. A general overview of basic
recalibration methods plus theoretical guarantees is provided in Marx et al. (2022).

5.2 CALIBRATION AND SHARPNESS TRADE-OFFS

To mitigate the loss in sharpness that comes with pure calibration, various works attempt to balance
calibration and sharpness. Typically, a trade-off can be obtained by minimizing some form of proper
scoring rule (Gneiting & Raftery, 2007). The works of Song et al. (2019); Kuleshov & Deshpande
(2022) attempt to achieve distribution calibration, corresponding to minimizing the average pinball
loss. In Chung et al. (2021), the authors propose different losses that trade off calibration and sharp-
ness. Kumar et al. (2018) proposes a differentiable calibration metric, which is optimized jointly
with the negative log likelihood during training. In Dheur & Ben taieb (2024), the authors propose a
differentiable recalibration approach for regression, which allows them to enforce calibration during
training and minimize the negative log-likelihood. In a similar vein, Capone et al. (2024) exploits
properties of kernel models to formulate a flexible calibration approach that can be optimized for
sharpness.

6 DISCUSSION

Even though our approach provides finite-sample statistical guarantees, the corresponding bounds
are not tight, as they are obtained by applying the union bound (see Appendix B). A way to poten-
tially improve them would be to closely look at the correlation between all the candidate models
considered when picking the optimal one.

Theorem 3.2 applies to a setting where we discriminate between any set of models, regardless of
how they are obtained. Hence, it can potentially be used to discriminate among models that are
obtained through different training procedures. This allows us to train multiple models in parallel,
e.g., using different loss functions, and then pick the best one according to the procedure detailed in
Algorithm 1.

A potential downside of the model considered in Section 4 is that it does not explicitly enforce non-
crossing quantiles. While this is not uncommon (Chung et al., 2021; Kuleshov & Deshpande, 2022),
it may be problematic in settings where the interpretability of the model is important. This can be
mitigated by employing different techniques that rigorously enforce this requirement (Bondell et al.,
2010), though performance may otherwise suffer.

7 CONCLUSION

We have presented calibration-guided quantile regression, a simple technique that minimizes the
pinball loss to find the sharpest model subject to some miscalibration error. Our method is straight-
forward to implement and combines two well-established quantities in a novel manner. We have
carried out a thorough Pareto analysis of the calibration/sharpness trade-off, which shows that our
approach achieves a better trade-off than more involved and computationally expensive state-of-
the-art approaches. Our work also indicates potential exciting future directions, such as choosing a
model from a larger pool of candidates, and using Pareto fronts to devise new loss functions.
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A APPROXIMATION OF EXPECTED PINBALL LOSS

By employing the change of variables z = F (u | X) − τ , the model-dependent component can be
reformulated as

E

[∫ q̂(X,τ)

q(X,τ)

(
F (u | X)− τ

)
du

]
= E

[∫ F (q̂(X)|X)−τ

z=0

z

f (q(X, τ + z) | X)
dz

]
(14)

Assuming f (q(X, τ + z) | X) is differentiable in z, a first-order Taylor expansion then yields

E

[∫ F (q̂(X)|X)−τ

z=0

z

f (q(X, τ + z) | X)
dz

]

=E

[∫ F (q̂(X)|X)−τ

z=0

0 +
1

f (q(X, τ)+ | X)
z +O(z2) dz

]

≈E

[∫ F (q̂(X)|X)−τ

z=0

z

f (q(X, τ)+ | X)
dz

]

=E

[
(F (q̂(X) | X)− τ)

2

f (q(X, τ)+ | X)

]
.

(15)

B PROOF OF THEOREM 3.2

To prove our result, we employ the following result, which is due to Romano et al. (2019).
Lemma B.1 (Romano et al. (2019), Lemma 2). Suppose Z1, . . . , Zn, Zn+1 are exchangeable ran-
dom variables and almost surely distinct. Let Z(⌈(n+1)α⌉) denote the ⌈(n + 1)α⌉-th smallest value
in Z1, . . . , Zn. Then, for any α ∈ (0, 1),

α ≤ P
[
Zn+1 ≤ Z(⌈(n+1)α⌉)

]
≤ α+

1

n
. (16)

As a direct consequence, the empirical miscalibration for a single quantile level τ and model q̂ is
accurate up to an additive constant of 1

|Dval| :

Lemma B.2. Consider a model q̂ and the random variables Z1, . . . , Z|Dval|, Z|Dval|+1 defined as

Zi := q̂(Xi, τ)− Yi.

Furthermore, let

eτ = τ − 1

|Dval|

|Dval|∑
i=1

1(Zi ≤ 0) (17)

be the signed miscalibration error for a specific quantile τ . Then,

−eτ ≤ E[1(Zn+1 ≤ 0)− τ ] ≤ −eτ +
1

|Dval|
. (18)

Proof. We first consider the case where τ − eτ ∈ (0, 1), and then handle the edge cases separately.

By definition of eτ , exactly |Dval|(τ − eτ ) of the Zi are nonpositive, so

Z(|Dval|(τ−eτ )) ≤ 0 < Z(|Dval|(τ−eτ )+1).

For the upper bound, since Z(|Dval|(τ−eτ )+1) ≤ Z(⌈(|Dval|+1)(τ−eτ )⌉), Lemma B.1 gives

P(Zn+1 ≤ 0) ≤ P
(
Zn+1 ≤ Z(⌈(|Dval|+1)(τ−eτ )⌉)

)
≤ (τ − eτ ) +

1
|Dval| .

Subtracting τ yields
E[1(Zn+1 ≤ 0)− τ ] ≤ −eτ + 1

|Dval| .
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For the lower bound, note that Z(|Dval|(τ−eτ )) ≤ 0. Applying Lemma B.1 with α = τ − eτ gives

P(Zn+1 ≤ 0) ≥ P
(
Zn+1 ≤ Z(|Dval|(τ−eτ ))

)
≥ τ − eτ .

Subtracting τ yields
E[1(Zn+1 ≤ 0)− τ ] ≥ −eτ .

Now, if τ − eτ = 0, we have that Zi > 0 for all i, hence, for any α > 0,

P [Zn+1 ≤ 0] ≤ P
[
Zn+1 ≤ Z⌈|Dval|α⌉

]
= P [Zn+1 ≤ Z1] ≤ α+

1

|Dval|
. (19)

Since this holds for any α > 0, it must hold for the limit as α → 0, i.e., P [Zn+1 ≤ 0] ≤ 1
|Dval| . The

same argument holds for τ − eτ = 1.

By applying the union bound, we can obtain a result similar to Lemma B.2 for multiple models
jointly:

Lemma B.3. Consider m models q̂θ1 , . . . , q̂θm and the random variables Z(j)
i := q̂θj (Xi, τ)− Yi,

j = 1, . . . ,m, i = 1, . . . , n. Furthermore, let

e(j)τ = τ − 1

|Dval|

|Dval|∑
i=1

1(Z
(j)
i ≤ 0) (20)

be the signed miscalibration error for a specific quantile τ and model j, and assume maxj e
(j)
τ ≤ ϵ.

Then, for any 0 < γ < 1, with probability at least 1− 2m exp
(
−2γ2|Dval|

)
,

max
j

∣∣∣E [1(Z(j)
n+1 ≤ 0

)
− τ
]∣∣∣ ≤ ϵ+

1

|Dval|
+ γ (21)

Proof. We know that, for every j,

E
[
1

(
Z

(j)
n+1 ≤ 0

)
− τ
]
:= ∆j ∈

[
−e(j)τ − 1

|Dval|
,−e(j)τ +

1

|Dval|

]
From the union bound and Hoeffding’s inequality, we have

P

 ∃ j :

∣∣∣∣∣∣∆j −
1

|Dval|

|Dval|∑
i=1

1(Z
(j)
i ≤ 0) + τ

∣∣∣∣∣∣ ≥ γ


≤

m∑
j=1

P

 ∣∣∣∣∣∣∆j −
1

|Dval|

|Dval|∑
i=1

1(Z
(j)
i ≤ 0) + τ

∣∣∣∣∣∣ ≥ γ


≤ 2m exp

(
−2γ2|Dval|

)
(22)

Hence, with probability at least 1− 2m exp
(
−2γ2|Dval|

)
,

max
j

∣∣∣E [1(Z(j)
n+1 ≤ 0

)
− τ
]∣∣∣ ≤ max

j
e(j)τ +

1

|Dval|
+ γ. (23)

The result then follows from maxj e
(j)
τ ≤ ϵ.

A direct consequence of Lemma B.3 is that we bound the miscalibration error on all models jointly
with high probability based on the empirical ECE:
Lemma B.4. Consider m models q̂θ1 , . . . , q̂θm and let their empirical miscalibration errors satisfy
ÊCEDval(q̂θi) ≤ ϵ. Then, for any 0 < γ < 1, with probability at least 1 − 2m exp

(
−2γ2|Dval|

)
,

their miscalibration errors satisfy

ECE(q̂θi) ≤ ϵ+
1

|Dval|
+ γ, ∀ j = 1, . . . ,m. (24)
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Proof. From (20) and the definition of empirical miscalibration error, we have

ϵ ≥
∫ 1

τ=0

|e(j)τ |dτ. (25)

Furthermore, from Lemma B.3, we have that

max
j

ECE(q̂θj ) = max
j

∫ 1

τ=0

∣∣∣P [Z(j)
n+1 ≤ 0

]
− τ
∣∣∣ dτ

≤max
j

∫ 1

τ=0

(
|e(j)τ |+ 1

|Dval|
+ γ

)
dτ ≤ ϵ+

1

|Dval|
+ γ.

(26)

Proof of Theorem 3.2. Algorithm 1 discards all but m(ϵ) models and picks the one with the low-
est empirical sharpness among them. Hence, the probability that the chosen model q̂θ∗ satisfies
ECE(q̂∗θ) ≤ ϵ + 1

|Dval| + γ is upper-bounded by the probability that all m(ϵ) models satisfy this
property jointly. The result then follows from Lemma B.4.
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C PARETO FRONTS ACROSS MODELS
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Figure 3: Pareto fronts for different model sizes for each dataset. Red is a single-layer NN with 32
hidden dimensions, blue is a two-layer NN with 64 hidden dimensions, green is a four-layer NN
with 128 hidden dimensions, brown is an eight-layer NN with 264 hidden dimensions. The latter is
identical to that used in the experimental section of the paper.
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D NUCLEAR FUSION DATASET

The input variables for the nuclear fusion dataset are as follows:

betan EFIT01, dssdenest, li EFIT01, vloop, temp component1, temp component2,
temp component3, temp component4, itemp component1, itemp component2, itemp component3,
itemp component4, dens component1, dens component2, dens component3, dens component4,
rotation component1, rotation component2, rotation component3, rotation component4,
pres EFIT01 component1, pres EFIT01 component2, pinj, tinj, ipsiptargt, bt magnitude,
bt is positive, gasA, aminor EFIT01, tritop EFIT01, tribot EFIT01, kappa EFIT01,
rmaxis EFIT01, zmaxis EFIT01, ech pwr total

E BASELINES FOR EXPERIMENTAL SECTION

Calibration Loss (Cali): Calibration loss Chung et al. (2021) optimizes for an empirical calibration
objective,

C(D, Q̂p, p) = I{p̂obs
avg < p} ∗ 1

N

N∑
i=1

[(yi − Q̂p(xi))I{yi > Q̂p(xi)}]

where Q̂p is the quantile prediction for quantile level p ∈ (0, 1), and p̂obs
avg is the average portion

of observed data that lies below the quantile prediction, p̂obs
avg = 1

N

∑N
i=1[yi ≤ Q̂p(xi)]. This loss

is minimized by an average calibration solution on D. During training, the model is trained on
uniformly random probabilities, i.e., the training objective is Ep∼Unif(0,1)C(D, Q̂p, p).

Interval Score (Interval): Interval score Chung et al. (2021) incentivizes the model to output a
centered prediction interval (PI) by minimizing the loss,

Sα(l̂, û; y) = (û− l̂) +
2

α
(l̂ − y)I{y < l̂}+ 2

α
(y − û)I{y > û}

where (l̂ = Q̂α
2
(x), û = Q̂1−α

2
(x)) is the (1 − α) centered PI. To train for all quantile levels, the

training objective is Eα∼Unif(0,1)Sα.

Model Agnostic Quantile Regression (MAQR): MAQR Chung et al. (2021) takes as input the
training data along with a trained regression model f̂(x) which is used to construct a dataset of
residuals. By assuming nearby points in X will have similar conditional distributions, an empirical
CDF is constructed to model the distribution of residuals given x. From this empirical CDF, a
quantile model ĝ(x, p) is trained, yielding a final quantile prediction Q̂p(x) = f̂(x) + ĝ(x, p).

CaliPSo: With CaliPSo Capone et al. (2025), the quantile model is optimized exclusively for sharp-
ness while maintaining marginal calibration at all times during training. Quantile models are trained
on a subset of data D2δ selected for a centered prediction interval, (δ, 1− δ):

D2δ =

{
{(xi, yi) ∈ D|q̂calδ (xi) ≤ yi ≤ qcal1−δ(xi)}, 0 < δ < 0.5

D, δ = 0

where q̂calp = q̂0(x) + αp(q̂1(x) − q̂0(x)), and αp = quantile(p, y−q̂0(x)
q̂1(x)−q̂0(x)

). Model predictions
are shifted such that they lie above or below D2δ:

q̂δ(x) = min
xi,yi∈D2δ

(yi−q̂uncalδ (xi))+q̂uncalδ (xi), q̂1−δ(x) = max
xi,yi∈D2δ

(yi−q̂uncal1−δ (xi))+q̂uncal1−δ (xi)

Models are trained to minimize average error, Exi,yi∼D2δ
(||q̂δ(xi)− yi||1).

Quantile Recalibration Training (QRT): QRT Dheur & Ben taieb (2024) trains a model to predict
the CDF Fθ(Y |X). During training, negative log-likelihood is used to optimize the differentiable
recalibration map ΦREFL

θ composed with Fθ, which is implemented with the loss:

L(θ) = − 1

B

B∑
i=1

log fθ(Yi|Xi) + α log ϕREFL
θ (Fθ(Yi|Xi))

for a batch of size B. For our tests, we use hyperparameters α = 1 and C = False, meaning the
trained CDF model Fθ is the training output.
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F PLOTS FOR RECALIBRATED MODELS
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Figure 4: Test time performance of methods in terms of ECE (x-axis) vs Sharpness (y-axis) for
different datasets and methods after recalibration. The number in Lower is better for both metrics.
The numbers in brackets indicate the dataset size.
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G FULL PARETO METRICS

Table 2: Pareto front metrics in calibration and sharpness space. We report the IGD, GD, and
normalized HV, as described in Subsection 2.4. Lower is better for GD and IGD, higher is better
for HV. Our method (CGQR) is evaluated, along with Cali, Interval and Model Agnostic Quantile
Regression (MAQR) Chung et al. (2021), CaliPSo Capone et al. (2025), and QRT Dheur & Ben taieb
(2024). Lower is better for all metrics. The best results across methods are highlighted in bold.

CGQR CALI INTERVAL MAQR CALIPSO QRT

WINE
IGD (↓) 1.09 ± 0.14 2.08 ± 0.19 1.83 ± 0.29 5.30 ± 0.57 2.93 ± 0.50 1.04 ± 0.13
GD (↓) 0.67 ± 0.05 1.27 ± 0.11 0.72 ± 0.04 1.23 ± 0.12 0.98 ± 0.19 0.73 ± 0.13
HV (↑) 0.86 ± 0.02 0.76 ± 0.02 0.74 ± 0.05 0.38 ± 0.03 0.60 ± 0.02 0.90 ± 0.01

CONCRETE
IGD (↓) 0.31 ± 0.04 0.83 ± 0.10 1.54 ± 0.41 1.74 ± 0.23 1.35 ± 0.16 0.37 ± 0.06
GD (↓) 0.25 ± 0.03 0.48 ± 0.08 0.53 ± 0.18 0.48 ± 0.25 0.44 ± 0.01 0.43 ± 0.08
HV (↑) 0.95 ± 0.00 0.76 ± 0.01 0.74 ± 0.06 0.68 ± 0.02 0.76 ± 0.04 0.90 ± 0.02

POWER
IGD (↓) 0.17 ± 0.05 0.31 ± 0.07 1.35 ± 0.21 1.69 ± 0.20 1.93 ± 0.06 0.24 ± 0.01
GD (↓) 0.05 ± 0.01 0.03 ± 0.01 0.26 ± 0.05 0.29 ± 0.17 0.92 ± 0.31 0.15 ± 0.01
HV (↑) 0.97 ± 0.00 0.91 ± 0.02 0.59 ± 0.09 0.49 ± 0.02 0.39 ± 0.04 0.88 ± 0.01

ENERGY
IGD (↓) 0.24 ± 0.05 0.63 ± 0.04 0.88 ± 0.10 1.65 ± 0.25 0.99 ± 0.04 0.24 ± 0.06
GD (↓) 0.18 ± 0.06 0.31 ± 0.06 0.66 ± 0.14 0.22 ± 0.06 0.94 ± 0.30 0.13 ± 0.03
HV (↑) 0.94 ± 0.01 0.75 ± 0.02 0.80 ± 0.04 0.44 ± 0.08 0.68 ± 0.06 0.97 ± 0.01

KIN8NM
IGD (↓) 0.31 ± 0.08 0.44 ± 0.07 0.49 ± 0.11 1.88 ± 0.14 1.70 ± 0.10 0.38 ± 0.01
GD (↓) 0.05 ± 0.00 0.13 ± 0.03 0.22 ± 0.03 0.88 ± 0.06 0.45 ± 0.20 0.35 ± 0.03
HV (↑) 0.93 ± 0.01 0.81 ± 0.02 0.85 ± 0.03 0.48 ± 0.02 0.67 ± 0.02 0.81 ± 0.01

DIAMONDS
IGD (↓) 0.31 ± 0.03 0.42 ± 0.01 0.87 ± 0.05 0.85 ± 0.05 1.07 ± 0.03 0.82 ± 0.03
GD (↓) 0.03 ± 0.00 0.02 ± 0.01 0.58 ± 0.11 0.66 ± 0.10 0.19 ± 0.06 1.63 ± 0.34
HV (↑) 0.95 ± 0.01 0.84 ± 0.02 0.57 ± 0.05 0.59 ± 0.01 0.65 ± 0.01 0.47 ± 0.04

NAVAL
IGD (↓) 5.76 ± 2.66 5.81 ± 2.65 4.92 ± 0.93 1.36 ± 0.42 1.11 ± 0.18 5.69 ± 2.08
GD (↓) 0.87 ± 0.29 1.10 ± 0.36 8.79 ± 2.50 0.01 ± 0.01 0.42 ± 0.14 1.98 ± 0.17
HV (↑) 0.96 ± 0.01 0.94 ± 0.01 0.75 ± 0.09 0.96 ± 0.02 0.96 ± 0.01 0.87 ± 0.02

ELEVATOR
IGD (↓) 0.70 ± 0.13 0.66 ± 0.23 4.37 ± 0.35 3.16 ± 0.03 5.51 ± 0.25 7.59 ± 0.14
GD (↓) 0.45 ± 0.07 0.84 ± 0.58 5.03 ± 0.08 5.71 ± 1.54 4.83 ± 0.12 12.22 ± 0.15
HV (↑) 0.95 ± 0.02 0.99 ± 0.00 0.71 ± 0.12 0.27 ± 0.04 0.70 ± 0.11 0.29 ± 0.07

YACHT
IGD (↓) 0.84 ± 0.24 0.66 ± 0.15 1.23 ± 0.30 2.60 ± 0.84 0.97 ± 0.08 0.74 ± 0.12
GD (↓) 0.71 ± 0.24 0.75 ± 0.25 0.86 ± 0.10 1.75 ± 0.79 0.99 ± 0.11 0.62 ± 0.19
HV (↑) 0.91 ± 0.07 0.89 ± 0.02 0.74 ± 0.05 0.58 ± 0.13 0.78 ± 0.02 0.85 ± 0.04

PROTEIN
IGD (↓) 0.36 ± 0.08 0.39 ± 0.09 3.92 ± 1.13 4.47 ± 1.15 5.19 ± 0.03 1.80 ± 0.17
GD (↓) 0.06 ± 0.01 0.16 ± 0.03 1.17 ± 0.33 3.13 ± 0.75 6.35 ± 1.06 0.35 ± 0.12
HV (↑) 0.98 ± 0.01 0.89 ± 0.01 0.54 ± 0.12 0.32 ± 0.02 0.33 ± 0.07 0.78 ± 0.03

FACEBOOK
IGD (↓) 2.68 ± 0.95 2.64 ± 0.91 3.12 ± 0.92 1.74 ± 0.25 3.30 ± 1.26 10.46 ± 1.99
GD (↓) 0.04 ± 0.01 0.04 ± 0.01 0.32 ± 0.10 2.05 ± 0.49 0.35 ± 0.07 324.78 ± 173.62
HV (↑) 0.68 ± 0.06 0.75 ± 0.06 0.92 ± 0.06 0.56 ± 0.10 0.74 ± 0.08 0.56 ± 0.19

BOSTON
IGD (↓) 0.77 ± 0.13 1.52 ± 0.18 0.53 ± 0.07 3.23 ± 0.39 1.32 ± 0.08 0.83 ± 0.11
GD (↓) 0.22 ± 0.03 0.29 ± 0.06 0.27 ± 0.04 2.38 ± 0.72 0.77 ± 0.12 0.93 ± 0.12
HV (↑) 0.88 ± 0.01 0.68 ± 0.04 0.89 ± 0.01 0.39 ± 0.08 0.70 ± 0.02 0.78 ± 0.04

FUSION
IGD (↓) 0.17 ± 0.05 0.48 ± 0.22 0.46 ± 0.08 2.12 ± 0.86 0.86 ± 0.38 0.22 ± 0.10
GD (↓) 0.00 ± 0.00 0.95 ± 0.66 0.57 ± 0.22 2.15 ± 1.46 0.07 ± 0.05 0.84 ± 0.56
HV (↑) 0.96 ± 0.03 0.82 ± 0.05 0.54 ± 0.13 0.37 ± 0.00 0.64 ± 0.01 0.72 ± 0.02
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