
Weighted Distance Nearest Neighbor Condensing

Lee-Ad Gottlieb 1 Timor Sharabi 1 Roi Weiss 1

Abstract

The problem of nearest neighbor condensing has
enjoyed a long history of study, both in its theo-
retical and practical aspects. In this paper, we in-
troduce the problem of weighted distance nearest
neighbor condensing, where one assigns weights
to each point of the condensed set, and then
new points are labeled based on their weighted
distance nearest neighbor in the condensed set.
We study the theoretical properties of this new
model, and show that it can produce dramati-
cally better condensing than the standard nearest
neighbor rule, yet is characterized by generaliza-
tion bounds almost identical to the latter. We then
suggest a condensing heuristic for our new prob-
lem. We demonstrate Bayes consistency for this
heuristic, and also show promising empirical re-
sults.

1. Introduction
The nearest neighbor (NN) classifier, introduced by (Fix &
Hodges, 1951), is an intuitive and popular learning tool. In
this model, a learner observes a sample of labeled points,
and given a new point to be classified, assigns the new point
the same label as its nearest neighbor in the sample. It
was subsequently demonstrated by Cover & Hart (1967)
that when no label noise is present, the nearest neighbor
classifier’s expected error converges to zero as the sample
size grows. This and other results helped spawn a deep
body of research into proximity-based classification (De-
vroye et al., 1996; Shalev-Shwartz & Ben-David, 2014).

Nearest neighbor classifiers enjoy other advantages as well.
They require only a distance function on the points, and do
not even require that the host space be metric. They also
extend naturally to the multi-class setting. Yet they are not
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without their disadvantages: For example, a naive nearest
neighbor approach may require storing the entire sample.
To address the disadvantages of the NN classifier, (Hart,
1968) introduced the technique of sample compression for
the NN classifier. This work defined the minimum consis-
tent subset problem (also called the nearest neighbor con-
densing problem): Given a sample, find a minimal subset
of the sample that is consistent with it, meaning that for
every point of the sample, its nearest neighbor in the sub-
set (that is the condensed set) has the same label. (Hart,
1968) further suggested a heuristic for the NN condensing
problem. Analysis of this problem, as well as the creation
of new heuristics for it, has been the subject of extensive
research since its introduction (Gates, 1972; Ritter et al.,
1975; Devroye et al., 1996; Wilson & Martinez, 2000).

Our Contribution In this paper, we introduce a novel
modification of the NN condensing problem. In our new
condensing problem (presented formally in Section 2),
each point of the condensed set is also assigned a weight.
We modify the distance function to consider weighted dis-
tance, meaning that the distance from a new point to a point
in the condensed set is their original distance divided by
the weight of the point in the condensed set. It follows
that assigning high weight to a point in the condensed set
increases its influence on the labeling of new points. We
call the new problem of choosing a condensed set and as-
signing its weights the weighted distance nearest neighbor
condensing problem.

We proceed with an in-depth study of the statistical proper-
ties of weighted distance condensing (Section 3). Crucially,
we find that our model allows dramatically better con-
densing than what is possible under standard (that is, un-
weighted) NN condensing: There are families of instances
wherein the optimal condensing under unweighted NN rule
is of size Θ(n), while condensing under the weighted NN
(WNN) rule yields a condensed set of size exactly 2 (Theo-
rem 3.1). At the same time, we demonstrate generalization
bounds for condensing under the WNN rule which are al-
most identical to those previously known for the NN rule
(Theorem 3.4). This means that the much more powerful
weighted rule can be adopted with only negligible increase
in the variance of the model, so that the more powerful rule
does not contribute to overfitting.
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Having established these statistical properties of WNN
condensing, we suggest a greedy-based heuristic for this
problem, that is the identification of a condensed set and
the assignment of weights to members of this set (Section
4). We further demonstrate that the suggested heuristic is a
member of a broad set of classifiers which are Bayes con-
sistent, thereby lending statistical support to its use.

After deciding on a heuristic for our condensing problem,
we compare its empirical condensing abilities to those of
popular heuristics for the unweighted NN problem (Sec-
tion 5). We find that that the condensing bounds of our
heuristic compare favorably to the others, which addition-
ally suggests that further research on heuristics for WNN
condensing is a promising direction.

1.1. Related Work

The nearest neighbor condensing problem is known to be
NP-hard (Wilfong, 1991; Zukhba, 2010), and (Hart, 1968)
provided the first heuristic for it. Many other heuristics
have been suggested since, and we mention only a few
of them here: (Gates, 1972) introduced the reduced near-
est neighbor (RNN) rule heuristic to iteratively contract
the sample set. (Ritter et al., 1975) introduced the selec-
tive subset heuristic, which additionally guarantees that for
any sample point, the distance to its nearest neighbor in
the compressed set is less than the distance to any sam-
ple point with opposite label. (Barandela et al., 2005)
subsequently suggested a modification to this algorithm,
which they called modified selected subset (MSS). Angiulli
(2005) introduced the fast nearest neighbor condensing
(FCNN) heuristic, while Flores-Velazco (2020) introduced
the RSS and VSS heuristics, which modify the FCNN algo-
rithm to improve its behavior in cases where the points are
too close to each other. Another popular heuristic, modi-
fied condensed nearest neighbor (MCNN), was introduced
by (Devi & Murty, 2002).

No concrete algorithmic condensing bounds were known
for NN condensing until the work of Gottlieb et al. (2018):
They derived hardness-of-approximation results, and de-
signed an algorithm called NET, which computes in poly-
nomial time an approximation to the minimum subset al-
most matching the hardness bounds. This approach was
later extended by Gottlieb & Ozeri (2019) to asymmetric
distance function. Also related to this is the result of Got-
tlieb & Kontorovich (2022), which presented non-uniform
packing, that is using balls with different radii.

As for the statistical properties of NN condensing rules,
Devroye et al. (1996, Chapter 19) established Bayes consis-
tency for an intractable rule that searches for a condensed
set of fixed, data-independent size, minimizing the empir-
ical error on the entire sample. They showed that uni-
versal Bayes consistency is achieved in finite-dimensional

spaces provided the size of the condensed set is sub-
linear in the sample size. Hanneke et al. (2021) intro-
duced a computationally-efficient data-dependent sample-
compression NN rule, termed OptiNet, that computes a
net of the samples and associates each point of the con-
densed set with the majority vote label in its Voronoi cell.
They showed that OptiNet is universally Bayes consistency
in any separable metric space. A simpler sub-sampling
NN rule achieving universal Bayes consistency in separable
metric spaces was demonstrated by Györfi & Weiss (2021),
establishing also error rates. Xue & Kpotufe (2018) stud-
ied the error rates achieved by more complex sub-sampling
NN rules. Lastly, Kerem & Weiss (2023) studied jointly-
achievable error and compression rates for OptiNet under a
margin condition.

Our main statistical contribution is a compression bound
(Theorem 3.4). Similar finite-sample bounds (up to con-
stants) for standard NN rules were established in Gottlieb
et al. (2014); Kontorovich et al. (2017); Hanneke et al.
(2021); in particular, leverage the fact that such bounds are
dimension free. See also (Cohen & Kontorovich, 2022),
who gave compression bounds for learning mappings be-
tween two metric spaces.

We note that our weighted approach to the NN condensing
is not related to the weighted KNN model (Dudani, 1976).
Weighted KNN is a classification model (not a compression
optimization problem), a variant of KNN which classifies
using the k closest neighbors while giving additional pref-
erence to some of them. Its local use of the underlying
geometry of the k neighbors is unrelated to our assignment
of weights to points of a condensed set in order to create a
new global distance function. Our weights are chosen for
condensing a realizable sample in a pre-processing stage,
not for local denoising among the neighbors in the search
stage. Likewise, our condensing approach places emphasis
on farther points over closer ones, which is the opposite of
what is done for denoising in the KNN model.

1.2. Preliminaries

Metric Space. A metric d defined on a point set X is a
positive symmetric function satisfying the triangle inequal-
ity, i.e. d(x, y) ≤ d(x, z)+d(z, y). The set X and metric d
together define the metric space (X , d). Let B(x, r) denote
the (open) ball centered at x with radius r; a point y ∈ X
is in B(x, r) if d(x, y) < r.

Notation. We use [k] to denote {1, . . . , k}. We define the
distance between a point y and set S as the distance of y to
the closest point in S, that is d(x, S) = miny∈S d(x, y).
For a set S, we denote its cardinality by |S|.
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2. Nearest Neighbor Rules
Given a metric space (X , d) and a labeled sample S ⊂ X
(where l(x) is the label of point x ∈ X ), the nearest neigh-
bor condensing problem is to find a subset S̃ ⊂ S of min-
imal cardinality, such that the nearest neighbor rule on S̃
classifies all sample points in S correctly; that is, for any
point x ∈ S, l(x) = l(argminy∈S̃ (d (x, y))).

Now let w : X → (0,∞) be a positive weight function,
and define the weighted distance

d̃(x, x′) =
d(x, x′)

w(x) · w(x′)
, x, x′ ∈ X .

This is our weighted distance nearest neighbor (WNN) rule,
under which we may define a WNN classifier:

h(S̃,w)(x) = l(argmin
y∈S̃

d̃(y, x)), x ∈ X .

Note that the weighted distance may not satisfy the triangle
inequality. In the weighted condensing problem, we seek
a subset S̃ ⊂ S and a weight assignment w for S̃ (with
w(x) = 1 for all x ∈ X \ S̃), such that for each point
x ∈ S, the weighted distance nearest neighbor of x in S̃
has the same label as x, h(S̃,w)(x) = l(x).

It is easy to see that WNN is a generalization of the NN
rule, as the latter can be recovered by simply taking all
weights to be equal to 1. Let us motivate our weighted
distance function by illustrating the effect of weighting on
the Euclidean decision boundary between two points. Con-
sider two points in the Euclidean plane, p1 = (x1, y1) and
p2 = (x2, y2). If w(p1) = w(p2), then the WNN deci-
sion boundary is equivalent to the NN decision boundary,
defined by√

(x1 − x)2 + (y1 − y)2 =
√
(x2 − x)2 + (y2 − y)2,

which can be simplified to a line in slope-intercept form:

y = x · x1 − x2

y2 − y1
+
−x2

1 + x2
2 − y21 + y22

2(y2 − y1)
.

In contrast, when w(p1) ̸= w(p2), the decision boundary
is defined by√

(x1 − x)2 + (y1 − y)2

w1
=

√
(x2 − x)2 + (y2 − y)2

w2
.
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Figure 1: Illustration of decision boundary for equal (left)
and unequal weights (right). In the right figure, w(p1) =
1.5 and w(p2) = 1, where p1 is its left point and p2 is its
right point.

See Figure 1. The fact that WNN induces a circular bound-
ary (and in higher dimension, a ball separator) will be use-
ful for our proofs and constructions. The separator induced
by the standard unweighted NN rule is simply the Voronoi
diagram.

While the distance function for nearest neighbor condens-
ing rules is often taken to be the Euclidean norm, all our
results below hold for all metric distance functions.

3. Properties of Weighted Distance Nearest
Neighbor

In this section, we establish condensing properties under
WNN, especially in comparison to condensing properties
already known for the regular unweighted nearest neighbor
(NN) rule. We show that the former rule is strictly more
powerful: It can always yield condensing as good as the
latter, and in some cases better by a factor of Θ(n). At
the same time, we derive generalization bounds for WNN
condensing that are essentially the same as those known for
NN condensing, so that the utilization of a more powerful
tool does not lead to an increase in generalization error.

3.1. Condensing Bounds

As weighted nearest neighbor generalizes unweighted
nearest neighbor, it can only improve the condensing. We
can in fact show the following:

Theorem 3.1. For any n, there exists an n-point data-set
that can be condensed to 2 candidates under the WNN rule,
but requires Θ(n) candidates under the NN rule.

In place of simply presenting a construction achieving the
bound of Theorem 3.1, we will instead present a new con-
densing rule we call the ball cover (BC) rule, and show that
WNN generalizes this rule as well. We then demonstrate
that condensing under NN and BC is incomparable, in that
each rule admits n-point sets that it can condense to a con-
stant size, but which the other cannot condense below Θ(n)
points. This expanded explanation will yield a better under-
standing of the power of WNN, and motivate the heuristic
of Section 4 below.
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Ball Cover Rule. We define another rule for condensing,
the ball cover (BC) rule: Given the input points S ⊂ X ,
we must produce a subset S̃ ⊂ X of minimum cardinal-
ity, and also assign each point xi ∈ S̃ a radius ri. Let
Bi = B(xi, ri). We require for all xi ∈ S̃ and xj ∈ S
with l(xi) ̸= l(xj), that ri < d(xi, xj). It follows that no
ball contains sample points of the opposite label. The de-
cision rule simply assigns a point x ∈ S the same label as
the center of a ball containing x. A valid BC condensing
satisfies that every x ∈ S \ S̃ is found in a ball Bi satisfy-
ing l(x) = l(xi). (There is however a caveat relating to the
labeling of points not in the sample: These points can fall
into multiple balls, or no ball at all. In these cases, one may
impose some arbitrary decision rule, such as a priority over
the balls.)

The BC rule is motivated by the NET algorithm of Gottlieb
et al. (2018). This algorithm can be viewed as covering
the space with balls of equal radius. The BC rule is an
extension of the NET approach to balls of different radii.

It is easy to show that WNN generalizes the BC rule: Given
a condensed set S̃ with assigned radii ri, a WNN classi-
fier can be produced by taking the same points of S̃, and
assigning weight w(xi) = ri for each xi ∈ S̃. Con-
sider any point x ∈ S \ S̃ falling in Bi but not in Bj ,
and we have that d̃(x, xi) = d(x,xi)

w(xi)
< ri

ri
= 1, while

d̃(x, xj) =
d(x,xj)
w(xj)

≥ rj
rj

= 1, so that the WNN rule is
indeed consistent with the BC rule on the sample.

Comparison Between NN and BC. It remains to prove
the following lemma, concerning condensing under the NN
and BC rules:

Lemma 3.2. For any n, there exists an n-point data-set
that can be condensed to 2 candidates under the NN rule,
but requires Θ(n) candidates under the BC rule.

Likewise, for any n, there exists an n-point data-set that
can be condensed to 2 candidates under the BC rule, but
requires Θ(n) candidates under the NN rule.

As WNN generalizes BC, Theorem 3.1 follows immedi-
ately from Lemma 3.2. It remains to prove the lemma.

Proof of Lemma 3.2. For the first item of the lemma, as-
sume without loss of generality that n is even, and set
γ = n/2. Our example set X will have γ red points and γ
blue points, with a diameter Θ(n) and minimum distance
of 1 between the points. Let c = 1

2 , and add to the set γ red
points at positions {(i, c) : i ∈ [γ]}, and γ blue points at
positions {(i,−c) : i ∈ [γ]}. See Figure 2.

Now under the NN rule, there exists a solution which uses
only two points: This solution S takes the red point at
(1, c) together with the blue point at (1,−c): Take any red

point at (i, c), and its distance from the red candidate is
i − 1, while its distance from the blue candidate is exactly√

(i− 1)2 + 4c2 > i − 1. A similar argument applies to
the blue points, and so we conclude that S is a consistent
condensing of X .

Turning to the BC rule, we show that any solution under
this rule must have all n points: Assume by contradiction
that we can consistently cover all the points of X with only
k balls, where k < n. This implies that there exists some
solution ball which covers 2 or more points of the same
color; assume without loss of generality that this ball is
red, and its center is pi = (i, c). As this ball covers more
than a single red point, its radius must be greater than 1, but
then it contains the blue point (i,−c), which is forbidden.
We conclude that no ball contains more than one point, and
so the optimal solution under BC must contain exactly n
points.

For the second item of the lemma, assume without loss of
generality that n is odd, set γ = n−1

2 , and further assume
that γ is odd. Our example has γ blue points and γ + 1 red
points: Let the points {(0, 2i) : i ∈ [γ]} be red, and the
points {(1, 2i + 1) : i ∈ [γ − 1]} be blue. Set t = (γ+1)2

2 ,
and add an additional red point r = (−t, γ + 1), and an
additional blue point b = (2t, γ + 1). See Figure 2.

We show that under the BC rule, two balls are sufficient to
correctly label all points: First take the red ball centered
at r with radius

√
t2 + (γ + 1)2 =

√
t2 + 2t < t + 1.

Clearly this ball contains no blue points, since the line con-
taining the blue points is at distance exactly t + 1 from r.
But the ball contains all the red points, as the farthest red
points from r are at (0, 2) and (0, 2γ), both of which are
at distance

√
t2 + (γ − 1)2 from the ball center, and hence

inside the ball. Now take the blue ball centered at b with
radius

√
4t2 + (γ + 1)2 =

√
(2t)2 + 2t < 2t+ 1. A sim-

ilar argument to that above shows that this ball contains all
blue points, but none of the red.

We show that under the NN rule, at least n− 2 points must
be found in the condensed set. First take the blue points
on the line x = 1, and at least one of these must be in the
condensed set: If only b were in the condensed set, then
the other blue points would be closer to every red point
in the condensed set. Now take a blue point (1, 2i + 1)
in the condensed set, and it must be that the red points
(0, 2i), (0, 2i+ 2)) are both in the condensed set, since the
blue point is their nearest neighbor. It similarly follows that
blue points (1, 2i−1), (1, 2i+3) are both in the condensed,
and in fact that all red points on the line x = 0 and all blue
points on the line x = 1 are in the condensed set.
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Figure 2: Left: A set that admits good condensing under the NN rule, but not under the BC rule. Right: A set that admits
good condensing under the BC rule, but not under the NN rule.

3.2. Learning Bounds

Here we establish uniform generalization bounds for WNN
rules. By definition, a general WNN classifier is uniquely
determined by a subset of labeled samples S̃ and a weight
function w. In addition, since w(x) = 1 for all x /∈ S̃, w
is uniquely determined by its values on S̃. The following
representation lemma establishes a 2|S̃|-sample compres-
sion scheme for the class of WNN rules, which will allow
us to derive compression-based error bounds (Littlestone
& Warmuth, 1986; Floyd & Warmuth, 1995; Graepel et al.,
2005).

Lemma 3.3. There exist an encoding function C and a re-
construction functionR that satisfy the following: For any
finite labeled set S, any subset S̃ ⊂ S, and any weight as-
signment w for S̃, if the WNN classifier corresponding to
the pair (S̃, w) is consistent on S, then C(S, S̃, w) returns
two ordered labeled subsets S̃′, W̃ ′ ⊂ S, each of size |S̃|,
such that the WNN classifier hS̃′,W̃′ = R(S̃′, W̃ ′) is con-
sistent on S.

Proof. We first describe the encoding function C that given
S and the pair (S̃, w), selects S̃′, W̃ ′. Then we will de-
scribe the reconstruction function R and conclude that
R(S̃′, W̃ ′) is indeed consistent on S.

Given S and (S̃, w), the encoding function C returns two
ordered lists S̃′, W̃ ′ ⊂ S such that S̃′ has the same sam-
ple points as S̃ but in a specific order, and W̃ ′ consists of
sample points from S from which appropriate weights for
S̃′ can be deduced via R. The first sample in the list S̃′

corresponds to x ∈ S̃ having the maximal weight, and the
first sample in W̃ ′ is also taken as x. Subsequent points are
added to S̃′ and W̃ ′ by the following procedure: Starting
with initial weights as determined by w, multiplicatively
increase the weights of all points of S̃ not yet placed in S̃′,
until one of the following occurs:

(i) A point x ∈ S̃ \ S̃′ has weight equal to that of a point
already in S̃′, say x1. Then x is added to S̃′ and x1 is
added to W̃ ′.

(ii) There is some point x ∈ S \ S̃ that became equidistant
(under weighted distance) from its closest point x1 ∈
S̃ of the same label, and its closest point x2 ∈ S̃ with
opposite label. It must be that x1 is already in S̃′, or
else the weights of x1, x2 would increase in unison.
Then x2 is added to S̃′ and x is added to W̃ ′.

The weight increase procedure is carried on until all sam-
ples of S̃ have been placed in S̃′.

As for the reconstruction, given two lists of sample point-
label pairs S̃′ = ((x1, y1), . . . , (xm, ym)) and W̃ ′ =
((x′

1, y
′
1), . . . , (x

′
m, y′m)) that have been computed by C as

described above, the reconstruction function R construct a
WNN classifier corresponding to the pair (S̃′, w′), where
the weight assignment w′ is computed as follows. The
weight of the first point in S̃′ is set to w′(x1) = 1. The
weights of subsequent points in S̃′ are set depending on
their corresponding points in W̃ ′: For k > 1,

• If xk appears in (x1, . . . , xk−1), say as xj , then we
are in case (i), and thus put w′(xk) = w′(xj).

• If xk does not appear in (x1, . . . , xk−1), then we are
in case (ii), and (x′

k, y
′
k) corresponds to a witness for

(xk, yk) and some other point in (x1, . . . , xk−1), say
(xj , yj). The identity of xj can be inferred by finding
the point in (x1, . . . , xk−1) with label opposite to yk
and having the minimal weighted distance to x′

k,

xj = argmin
xi∈{x1,...,xk−1}:yi ̸=yk

{
d(x′

k, xi)

w′(xi)

}
,

breaking ties towards xi with smallest index i. Then
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w′(xk) is set to satisfy the equation

d(x′
k, xk)

w′(xk)
=

d(x′
k, xj)

w′(xj)
.

Since multiplying the weights of several points in unison do
not change their pairwise weighted-distance boundaries, it
is clear that during the whole construction process done in
C, the classifier remains consistent on S, provided ties in
weighted distances are decided in favor of points in S̃′ of
smaller index. HenceR(S̃′, W̃ ′) is consistent on S.

Lemma 3.3 can be used to derive generalization bounds,
as we show in Theorem 3.4. But note first that the recon-
struction functionR of Lemma 3.3 heavily relies on that S̃′

and W̃ ′ are ordered. Below in Section 4 we will consider a
subclass of WNNs whose R assumes no such matching is
given, and this matching needs to be deduced. In this case
a tighter generalization bound holds, which we will lever-
age to establish Bayes consistency for the aforementioned
subclass in Section 4.2. Formally, a reconstruction func-
tion R is said to be permutation invariant if for any two
arbitrary permutations σ1, σ2 of the samples in S̃′ and W̃ ′

respectively,

R(σ1(S̃
′), σ2(W̃ ′)) = R(S̃′, W̃ ′). (1)

In other words, a permutation invariantR is able to deduce
the matching between the samples in S̃′ and their weights
from the unordered elements of S̃′ and W̃ ′ alone.

We can now present the generalization bounds. These
essentially correspond to sample compression-based error
bounds for the compression scheme established in Lemma
3.3. See Section 1.1 for previously known bounds related
to these.

Theorem 3.4. For any probability distribution of x, any
labeling function l : X → {−1, 1}, and any n ∈ N and
0 < δ < 1, it holds that with probability 1 − δ over the
i.i.d. labeled sample S = {(x1, l(x1)), . . . , (xn, l(xn))},
for any S̃ ⊂ S and weight assignment w for S̃, if the WNN
classifier h(S̃,w) corresponding to the pair (S̃, w) correctly
classifies all points in S, then

err(h(S̃,w)) ≤
2

n− |S̃|

(
|S̃| log 2n+ log

n

δ

)
. (2)

If in addition the reconstruction function R is permutation
invariant, then

err(h(S̃,w)) ≤
2

n− |S̃|

(
|S̃| log

(
2en

|S̃|

)
+ log

n

δ

)
. (3)

The proof of Theorem 3.4 is deferred to Appendix A.

Algorithm 1 Greedy weighted heuristic

Input: Point set S
Initialize solution set T ← ∅, S′ ← S, weight function
w : S → {1}
while S′ ̸= ∅ do

x← argmaxx∈S |B(x, dne(x)) ∩ S′|
S′ ← S′ \B(x, dne(x))
T ← T ∪ {x}
w(x)← dne(x)

end while
return T,w.

4. Greedy Heuristic for WNN, and its
Properties

In this section, we suggest a heuristic to produce a weighted
condensed set. The heuristic is motivated by the ball cover
rule introduced above. After presenting the heuristic, we
establish that it is Bayes consistent under mild assump-
tions.

4.1. Heuristic

Our heuristic for WNN condensing is based on a greedy
approach for the BC rule, meaning that at each step, we
identify a ball covering the maximum number of uncov-
ered points of the same label (and no points of the opposite
label), and add it to our ball set. Similarly, in our WNN
heuristic (see Algorithm 1), we iteratively add to the con-
densed set a point and weight which correspond to the cen-
ter and radius of the ball covering the largest number of
as of yet not covered points. (The equivalence of the ra-
dius in the BC rule to weight in the WNN rule was already
established above in Section 3.1.) As in (Flores-Velazco
& Mount, 2021), the notation dne(x) denotes the distance
from x to its closest oppositely labeled point in S (its ‘near-
est enemy’).

4.2. Bayes Consistency

In the following, we consider a family of WNN classifiers
that use a specific (data-dependent) weight function wne,
that assigns to each data point (x̃, ỹ) ∈ S̃ ⊂ S weight equal
to the minimal distance from x̃ to the points in S that have
the opposite label from ỹ, and for points x /∈ S̃ assigns
wne(x) = 1; that is, defining S+ and S− = S \ S+ as
the split of S into positively and negatively labeled points
respectively, wne(x̃) = dne(x̃), where

dne(x̃) =

{
d(x̃, S−), if x̃ ∈ S̃+,

d(x̃, S+), if x̃ ∈ S̃−.

Note that for this subclass of WNN classifiers there is
a simpler compression scheme than that of Lemma 3.3;
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in particular, the reconstruction function R can be made
permutation invariant in the sense of (1). Indeed, the
weight assignment wne for S̃ can be encoded into a sub-
set W̃ ⊂ S \ S̃ consisting of the nearest enemies of
the samples in S̃. Then the weight for (x̃, ỹ) ∈ S̃ can
be uniquely determined by splitting W̃ into its positively
and negatively labeled samples W̃+ and W̃− and putting
wne(x̃) = min(x,y)∈W̃−ỹ d(x̃, x). With this rule, for any
two permutations σ1, σ2,R(σ1(S̃), σ2(W̃)) = R(S̃, W̃).

We first consider the (computationally intractable) learning
rule that finds the subset S̃∗ ⊂ S of minimal cardinality
such that the classifier h(S̃∗,wne)

is consistent on S,

S̃∗ = argmin
S̃⊂S

{|S̃| : h(S̃,wne)
(x) = y,∀(x, y) ∈ S}. (4)

The following theorem establishes the Bayes consistency1

of h(S̃∗,wne)
, meaning that its error on a new sample, drawn

independently from the same probability distribution that
generated the dataset, converges to zero as the dataset size
increases, with probability one over the random dataset.
Theorem 4.1. Let (X , d) be a separable metric space and
assume x has an atomless distribution and that the labeling
function l is countably piece-wise continuous. Then, almost
surely,

err(h(S̃∗,wne)
) −−−−→

n→∞
0. (5)

The proof of Theorem 4.1 is given in Appendix A. The
proof essentially establishes that |S̃∗| is almost surely sub-
linear in the sample size n. An application of the error
bound (3) of Theorem 3.4 (corresponding to a permutation-
invariant rule) then establishes (5). Note that a sub-linear
|S̃∗| in conjunction with the error bound (2) (corresponding
to a non-permutation invariant rule) do not suffice to estab-
lish Bayes consistency with our proof technique: Without
further assumptions on the tail of the distribution of x, the
rate at which |S̃∗|/n −−−−→

n→∞
0 can be arbitrarily slow.

As for our greedy heuristic in Algorithm 1, note that the
intractable optimization problem (4) can be cast as a set
cover problem. Algorithm 1 then corresponds to the stan-
dard greedy approximation for set cover (Chvatal, 1979).
This approximation is guaranteed to compute S̃ of size at
most O(|S̃∗| log |S̃∗|). Hence, if |S̃∗| log |S̃∗| is guaranteed
to be almost surely sub-linear, an adaptation of our proof of
Theorem 4.1 implies that the greedy heuristic is Bayes con-
sistent. This is made formal in the following Corollary.
Corollary 4.2. Under the conditions of Theorem 4.1 and
an additional appropriate tail condition on the probability

1Not to be confused with consistency, which here means
that h(S̃∗,wne)

correctly classifies all points in the uncondensed
dataset.

distribution of x, the greedy weighted heuristic of Algo-
rithm 1 is Bayes consistent.

Proof. In the proof of Theorem 4.1 we fetched a function
tr∗ : N → R+ in o(1) to establish that the size of a r∗-
net (with r∗ > 0) is sub-linear in n. Inspecting the proof
of Theorem 4.1, to guarantee that |S̃∗| log |S̃∗| is almost
surely sub-linear in n, it suffices to additionally assume that
tr∗ ∈ o(1/ log n).

As two examples of the applicability of Corollary 4.2, if
random variable x is bounded then |S̃∗| = O(1), and if x
has a normal distribution then |S̃∗| = O(log n). Hence in
these examples Algorithm 1 is Bayes consistent.

5. Experimental Results
In this section we present promising experimental results
for condensing under WNN, using the heuristic of Sec-
tion 4. We ran two separate trials: The first experiment
was a comparison of condensing achieved by our results
to those achieved by other popular condensing algorithms.
For these we used datasets already established as appropri-
ate for condensing. The second experiment also compared
condensing algorithms, but here we also computed the op-
timal unweighted compressed set and compared our results
to these. This required the introduction of an exact integer
program, and the use of very small datasets amenable to
exact solutions.

5.1. Trial: Comparison Between Condensing
Algorithms

As proof of concept, we selected representative datasets
from the condensing experiments of (Garcia et al., 2012)
(see Tables 2 and 7 there), appearing in Table 1. For each
data set, we randomly split it into training samples (70%)
and testing samples (30%). On the training sets, we ran
the popular MSS (Barandela et al., 2005) and the recent
successful RSS (Flores-Velazco & Mount, 2021) heuris-
tics, as well as our greedy heuristic for WNN condensing,
as presented above in Algorithm 1. We found that across
all datasets considered, our weighted condensing heuris-
tic achieved either superior or comparable compression of
the training dataset, and either superior or comparable ac-
curacy on the testing data set, when compared to the un-
weighted heuristics; see Table 1, which reports the size of
the condensed set as a fraction of the size of the original
input training dataset, and the test error as the fraction of
wrongly classified samples from the test dataset.
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Dataset Size Classes Fraction retained Test error
MSS RSS WNN MSS RSS WNN

Magic 19,020 2 0.29 0.37 0.26 0.22 0.26 0.21
SatImage 6,430 7 0.15 0.19 0.14 0.11 0.12 0.09
Spambase 4,560 2 0.27 0.33 0.27 0.21 0.21 0.18
Twonorm 7,400 2 0.15 0.16 0.06 0.06 0.11 0.03
Phoneme 5,404 2 0.19 0.22 0.16 0.13 0.12 0.12
Segment 2,310 7 0.13 0.14 0.10 0.07 0.05 0.05
Shuttle 43,498 7 0.030 0.008 0.005 0.004 0.002 0.002

Table 1: The fraction of training samples retained in the condensed subset and the error achieved on the testing samples as
described in Section 5.1.

5.2. Trial: Comparison with Exact Solvers on Small
Datasets

In this experiment, we compared our condensing algorithm
with the optimal solution produced by a brute-force solver.
This is instructive in understanding the quality of the tested
heuristics. Due to the significant limitations inherent in
producing an exact solution, our comparison necessitated
the use of small dataset amenable to computing an optimal
solution using an integer program (IP) solver.

Integer Programming for NN Condensing. We formal-
ize an integer program for NN condensing. As this problem
is NP-hard, we do not expect the algorithm to have a rea-
sonable run time for large sets, but for smaller sets it suc-
cessfully returns an optimal solution (after large run time).

To model the NN condensing problem as an integer pro-
gram, we introduced constraints corresponding to the in-
clusion of a point in the condensed set. This allowed us
to identify the minimal non-empty subset of examples that
can recover all labels of the sample via the nearest neighbor
classifier.

For each sample point x, we introduce a 0–1 variable
v(x), corresponding to whether x will appear in the con-
densed set. For each ordered pair of points x and x′

with opposite labels, we introduce the constraint v(x′) ≤∑
x′′∈C(x,x′) v(x

′′), where C(x, x′) is the set of points
with the same label as x which are all closer to x than x′

is to x. (Note that x ∈ C(x, x′).) This constraint enforces
that if x′ appears in the condensed set (meaning v(x′) = 1),
then there must be in the condensed set some point closer
to x with the same label as x. We also need the constraint∑

x v(x) ≥ 1, to disallow the empty set. Finally, the ob-
jective is to minimize

∑
x v(x), which corresponds to min-

imizing the size of the condensed set. We implemented this
program using the Python cvxpy library.

Datasets. While the condensing heuristics can handle
larger datasets, we found that (not surprisingly) the exact IP

Table 2: Number of samples retained in condensed subset

Dataset Points MSS RSS IP WNN

Circle 200 52 45 7 12
Banana 200 74 66 32 35

Iris 100 11 9 2 4

algorithm failed for set sizes much larger than 200 points.
Accordingly, we ran trials on the small banana, circle and
iris data sets, which all have binary classes, see Figure 3.

• Banana. This data set is a synthetic collection,
previously used by Flores-Velazco & Mount (2021)
for NNC. It contains instances arranged in several
banana-shaped clusters. (The x and y axes represent
the respective properties At1 and At2 defined there.)
For our experiment, we retained only 200 of more than
5000 original points.

• Circle. This is a synthetic randomized data set con-
taining 200 points. It contains instances arranged in a
circular cluster, surrounded by instances of the oppos-
ing class.

• Iris. This is the very popular data set of the UCI Ma-
chine Learning Repository. It consists of three classes,
each containing 50 instances of a certain species of
iris. For our experiments, we considered only two
classes of the three (namely Setosa and Versicolour).

Results. We ran the above NN condensing heuristics, the
exact IP algorithm, and also our greedy heuristic for WNN
condensing on the small data sets. We again found that
our weighted condensing heuristic achieved superior com-
pression when compared to the unweighted heuristics; see
Table 2 which reports the exact sizes of the condensed sets.
Our heuristic also approached the optimal unweighted so-
lution computed by the brute-force IP, an algorithm which
(unlike ours) does not scale to larger datasets.
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Figure 3: The banana, circle and iris data sets

6. Conclusions
We have demonstrated that WNN condensing is more pow-
erful than standard NN condensing, yet is characterized by
similar generalization bounds. Hence WNN can only im-
prove the degree of compression, while maintaining the
same theoretical guarantees. Our suggested heuristic is
theoretically sound, and gave promising empirical results.
This indicates that WNN condensing heuristics are deserv-
ing of further study.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Deferred proofs
Proof of Theorem 3.4. Consider first the case of non-invariantR. Set m = |S̃| and let In,m denote the set of all (ordered)
sequences of length m of indices from {1, 2, . . . , n}. For i = (i1, . . . , im) ∈ In,m denote by S(i) the subset of S with
indices in i. For a weight assignment w′(i) for S(i), write êrr(h(S(i),w′(i))) for the empirical error of h(S(i),w′(i)) over the
n−m samples in S \ S(i), that is

1

n−m

∑
(xj ,yj)∈S\S(i)

1{h(S(i),w′(i))(xj )̸=yj},

and note that the samples in S \ S(i) are i.i.d. and independent of S(i). For ε > 0, we bound

P
{

êrr(h(S̃,w)) = 0 ∧ |S̃| = m ∧ err(h(S̃,w)) > ε
}

≤ P
{
∃i ∈ In,m,∃w′(i) : êrr(h(S(i),w′(i))) = 0

∧ err(h(S(i),w′(i))) > ε
}

≤
∑

i∈In,m

E
{
P
{
∃w′(i) : êrr(h(S(i),w′(i))) = 0 (6)

∧ err(h(S(i),w′(i))) > ε | S(i)
}}

.

Fix i ∈ In,m and S(i), and consider the class of WNN classifiers given by

HS(i) = {h(S(i),w′(i)) : w
′(i) weight assign. for S(i)}.

The growth function ΠHS(i)
(n) ofHS(i) counts the maximum number of different possible labelings of n points from X :

ΠHS(i)
(n) =

max
{z1,...,zn}⊂X

∣∣∣{(h(z1), . . . , h(zn)) : h ∈ HS(i)

}∣∣∣.
Then by a standard argument (Mohri et al., 2018),

P
{
∃w′(i) : êrr(h(S(i),w′(i))) = 0

∧ err(h(S(i),w′(i))) > ε | S(i)
}

≤ 2ΠHS(i)
(2(n−m)) · e−(n−m)ε/2.

To bound ΠHS(i)
(2(n−m)), note that by Lemma 3.3, for any weight assignment w′(i) for S(i) and any set S′ of 2(n−m)

points fromX , there exists a subset W̃ ′ ⊂ S′∪S̃(i) of size m such that the WNN classifier hS(i),W̃′ gives the same labeling
as h(S(i),w′(i)) on the 2(n−m) points in S′. Since the number of different classifiers in{

hS(i),W̃′ : W̃ ′ is a list of m points

from a sample of size 2n−m
}

is at most |I2n−m,m| ≤ |I2n,m|, it follows that

ΠHS(i)
(2(n−m)) ≤ |I2n,m|.

Hence, Eq. (6) is bounded from above by∑
i∈In,m

|I2n,m|e−(n−m)ε/2 ≤ |In,m||I2n,m|e−(n−m)ε/2. (7)
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Put

ε =
2

n−m

(
log (|In,m| · |I2n,m|) + log

n

δ

)
(8)

≤ 2

n−m

(
m log 2n+ log

n

δ

)
,

where we used the bound |In,m| ≤ nm. Then the right hand side of (7) is δ/n. Summing over the n possible values of m
completes the proof for the case of non-invariantR.

As for the case of permutation invariant R, the only difference from the proof above is the definition of In,m. For
the permutation invariant case we take In,m to be the set of all (unordered) subsets of {1, 2, . . . , n} of size m. Then
|In,m| ≤

(
n
m

)
≤ ( enm )m. Putting this into Eq. (8), we have

ε ≤ 2

n−m

(
m log

2en

m
+ log

n

δ

)
,

in accordance with (3).

Proof of Theorem 4.1. Denote by µ the probability distribution of x and abbreviate hS̃∗ = h(S̃∗,wne)
. For r > 0 let

Ur =

{
x ∈ supp(µ) :

1

µ(Br(x))

∫
Br(x)

l(x′)µ(dx′) = l(x)

}
;

that is, Ur is the set of all points in the support of µ where l is essentially constant in the ball of radius r around x. The
assumptions that x is atomless and that l is piece-wise continuous imply that µ(Ur) is monotonic decreasing and continuous
in r and satisfies

lim
r→0

µ(Ur) = 1. (9)

Given ε > 0, let r∗ = r∗(ε) > 0 be such that

µ(Ur∗) ≥ 1− α,

where α = α(ε) ∈ (0, 1/8) satisfies

8α log
(

e
2α

)
1− 4α

≤ ε

2
. (10)

Since the left hand side of (10) goes to 0 monotonically (and continuously) as α→ 0, such an α always exists (this choice
of α will be made clear below).

Given a sample S of size n, denote by Xn = (x1, . . . , xn) the instances in S and by Yn = (y1, . . . , yn) their corresponding
labels. Let Xr∗ ⊆ Xn ∩ Ur∗ be an r∗-net of Xn ∩ Ur∗ (see (Gottlieb et al., 2018) for the formal definition of an r-net)
and let Yr∗ be the corresponding labels in Yn, stacked into the labeled set S̃(1) = (Xr∗ ,Yr∗). Let U c

r∗ = X \ Ur∗ denote
the set complement of Ur∗ and let S̃(2) = S ∩ (U c

r∗ × Y). Define the labeled dataset

S̃r∗ = S̃(1) ∪ S̃(2) ⊂ S.

Then hS̃r∗
is consistent on S. Indeed, any (xi, yi) ∈ S ∩ (U c

r∗ × Y) is included in S̃r∗ and is thus classified correctly by
hS̃r∗

. For any (xi, yi) ∈ S ∩ (Ur∗ × Y), since Xr∗ is an r∗-net of Xn ∩ Ur∗ , there is x̃ ∈Xr∗ with

d(xi, x̃) < r∗.

Since x̃ ∈ Ur∗ and d(xi, x̃) < r∗, we have yi = l(xi) = l(x̃) = ỹ with probability 1. In addition, any point (xj , yj) ∈ S
with an opposite label to ỹ satisfies d(xj , x̃) ≥ r∗, and so wne(x̃) ≥ r∗. Thus,

d̃(xi, x̃) =
d(xi, x̃)

wne(x̃)
< 1.
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Additionally, any x̃′ ∈ S̃r∗ with a different label from yi has weight

wne(x̃
′) ≤ d(xi, x̃

′).

Thus,

d̃(xi, x̃
′) =

d(xi, x̃
′)

wne(x̃)
≥ 1.

So the WNN classifier hS̃r∗
classifies the point (xi, yi) correctly in this case as well, and so hS̃r∗

is consistent on S. It
follows that the subset S̃∗ in (4) computed by the learning rule satisfies

|S̃∗| ≤ |S̃r∗ |. (11)

We next bound |S̃r∗ | = |S̃(1)| + |S̃(2)| with high probability. Since by construction µ(U c
r∗) ≤ α, Hoeffding’s inequality

implies that

P
{
|S̃(2)| > 2nα

}
= P {|Xn ∩ U c

r∗ | > 2nα} ≤ e−2nα2

.

As for |S(1)|, by Hanneke et al. (2021, Lemma 3.7), there is tr∗ : N→ R+ in o(1) such that

P {|Xr∗ | ≥ ntr∗(n)} ≤ 1/n2.

Since tr∗ ∈ o(1), we may take n sufficiently large so that tr∗(n) ≤ 2α. So for all sufficiently large n,

P{|S̃r∗ | > 4αn} ≤ 1

n2
+ e−2nα2

.

We bound

P {err(hS̃∗) > ε}

≤ P
{

err(hS̃∗) > ε ∧ |S̃r∗ | ≤ 4αn
}
+ P

{
|S̃r∗ | > 4αn

}
≤ P

{
err(hS̃∗) > ε ∧ |S̃r∗ | ≤ 4αn

}
+

1

n2
+ e−2nα2

. (12)

To complete the proof we show below that for all sufficiently large n,

P
{

err(hS̃∗) > ε ∧ |S̃r∗ | ≤ 4αn
}
≤ 1

n2
. (13)

Since the right hand side of (12) is summable over n, the Borel-Cantelli Lemma implies that almost surely,

err(hS̃∗) −−−−→
n→∞

0,

concluding the proof of the Theorem.

To show (13), put δ = δn = 1/n2 in (3) and observe that the right hand side of (3) is monotonic increasing with |S̃|. Thus,
using (11), we have that under the event {|S̃r∗ | ≤ 4αn},

2

n− |S̃∗|

(
|S̃∗| log

(
2en

|S̃∗|

)
+ 3 log n

)
≤ 2

n− |S̃r∗ |

(
|S̃r∗ | log

(
2en

|S̃r∗ |

)
+ 3 log n

)
≤ 2

n− 4αn

(
4αn log

( en

2αn

)
+ 3 log n

)
=

8α log
(

e
2α

)
1− 4α

+
3 log n

(1− 4α)n

≤ ε

2
+

ε

2
= ε,
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where in the last inequality we used the choice of α in (10) and took n sufficiently large so that 3 logn
(1−4α)n ≤

ε
2 . Applying

Lemma 3.4, it follows that

P
{

err(hS̃∗) > ε ∧ |S̃r∗ | ≤ 4αn
}

≤ P
{

err(hS̃∗) >
2

n− |S̃∗|

(
|S̃∗| log

(
2en

|S̃∗|

)
+ 3 log n

)}
≤ 1

n2
,

establishing (13).
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