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Abstract

We propose new learning algorithms for building selective classifiers, which are
predictors that are allowed to abstain on some fraction of the domain. We study
the model where a classifier may abstain from predicting at a fixed cost. Building
on the recent framework on multigroup fairness and omniprediction, given a pre-
specified class of loss functions, we provide an algorithm for building a single
classifier that learns abstentions and predictions optimally for every loss in the entire
class, where the abstentions are decided efficiently for each specific loss function by
applying a fixed post-processing function. Our algorithm and theoretical guarantees
generalize the previously-known algorithms for learning selective classifiers in
formal learning-theoretic models.
We then extend the traditional multigroup fairness algorithms to the selective
classification setting and show that we can use a calibrated and multiaccurate
predictor to efficiently build selective classifiers that abstain optimally not only
globally but also locally within each of the groups in any pre-specified collection
of possibly intersecting subgroups of the domain, and are also accurate when they
do not abstain. We show how our abstention algorithms can be used as conformal
prediction methods in the binary classification setting to achieve both marginal and
group-conditional coverage guarantees for an intersecting collection of groups. We
provide empirical evaluations for all of our theoretical results, demonstrating the
practicality of our learning algorithms for abstaining optimally and fairly.

1 Introduction

Selective classification has long been proposed as a way of achieving higher accuracy at the cost of
abstaining from making predictions on certain points[12, 19, 43, 41, 42, 23]. Such behavior is often
desirable, e.g. when stakes of mistakes (of one type or another) can be very costly, such as medical
diagnoses. There has been a wide range of theoretical and empirical work in this area. The most
relevant one to our work is the learning-theoretic reliable learning framework [43] of Kalai, Kanade,
and Mansour, where they introduce a framework that gives guarantees on error and abstention rate in
an agnostic learning framework. Their work focuses on binary classification problems using only the
zero-one loss function. A more general learning framework for selective classification is to consider
the Chow loss [12] and its generalizations, where one can consider loss functions for predictions as
well as a fixed penalty for abstention, and a weighted combination of these should be minimized.

Separately, recent work has studied the question of whether training from scratch is required for
every loss function. Gopalan et al. introduce the notion of a (L, C)-omnipredictor for a class of loss
functions L and a concept class C, which is a single classifier that can be efficiently post-processed
to compete with a class of models for the large family L [25]. Omnipredictors turn out to be
efficiently constructable from a multigroup fairness notion called multicalibration [32, 50, 16]. Here
predictors are required to be calibrated, even conditioned on group membership from a large, possibly-
intersecting, collection of groups. While (multi)calibration is a desirable property, these notions
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do not imply anything about accuracy, and rely upon the base predictor (which is then modified to
satisfy multicalibration) being accurate to begin with. As in the case of selective classification more
generally, it may be desirable to abstain in order to guarantee high accuracy when predicting.

In this work, we apply the rich line of work on omniprediction and multigroup fairness to the problem
of selective classification. First, we introduce the notion of a selective classifier, which is able to
simultaneously minimize generalized Chow losses from a rich family of loss functions. We show
how this generalizes the previous results on reliable agnostic learning beyond the 0-1 loss. Second,
we introduce the notion of multigroup selective classification, where the predictions need to be highly
accurate, but in addition it is required that the rate of abstention conditioned on any group is no worse
than the abstention rate of an optimal classifier for that class from a base class of abstaining classifiers.
We show that such a predictor can be obtained starting from a slightly weaker notion of calibrated
multiaccuracy (rather than multicalibration) and access to a weak agnostic learner for a suitable class.
When the number of groups is small, we show that this can be constructed efficiently with only access
to a reliable learner for the base class (which is believed to be a weaker notion than weak agnostic
learning [45]). The main results and the focus of our work is theoretical. We do however also provide
an empirical evaluation on synthetic data that shows that our algorithms are easy to implement and
achieve the desired outcomes. All proofs of our claims are deferred to the appendix.

1.1 Related work

We summarize the most relevant work to ours here; further related work is discussed in the appendix.

Selective classification. The idea of building an algorithm that abstains on certain predictions is not
new and has traditionally been called selective classification [19]. A selective classifier is allowed to
also return ? as an output (which indicates abstention), along with the usual numerical values. The
works [43, 45] study this in the context of agnostic learning and give bounds on both the error and
abstention rate (competitive with respect to a base class). Selective classification has also been studied
within the context of a Chow loss framework, where there is a fixed cost of abstention in addition to a
loss function on predictors and the goal is to minimize the overall cost [12]. Abstention has also been
used to provide bounds on efficient learning in the presence of covariate shifts [41, 42, 23]. Although
somewhat different, a related notion is that of conformal prediction [66, 3, 39], where the classifier
is allowed to output a set and the goal is that the true label should be in the predicted set with high
probability. In binary classification case, considering abstention as predicting the set {0, 1} relates
these two notions tightly.

Fairness. Recently, in the setting of fairness, some works have studied the effect of selectively
abstaining. Jones et al. find that certain forms of selective classification can magnify disparities across
groups [37], and follow-up works try to restrict this type of disparities [52, 62, 67]. Some recent
works have put forth the necessity of accounting for uncertainty in the setting of algorithmic fairness
[2, 5, 40, 54, 49, 53, 13], but this question remains largely understudied. This question is also related
to the problem of model multiplicity, which has recently drawn a lot of attention [7, 8, 13]. Outside of
the selective classification problem, the multigroup fairness framework has recently developed various
techniques for ensuring that desired properties of the predictor (e.g., accuracy, calibration) hold even
when conditioned on any of the possibly intersecting groups in a rich collection [32, 29, 48, 51, 61].

2 Notation & Preliminaries

We let X denote the domain, Y = {0, 1} the set of labels, D a distribution over X × Y , and C a
concept class over X of concepts c (their range is specified in each application). We assume that
C is closed under complement and contains the constant functions 0,1. We denote the marginal
distribution over X by DX . A loss function ℓ takes a label y ∈ Y and an action t ∈ R and
returns a loss value ℓ(y, t). Examples include the ℓp losses ℓp(y, t) = |y − t|p, the logistic loss
ℓ(y, t) = log(1 + exp(−yt)), and binary classification with different false-positive/negative costs
ℓ(y, t) = cy|y − t|. We let L = {ℓ : Y × R → R} denote a collection of loss functions. We are
interested in minimizing loss functions: we want to find a hypothesis h : X → R that makes the
expected loss ℓD(h) := ED[ℓ(y, h(x))] small. We work in the agnostic setting, where we want the
expected loss of our hypothesis h to be at most epsilon higher than the best concept in C for that loss
function. Importantly, the optimal concept in C depends on the choice of ℓ. We denote the ground
truth predictor by f∗(x) = ED[y|x].
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2.1 Multigroup fairness notions

The multigroup framework was introduced as a way to bridge individual and group fairness notions
[32, 46]. Given a collection of subgroups G = {g : X → {0, 1}} that can intersect arbitrarily, we
want to ensure a property of interest (accuracy, calibration) within each of the subgroups in G.
Definition 2.1 (Multiaccuracy, calibrated multiaccuracy, and multicalibration [32, 26]). We say that
a predictor h is (G, ϵ)-multiaccurate for a distribution D if

max
g∈G

∣∣E
D
[g(x)(y − h(x))]

∣∣ ≤ ϵ.

We say the predictor h is ϵ-calibrated for D if E[|E[y|h(x)]− h(x)|] ≤ ϵ. We say that h is (G, ϵ)-
multiaccurate and calibrated if it is both (G, ϵ)-multiaccurate and ϵ-calibrated. Further, we say that h
is (G, ϵ)-multicalibrated if

max
g∈G

E[|g(x)(E[y|p(x)]− p(x))|] ≤ ϵ.

We can efficiently construct predictors satisfying these increasingly demanding notions if we have
access to the learning primitive of a weak agnostic learner for the class G: we require O(1/ϵ2)
calls to the weak agnostic learner in the case of (G, ϵ)-multiaccuracy [32] and of (G, ϵ)-calibrated
multiaccuracy [26], and O(1/ϵ6) calls in the case of (G, ϵ)-multicalibration [32, 25]. The line of
work on multigroup fairness has proven to be extremely rich in recent years [24, 27, 10, 16, 18, 17].

2.2 Omnipredictors

One of the most successful applications of the multigroup fairness framework has arguably been in
learning theory, where Gopalan et al. used it to propose a new indistinguishability-based learning
framework [25]. This framework has been applied in many follow up works [35, 28, 27, 59, 24].
Specifically, the usual learning paradigm first chooses a loss of interest (e.g., ℓ1 or ℓ2), and then trains
a model to minimize it. But what if we do not know the specific loss at the time of training, or if we
want to change it at a later time without having the re-train from scratch? We could instead hope to
construct the following object, which they called a (C,L)-omnipredictor:
Definition 2.2 (Omniprediction [25]). Given a class of loss functions L and a concept class C of
concepts c : X → R, a predictor h : X → [0, 1] is an (L, C, ϵ)-omnipredictor if for every ℓ ∈ L there
exists a function kℓ : [0, 1] → R so that

ℓD(kℓ ◦ h) ≤ min
c∈C

ℓD(c) + ϵ.

That is, for every loss ℓ ∈ L, there exists a simple (univariate) transformation kℓ of the predictions
of h (chosen tailored to ℓ) such that kℓ ◦ f has loss comparable to the best hypothesis c ∈ C, which
is chosen dependent on ℓ. That is, we can train a single predictor h that is able to do as well as the
best hypothesis in C separately for every loss function in L. This realizes a very strong learning
guarantee. Note that for every C,L, the ground truth predictor f∗ is an (L, C, 0)-omnipredictor. As
shown in [25], the right post-processing function kℓ turns out to be the minimizer of the expected
loss under the Bernoulli distribution, a fact we use to show the optimality of our selective predictor.
In their main result, Gopalan et al. show that we can construct omnipredictors efficiently using the
technique of multicalibration:
Theorem 2.1 (Building omnipredictors from multicalibration [25]). Let D be a distribution on
X × {0, 1}, C a family of real-valued functions on X , and L the family of all B-Lipschitz, convex
loss functions. Then, a (C, ϵ)-multicalibrated predictor h is an (L, C, 2ϵB)-omnipredictor.

This result can be extended beyond convex Lipschitz loss functions, including to the exponential loss,
GLM losses, 1-Lipschitz losses, proper losses, and bounded variation losses [25, 59].

2.3 Reliable agnostic learning

In our setting, we allow predictors to output an abstention ?, and so we consider triplets of loss
functions (ℓ+, ℓ−, ℓ?). If a predictor is allowed to abstain and thus ? is in its support, we denote it
with an abstention sign in the subscript.
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Losses (ℓ+, ℓ−, ℓ?). We further specify loss functions depending on the value of y ∈ {0, 1}. Given
a loss function ℓ : Y × {R ∪ {?}} → R, we decompose ℓ = (ℓ+, ℓ−, ℓ?) as follows:

1. Negative labels. For inputs (y, t) where t ̸= ? and y = 0, we write ℓ+(t) for ℓD(0, t).
2. Positive labels. For inputs (y, t) where t ̸= ? and y = 1, we write ℓ−(t) for ℓD(1, t).
3. Abstentions. For inputs (y, t) where t = ?, we write ℓ?(y) for ℓ(y, t). In turn to separate

the cases y = 1 and y = 0, we write ℓ?(1) = α+ and ℓ?(0) = α−. Whenever the predictor
cannot be uniquely inferred from the context, we still write ℓ?(y, t).

We drop D if it can be directly inferred. For example, in the specific case of the 0-1 loss, ℓ+(0, t) =
|0 − t| and ℓ−(1, t) = |1 − t|, and so the expected loss E[ℓ+(y, h(x))] is equal to the rate of false
positives and E[ℓ−(y, h(x))] to the rate of false negatives. The sum of losses ℓ+ + ℓ− corresponds to
the usual definition of error of the predictor. In turn, ℓ? generalizes the definition of the abstention
rate of a predictor ED[1[h(x) = ?]]. The case where ℓ?(y) = α for any constant α > 0 corresponds
to the traditional Chow model [12, 41]. Note that we allow different abstention costs depending on
whether the corresponding label is y = 0 or y = 1.
Definition 2.3 (Triplet of loss functions). Given a family of loss functions L, each loss function ℓ ∈
L, ℓ : Y × {R ∪ {?}} → R induces the triplet of loss functions (ℓ+, ℓ−, ℓ?), where ℓ+(t) = ℓD(0, t)
and ℓ−(t) = ℓD(1, t) for all t ̸= ?, and ℓ?(y) = ℓD(y, t) for all t = ?.

We directly use the notation (ℓ+, ℓ−, ℓ?) ∈ L. When we consider selective omnipredictors, we will
further associate weights (λ, µ, ν) with the triplet of loss functions (ℓ+, ℓ−, ℓ?), so that the total loss
incurred by a predictor is equal to λℓ+ + µℓ− + νℓ?.

Allowing abstentions increases the reliability of non ‘?’ predictions. The work most closely related
to ours is the learning-theoretic framework of reliable agnostic learning, first proposed by Kalai,
Kanade, and Mansour [43], which adapts the usual agnostic framework. While they introduced their
definitions only for the case of the 0-1 loss, in our results we generalize their results to many more
loss functions, and so we directly introduce the more general versions of their original definitions.
Let EX(D) denote the example oracle which when queried returns (x,y) ∼ D. Given a concept class
C of Boolean concepts c : X → {0, 1} and a distribution D, we further define the following concept
classes from C [43]:

C+ = {c ∈ C | ℓ+(c,D) = 0}, C− = {c ∈ C | ℓ−(c,D) = 0}.
Definition 2.4 (PRL for a family of loss functions [43, 45]). A concept class C of Boolean concepts
is L-positively reliably learnable if there exists a learning algorithm that for any distribution D over
X × {0, 1}, any ℓ+, ℓ− ∈ L, and any ϵ, δ > 0, when given access to the example oracle EX(D),
outputs a hypothesis h : X → [0, 1] that satisfies the following with probability at least 1− δ:

1. E(x,y)∼D[ℓ+(h(x))] ≤ ϵ,

2. E(x,y)∼D[ℓ−(h(x))] ≤ minc+∈C+ E(x,y)∼D[ℓ−(c+(x))] + ϵ.

The notion of L-negative reliable learning (NRL) is defined analogously, by switching the positives
and the negatives (see the appendix for the full definitions).

Hence, in the case of the 0-1 loss, a positive reliable classifier is one that almost never produces
false positives, while simultaneously minimizing false negative errors, attaining a rate comparable to
the false negative error rate of the best classifier c+ ∈ C+ [45]. Symmetrically, a negative reliable
classifier is one that almost never produces false negatives while simultaneously minimizing false
positive errors, attaining a rate comparable to the false positive error rate of the best c− ∈ C−.

Given any Boolean c+ ∈ C+ and c− ∈ C−, we ensemble them to construct a selective classifier
c? = (c+, c−) as follows:

c?(x) =


1 if c+(x) = c−(x) = 1,

0 if c+(x) = c−(x) = 0,

? if c+(x) ̸= c−(x).

We then let SC(C) = {(c+, c−) | c+ ∈ C+, c− ∈ C−} (for “selective clasifiers”). This ensembling
provides a natural way for adding abstentions to the base class C. We can now define fully reliable
learning using the base class SC(C):
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Definition 2.5 (FRL for a family of loss functions). A concept class C of Boolean concepts is L-fully
reliably learnable if there exists a learning algorithm that for any distribution D over X × {0, 1},
any ℓ+, ℓ−, ℓ? ∈ L, and any ϵ, δ > 0, when given access to the example oracle EX(D), outputs a
hypothesis h? : X → [0, 1] ∪ {?} that satisfies:

1. E(x,y)∼D[ℓ+(h?(x)) + ℓ−(h?(x))] ≤ ϵ,

2. E(x,y)∼D[ℓ?(y, h?(x))] ≤ minc?∈SC(C) E(x,y)∼D[ℓ?(y, c?(x))] + ϵ.

For the specific case where L corresponds only to the 0-1 loss, Kalai, Kanade, and Mansour showed
that if C is efficiently agnostically learnable, then C is also efficiently L-reliable learnable, all for
PRL, NRL, and FRL [43].

2.4 Generalized Chow model

In the original Chow abstention model, the predictor can choose to abstain at a fixed cost of α ≥ 0
[12, 41]. The goal of the predictor is to learn how to choose real-valued predictions and abstentions as
to minimize the total loss. We generalize and formalize this model with what we call the generalized
Chow loss function:
Definition 2.6 (Generalized Chow loss). Given a triplet of loss functions (ℓ+, ℓ−, ℓ?) induced by
ℓ : Y × {R ∪ {?}} → R with associated weights (λ, µ, ν), where λ + µ + ν ≤ 1, and a selective
classifier h? : X → R ∪ {?}, the generalized Chow loss incurred by h is equal to

ℓGC,D(h?;λ, µ, ν) = E
(x,y)∼D

[λℓ+(h(x)) + µℓ−(h(x)) + νℓ?(y)].

One can include randomized predictors h to this definition (where h assigns a probability of abstaining
to each x ∈ X ); however, as we show in the appendix (Section C.1), randomization does not help in
minimizing the generalized Chow loss function.

2.5 Selective omniprediction

In our work, we extend the omniprediction framework to the setting of selective classification.

In the next section, we show that we can efficiently build a (L, C, ϵ)-multigroup selective omnipredic-
tor that optimally minimizes the generalized Chow loss of any triplet of loss functions (ℓ+, ℓ−, ℓ?)
induced by any ℓ ∈ L. We then use this result to show how to efficiently build L-FRL classifiers,
generalizing the main result of [43].
Definition 2.7 (Selective omniprediction). Given a concept class C on X , distribution D, ϵ > 0,
and a class of loss functions L, we say that a predictor h : X → [0, 1] is a (L, C, ϵ)-selective
omnipredictor if for every (ℓ+, ℓ−, ℓ?) ∈ L and any associated weights (λ, µ, ν), there exists a
function k∗ℓ±,ℓ?

: [0, 1] → R ∪ {?} such that for any post-processing function k : [0, 1] → R ∪ {?},

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν) ≤ min
c?∈k◦C

ℓGC,D(c?;λ, µ, ν) + ϵ.

Importantly, as in the original omniprediction framework, the optimal classifier c? in k ◦ C is tailored
to the specific triplet of loss functions, whereas h is a single classifier for all of L and (λ, µ, ν).

3 Building Selective Omnipredictors

The key idea in the omniprediction learning framework is to first learn a model f that is (C, ϵ)-
computationally indistinguishable from f∗, which is accomplished through the technique of multical-
ibration, and then apply a post-processing function k∗ℓ once a loss function ℓ ∈ L has been fixed. In
our setting of selective classification, we similarly use the following post-processing function that
minimizes expected loss under the Bernoulli distribution, which we show yields an optimal final loss:
Definition 3.1. Given loss functions (ℓ+, ℓ−, ℓ?) and corresponding weights (λ, µ, ν), let the function
k∗ℓ±,ℓ?

: [0, 1] → R ∪ {?} be defined as

k∗ℓ±,ℓ?
(p) = arg mint∈R∪{?} E

y∼Bern(p)
[λℓ+(t) + µℓ−(t) + νℓ?(y)]

= arg mint∈R∪{?} p ·
(
µℓ−(t) + να+

)
+ (1− p) ·

(
λℓ+(t) + να−

)
.
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Our main result in this section is the feasibility of efficiently constructing selective classifiers:
Theorem 3.1 (Constructing selective omnipredictors). Let C be a concept class of concepts c : X →
[−M,M ], D a distribution on X×{0, 1}, ϵ > 0, and L a family loss functions with associated weights
(λ, µ, ν) with λ + µ + ν ≤ 1, such that all ℓ ∈ L are B-Lipschitz. Then, a (C, ϵ)-multicalibrated
predictor is a (L, C, 4ϵβ + ϵB)-selective omnipredictor, where β is an absolute bound on ℓ+, ℓ−, ℓ?.

The full proof of Theorem 3.1 is deferred to the appendix; here we provide a proof sketch.

Proof sketch of Theorem 3.1. Our algorithm first constructs a (C, ϵ)-multicalibrated predictor h. For
each specific choice of ℓ = (ℓ+, ℓ−, ℓ?) ∈ L and weights (λ, µ, ν), we apply the post-processing
function k∗ℓ±,ℓ?

to h. We show that the generalized Chow loss incurred by k∗ℓ±,ℓ?
◦ h is no more

(within an ϵ slack) than that incurred by the best classifier in k ◦ C, where k : [0, 1] → R ∪ {?} is any
post-processing function adding abstentions. We outline why this is an optimal and efficient strategy.

Following the generalized Chow loss expression (Definition 2.6), for each t ∈ R, we either pay
the cost of predicting, whose expected value we denote by κpred, or the cost of abstaining, whose
expected value we denote by κabs:

κpred(p) = min
t∈R

p · µℓ−(t) + (1− p) · λℓ+(t),

κabs(p) = ν
(
p · ℓ?(1) + (1− p) · ℓ?(0)

)
= ν

(
p · α+ + (1− p) · α−

)
.

For each point p, in order to minimize the expected generalized Chow loss under the Bernoulli
distribution, we proceed in two steps: (1) Find the value t∗(p) that minimizes the value of κpred(p)
given a fixed value of p. This depends only on the choice of λ, ℓ+, µ, ℓ− and not on the underlying
data. Specifically, this corresponds to finding the value t∗(p) that minimizes the function k∗ℓ (p), where
k∗ℓ (p) = argmint∈R Ey∼Bern(p)[λℓ+(y, t) + µℓ−(y, t)]. (2) For each predicted value h(x) = p, we
then map it to either t∗(p) or to ‘?’ depending on whether it is cheaper to predict or to abstain; that is,
depending on the value of min{κpred(t

∗(p)), κabs(p)}.

In other words, we can re-write our post-processing function k∗ℓ±,ℓ?
as kabs ◦ k∗ℓ , where

kabs =

{
t∗ if κpred ≤ κabs,

? if κpred > κabs.

Then, the value of k∗ℓ±,ℓ?
can be computed efficiently because (1) computing the value of κpred(p)

corresponds to solving a one-dimensional minimization problem, and (2) the value of k∗ℓ±,ℓ?
is then

fully determined from the values of κpred(t
∗(p)) and of κabs(p). To show optimality, we consider

the level set X(p,γ) = {x ∈ X | h(x) = p, c = γ} for each p ∈ range(h) and each γ in the range
of c. For each set X(p,γ), we split the proof into 4 cases, depending on whether h and c abstain or
predict as per their respective decision rules. The key idea is that, even though the concept c abstains
or predicts using an arbitrary decision rule, multicalibration ensures that the expected value of y on
X(p,γ) is approximately p, which allows us to show that k∗ℓ±,ℓ?

(h) incurs no more loss than k ◦ c.

Interval of abstention. We further show the following about the points where k∗ℓ±,ℓ?
◦ h abstains:

Lemma 3.2. Given any loss functions ℓ+, ℓ−, ℓ? ∈ L, the points x ∈ R such that k∗ℓ±,ℓ?
(x) = ? form

a contiguous interval, which we denote by Iabs.

This follows from the fact that κpred(p) is concave as a function of p, and that κabs(p) is affine in
p. Lemma 3.2 does not require the loss functions to be convex; only affine in p. Importantly, note
that we can determine Iabs directly from the chosen triplet of functions (ℓ+, ℓ−, ℓ?), without any
dependence on the underlying data. This is why our method is highly efficient: once we run the
multicalibration algorithm, we directly apply our off-the-shelf post-processing function k∗ℓ±,ℓ?

.

3.1 Selective omniprediction in action

While our results are of theoretical nature, we provide experiments to demonstrate the feasibility of
selective omniprediction in practice and to provide some concrete examples of the function k∗ℓ±,ℓ?

for
specific choices of triplets of loss functions (ℓ+, ℓ−, ℓ?).
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We generate synthetic data to create a binary classification problem with n = 10,000 samples
and implement the multicalibration algorithm to baseline predictions to obtain a C-multicalibrated
predictor h, where we set C to be the concept class C of decision trees of depth 3. For various choices
of loss functions ℓ = (ℓ+, ℓ−, ℓ?), we compare the coverage (i.e., the fraction of the points in the
domain on which the predictor does not abstain) and total loss of our post-processed k∗ℓ±,ℓ?

◦ h

predictor (where k∗ℓ±,ℓ?
is chosen for each ℓ but h is the same predictor across all loss functions) with

that of a predictor optimized specifically to minimize the generalized Chow loss function, using the
same base concept class C of decision trees of depth 3. The bar plots show the points p ∈ [0, 1] where
k∗ℓ±,ℓ?

◦ h abstains for different triplets of loss functions, indicated in the caption of each subfigure.
We compute Iabs theoretically for each of these triplets, independently of the data (see calculations in
the appendix); in Figure 1 one can see that these are indeed the regions where our algorithm abstains
in practice. Table 1 shows the final loss and coverage incurred by our single selective omnipredictor
(post-processed accordingly) compared to those obtained by each of the decision trees, which are
trained separately for each of the triplet of loss functions. The full details of the experimental set-up
along with further examples and repetitions can be found in the appendix.

ℓ+ = ℓ− = ℓ1, ℓ? = 0.1,
Iabs = [0.1, 0.9].

ℓ+ = ℓ− = ℓ1, ℓ? = 0.2,
Iabs = [0.2, 0.8].

ℓ1, ℓ?(1) = 0.3, ℓ?(0) = 0.1,
Iabs = [0.125, 0.75].

ℓ2, ℓ? = 0.1,

Iabs =
[
1−

√
0.6

2
, 1+

√
0.6

2

]
.

ℓ2, ℓ? = 0.2,

Iabs =
[
1−

√
0.2

2
, 1+

√
0.2

2

]
.

ℓ2, ℓ?(1) = 0.3, ℓ?(0) = 0.1,

Iabs =
[
4−

√
6

10
, 4+

√
6

10

]
.

Figure 1: Final loss and coverage incurred by our single selective omnipredictor, post-processed with
k∗ℓ±,ℓ?

for each of the specific triplets indicated in the subfigure caption. Red: abstain. Blue: predict.

Table 1: Comparison of coverage and losses. “Cov” stands for coverage, “Pred” for predicted loss
(i.e., over the non-abstaining region), and “Total” for the total generalized Chow loss.

ℓ? = 0.1 ℓ? = 0.2 ℓ?(1) = 0.3, ℓ?(0) = 0.1

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 22%
Pred: 0.045
Total: 0.088

Cov: 2.3%
Pred: 0.001
Total: 0.098

ℓ2

Cov: 24.15%
Pred: 0.046
Total: 0.087

Cov: 3.8%
Pred: 0.001
Total: 0.098

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 52.70%
Pred: 0.083
Total: 0.139

Cov: 3.8%
Pred: 0.002
Total: 0.194

ℓ2

Cov: 61.15%
Pred: 0.078
Total: 0.125

Cov: 13.2%
Pred: 0.010
Total: 0.183

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 42.90%
Pred: 0.058
Total: 0.144

Cov: 2.5%
Pred: 0.002
Total: 0.198

ℓ2

Cov: 64.6%
Pred: 0.082
Total: 0.122

Cov: 13%
Pred: 0.0017
Total: 0.193

3.2 Building general reliable agnostic learners & conformal prediction

We show how we can use our efficient construction of selective omnipredictors to recover and
generalize the results on reliable agnostic learning obtained by [43] from 0-1 loss to an entire family
of loss functions (as defined in Section 2.3).

Theorem 3.3. Let C be a concept class of Boolean concepts, L any class of B-Lipschitz loss functions,
and D a distribution on X × Y . If C is agnostically learnable under D in time T (ϵ, δ), then C is
L-fully reliably learnable under D in time T (ϵ2/6, δ).
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Conformal prediction from FRL. Lastly, we demonstrate a useful application of the reliable
agnostic learning framework. Specifically, we show that one can view FRL as a conformal prediction
method for the case of binary classification, where we view the {0, 1} prediction set as ‘?’.

In the classification setting, the goal of conformal prediction is to construct a prediction set of the
possible labels S(x) ⊆ Y for each point x ∈ X such that Pr(x,y)∼D[y ∈ S(x)] ≥ 1− ϵ for a chosen
error rate ϵ ∈ (0, 1). This is known as the ϵ-marginal coverage guarantee. In the case of binary
classification, the possible prediction sets can only be {0}, {1}, {0, 1}. We show the following:
Lemma 3.4. Let h? : X → {0, 1, ?} be an FRL predictor for C,D, ϵ and the 0-1 loss. Then, the
prediction sets induced by the level sets of h, where we map 0 7→ {0}, 1 7→ {1}, and ? 7→ {0, 1},
satisfy the ϵ-marginal coverage guarantee.
Remark 3.1. While any conformal prediction method must definitionally satisfy the ϵ-marginal
coverage guarantee, typical algorithms offer no theoretical bounds on the size of the prediction sets.
In the case of binary classification, this means that we could have an arbitrarily large number of
points mapped to {0, 1} (even the entire domain, which is a trivial way of satisfying the marginal
coverage guarantee). However, FRL does provide provable abstention guarantees with respect to
a base concept class C of our choice. Let h? : X → {0, 1, ?} be an FRL predictor for the class C,
0-1 loss, and ϵ > 0, and let {0}, {1}, {0, 1} be its induced prediction sets as a conformal prediction
method. Then,

Pr
(x,y)∼D

[h?(x) = {0, 1}] ≤ min
c?∈SC(C)

Pr
(x,y)∼D

[c?(x) = ?] + ϵ.

We defer the proof in the appendix, where we also run experiments implementing FRL as a conformal
prediction method.

4 Learning Abstentions Fairly

So far, we have considered the question of how to learn abstentions optimally, where we measure
optimality in the agnostic sense, with respect to a base concept class C and a generalized Chow loss
function ℓGC. The motivation for abstaining is to be able to make almost no errors when predicting,
which we can accomplish by mapping the uncertain points to ‘?’ instead. However, we might
additionally have fairness concerns: suppose that we have a collection G = {g : X → {0, 1}} of
subgroups of interest of the domain. Besides achieving high accuracy over the points where we do
predict a numerical value, we would also like to abstain fairly on each of the groups g ∈ G, so that
we avoid achieving high global accuracy at the expense of overly abstaining on some subgroups.
Motivated by the multigroup fairness framework, we also want the groups in G to be able to intersect.

How can we measure how an optimal abstention rate looks like within each of the groups g ∈ G?
Motivated by the reliable agnostic learning framework [43], we do so by requiring our predictor to
abstain no more than the optimal selective classifier cg? ∈ SC(C) (with an ϵ slack) on each group
g ∈ G, where cg? can naturally be different for each group. That is, similar to our notion of a selective
omnipredictor, we want to construct a single classifier simultaneously for all groups, but its abstention
rate competes with that of a cg? that is chosen optimally in each group. Formally, we introduce the
following definition, which corresponds to the multigroup version of the original notion of realiable
agnostic learning:
Definition 4.1 ((C,G)–multigroup selective classification). Given a collection of subgroups G of
X , a concept class C, distribution D, and ϵ > 0, we say that a predictor h? : X → [0, 1] ∪ {?} is a
(C,G, ϵ)-multigroup selective classifier if the following two conditions are satisfied:

1. Global accuracy. errD(h?) := E(x,y)∼D[|y − h?(x)| · 1[h?(x) ̸=?]] ≤ ϵ.

2. Optimal local abstention rate. For every g ∈ G,

Pr
(x,y)∼D

[
g(x) · 1[h?(x) = ?]

]
≤ min

c?∈SC(C)
Pr

(x,y)∼D

[
g(x) · 1[c?(x) = ?]

]
+ ϵ.

Note that Condition 2 automatically implies an optimal global abstention rate as well, by applying
the local condition with g = 1 (which we can assume is always contained in G). We remark that
the multigroup fairness and omniprediction literature had so far always taken C = G; our notion
demonstrates why it is useful to separate the base concept class C from the collection of groups G.
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We show that we can efficiently construct a (C,G, ϵ)-multigroup selective classifier for any C,G from
a multiaccurate predictor for the class C · G = {cg | c ∈ C, g ∈ G} that is also globally calibrated:
Theorem 4.1. Given access to a (C · G, ϵ2/8)-multiaccurate and calibrated predictor, we can
efficiently construct a (C,G, ϵ)-multigroup selective classifier in time poly(1/ϵ).

The key idea in our proof is to convert a (C·G, ϵ)-multiaccurate and calibrated predictor h : X → [0, 1]
into a selective classifier by mapping all x such that h(x) ∈ (ϵ, 1− ϵ) to ‘?’. For each group g, let
cg? = (cg+, c

g
−) be an optimal selective classifier in SC(C) within g. Since cg+ ∈ C+, it follows that

whenever cg+ = 1, the true label y on that point is also 1. By the multiaccuracy guarantee for cg+ and g
(which is in C · G), we obtain that ED[y] ≈ ED[h(x)] ≈ 1 in the region where cg+(x) = 1, g(x) = 1.
A symmetric argument holds with cg− and g. We use the global calibration condition to ensure that
our thresholded h? remains accurate in the entire domain.

It is natural to ask whether we can efficiently construct (C,G)-multigroup selective classifiers starting
from a weaker learning primitive than a weak agnostic learner for C · G. We answer this question in
the positive in the case where |G| is small:
Lemma 4.2. If the class C is fully reliably learnable for the ℓ1 loss and ϵ > 0, we can construct a
(C,G, ϵ)-multigroup selective classifier in time poly(|G|, 1/ϵ) with oracle access to the full reliable
learner for C.

Answering this question in generality (i.e., where G can be arbitrarily large) appears to be a very
interesting open question.

Calibrated multiaccuracy and multicalibration. We make a further remark about how the various
multigroup fairness definitions relate to selective classification (which we show in the appendix).

(a) If we have the stronger primitive of a (C · G)-multicalibrated predictor (which implies a (C · G)-
multiaccurate calibrated predictor), then we can have a non-selective predictor which would also give
local agnostic guarantees. This follows from the works of [25, 10, 27].

(b) Given a (C ·G, ϵ)-multiaccurate and calibrated predictor, we can directly obtain FRL predictors for
the class C for the ℓ1 loss by thresholding the predictor as we do in the proof of Theorem 4.1. Given
that calibrated multiaccuracy implies agnostic learning [11], it is already implied by Theorem 4.1
that we can achieve reliable agnostic learning from calibrated multiaccuracy. However, this approach
gives a direct reduction. Reliable agnostic learning is believed to be a weaker learning primitive than
agnostic learning [45].

4.1 Conformal prediction from (C,G)-multigroup selective classification

Similar to Section 3, we can view (C,G)-multigroup selective classification as a conformal prediction
method in the case of binary classification. Besides the marginal coverage guarantee, now that we
have a collection G of groups one can also hope to satisfy a conditional version of coverage. Namely,
for every g ∈ G, we want to satisfy Pr(x,y)∼D[y ∈ S(x) | g(x) = 1] ≥ 1 − ϵ. This property is
known as the (G, ϵ)-group conditional coverage guarantee [39]. We show that (C,G)-multigroup
selective classifiers do indeed satisfy this conditional guarantee:
Lemma 4.3. Let h? : X → [0, 1] ∪ {?} be a (C,G, ϵ)-multigroup selective classifier. Then, the
prediction sets induced by the level sets of h, where we map [0, ϵ] 7→ {0}, [1 − ϵ, 1] 7→ {1}, and
(ϵ, 1− ϵ) 7→ {0, 1} satisfy Pr(x,y)∼D[y ∈ S(x) | g(x) = 1] ≥ 1− ϵ

PrD[g(x)=1] for all g ∈ G.

Remark 4.1. As pointed out in Section 3, typical conformal prediction methods offer no theoretical
bounds on the size of the prediction sets. Through our framework of (C,G)-multigroup selective
classification, however, we do obtain provable abstention guarantees for each g ∈ G with respect
to a base concept class C of our choice. Specifically, for each g ∈ G, the prediction sets of our
(C,G)-multigroup selective classifier h? as specified in Lemma 4.3 satisfy

Pr
(x,y)∼D

[
g(x) · 1[h?(x) = {0, 1}]

]
≤ min

c?∈SC(C)
Pr

(x,y)∼D
[c?(x) = ?] + ϵ.

Importantly, (C,G)-multigroup selective classification as a conformal prediction method ensures
group conditional coverage and a provable abstention bound on each group even when these intersect.

In the appendix we implement (C,G)-multigroup selective classifiers by adapting the multicalibration
algorithm and demonstrate its utility as a conformal prediction method in practice.
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5 Conclusion and Future Work

We conclude by providing some directions for future work.

The complexity of reliable agnostic learning. The first is concerned with the dependence on ϵ
when obtaining a fully reliable learner from agnostic learning. In the case of [44], they are able
to learn PRL, NRL, and FRL predictors for a concept class C in time T (O(ϵ2)) using an agnostic
learner for C that runs in time T (ϵ). In our case, when we obtain fully reliable learners from selective
omnipredictors in Theorem 3.3, in order to obtain a L-fully reliable learner with error ϵ we require a
selective omnipredictor with error ϵ2. It appears that the nature of the two constraints in the definition
of reliable agnostic learning (unlike the case of the generalized Chow loss formulation) induces this
overhead, but it is unclear whether it is unavoidable.

Building selective omnipredictors. For our construction of selective omnipredictors, we require
the multigroup fairness primitive of multicalibration. For the case of regular omniprediction (i.e.,
without abstentions), recent works have shown that we can construct omnipredictors from the weaker
primitive of calibrated multiaccuracy, and even with weaker notions of global calibration [26, 59].
Our proof of selective omniprediction seems to require the full power of multicalibration; it is unclear
whether we can relax it to calibrated multiaccuracy, or whether we can have a direct reduction from
omniprediction.

Weak agnostic learner for C · G. Our construction of a (C,G)-multigroup selective classifier in
Section 4 requires access to a (C · G)-multiaccurate and calibrated predictor. From the works on
multigroup fairness [26, 11], this in requires access to a weak agnostic learner for the class C · G. We
do not know whether it is possible to construct (C,G)-multigroup selective classifiers having only
access to separate weak agnostic learners for C and G, without requiring a weak agnostic learner for
their intersection. This can be seen as a broader question about the learnability of intersections of
concept classes.

Building selective classifiers. In Lemma 4.2 we show that we can construct a (C,G)-multigroup
selective classifier from a fully reliable learner, which is believed to be a weaker primitive than (weak)
agnostic learning [45]. However, we are only able to show this for classes G that are small in size,
given that we need to call the FRL oracle |G| times. Hence the question of whether we can build
selective classifiers from a weaker primitive than agnostic learning for a general class G remains
open.

Conformal prediction & model multiplicity. Lastly, in light of our connections between reliable
agnostic learning and (C,G)-multigroup selective classification with conformal prediction, it would
be interesting to develop this connection further, particularly focusing on the ability of these methods
to provide provable guarantees on the sizes of the prediction sets beyond the setting of binary
classification. It also appears fruitful to study how our framework of learning with abstentions, where
a predictor is able to measure its own reliability, relates to the recent works on model multiplicity.
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• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All mathematical proofs of our formal claims are in the appendix. These are
complete and fully formal. We also place our paper correctly within the current literature.
We provide full details of our synthetic data experiments in the appendix, as well as the code
that we used to run them.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We provide a limitations section in the appendix and provide directions for
future work and open problems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a full mathematical proof for all of our results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all of our code and explain the choice of parameters, etc. in the
appendix. Thus our code is fully reproducible.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We directly provide the Python code that we use for our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All of these details are provided in our appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide repetitions of all of our experiments and demonstrate its consis-
tency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all of this information in our appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the code of ethics and confirm that our paper conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Not only does our paper discuss the societal impacts of our work, it is fully
motivated by it. We study selective classification with the motivation of ensuring reliability
of predictions, which is crucial to ensure particularly in sensitive applications. The second
half of our paper is concerned with providing algorithms that provably abstain fairly within
each subgroup of interest. Our work is fully placed within the algorithmic fairness literature.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: We only run self-contained experiments with synthetic data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit any packages and works that we have used in producing our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We fully detail how we used LLMs in producing our code in the appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

In recent years, there has been an increasingly close examination of algorithmic predictions, particu-
larly when used in high-stakes settings. Most of these close examinations have focused on studying
the potential biases present in these predictions, such as in the development of individual and group
fairness notions [15, 30]. Another prominent example is the recent line of work on multigroup
fairness, which aims to detect and avoid unwanted forms of bias on the outputs of a predictor h that
maps individuals in a domain X to values in [0, 1], where the biases are measured with respect to a
class G of subgroups of the population that can intersect [32, 50].

However, we also need to study the reliabilty of the predictions made by h. Some recent works
have put forth the necessity of accounting for uncertainty in the setting of algorithmic fairness
[2, 5, 40, 54, 49, 53, 13], but this question remains largely understudied. A major application of these
notions is in learning theory through the new learning paradigm of omniprediction [24, 27, 16, 18,
17]. Multigroup fairnes notions can be understood as providing computational indistinguishability
guarantees, formalized through the Outcome Indistinguishability framework [16] and follow-up
works [10, 56, 11], which helps provide intuition for why they are well-suited as a method to add
abstentions, as we do in our work. Recent work on calibration uses higher order calibration as a way
to decompose the predictive uncertainty of a model into aleatoric and epistemic components [1].

We remark that other works on multicalibration and omniprediction do not separate C and G classes,
which we do in this paper.

Selective classification. The idea of building an algorithm that abstains on certain individuals is not
new and has traditionally been called selective classification [19]. A selective classifier is allowed to
also return ? as an output (which indicates abstention), along with the usual numerical values. In the
setting of fairness, some works have studied the effect of selectively abstaining. Jones et al. find that
certain forms of selective classification can magnify disparities across groups [37], and follow-up
works try to restrict this type of disparities [52, 62, 67]. Abstentions in learning have also been used
to provide bounds on efficient learning in the presence of arbitrary covariate shifts [41, 42, 23, 22]
and in the introduction of partial hypotheses classes [55, 34].

Bayesian approaches & Conformal prediction. Another major approach for the task of uncertainty
quantification is that of Bayesian inference. These methods place distributions over the model
parameters, and build a model by iteratively updating the prior with new data in order to obtain
the posterior through an application of Bayes rule [9]. For training neural networks in a way that
also allows for quantifying uncertainty, incorporating these techniques yields the so-called Bayesian
Neural Networks (BNNs) [21]. Some fairness works that are also concerned with incorporating
uncertainty have used BNNs in the context of fair prediction [5, 40, 33, 64]. However, Bayesian
methods tend to be very slow and largely intractable.

An alternative to Bayesian-based approaches that is gathering growing popularity is that of conformal
prediction, first proposed by by Gammerman, Vovk, and Vapnik [66, 3]. Conformal prediction is
a technique for determining precise levels of confidence which can be applied to any method that
has already been trained on the data [63]. Instead of a point-prediction (e.g., 0.8 for individual x),
with conformal prediction we can also return a prediction interval that indicates the confidence of
the algorithm on that prediction. The wider the interval, the lower the confidence and the higher the
uncertainty. Some recent works have extended the conformal prediction setting to provide conditional
guarantees instead of only marginal guarantees by adapting the multicalibration algorithm [38, 39].

Reliable learning. Still, none of the previous works studies abstention from a theoretical perspective.
In the formal setting of learning theory, the study of selective classification was initiated in 2009 by
Kalai, Kanade, and Mansour, who called it “reliable learning” [43]. How can we come up with a
formal model of classifiers that abstain, what does it mean to “abstain optimally”, and how can we
learn such classifiers?

The authors answer this by adapting the original agnostic learning framework [31, 47] to what they
call agnostic reliable learning. Here, the goal is to output a selective classifier whose accuracy nearly
matches the accuracy of the best selective classifier from a pre-specified concept class. [43] show that
if a concept class C is agnostically learnable, then it is also agnostic reliable learnable. In the other
direction, due to follow-up work by Kanade and Thaler it is widely believed that reliable agnostic
learning is easier than agnostic learning [45].

22



PQ-learning and Chow’s model of abstention. In 2020, Goldwasser, Kalai, Kalai, and Montasser
presented a model of learning meant to tackle the covariate shift problem, in which the training
data is distributed according to P and the test data according to Q, where P and Q can be arbitrary
distributions over the domain X [23]. This form of learning is not possible to achieve in general,
given that P and Q might not even overlap.

To make this problem tractable, Goldwasser et al. introduce the model of PQ-learning, where the
learner has access to unlabeled test examples from Q and the option to abstain on any point x ∈ X .
We compute the rejection rate ϵ1 of the algorithm (i.e., the fraction of X over which the classifier
abstains) and the misclassification rate ϵ2, which quantifies the error of the classifier only over the
subset of the domain on which the classifier does not abstain. Goldwasser et al. give algorithms for
building selective classifiers in the PQ-learning model which guarantee low test error rate and low
rejection rate with respect to P for concept classes of bounded VC dimension [23]. Their algorithm
is efficient if we have access to an Empirical Risk Minimizer (ERM) for C. For classes C of bounded
VC dimension, being able to do ERM efficiently is equivalent to proper agnostic learning [42].

In a follow-up work, Kalai and Kanade then showed that PQ-learning is equivalent to reliable learning.
Moreover, they provide further evidence that the computational hardness of PQ-learning and reliable
learning lies in-between PAC and agnostic learning (under the usual hardness assumptions) [42]. This
separation was already shown by Kanade and Thaler, who gave an algorithm for reliably learning
majorities over {0, 1}d in time 2Õ(

√
d), whereas there are no known agnostic learning algorithms for

this problem that run in time less than 2Ω(d) [45].

In another follow-up work, Kalai and Kanade consider a different formulation of the selective
classification problem considered by Goldwasser et al., which is based on the slightly different
and more general framework of Chow’s abstention model [12]. Here, instead of finding a trade-off
between error rates ϵ1, ϵ2, we have a fixed parameter α > 0 which corresponds to the abstention
cost. I.e., for each x ∈ X , we either make a prediction ŷ and suffer loss ℓ(y, ŷ) = |y − ŷ|, or we
abstain and pay a price of α. Importantly, this is a stronger model than PQ-learning/reliable learning,
given that they are able to by-pass the lower bounds shown in [23]. For this reason, in this paper we
prove our main results using (a generalized version of) Chow’s abstention model, given that it is the
strongest of the three formal learning with abstention models.

Multigroup fairness and omniprediction. In recent years, the algorithmic fairness literature has
developed a rich line of work on multigroup fairness notions, with applications to the covariate
shift problem, complexity theory, causal inference, the model multiplicity problem, and conformal
prediction, among many others [32, 29, 48, 51, 61, 14, 58, 60].

A major application of these notions is in learning theory through the new learning paradigm of
omniprediction [24, 27, 17]. Multigroup fairnes notions can be understood as providing computational
indistinguishability guarantees, formalized through the Outcome Indistinguishability framework [16]
and follow-up works [10], which helps provide intuition for why they are very well-suited as a method
to add abstentions, as we do in our work. Recent work on calibration uses higher order calibration
as a way to provably decompose the predictive uncertainty of a model into aleatoric and epistemic
components [1].

Variance and predictive multiplicity. Some works that studying the reliability of predictors focus
on the predictive multiplicity problem, which is concerned with the following fact: for a given fixed
dataset, there are multiple ways in which we can train a predictor on the dataset such that it achieves
high accuracy, but these various potential and equally good predictors can then disagree on individual
predictions [7, 57]. Various metrics have been proposed for quantifying the variance of the predictions
within the class M [57], and various algorithms have been proposed for ensembling these various
competing models in different ways [6, 60, 4].

Several works have studied the relationship between the variance within the class M and group
fairness metrics [54, 53, 2, 49, 36]. Notably, following this variance approach, Cooper et al. find that
we can obtain close-to-fair predictions simply by abstaining on the individuals with high variance
[13]. A drawback of these variance-based methods is that they require fitting an entire class M of
models.
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B Deferred Definitions

B.1 Reliable agnostic learning

The framework of reliable agnostic learning was first proposed by Kalai, Kanade, and Mansour for
the case of zero-one loss [43]. In the main body, we generalized the definitions to a family of loss
functions L. Here, we state the original definitions for the 0-1 loss, which help grasp the notions of
PRL, NRL, and FRL. We first recall the usual definitions of the error, false positive rate, and false
negative rate of a predictor h in the case of 0-1 loss and for Boolean labels Y = {0, 1}.

err(h,D) = Pr
(x,y)∼D

[h(x) ̸= y],

false+(h,D) = Pr
(x,y)∼D

[c(x) = 1 ∧ y = 0],

false−(h,D) = Pr
(x,y)∼D

[c(x) = 0 ∧ y = 1].

Note that err(h,D) = false+(h,D) + false−(h,D). We drop the distribution D when it can be
inferred from context, and sometimes write errD(h) for err(h,D).
Definition B.1 (Positive Reliable Learning (PRL) [43]). A concept class C of Boolean concepts
is positive reliably learnable if there exists a learning algorithm that for any distribution D over
X × {0, 1}, any ϵ, δ > 0, with access to the example oracle EX(D), outputs a hypothesis h : X →
{0, 1} that satisfies the following with probability at least 1− δ,

1. false+(h,D) ≤ ϵ,

2. false−(h,D) ≤ minc+∈C+ false−(c+, D) + ϵ, where C+ = {c ∈ C | false+(c,D) = 0}.

Symmetrically, we have that:
Definition B.2 (Negative Reliable Learning [43]). A concept class C of Boolean concepts is negative
reliably learnable if there exists a learning algorithm that for any distribution D over X × {0, 1},
any ϵ, δ > 0, with access to the example oracle EX(D), outputs a hypothesis h : X → {0, 1} that
satisfies the following with probability at least 1− δ,

1. false−(h,D) ≤ ϵ, and

2. false+(h,D) ≤ minc−∈C−(D) false+(c−,D)+ ϵ, where C− = {c ∈ C | false−(c,D) = 0}.

Full reliability. Both PRL and NRL are non-selective classifiers; the hypothesis h in the definitions
of PRL and NRL map from X to {0, 1}. But if we want both the positive and the negative rates to be
low (i.e., for the total error to be low), then this is not possible unless we allow for ? to be in the range
of h as well. Recall the definition of the class SC(C) derived from the concept class C (Section 2.3).
By the definitions of C+ and C−, note that all concepts in SC have 0 error over the non-abstaining
region.

We further define the uncertainty ?(h?,D) and accuracy acc(h?,D) of a Boolean selective classifier
h? as follows:

?(h?,D) = E
(x,y)∼D

[h(x) = ?].

acc(h?,D) = E
(x,y)∼D

[1[h?(x) = 0] · (1− y) + 1[h?(x) = 1] · y],

One can see that err(h?,D) + ?(h?,D) + acc(h?,D) = 1.

Full reliable learning is then defined as follows:
Definition B.3 (Full Reliable Learning (FRL) [43]). A concept class C of Boolean concepts is fully
reliably learnable if there exists a learning algorithm that for any distribution D over X × {0, 1}, any
ϵ, δ > 0, with access to the example oracle EX(D), outputs a selective classifier h? : X → {0, 1, ?}
that satisfies the following with probability at least 1− δ,

1. err(h?,D) = false+(h?,D) + false−(h?,D) ≤ ϵ,

2. acc(h?,D) ≥ maxc?∈SC(C) acc(c?,D)− ϵ.
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Alternatively, using the fact that err(h?,D) + ?(h?,D) + acc(h?,D) = 1, we can write the FRL
definition with the formulation used in [45], where Condition 2 is expressed in terms of the abstention
rate rather than in terms of accuracy. Indeed, we can equivalently define FRL as follows:
Definition B.4 (Full Reliable Learning (FRL) [43]). A concept class C of Boolean concepts is fully
reliably learnable if there exists a learning algorithm that for any distribution D over X × {0, 1}, any
ϵ, δ > 0, with access to the example oracle EX(D), outputs a selective classifier h : X → {0, 1, ?},
that satisfies the following with probability at least 1− δ,

1. err(h?,D) = false+(h?,D) + false−(h?,D) ≤ ϵ,

2. ?(h?,D) ≤ minc?∈SC(C) ?(c?,D) + ϵ.

When instantiating our generalized definitions (Section 2.3) to the case of the 0-1 loss, ℓ+ corresponds
to false+, ℓ− corresponds to false−, and ℓ? to ?.

The original definitions of PRL, NRL, and FRL were introduced only for the case of the 0-1 loss [43].
For this specific choice of loss function, Kalai, Kanade, and Mansour showed the following:
Theorem B.1 ([43]). Let L contain only the 0-1 loss. If a concept class C is agnostically learnable
under distribution D in time T (ϵ, δ), then C is L-positively reliably learnable and L-negative reliably
learnable, both in time T (ϵ2/2, δ). Then, C is also L-full reliably learnable, in time 2T (ϵ2/8, δ/2).

Lastly, in the main body we deferred the definition of L-NRL to the appendix, which we include for
completeness:
Definition B.5 (NRL for a family of loss functions [43, 45]). A concept class C of Boolean concepts
is L-negatively reliably learnable if there exists a learning algorithm that for any distribution D over
X × {0, 1}, any ℓ+, ℓ− ∈ L, and any ϵ, δ > 0, when given access to the example oracle EX(D),
outputs a hypothesis h : X → [0, 1] that satisfies the following with probability at least 1− δ:

1. E(x,y)∼D[ℓ−(h(x))] ≤ ϵ,

2. E(x,y)∼D[ℓ+(h(x))] ≤ minc−∈C− E(x,y)∼D[ℓ+(c−(x))] + ϵ.

B.2 Agnostic learning

Definition B.6 (Weak agnostic learning). Given a concept class C on X and a distribution D on
X × Y , a (α, γ)-weak agnostic learner for C, denoted WALC , is an algorithm that satisfies the
following promise problem. Given a collection of labeled samples (x,y) ∼ D, if there is some c ∈ C
such that errD(c) ≤ α, then WALC returns a hypothesis h : X → [0, 1] such that errD(h) ≤ γ with
probability at least 1− δ.
Definition B.7 (Agnostic learning). Given a concept class C on X and a distribution D on X × Y , a
(strong) agnostic learner for C is an algorithm that, given a collection of labeled samples (x,y) ∼ D
and an error parameter ϵ > 0, returns a hypothesis h : X → [0, 1] satisfying, with probability at least
1− δ,

errD(h) ≤ min
c∈C

errD(c) + ϵ.

From the results of [44, 20] on agnostic boosting, we know that strong agnostic learning reduces to
weak agnostic learning for any concept class C.

Throughout the statements and proofs, by “efficiently” we mean that the algorithm runs in polynomial
time in the appropriate parameters. We drop the failure probability δ from the statements.

C Deferred Proofs from Section 3

C.1 Selective omnipredictors

We emphasize that the selective omniprediction learning paradigm can be extremely useful in practice:
once we have obtained a (L, C)-selective omnipredictor, we can choose any loss function in L at a
later time. For example, this allows us to change the abstention costs over time, or to change the cost
of false positives or false negatives over time. One can envision many practical settings in which
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this flexibility is highly desirable; e.g., if not catching patients with a specific illness becomes more
dangerous over time. Note that our framework allows us to separate the costs of both prediction and
abstention for the cases of y = 1 and y = 0.
Theorem 3.1 (Constructing selective omnipredictors). Let C be a concept class of concepts c : X →
[−M,M ], D a distribution on X×{0, 1}, ϵ > 0, and L a family loss functions with associated weights
(λ, µ, ν) with λ + µ + ν ≤ 1, such that all ℓ ∈ L are B-Lipschitz. Then, a (C, ϵ)-multicalibrated
predictor is a (L, C, 4ϵβ + ϵB)-selective omnipredictor, where β is an absolute bound on ℓ+, ℓ−, ℓ?.
Remark C.1. The condition λ+ µ+ ν ≤ 1 is to ensure that the additive error term does not scale
up; equivalently we could just get 2B(λ+ µ+ ν)ϵ as the additive error.

Proof. Given the concept class C and parameter ϵ, we discretize each c ∈ C to precision ϵ (i.e., into
⌈1/ϵ⌉ many buckets). We denote these discretized concepts by ĉ and the corresponding concept class
by Ĉ. Because all loss functions are B-Lipschitz, discretizing the concepts to precision ϵ incurs an
additive error of at most ϵB.

We begin by calling the multicalibration theorem of [32, 26] with X ,D, ϵ, and Ĉ to obtain a (Ĉ, ϵ)-
multicalibrated predictor h. For any fixed loss function ℓ = (ℓ+, ℓ−, ℓ?) ∈ L, we claim that k∗ℓ±,ℓ?

◦h,
where k∗ℓ±,ℓ?

is the post-processing function defined in Definition 3.1, is a selective omnipredictor.

By the definition of a selective omnipredictor, we want to show that generalized Chow loss incurred
by k∗ℓ±,ℓ?

◦ h is upper-bounded by the generalized Chow loss incurred by k ◦ c for every c ∈ C, where
k : [0, 1] → R ∪ {?} is an arbitrary post-processing function. By definition of k∗ℓ±,ℓ?

, recall that

k∗ℓ±,ℓ?
(p) = argmint∈R∪{?} p ·

(
µℓ−(t) + νℓ?(1)

)
+ (1− p) ·

(
λℓ+(t) + νℓ?(0)

)
.

Following this generalized Chow loss expression (Definition 2.6), we decompose it into the expected
cost of predicting, which we denote by κpred, and the expected cost of abstaining, which we denote
by κabs, both under the Bernoulli distribution (i.e., for y ∼ Bern(p(x)) for each p ∈ range(h)):

κpred(p) = min
t

p · µℓ−(t) + (1− p) · λℓ+(t),

κabs(p) = ν
(
p · ℓ?(1) + (1− p) · ℓ?(0)

)
= ν

(
p · α+ + (1− p) · α−

)
.

Note that the prediction cost depends on the value of t, whereas the abstention cost is independent
of t. Then, for each point p, in order to minimize the expected generalized Chow loss under the
Bernoulli distribution Bern(p(x)), we proceed in two steps:

• Find the value t∗(p) ∈ [−M,M ] that minimizes the value of κpred(p) given a fixed value
of p. This depends only on the choice of µ, ℓ−, λ, ℓ+ and not on the underlying data. This
corresponds to finding the t∗(p) value that minimizes the value of k∗ℓ (p).

• For each predicted value h(x) = p, we map it to either t∗(p) or ? depending on whether it is
cheaper to predict or to abstain; that is, depending on the value of min{κpred(t

∗(p)), κabs}.

In other words, we can re-write k∗ℓ±,ℓ?
as kabs ◦ k∗ℓ , where

kabs =

{
t∗ if κpred ≤ κabs

? if κpred > κabs

The key idea is the following: the true labels are distributed as y ∼ Bern(p∗(x)). So if we had
access to the true p∗(x) value for each x, then the optimal prediction/abstention decision rule (i.e.,
the post-processing function applied to the p∗ value that yields the minimum total generalized Chow
loss) is precisely kabs.

We can write the cost function incurred by the post-processing function k∗ℓ±,ℓ?
= kabs ◦ k∗ℓ as:

κ(t, p) = min{p · µℓ−(t) + (1− p) · λℓ+(t), p · ℓ?(1) + (1− p) · ℓ?(0)}.

An important point to remark is that, while the prediction/abstention decision rule is decided with the
p-values (to which we have access to, since they correspond to the predictions of the multicalibrated
predictor h), the actual cost that we incur is computed with the true values p∗. Multicalibration
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precisely allows us to bridge this gap: the predictor h believes that the labels are distributed according
to Bern(p(x)), and so it uses the function kabs ◦ k∗ℓ as post-processing, which yields the optimal cost
under the distribution y ∼ Bern(p(x)). In order to bridge the “simulated” labels y ∼ Bern(p(x)),
which are used in our decision rule, and the “true” labels y ∼ Bern(p∗(x)), which yield the actual
cost that we pay, we use the fact that h is C-multicalibrated, which ensures that

E[y | h = p, ĉ = γ] ≈ E[p | h = p, c = γ]

for each γ in the range of ĉ. The RHS can equivalently be written as E[h | h = p, ĉ = γ]. This
“bridging” enabled by the multicalibration property satisfied by the predictor h is what allows us to
show that our selective omnipredictor (namely, the predictor k∗ℓ±,ℓ?

) incurs optimal loss with respect

to the class Ĉ.

We have discussed how the prediction/abstention decision rule for the multicalibrated predictor is
given by κ(t∗(p), p). As per the definition of a selective omnipredictor, we need to show that the
generalized Chow loss incurred by k∗ℓ±,ℓ?

is upper-bounded by the generalized Chow loss incurred
by any of the selective concepts c?, where c ∈ C and k : [0, 1] → R ∪ {?} is any post-processing
function that adds abstentions to the concepts c ∈ C. The only natural restriction on k is that it is a
function of the values ĉ(·), and cannot be a function of x. E.g., if ĉ(x1) = γ = ĉ(x2), then it must be
that ĉ?(x1) = ĉ?(x2). Hence, in the case of the concepts ĉ ∈ Ĉ, we cannot directly assume that the
prediction/abstention decision rule corresponds to k∗ℓ±,ℓ?

as well.

However, we can use the multicalibration condition to reason about the loss incurred by the concepts
ĉ. Specifically, for each concept ĉ ∈ Ĉ, we define the sets X(p,γ) = {x ∈ X | h(x) = p, ĉ(x) = γ}
for each p ∈ range(h) and each γ ∈ range(ĉ). Moreover, we let

ϕ(p,γ) = E[y|x ∈ X(p,γ)].

The fact that h is (Ĉ, ϵ)-multicalibrated implies that

ϕ(p,γ) = E[y | h(x) = p, ĉ(x) = γ] ≈ϵ E[h(x) | h(x) = p, ĉ(x) = γ] = p =⇒ ϕ(p,γ) ≈ϵ p.

In practice, the multicalibration condition applies on expectation over the level sets X(p,γ) for all
p, γ. We fix a level set h(x) = p of h and a concept ĉ ∈ Ĉ. We want to compare the loss incurred by
k∗ℓ±,ℓ?

(h) with the loss incurred by k ◦ c, where k : [0, 1] → R ∪ {?} is any post-processing function.
Within the level set h(x) = p, all of the values k∗ℓ±,ℓ?

(h) are the same, and so k∗ℓ±,ℓ?
(h) is either

predicting the value t∗(p) on all of the points in the level set h(x) = p, or abstaining in all of the
points in the level set, as determined by the cost function κ(t∗(p), p). Within the level set h(x) = p,
we further partition it according to the level sets of ĉ. That is, we consider the partition of Xp into the
sets X(p,γ) for each γ ∈ range(ĉ). For each x ∈ X(p,γ), ĉ either predicts or abstains, using a decision
rule k that is allowed to be arbitrary. For each set X(p,γ), we split the proof into 4 cases, depending
on whether h and ĉ decide to abstain or predict as per their respective decision rules.

Throughout, we let β denote a bound on the absolute values of ℓ+, ℓ−, ℓ?. Moreover, we can write
the loss function as

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν) = E
p∈range(h)

E
γ∈range(ĉ)

E
x∼D|X(p,γ)

[ℓGC,D(y, k
∗
ℓ±,ℓ?

(h(x)))],

and similarly for k ◦ ĉ.
Having fixed the values h = p and ĉ = γ, we argue about the expected loss incurred by the post-
processed multicalibrated predictor versus the expected loss incurred by the concept on the level set
X(p,γ).

1. k∗ℓ±,ℓ?
◦h predicts & k◦ ĉ predicts. We begin by swapping ϕ(p,γ) for p in the following expression:

ϕ(p,γ) · µℓ−(t∗(p)) + (1− ϕ(p,γ)) · λℓ+(t∗(p)) = p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p))
+ (ϕ(p,γ) − p)(µℓ−(t

∗(p))− λℓ+(t
∗(p)).

By definition of t∗(p), it follows that t∗(p) is the minimizer of κpred(p) in [−M,M ] given a fixed
value of p. Hence,

p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p)) ≤ p · µℓ−(γ) + (1− p) · λℓ+(γ).
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Swapping p for ϕ(p,γ) again, we get that

p · µℓ−(γ) + (1− p) · λℓ+(γ) + (ϕ(p,γ) − p)(µℓ−(t
∗(p))− λℓ+(t

∗(p))

= ϕ(p,γ)·µℓ−(γ)+(1−ϕ(p,γ))·λℓ+(γ)+(ϕ(p,γ)−p)
[(
µℓ−(t

∗(p))−λℓ+(t
∗(p))

)
−
(
µℓ−(γ)−λℓ+(γ)

)]
.

Putting everything together, we get that

ϕ(p,γ) · µℓ−(t∗(p)) + (1− ϕ(p,γ)) · λℓ+(t∗(p))

= ϕ(p,γ)·µℓ−(γ)+(1−ϕ(p,γ))·λℓ+(γ)+(ϕ(p,γ)−p)
[(
µℓ−(t

∗(p))−ℓλℓ+(t
∗(p)

)
−
(
µℓ−(γ)−λℓ+(γ)

)]
.

By the β-bound on the loss functions, and given that λ+ µ+ ν ≤ 1, it follows that

(ϕ(p,γ) − p)
[(
µℓ−(t

∗(p))− ℓλℓ+(t
∗(p)

)
−

(
µℓ−(γ)− λℓ+(γ)

)]
≤ |ϕ(p,γ) − p| · 4β.

Therefore, over X(p,γ), where k∗ℓ±,ℓ?
◦ h is predicting p and k ◦ ĉ is predicting γ, the expected

generalized Chow losses compare as follows:

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν | x ∈ X(p,γ)) ≤ ℓGC,D(k ◦ ĉ;λ, µ, ν | x ∈ X(p,γ)) + |ϕ(p,γ) − p| · 4β.

2. k∗ℓ±,ℓ?
◦ h predicts & k ◦ ĉ abstains. As in the previous case, we swap ρ(p,γ) by p:

ϕ(p,γ) · µℓ−(t∗(p)) + (1− ϕ(p,γ)) · λℓ+(t∗(p)) = p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p))
+ (ϕ(p,γ) − p)(µℓ−(t

∗(p))− λℓ+(t
∗(p)).

By the decision rule for h determined by the value of κ(t∗(p), p), if k∗ℓ±,ℓ?
◦ h predicts on X(p,γ) this

implies that

p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p)) ≤ p · νℓ?(1) + (1− p) · νℓ?(0).

Again swapping p for ϕ(p,γ), we obtain:

p · νℓ?(1) + (1− p) · νℓ?(0) + (ϕ(p,γ) − p)(µℓ−(t
∗(p))− λℓ+(t

∗(p))

= ϕ(p,γ)·νℓ?(1)+(1−ϕ(p,γ))·νℓ?(0)+(ϕ(p,γ)−p)
[(
µℓ−(t

∗(p))−λℓ+(t
∗(p))

)
−
(
νℓ?(1)−νℓ?(0)

)]
.

By the β-bound on the loss functions, and given that λ+ µ+ ν ≤ 1, it follows that

(ϕ(p,γ) − p)
[(
µℓ−(t

∗(p))− λℓ+(t
∗(p))

)
−
(
νℓ?(1)− νℓ?(0)

)]
≤ |ϕ(p,γ) − p| · 4β.

Therefore, putting everything together, we obtain that

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν | x ∈ X(p,γ)) ≤ ℓGC,D(k ◦ ĉ;λ, µ, ν | x ∈ X(p,γ)) + |ϕ(p,γ) − p| · 4β.

3. k∗ℓ±,ℓ?
◦ h abstains & k ◦ ĉ predicts. We start by swapping ρ for p as in the previous two cases:

ϕ(p,γ) · νℓ?(1) + (1− ϕ(p,γ)) · νℓ?(0) = p · νℓ?(1) + (1− p) · νℓ?(0) + (ϕ(p,γ) − p)(νℓ?(1)− νℓ?(0)).

Because k∗ℓ±,ℓ?
◦ h abstains on this level set, it must be that

p · νℓ?(1) + (1− p) · νℓ?(0) ≤ p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p)).

By definition of t∗(p) as the minimizer of κpred, for any value of γ we have that

p · µℓ−(t∗(p)) + (1− p) · λℓ+(t∗(p)) ≤ p · µℓ−(γ) + (1− p) · λℓ+(γ).

We again switch p back to ϕ(p,γ):

p · µℓ−(γ) + (1− p) · λℓ+(γ) + (ϕ(p,γ) − p)(νℓ?(1)− νℓ?(0))

= ϕ(p,γ) ·µℓ−(γ)+(1−ϕ(p,γ))) ·λℓ+(γ)+(ϕ(p,γ)−p)
[(
νℓ?(1)−νℓ?(0)

)
−
(
µℓ−(γ)+λℓ+(γ)

)]
By the β-bound on the loss functions, and given that λ+ µ+ ν ≤ 1, it follows that

(ϕ(p,γ) − p)
[(
νℓ?(1)− νℓ?(0)

)
−
(
µℓ−(γ) + λℓ+(γ)

)]
≤ |ϕ(p,γ) − p| · 4β.
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Putting everything together, we obtain that

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν | x ∈ X(p,γ)) ≤ ℓGC,D(k ◦ ĉ;λ, µ, ν | x ∈ X(p,γ)) + |ϕ(p,γ) − p| · 4β.

4. k∗ℓ±,ℓ?
◦ h abstains & k ◦ ĉ abstains. In this case, given that the values of ℓ?(1) and ℓ?(0) are

independent of t, it directly follows that both k∗ℓ±,ℓ?
◦ h and k ◦ ĉ incur the exact same generalized

Chow loss on X(p,γ).

Putting these four cases together, and by taking the expected value over all level sets X(p,γ), for all
p in the range of h and γ in the range of ĉ, and by thus applying the multicalibration guarantee on
E[|ϕ(p,γ) − p|] (i.e., which guarantees that E[|ϕ(p,γ) − p|] ≤ ϵ), we obtain that

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν) ≤ ℓGC,D(k ◦ c;λ, µ, ν) + 4ϵβ.

Because these four cases are exhaustive and hold for all values of p and γ, we conclude that

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν) = E
p∈range(h)

E
γ∈range(ĉ)

E
x∼D|X(ϕ,γ)

[ℓGC,D(y, k
∗
ℓ±,ℓ?

(h(x)))]

≤ E
p∈range(h)

E
γ∈range(ĉ)

E
x∼D|X(ϕ,γ)

[ℓGC,D(y, k(c(x)))] + 4ϵβ

= ℓGC,D(k ◦ c;λ, µ, ν) + 4ϵβ.

Therefore, for the non-discretized concept class C, and accounting for ϵB loss incurred in the clippings
of each of c and t∗(p), we conclude that

ℓGC,D(k
∗
ℓ±,ℓ?

◦ h;λ, µ, ν) ≤ ℓGC,D(k ◦ c;λ, µ, ν) + 4ϵβ + ϵB

for all loss functions in L, and hence h is a selective omnipredictor, as we wanted to show.

Then, the value of k∗ℓ±,ℓ?
can be computed efficiently because (1) computing the value of κpred(p)

corresponds to solving a one-dimensional minimization problem, and (2) the value of k∗ℓ±,ℓ?
is then

fully determined from the values κpred(p) with the optimal t = t∗(p) and of κabs, independent from
the data.

Lastly, we show that allowing for randomized selective predictors does not help in minimizing the
generalized Chow loss function. Suppose that the selective predictor was randomized, such that for
each point x ∈ X it would predict a value a ∈ [0, 1] indicating the probability of abstention on x.
Then, for a fixed t we can write our post-processing function as

k∗ℓ±,ℓ?
(p) = argmint,a(1− a)κpred + aκabs = (κabs − κpred) · a+ κpred.

For a fixed t ∈ R ∪ {?} (and once the loss functions have been fixed), the total loss only depends on
κpred and κabs, which in turn only depend on p. Note that after fixing t, k∗ℓ,a is a linear function on
κpred, κabs. This implies that the total generalized Chow loss is minimized at either a = 0 or a = 1,
so no fractional abstention is required.

Remark C.2. If the concepts c ∈ C are not bounded a priori, then we can clip them into an interval
[−M,M ] for some finite value M . Given any convex loss function ℓ and parameter ϵ, we find
−M and M by determining the values of t ∈ R such that ℓ(0, t) = ϵ and ℓ(1, t) = ϵ, respectively;
these correspond to the values of −M and M . This clipping is either helpful (prevents the loss
from getting too large) or incurs at most ϵ additional loss; for example, for the logistic loss, we set
M = log(1/ϵ),−M = − log(1/ϵ).

Interval of abstention. Having shown that we can efficiently build selective omnipredictors, we
further show that all points p that are set to ? by k∗ℓ±,ℓ?

are in a contiguous interval. This follows from
the affinity of the loss functions ℓ+, ℓ− ∈ L.

We can also write κpred(p) as κpred(p, t
∗) to indicate that the value of t∗ has been set to the optimal

value for each prediction p. More generally, we let κpred(p, t) = p · µℓ−(t) + (1− p) · λℓ+(t).
Lemma 3.2. Given any loss functions ℓ+, ℓ−, ℓ? ∈ L, the points x ∈ R such that k∗ℓ±,ℓ?

(x) = ? form
a contiguous interval, which we denote by Iabs.

To prove Lemma 3.2, we first show the following intermediate lemma:
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Lemma C.1. The function κpred(p, t
∗) is concave as a function of p.

Proof. Recall that κpred(p, t
∗) = mint p · µℓ−(t) + (1 − p) · λℓ+(t), where κpred(p, t

∗) =
mint∈R κpred(p, t).1 For every fixed t0 ∈ R, the function κpred(p, t0) is affine in p:

κpred(p, t0) =
(
µℓ−(t0)− λℓ+(t0)

)
· p+ λℓ+(t0).

Affine functions are convex and concave, and so κpred(p) = mint0∈R κpred(p, t0) is equal to the
pointwise infimum of a family of affine functions in p. It is a known fact in analysis that the pointwise
infimum of affine functions is concave, and so κpred(p, t

∗) is indeed concave as a function of p.
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(a) Example with the ℓ2 function; κpred(p, t) with
fixed values of p. For each fixed value of p, the result-
ing function is convex in t.
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(b) Example with the ℓ2 function; κpred(p, t) with
fixed values of t. For each fixed value of t, the result-
ing function is affine in p.

Note that for our results on Iabs we only need affinity in p.

Proof of Lemma 3.2. Recall that k∗ℓ±,ℓ?
(p) = min{κpred(p, t

∗), κabs(p)}.2 Per Lemma C.1, the
function κpred(p, t

∗) is concave in p. By definition, note that κabs(p) is affine in p:

κabs(p) =
(
να+ − α−

)
p+ α−.

Therefore, the function κpred(p, t
∗)− κabs(p) is still concave in p. Hence this function has at most

two roots, and hence the set of points p where κpred(p, t
∗) ≥ κabs(p) forms a contiguous interval

(which can be empty, in the case where it is always better to predict than to abstain). By the definition
of our post-processing function k∗ℓ±,ℓ?

(p), this interval corresponds precisely to the set of points
where k∗ℓ±,ℓ?

(p) = ?, and hence this interval is equal to Iabs.

Figure 2b illustrates the concavity of κpred(p, t) as a function of t (left) and the affinity of κpred(p, t)
as a function of p (right), which prove that the abstentions as allocated by the selective omnipredictor
occur in one contiguous (and possibly empty) interval Iabs.

Omniprediction with constraints. Recent work by Hu, Livni-Navon, Reingold, and Yang extends
the line of work on omniprediction to constrained optimization problems [35]. This allows the learner
to train agnostic to the final choice of loss function as well as of constraints that will be later imposed
(as long as these satisfy certain conditions). By viewing Condition 1 in the definitions of PRL, NRL,
and FRL as a constraint, one could potentially adapt their results in order to construct L-PRL and
L-NRL predictors, and then ensemble them in the usual way to obtain L-FRL predictors. It is unclear
how this approach could be used to obtain optimality in the more general framework of selective
omniprediction with generalized Chow losses (Definition 2.7).

1In the proof of Theorem 3.1 we used κpred(p). Here we write t∗ to remind that the function has been
minimized with respect to t.

2In the case of ties, we decide to predict.
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C.2 FRL from selective omniprediction

Theorem 3.3. Let C be a concept class of Boolean concepts, L any class of B-Lipschitz loss functions,
and D a distribution on X × Y . If C is agnostically learnable under D in time T (ϵ, δ), then C is
L-fully reliably learnable under D in time T (ϵ2/6, δ).

Note that here we use our proposed notion of L-FRL (Definition 2.5), which is a generalization of
the 0-1 version proposed in [43].

Proof. Let ϵ be the target error parameter for fully reliable learning. We consider the parameters
λ = µ = 1/3 and ν = ϵ/6. From C, we define the concept class C′ of concepts c′ : X → {0, 1/2, 1}
as containing the concepts (c1 + c2)/2 for every possible pairing c1, c2 ∈ C. Defining the post-
processing k ◦ C′ as mapping 0 to 0, 1 to 1, and 1/2 to ?, we get that SC(C) ⊆ k ◦ C′. Let c∗? be an
optimal abstaining classifier in SC(C). By definition of SC(C), it follows that all concepts in SC(C)
incur 0 error over the non-abstaining region, and hence

ℓGC,D(c
∗
?;λ, µ, ν) = νℓ?(c

∗
?).

Let h be a (L, C′, γ)-selective omnipredictor (which we can obtain for C′ given that C′ is agnostically
learnable, as shown in Theorem 3.1). By the selective omniprediction guarantee, it follows that for
any post-processing function k : [0, 1] → R ∪ {?},

ℓGC,D(h;λ, µ, ν) ≤ min
c′?∈k◦C

ℓGC,D(c
′
?;λ, µ, ν) + γ.

In particular, using the post-processing k that maps 0 to 0, 1 to 1, and 1/2 to ?, this implies that

ℓGC,D(h;λ, µ, ν) ≤ ℓGC,D(c
∗
?;λ, µ, ν) + ϵ = νℓ?(c

∗
?) + γ.

By setting γ = ϵ2/6, and using the fact that ℓ?(c∗?) ≤ 1, we get and since λ = 1/3, ν = ϵ/6,

1

3
ℓ+(h) ≤ ϵ/6 + ϵ2/6,

and so ℓ+(h) ≤ ϵ. Similarly, we have that ℓ−(h) ≤ ϵ. Finally,

γℓ?(h) ≤ γℓ?(c
∗
?) + ϵ2/6,

since γ = ϵ/6, it follows that,

ℓ?(h) ≤ ℓ?(c
∗
?) + ϵ.

This completes the proof.

C.3 Conformal prediction from FRL

Lemma 3.4. Let h? : X → {0, 1, ?} be an FRL predictor for C,D, ϵ and the 0-1 loss. Then, the
prediction sets induced by the level sets of h, where we map 0 7→ {0}, 1 7→ {1}, and ? 7→ {0, 1},
satisfy the ϵ-marginal coverage guarantee.

Proof. Let err(h?,D) = Pr(x,y)∼D[h?(x) ̸= y] denote the error of the selective predictor h? and
recall that

false+(h?,D) = Pr
(x,y)∼D

[h?(x) = 1 ∧ y = 0] false−(h?,D) = Pr
(x,y)∼D

[h?(x) = 0 ∧ y = 1].

Since err(h?,D) ≤ ϵ by the FRL guarantee of h? and err(h?,D) = false+(h?,D) + false−(h?,D),
it follows that

false+(h?,D) ≤ ϵ, false−(h?,D) ≤ ϵ.

This implies that for all y = 1,
Pr

(x,y)∼D
[y /∈ {1}] ≤ ϵ,

and symmetrically for all y = 0. Therefore, we satisfy the marginal coverage guarantee for the
prediction sets {0}, {1}. We also trivially satisfy it for the prediction set {0, 1}, since y is Boolean
and so Pr(x,y)∼D[y ∈ {0, 1}] = 1.
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Lastly, we formalize and prove Remark 3.1, which shows that FRL viewed as a conformal prediction
method, besides satisfying the ϵ-marginal coverage guarantee, also provides a provable upper bound
on the size of the set {0, 1}, which constitutes a measure of uncertainty:
Lemma C.2. Let h? : X → {0, 1, ?} be an FRL predictor for C,D, ϵ, and the 0-1 loss. Then, the
prediction sets induced by the level sets of h? satisfy:

Pr
(x,y)∼D

[h?(x) = {0, 1}] ≤ min
c?∈SC(C)

Pr
(x,y)∼D

[c?(x) = ?] + ϵ.

Proof. This follows directly from Condition 2 in the definition of FRL, which ensures that

?(h?,D) ≤ min
c?∈SC(C)

?(c?,D) + ϵ.

D Examples of Selective Omnipredictors

In this section, we provide concrete examples of the post-processing function k∗ℓ±,ℓ?
for specific

choices of loss function triplets (ℓ+, ℓ−, ℓ?). We do so for the triplets of loss functions used in
Figure 1, and for each triplet we theoretically derive the abstention interval Iabs. Recall that Iabs only
depends on the chosen generalized Chow loss, and not on the underlying data, which is what makes
our selective omniprediction framework extremely efficient to adapt to many different loss functions.

ℓ1 loss with different abstention costs. Consider letting ℓ−, ℓ+ correspond to the 0-1 loss, and let
the abstention cost be fixed at some value α > 0. That is:

ℓ−(t) = |1− t|, ℓ+(t) = |t|, ℓ?(y) = α.

Then,
κpred(p) = min

t
p · |1− t|+ (1− p) · |t|, κabs = α.

The value t∗(p) that minimizes κpred(p) for each p corresponds to k∗ℓ (p) = t∗(p) = 1[p ≥ 1/2].
Then, for each predicted value h(x) = p, k∗ℓ±,ℓ?

will compare the expected prediction cost under the
Bernoulli distribution y ∼ Bern(p), namely

κpred(p) = p · |1− t∗(p)|+ (1− p) · |t∗(p)| = p ·
∣∣1− 1[p ≥ 1/2]

∣∣+ (1− p) ·
∣∣1[p ≥ 1/2]

∣∣, (1)

with the expected cost of abstention κabs = α. If κpred(p) ≤ κabs, then k∗ℓ±,ℓ?
(p) = t∗(p); otherwise,

k∗ℓ±,ℓ?
(p) = ?.

We compute the interval Iabs for different choices of α. For an arbitrary value of κabs = α, Iabs
corresponds to the interval contained between the roots of the polynomial κpred(p)−κabs, which is a
function in p. In the case of α = 0.1, the roots of κpred(p)− 0.1 (where κpred is given in Equation 1)
yield Iabs = [0.1, 0.9]. For α = 0.2, the roots of κpred(p)− 0.2 yield [0.2, 0.8].

Lastly, we consider the case where ℓ?(1) = α+ = 0.3 and ℓ?(0) = α− = 0.1. Here, we have that

κabs(p) = p · α+ + (1− p) · α−.

Then, the roots of the polynomial κpred(p)− p ·α+ +(1− p) ·α− for α+ = 0.3 and α− = 0.1 yield
Iabs = [0.125, 0.75].

ℓ2 loss with different abstention costs. In the case of the ℓ2 loss, and still with fixed abstention
cost ℓ?(y) = α, we have that

k∗ℓ±,ℓ?
(p, t) = p · (1− t)2 + (1− p) · (0− t)2 + aα.

Hence, if we decide to predict, we pay an expected cost of κpred(p) = mint p·(1−t)2+(1−p)·(0−t)2.
If we abstain, we pay an expected cost κabs(p) = α. Both of these expected costs are under the
Bernoulli distribution y ∼ Bern(p). For a fixed value of p, the function κpred(p, t) is minimized at
t∗(p) = p, and hence

κpred(p, t
∗) = p · (1− p)2 + (1− p) · p2.
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Hence, the value of k∗ℓ±,ℓ?
(p) is fully determined by the quantity min{p · (1− p)2 + (1− p) · p2, α}.

We can similarly compute the interval Iabs for different choices of α by computing the roots of
the polynomial κpred − κabs. In the case of α = 0.1, the roots of κpred(p) − 0.1 yield Iabs =

[ 1−
√
0.6

2 , 1+
√
0.6

2 ]. For α = 0.2, the roots of κpred(p)− 0.2 yield Iabs = [ 1−
√
0.2

2 , 1+
√
0.2

2 ].

Lastly, we again consider the case where ℓ?(1) = α+ = 0.3 and ℓ?(0) = α− = 0.1. The roots of the
polynomial κpred(p)−p ·α++(1−p) ·α− for α+ = 0.3 and α− = 0.1 yield Iabs = [ 4−

√
6

10 , 4+
√
6

10 ].

All of these theoretically-derived abstention intervals Iabs can be visualized in our experiments, as
summarized in Figure 1. We further provide an illustrative example in Figure 3 to show how the
abstention interval Iabs widens when we decrease the cost of abstention from 0.2 to 0.1.

0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

p

0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

p

Figure 3: Example with the ℓ2 loss and ℓ?(y) = 0.2 for all y (i.e., the traditional Chow abstention
model) in the left subfigure and ℓ?(y) = 0.1 for all y in the right subfigure. The purple line represents
κpred(p, t

∗) and the orange line represents κabs(p). The green line represents κpred(p, t
∗)− κabs(p),

so its roots determine the interval Iabs where we abstain optimally (shaded in blue). In the left
example, Iabs =

[
(1−

√
0.2)/2, (1 +

√
0.2)/2

]
, independent of the data. As we decrease the cost of

abstention from α = 0.2 to α = 0.1 (and so the orange line moves down), our selective omnipredictor
obtains an increasingly wider abstention interval Iabs (e.g., in the right subfigure), as one would
expect.

E Experiments for Section 3

E.1 Selective omnipredictors

We construct selective omnipredictors from multicalibration to demonstrate the feasibility of our
abstention method in practice. We remark that, as far as we are aware, none of the previous works on
omniprediction included experimental evaluations. Because our experiments are a proof of concept,
we use synthetic data for all of them.3

We first provide a full description of the experimental set-up that we used to generate Figure 1 and
Table 1 in Section 3.1. Next, we provide further repetitions of our experiment showing selective
omnipredictors in action.

First, we generate 10, 000 samples and 20 features as our data using sk-learn’s function
make_classification and train a random forest to obtain baseline predictions. We then im-
plement the multicalibration algorithm from scratch using the concept class C of decision trees of
depth 3. At each step, we check for correlation between any concept in C and the residuals computed
with the current predictions. For the multicalibration algorithm, we use a discretization parameter of
0.1, a learning rate of 0.01, and 200 maximum iterations. The multicalibration algorithm is run on
the validation set (20% of the data) and we then report all of our statistics on the test set (20% of the
data). This gives us a predictor h; note that so far we have not used any loss functions.

Next, we choose specific triplets (ℓ+, ℓ−, ℓ?) and for each we apply our post-processing function
k∗ℓ±,ℓ?

. We use the triplets that are shown in Tables 1, 2, 3, 4. This is a pre-computed function that we
derive mathematically, so it is extremely efficient to post-process our h in this way. For each triplet,
we compute the total coverage, the total loss over the non-abstaining region (i.e., ℓ+ + ℓ?), and the

3The code for this paper can be found at https://github.com/silviacasac/learning-to-abstain.
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abstention loss (i.e., ℓ?). Separately, we do loss-specific minimization to compare with. In order to
use the same concept class C, we implement decision trees that minimize the Chow losses for the
chosen triplet (ℓ+, ℓ−, ℓ?). That is, we train a different decision tree (that adds abstentions) for each
of the different triplets in Tables 1, 2, 3, 4. We similarly report the total coverage, the total loss over
the non-abstaining region, and the abstention loss (i.e., ℓ?). Further details on our experiments can be
found directly in our code.

We repeat all of this process for different initializations of the synthetic data and report several runs
in Tables 1, 2, 3, 4. All of them demonstrate the same pattern: our post-processed predictor h, even
though it is a single predictor for any of the loss triplets, achieves better coverage and better loss than
the loss-specific abstaining decision tree. This is because the multicalibration process helps calibrate
the predictions towards 0 and 1. In contrast, the decision tree abstains significantly more (and thus
obtains lower loss over the non-abstention region). Therefore, this demonstrates the utility of using
selective omniprediction in practice.

Table 2: Comparison of coverage and losses. “Cov” stands for coverage, “Pred” for predicted loss
(i.e., over the non-abstaining region), and “Total” for the total generalized Chow loss.

ℓ? = 0.1 ℓ? = 0.2 ℓ?(1) = 0.3, ℓ?(0) = 0.1

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 45.70%
Pred: 0.038
Total: 0.072

Cov: 1.9%
Pred: 0.010
Total: 0.108

ℓ2

Cov: 47.55%
Pred: 0.037
Total: 0.070

Cov: 4.4%
Pred: 0.003
Total: 0.098

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 89.15%
Pred: 0.069
Total: 0.083

Cov: 4.4%
Pred: 0.030
Total: 0.221

ℓ2

Cov: 89.65%
Pred: 0.066
Total: 0.079

Cov: 10.5%
Pred: 0.007
Total: 0.186

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 62.60%
Pred: 0.065
Total: 0.093

Cov: 4.8%
Pred: 0.005
Total: 0.192

ℓ2

Cov: 66.65%
Pred: 0.057
Total: 0.085

Cov: 11.5%
Pred: 0.012
Total: 0.181

Table 3: Comparison of coverage and losses. “Cov” stands for coverage, “Pred” for predicted loss
(i.e., over the non-abstaining region), and “Total” for the total generalized Chow loss.

ℓ? = 0.1 ℓ? = 0.2 ℓ?(1) = 0.3, ℓ?(0) = 0.1

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 20.50%
Pred: 0.027
Total: 0.085

Cov: 9.5%
Pred: 0.032
Total: 0.122

ℓ2

Cov: 22.90%
Pred: 0.032
Total:0.084

Cov: 12%
Pred: 0.009
Total: 0.097

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 43.80%
Pred: 0.043
Total: 0.131

Cov: 12%
Pred: 0.176
Total: 0.211

ℓ2

Cov: 59.20%
Pred: 0.064
Total: 0.119

Cov: 20.3%
Pred: 0.015
Total: 0.174

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 39%
Pred: 0.042
Total: 0.136

Cov: 11.25%
Pred: 0.010
Total: 0.184

ℓ2

Cov: 58.20%
Pred: 0.075
Total: 0.119

Cov: 23.6%
Pred: 0.014
Total: 0.161

Table 4: Comparison of coverage and losses. “Cov” stands for coverage, “Pred” for predicted loss
(i.e., over the non-abstaining region), and “Total” for the total generalized Chow loss.

ℓ? = 0.1 ℓ? = 0.2 ℓ?(1) = 0.3, ℓ?(0) = 0.1

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 48.7%
Pred: 0.022
Total: 0.062

Cov: 10.7%
Pred: 0.029
Total: 0.118

ℓ2

Cov: 50.45%
Pred: 0.024
Total: 0.062

Cov: 19.3%
Pred: 0.005
Total: 0.086

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 74.15%
Pred: 0.043
Total: 0.084

Cov: 19.3%
Pred: 0.065
Total: 0.226

ℓ2

Cov: 79.25%
Pred: 0.048
Total: 0.079

Cov: 24.9%
Pred: 0.013
Total: 0.164

k∗
ℓ±,ℓ?

◦ h Abst. DT

ℓ1

Cov: 70.80%
Pred: 0.044
Total: 0.078

Cov: 13.15%
Pred: 0.008
Total: 0.178

ℓ2

Cov: 76.85%
Pred: 0.048
Total: 0.072

Cov: 24.6%
Pred: 0.020
Total: 0.164

E.2 Conformal prediction from FRL

As shown in Lemma 3.4 and Remark 3.1 (formalized in Lemma C.2), we can view FRL as a conformal
prediction method. We illustrated the feasibility of implementing FRL in practice and compare its
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Table 5: Match on ℓ1: for each weight w, choose α minimizing the difference in ℓ1 error between the
FRL and the conformal prediction methods.

Weight α FRL MAE CP MAE FRL coverage CP coverage

1.0 0.25 0.250 0.260 100.0% 97.0%
5.0 0.05 0.139 0.130 54.5% 42.3%

10.0 0.05 0.113 0.130 40.0% 42.3%
25.0 0.01 0.078 0.027 25.5% 11.0%
50.0 0.01 0.045 0.027 17.7% 11.0%
75.0 0.01 0.062 0.027 16.0% 11.0%

150.0 0.01 0.015 0.027 13.1% 11.0%
200.0 0.01 0.000 0.027 9.4% 11.0%

coverage and ℓ1 error with that of standard conformal prediction algorithms. Similar to our other
experiments in the paper, our experiments are a proof of concept for our theoretical results, but do
not intend to perform an exhaustive comparison to all of the conformal prediction methods in the
literature.

We generate 5, 000 data samples synthetically using sk-learn’s make_blobs function, which
generates isotropic Gaussian blobs for clustering. To create an FRL predictor, we do it by training
a PRL and an NRL predictor separately for the same data, and then ensembling them in the usual
way (i.e., if the two agree on a prediction we keep it, otherwise we abstain). To create the PRL and
NRL predictors, we use random forests where we give extra weight w to the label that we wish to
penalize most for the predictions (so false positives in the case of PRL, and false negatives in the case
of NRL). We try weights w = [1, 5, 10, 25, 50, 75, 150, 200]. This ensures that our trained predictors
achieve the required one-sided guarantees. For the ensembled FRL, we compute its global coverage
and ℓ1 error.

Next, we use a popular conformal prediction algorithm for binary classification to compare to. We
choose the widely-used MAPIE library [65] and use the standard split conformal prediction method
using the LAC method to compute the conformity score. We note that this is the only allowed
conformity score method in MAPIE for binary classification, which is why we did not add other
conformity score methods. We use a random forest as the base class, and train different models
for different confidence levels of α = [0.01, 0.05, 0.10, 0.20, 0.25] (i.e., this is the parameter for the
marginal coverage guarantee). When tested on the test set, the conformal prediction method returns
prediction sets {0}, {1}, or {0, 1}. We view the set {0, 1} as equivalent to an abstention ?, and then
compute the global coverage and ℓ1 error for the conformal prediction method.

To compare both methods for all of the weights w = [1, 5, 10, 25, 50, 75, 150, 200] and coverage
parameter α = [0.01, 0.05, 0.10, 0.20, 0.25] we match them based on a) matched ℓ1 error, and b)
matched coverage. We report the results pairs of tables as follows: a) for each weight w, we take the
α value that corresponds to the closest ℓ1 error of the FRL predictor for this w, and we report the
errors and coverages for this pair. We then also report the results by matching coverages instead: b)
for each weight w, we instead take the coverage value that corresponds to the closest coverage to that
of the FRL predictor for this w, and we report the errors and coverages for this pair.

We do several repeats of our experiment for different initializations of the synthetic data and report
the pairs of tables. Tables 5 and 6 correspond to one run, Tables 7 and 8 to another, and 9 and 10
to a last run. We observe the same pattern: FRL provides similar coverage and error guarantees to
the standard conformal prediction method, with FRL usually having a higher coverage and lower ℓ1
error.

F Deferred Proofs from Section 4

F.1 (C,G)-multigroup selective classification

Theorem 4.1. Given access to a (C · G, ϵ2/8)-multiaccurate and calibrated predictor, we can
efficiently construct a (C,G, ϵ)-multigroup selective classifier in time poly(1/ϵ).
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Table 6: Match on coverage: for each weight w, choose α minimizing the difference in coverage
between the FRL and the conformal prediction methods.

Weight α FRL ℓ1 CP ℓ1 FRL coverage CP coverage

1.0 0.25 0.250 0.260 100.0% 97.0%
5.0 0.10 0.139 0.172 54.5% 62.7%

10.0 0.05 0.113 0.130 40.0% 42.3%
25.0 0.01 0.078 0.027 25.5% 11.0%
50.0 0.01 0.045 0.027 17.7% 11.0%
75.0 0.01 0.062 0.027 16.0% 11.0%

150.0 0.01 0.015 0.027 13.1% 11.0%
200.0 0.01 0.000 0.027 9.4% 11.0%

Table 7: Match on ℓ1: for each weight w, choose α minimizing the difference in ℓ1 error between the
FRL and the conformal prediction methods.

Weight α FRL ℓ1 CP ℓ1 FRL coverage CP coverage

1.0 0.25 0.226 0.223 100.0% 98.5%
5.0 0.10 0.136 0.155 56.7% 64.5%

10.0 0.05 0.111 0.093 43.2% 41.0%
25.0 0.05 0.084 0.093 28.7% 41.0%
50.0 0.05 0.075 0.093 21.3% 41.0%
75.0 0.01 0.052 0.026 19.1% 11.6%

150.0 0.01 0.052 0.026 15.5% 11.6%
200.0 0.01 0.046 0.026 10.8% 11.6%

Table 8: Match on coverage: for each weight w, choose α minimizing the difference in coverage
between the FRL and the conformal prediction methods.

Weight α FRL ℓ1 CP ℓ1 FRL coverage CP coverage

1.0 0.25 0.226 0.223 100.0% 98.5%
5.0 0.10 0.136 0.155 56.7% 64.5%

10.0 0.05 0.111 0.093 43.2% 41.0%
25.0 0.05 0.084 0.093 28.7% 41.0%
50.0 0.01 0.075 0.026 21.3% 11.6%
75.0 0.01 0.052 0.026 19.1% 11.6%

150.0 0.01 0.052 0.026 15.5% 11.6%
200.0 0.01 0.046 0.026 10.8% 11.6%

Table 9: Match on ℓ1: for each weight w, choose α minimizing the difference in ℓ1 error between the
FRL and the conformal prediction methods.

Weight α FRL ℓ1 CP ℓ1 FRL coverage CP coverage

1.0 0.25 0.239 0.247 100.0% 98.8%
5.0 0.10 0.127 0.147 57.3% 67.2%

10.0 0.05 0.104 0.083 43.3% 41.1%
25.0 0.05 0.070 0.083 29.9% 41.1%
50.0 0.01 0.047 0.038 23.4% 13.0%
75.0 0.01 0.046 0.038 19.5% 13.0%

150.0 0.01 0.034 0.038 14.9% 13.0%
200.0 0.01 0.000 0.038 10.2% 13.0%
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Table 10: Match on coverage: for each weight w, choose α minimizing the difference in coverage
between the FRL and the conformal prediction methods.

Weight α FRL ℓ1 CP ℓ1 FRL coverage CP coverage

1.0 0.25 0.239 0.247 100.0% 98.8%
5.0 0.10 0.127 0.147 57.3% 67.2%

10.0 0.05 0.104 0.083 43.3% 41.1%
25.0 0.05 0.070 0.083 29.9% 41.1%
50.0 0.01 0.047 0.038 23.4% 13.0%
75.0 0.01 0.046 0.038 19.5% 13.0%

150.0 0.01 0.034 0.038 14.9% 13.0%
200.0 0.01 0.000 0.038 10.2% 13.0%

Proof. Let g ∈ G be some group and let us focus on the part of the domain Xg = {x | g(x) = 1}.
Consider the classes C+

g , C−
g derived from the Boolean concept class C, where C+

g (D) = {c ∈ C |
Pr[c(x) = 1, g(x) = 1,y = 0] = 0} and C−

g (D) = {c ∈ C | Pr[c(x) = 0, g(x) = 1,y = 1] = 0}.

Let h be a (C · G, ϵ2/8)-multiaccurate and calibrated predictor for X ,D, which we can build using
the main theorem in [26]. Consider any c+ ∈ C+

g ⊆ C. The multiaccuracy condition is ensured for
all c · g ∈ C · G, and so for this particular c+ and fixed group g we have that∣∣E

D

[
(g(x) · c+(x))(y − h(x))

]∣∣ ≤ ϵ2/8.

Given that whenever c+(x) = 1 and g(x) = 1, we have that y = 1 by definition of C+
g , it follows

that
E
D
[y | g(x) = 1, c+(x) = 1] = 1.

That is, within the region in Xg where c+(x) = 1, we have that ED[y] = 1. Then, by the multiac-
curacy guarantee on c+ · g, it follows that the expected value of h over the same region (i.e., where
c+(x) = 1 inside of Xg) is also close to 1:∣∣E

D

[
(g(x) · c+(x))(y − h(x))

]∣∣ = ∣∣E
D

[
(g(x) · c+(x))(1− h(x))

]∣∣ ≤ ϵ2/8,

and so

E
D
[h(x) | g(x) = 1, c+(x) = 1] ≥ 1− ϵ2

8ED[g(x)c+(x)]
. (2)

Now, we have two cases, either Pr[c+(x) = 1, g(x) = 1] = ED[c+(x)g(x)] ≤ ϵ/2, in which case
we trivially have,

E
[
1[h(x) ≥ 1− ϵ] · g(x)

]
≥ E

D
[c+(x)g(x)]− ϵ/2,

or, from Equation 2, we have that

E
D

[
1[h(x) ≤ 1− ϵ] | g(x) = 1, c+(x) = 1

]
≤ ϵ

4ED[g(x)c+(x)]
.

In this case, by taking the complement and multiplying both sides by ED[g(x)c+(x)], we get,

E
D

[
1[h(x) ≥ 1− ϵ] · g(x)

]
≥ E

D

[
1[h(x) ≥ 1− ϵ] · g(x)c+(x)

]
≥ E

D
[c+(x)g(x)]− ϵ/4.

Thus, in either case we have,

E
D

[
1[h(x) ≥ 1− ϵ] · g(x)

]
≥ E

D
[c+(x)g(x)]− ϵ/2.

A symmetric argument holds in the case of c− ∈ C− with the same group g. By the definition of
C−
g (D), it holds that whenever c−(x) = 0 and g(x) = 1, y = 0, and so within the region in Xg

where c−(x) = 0, ED[y] = 0. Let c̄− be the complement of c− (which we can take since C is closed
under complement). Then, it follows that:

E
D
[y | g(x) = 1, c̄−(x) = 1] = 0.
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By the multiaccuracy guarantee on c̄− · g, we can use an identical argument above (by a case
distinction on whether Pr[c−(x) = 0, g(x) = 1] ≥ ϵ/2) to show that

E
D

[
1[h(x) ≤ ϵ] · g(x)

]
≥ E

D
[c̄−(x)g(x)]− ϵ/2,

From the (C ·G, ϵ2/8)-multiaccurate and calibrated h, we construct our (C,G, ϵ)-multigroup selective
classifier h? by post-processing h as follows:

h?(x) =

{
h(x) if h(x) ∈ [0, ϵ] ∪ [1− ϵ, 1],

? if h(x) ∈ (ϵ, 1− ϵ).

Observe that

E
D

[
1[h?(x) ̸=?] · g(x)

]
= E

D

[
1[h(x) ≥ 1− ϵ] · g(x)

]
+ E

D

[
1[h(x) ≤ ϵ] · g(x)

]
≥ E

D
[c+(x)g(x)] + E

D
[c̄−(x)g(x)]− ϵ.

Recall that any c? ∈ SC(C) is of the form (c+, c−). By the construction of SC(C) (see Section 2.3)
and given that c̄− is the complement of c− it follows that

E
D

[
1[c?(x) ̸= ?] · g(x)

]
≤ E

D
[(c+(x)) + c̄−(x))g(x)]

Therefore, the two above equation show that

E
D

[
1[h?(x) ̸=?] · g(x)

]
≥ E

D

[
1[c?(x) ̸= ?] · g(x)

]
− ϵ.

Hence, on each g ∈ G, h? does not abstain significantly more often than the optimal c? for each
group.

Note that the global calibration property of h? and the fact that the predicted values of h?(x) are in
[0, ϵ) or (1− ϵ, 1] implies that both the false positive and negative rates of h? are bounded by ϵ thus
satisfying Condition 1 in Definition 4.1.

Note that to achieve the global accuracy guarantee, we only used the global calibration condition and
the fact that we abstain in the region where h(x) ∈ (ϵ, 1− ϵ) (per our definition of h? from h). In the
other hand, to achieve the local abstention guarantee, we used the multiaccuracy guarantee and the
definitions of C+ and C−. Hence, our proof clearly delineates the complementary roles played by
each of the multiaccuracy and calibration. This complementarity is structurally similar to the recent
result by [11] demonstrating that calibrated multiaccuracy implies agnostic learning.

It is natural to ask whether we can efficiently construct (C,G)-multigroup selective classifiers starting
from a weaker learning primitive than that of a calibrated multiaccurate predictor for the class C ∩ G.
What is the weakest learning primitive that we can build it from? In Theorem 4.2 below, we answer
this question in the positive in the case where |G| is small. Specifically, we show that in this case, we
can construct it from fully reliable learning:
Lemma 4.2. If the class C is fully reliably learnable for the ℓ1 loss and ϵ > 0, we can construct a
(C,G, ϵ)-multigroup selective classifier in time poly(|G|, 1/ϵ) with oracle access to the full reliable
learner for C.

Proof. For each g ∈ G, we call the FRL oracle with the restricted domain {x | g(x) = 1}, error
parameter ϵ/|G|, classes C, G, and the 0-1 loss function. Let hg

? : {x | g(x) = 1} → {0, 1, ?} denote
the selective classifier that we obtain with an FRL call with the domain Xg = {x | g(x) = 1}. We
construct our final global classifier h? : X → {0, 1, ?} as follows: for every point x ∈ X , consider
the set K ⊆ G of all groups g ∈ C such that g(x) = 1. Then, h? is equal to the plurality vote of the
|K| total classifiers hg

? .

By the FRL guarantee, each hg
? makes a wrong prediction on at most ϵ/|G| points in X . In the worst

case, all the |G| error regions are disjoint and cause all the majority votes taken on the points x in
these regions to cause the wrong prediction. Hence,

errD(h?) = E
D
[|y − h?(x)| · 1[h?(x) ̸= ?]] = |G| · ϵ

|G|
≤ ϵ,
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and thus we satisfy Condition 1 in the definition of (C,G)-multigroup selective classification (global
accuracy).

Secondly, we have not added further abstentions in our ensembling of the hg
? predictors, and so we

continue to satisfy optimal local abstention rate within each g ∈ G. Namely, the FRL guarantee on
each g ensures that

Pr
(x,y)∼D

[
g(x) · 1[h?(x) = ?]

]
≤ min

c?∈SC(C)
Pr

(x,y)∼D

[
g(x) · 1[c?(x) = ?]

]
+ ϵ.

In fact, we are getting a better ϵ/|G| error. Hence, we satisfy Condition 2 in the definition in the
definition of (C,G)-multigroup selective classification. Thus we have shown that h? is a (C,G, ϵ)-
multigroup selective classifier, as desired.

F.2 Multigroup fairness primitives

We recall that multicalibration is a stronger notion than calibrated multiaccuracy, which is in turn a
stronger notion than multiaccuracy.

(a) If we have the stronger primitive of a (C · G)-multicalibrated predictor (which implies a (C · G)-
multiaccurate calibrated predictor), then we can have a non-selective predictor which would give
local agnostic guarantees. This follows from the works of [25, 10, 27].

Formalized:

Lemma F.1. Given access to a (C ∩ G, ϵ)-multicalibrated predictor, we can construct a classifier
h : X → [0, 1] in time poly(1/ϵ) satisfying the following local accuracy property: for every g ∈ G,

E
(x,y)∼D

[|y − h(x)| | g(x) = 1] ≤ min
c∈C

E
(x,y)∼D

[|y − c(x)| | g(x) = 1] + ϵ.

Note that a (C,G, ϵ)-multigroup selective classifier achieves a local accuracy property within each
g ∈ G, where the error term is weighted by 1/PrD[g(x) = 1]. In Lemma F.1, however, we do so
without requiring abstentions, which is why we need the stronger notion of multicalibration rather
than of calibrated multiaccuracy. Note that accuracy notion in Lemma F.1 is of the agnostic form,
rather than an absolute error guarantee.

(b) Given a (C · G, ϵ)-multiaccurate and calibrated predictor, we can directly obtain FRL predictors
for the class C for the ℓ1 loss by thresholding the predictor as we do in the proof of Theorem 4.1. Given
that calibrated multiaccuracy implies agnostic learning [11], it is already implied by Theorem 4.1
that we can achieve reliable agnostic learning from calibrated multiaccuracy. However, this approach
gives a direct reduction. Reliable agnostic learning is believed to be a weaker learning primitive
than agnostic learning [45].

Formalized:

Lemma F.2. Given access to a (C · G, ϵ)-multiaccurate and calibrated predictor h, we can apply a
post-processing function to h to obtain an L-FRL predictor for the ℓ1 loss.

Proof. Let h be a (C · G, ϵ)-multiaccurate and calibrated predictor. We first construct a L-FRL
predictor h? from h by applying the same post-processing function as in the proof of Theorem 4.1.
Namely, we let

h?(x) =

{
h(x) if h(x) ∈ [0, ϵ] ∪ [1− ϵ, 1],

? if h(x) ∈ (ϵ, 1− ϵ).

By the definition of FRL, we need to show that h? satisfies 1) low global error, and 2) optimal
abstention. This follows directly from our Theorem 4.1 by using the group g = 1.

We remark that we can extend the previous lemma to the 0-1 loss.
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F.3 Conformal prediction from (C,G)-multigroup selective classification

Lemma 4.3. Let h? : X → [0, 1] ∪ {?} be a (C,G, ϵ)-multigroup selective classifier. Then, the
prediction sets induced by the level sets of h, where we map [0, ϵ] 7→ {0}, [1 − ϵ, 1] 7→ {1}, and
(ϵ, 1− ϵ) 7→ {0, 1} satisfy Pr(x,y)∼D[y ∈ S(x) | g(x) = 1] ≥ 1− ϵ

PrD[g(x)=1] for all g ∈ G.

Proof. By the definition of a (C,G, ϵ)-multigroup selective classifier, it follows that h? satisfies the
global accuracy guarantee with an ϵ error parameter. This directly implies a local accuracy guarantee
on each g ∈ G if we weight the error parameter by the probability mass assigned by D to g; that is:

E
(x,y)∼D

[
|y − h?(x)| · 1[h?(x) ̸= ?] | g(x) = 1

]
≤ ϵ

PrD[g(x) = 1]
.

Then, the result follows from the fact that for all y = 1,

Pr
(x,y)∼D

[y ∈ {1} | g(x) = 1] ≤ E
(x,y)∼D

[
|y − h?(x)| · 1[h?(x) ̸= ?] | g(x) = 1

]
,

and symmetrically for all y = 0 it follows that

Pr
(x,y)∼D

[y ∈ {0} | g(x) = 1] ≤ E
(x,y)∼D

[
|y − h?(x)| · 1[h?(x) ̸= ?] | g(x) = 1

]
.

Lastly, we formalize and prove Remark 4.1, which shows that (C,G, ϵ)-multigroup selective classi-
fication, when used as a conformal prediction method, besides satisfying the conditional coverage
guarantee, also provides a provable upper bound on the size of the set {0, 1} within each group g ∈ G:

Lemma F.3. Let h? : X → [0, 1] ∪ ? be a (C,G, ϵ)-multigroup selective classifier. Then, the
prediction sets induced by the level sets of h? satisfy:

Pr
(x,y)∼D

[
g(x) · 1[h?(x) = {0, 1}]

]
≤ min

c?∈SC(C)
Pr

(x,y)∼D

[
g(x) · 1[c?(x) = ?]

]
+ ϵ

for every group g ∈ G.

Proof. This follows directly from the optimal local abstention rate guarantee of a (C,G, ϵ)-multigroup
selective classifier, which ensures that for every g ∈ G,

Pr
(x,y)∼D

[
g(x) · 1[h?(x) = ?]

]
≤ min

c?∈SC(C)
Pr

(x,y)∼D

[
g(x) · 1[c?(x) = ?]

]
+ ϵ.

G Experiments for Section 4

Lastly, we implement our (C,G)-multigroup selective ominpredictors in practice. To do so, we
modify the construction our proof of Theorem 4.1 to adapt the multicalibration algorithm that we
used in the experiments for Section 3. Again for our proof of concept, we generate 10, 000 samples
synthetically using sk-learn’s make_classification function. For the concept class C, we use
the same class of decision trees of depth 3. For the class of groups G, we generate them from the
data using randomness by allowing the groups to intersect and by ensuring some correlation with the
labels within each group. In these experiments, we use 10 groups, and each ends up having size of
between 300 and 400 samples.

We use the same discretization parameter 0.1 and learning rate 0.01 in the update step as in the
experiments for Section 3.1. We perform the multicalibration algorithm across all groups in G. In
each, we use the same concept class C of decision trees of depth 3 to find correlation with the residuals
and we cap the number of iterations at 150. We see that the (C,G)-multicalibration greatly reduces
the ℓ2 (i.e., Brier score) and expected calibration error (ECE) for each of the groups in G, as shown
in Table 11. We emphasize that, as far as we are aware, our work is the first to separate the roles of
the concept class G and the group collection G (in the multigroup fairness literature, one usually sets
C = G).
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Table 11: Group-wise metrics before and after (C,G)-multicalibration.
G N Brierpre Brierpost ECEpre ECEpost

0 414 0.106 0.004 0.162 0.036
1 389 0.122 0.003 0.139 0.036
2 419 0.120 0.005 0.158 0.046
3 395 0.119 0.006 0.164 0.047
4 416 0.111 0.005 0.170 0.047
5 387 0.111 0.005 0.178 0.051
6 410 0.116 0.009 0.118 0.054
7 400 0.120 0.008 0.152 0.060
8 388 0.120 0.011 0.168 0.063
9 380 0.116 0.011 0.156 0.060

Table 12: Group-wise metrics before and after (C,G)-multicalibration.
G N Brierpre Brierpost ECEpre ECEpost

0 381 0.072 0.002 0.149 0.024
1 394 0.084 0.003 0.134 0.029
2 400 0.079 0.006 0.137 0.033
3 406 0.081 0.004 0.142 0.036
4 380 0.089 0.008 0.140 0.049
5 390 0.095 0.007 0.136 0.051
6 400 0.090 0.009 0.137 0.045
7 396 0.090 0.010 0.141 0.052
8 416 0.095 0.010 0.126 0.053
9 379 0.082 0.011 0.158 0.048

We give another example from another run with a different initialization of synthetic data:

Next, we turn our (C,G)-multicalibrated predictor into a (C,G)-multigroup selective classifier, we
apply the thresholding function that we repeatedly use in our proofs in Section 4: namely, for a
chosen value of ϵ, we map the predicted value to 0 if it is ≤ ϵ, to 1 if it is ≥ ϵ, and to ? otherwise. We
then compute the coverage and ℓ1 error (i.e., mean absolute error) of our (C,G)-multigroup selective
classifier within each of the groups g ∈ G for different values of ϵ.

Separately, we again use the MAPIE library to train a conformal prediction method separately within
each of the groups g ∈ G. Notably, this methodology does not technically allow the groups to
intersect, but we report the statistics independently on every group. In contrast, our method yields
one global predictor, instead of a predictor for each group that does not allow for intersections.
This is a significant advantage of using (C,G)-multigroup selective classification as a conformal
prediction method. We remark that two recent works use the multicalibration algorithm to obtain
group conditional coverage guarantees for an intersecting collection of groups and perform extensive
evaluations [38, 39]. We once again remark that the significance of our theoretical results in Section 4
are to extend the multigroup fairness framework to learn how to abstain fairly, and that the use of our
algorithms as conformal prediction methods is presented as a use case rather than the end goal.

For the MAPIE training, we use random forests as the base class and α = 0.1 as the parameter for the
coverage guarantee. After training the predictor, we obtain the prediction sets {0}, {1}, and {0, 1}
for each of the points in the test set. Viewing {0, 1} as equivalent to ?, we compute the coverage and
ℓ1 error of the conformal prediction method within each group (where we remark that the predictor
is trained separately for every group, unlike our selective classifier). We report the coverage and ℓ1
errors of the selective classifier for different values of ϵ (specifically, ϵ = 0.2, 0.3, 0.4) and compare
it to the coverage and ℓ1 errors of the per-group conformal prediction method. We perform different
runs with different initializations of the synthetic data and report the results in Tables 13, 14, and 15.
All runs show a similar pattern: the selective classifier is competitive with the conformal prediction
method within each group g ∈ G, even though we have a single predictor for all groups and the
conformal prediction method is trained separately on each group.
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Table 13: Per-group Coverage and ℓ1 error for (C,G)-multigroup selective classification thresholding
at ϵ = 0.20, ϵ = 0.30, ϵ = 0.40, compared with a separate conformal prediction predictor per group.

Group N Cov0.20 ℓ10.20 Cov0.30 ℓ10.30 Cov0.40 ℓ10.40 CovG ℓG1

0 421 0.983 0.104 0.988 0.106 1.000 0.107 0.988 0.108
1 405 0.983 0.118 0.985 0.118 0.990 0.120 0.938 0.100
2 408 0.975 0.131 0.983 0.135 0.993 0.141 0.963 0.115
3 384 0.977 0.120 0.979 0.122 0.992 0.123 0.958 0.114
4 410 0.949 0.118 0.956 0.117 0.973 0.128 0.956 0.128
5 401 0.960 0.114 0.970 0.116 0.980 0.120 0.963 0.098
6 388 0.961 0.123 0.977 0.129 0.985 0.134 0.951 0.108
7 399 0.952 0.124 0.967 0.122 0.987 0.124 0.962 0.109
8 400 0.932 0.123 0.948 0.127 0.970 0.139 0.963 0.109
9 409 0.914 0.131 0.917 0.133 0.961 0.155 0.941 0.132

Table 14: Per-group Coverage and ℓ1 error for (C,G)-multigroup selective classification thresholding
at ϵ = 0.20, ϵ = 0.30, ϵ = 0.40, compared with a separate conformal prediction predictor per group.

Group N Cov0.20 ℓ10.20 Cov0.30 ℓ10.30 Cov0.40 ℓ10.40 CovG ℓG1

0 407 0.973 0.078 0.978 0.080 0.988 0.082 0.988 0.082
1 381 0.958 0.090 0.969 0.100 0.992 0.098 0.969 0.095
2 422 0.979 0.099 0.988 0.101 0.995 0.102 0.988 0.118
3 386 0.948 0.093 0.959 0.092 0.974 0.096 0.984 0.111
4 384 0.948 0.082 0.958 0.087 0.979 0.098 0.992 0.102
5 391 0.954 0.056 0.959 0.059 0.977 0.068 0.982 0.078
6 389 0.928 0.066 0.941 0.071 0.967 0.077 0.985 0.081
7 400 0.910 0.074 0.932 0.078 0.955 0.081 0.998 0.128
8 411 0.937 0.078 0.956 0.084 0.973 0.092 0.985 0.099
9 414 0.908 0.069 0.923 0.071 0.952 0.081 0.988 0.108

G.1 Code reproducibility

We include all of the code that we use to obtain the experimental results for Sections 3 and 4 as a
ZIP file in the supplementary material. These experiments were conducted locally using a system
equipped with an M1 chip and 16 GB of local memory. We used ChatGPT to help debug the code
and implement the abstaining decision trees, and we studied the multicalibration code provided in the
Python package from the paper [29] to aid us with our implementation (which we did from scratch,
given that the implementation in [29] finds correlation with the residuals using the Boolean groups g
in G, whereas we want to use the real-valued concepts c in the concept class C).
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Table 15: Per-group Coverage and ℓ1 error for (C,G)-multigroup selective classification thresholding
at ϵ = 0.20, ϵ = 0.30, ϵ = 0.40, compared with a separate conformal prediction predictor per group.

Group N Cov0.20 ℓ10.20 Cov0.30 ℓ10.30 Cov0.40 ℓ10.40 CovG ℓG1

0 393 0.977 0.146 0.985 0.147 1.000 0.148 0.827 0.138
1 409 0.971 0.131 0.983 0.132 0.990 0.133 0.856 0.131
2 381 0.971 0.119 0.979 0.118 0.984 0.120 0.803 0.101
3 360 0.964 0.118 0.975 0.120 0.992 0.132 0.831 0.110
4 377 0.966 0.140 0.981 0.141 0.984 0.143 0.862 0.154
5 389 0.961 0.155 0.979 0.157 0.985 0.157 0.823 0.150
6 387 0.948 0.125 0.974 0.130 0.987 0.134 0.858 0.139
7 361 0.958 0.150 0.970 0.154 0.992 0.165 0.853 0.169
8 373 0.920 0.122 0.952 0.124 0.973 0.129 0.847 0.133
9 393 0.959 0.149 0.985 0.150 0.987 0.149 0.852 0.152
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