Selective Omniprediction and Fair Abstention

Sílvia Casacuberta

Department of Computer Science Stanford University scasac@stanford.edu

Varun Kanade

Department of Computer Science University of Oxford varun.kanade@cs.ox.ac.uk

Abstract

We propose new learning algorithms for building selective classifiers, which are predictors that are allowed to abstain on some fraction of the domain. We study the model where a classifier may abstain from predicting at a fixed cost. Building on the recent framework on multigroup fairness and omniprediction, given a prespecified class of loss functions, we provide an algorithm for building a single classifier that learns abstentions and predictions optimally for every loss in the entire class, where the abstentions are decided efficiently for each specific loss function by applying a fixed post-processing function. Our algorithm and theoretical guarantees generalize the previously-known algorithms for learning selective classifiers in formal learning-theoretic models.

We then extend the traditional multigroup fairness algorithms to the selective classification setting and show that we can use a calibrated and multiaccurate predictor to efficiently build selective classifiers that abstain optimally not only globally but also locally within each of the groups in any pre-specified collection of possibly intersecting subgroups of the domain, and are also accurate when they do not abstain. We show how our abstention algorithms can be used as conformal prediction methods in the binary classification setting to achieve both marginal and group-conditional coverage guarantees for an intersecting collection of groups. We provide empirical evaluations for all of our theoretical results, demonstrating the practicality of our learning algorithms for abstaining optimally and fairly.

1 Introduction

Selective classification has long been proposed as a way of achieving higher accuracy at the cost of abstaining from making predictions on certain points[12, 19, 43, 41, 42, 23]. Such behavior is often desirable, e.g. when stakes of mistakes (of one type or another) can be very costly, such as medical diagnoses. There has been a wide range of theoretical and empirical work in this area. The most relevant one to our work is the learning-theoretic *reliable learning framework* [43] of Kalai, Kanade, and Mansour, where they introduce a framework that gives guarantees on error and abstention rate in an agnostic learning framework. Their work focuses on binary classification problems using only the *zero-one* loss function. A more general learning framework for selective classification is to consider the Chow loss [12] and its generalizations, where one can consider loss functions for predictions as well as a fixed penalty for abstention, and a weighted combination of these should be minimized.

Separately, recent work has studied the question of whether training from scratch is required for every loss function. Gopalan et al. introduce the notion of a $(\mathcal{L}, \mathcal{C})$ -omnipredictor for a class of loss functions \mathcal{L} and a concept class \mathcal{C} , which is a single classifier that can be efficiently post-processed to compete with a class of models for the large family \mathcal{L} [25]. Omnipredictors turn out to be efficiently constructable from a multigroup fairness notion called *multicalibration* [32, 50, 16]. Here predictors are required to be calibrated, even conditioned on group membership from a large, possibly-intersecting, collection of groups. While (multi)calibration is a desirable property, these notions

do not imply anything about accuracy, and rely upon the base predictor (which is then modified to satisfy multicalibration) being accurate to begin with. As in the case of selective classification more generally, it may be desirable to abstain in order to guarantee high accuracy when predicting.

In this work, we apply the rich line of work on omniprediction and multigroup fairness to the problem of selective classification. First, we introduce the notion of a *selective classifier*, which is able to simultaneously minimize generalized Chow losses from a rich family of loss functions. We show how this generalizes the previous results on reliable agnostic learning beyond the 0-1 loss. Second, we introduce the notion of *multigroup selective classification*, where the predictions need to be highly accurate, but in addition it is required that the rate of abstention conditioned on any group is no worse than the abstention rate of an optimal classifier for that class from a base class of abstaining classifiers. We show that such a predictor can be obtained starting from a slightly weaker notion of *calibrated multiaccuracy* (rather than multicalibration) and access to a weak agnostic learner for a suitable class. When the number of groups is small, we show that this can be constructed efficiently with only access to a reliable learner for the base class (which is believed to be a weaker notion than weak agnostic learning [45]). The main results and the focus of our work is theoretical. We do however also provide an empirical evaluation on synthetic data that shows that our algorithms are easy to implement and achieve the desired outcomes. All proofs of our claims are deferred to the appendix.

1.1 Related work

We summarize the most relevant work to ours here; further related work is discussed in the appendix.

Selective classification. The idea of building an algorithm that abstains on certain predictions is not new and has traditionally been called *selective classification* [19]. A selective classifier is allowed to also return? as an output (which indicates abstention), along with the usual numerical values. The works [43, 45] study this in the context of agnostic learning and give bounds on both the error and abstention rate (competitive with respect to a base class). Selective classification has also been studied within the context of a Chow loss framework, where there is a fixed cost of abstention in addition to a loss function on predictors and the goal is to minimize the overall cost [12]. Abstention has also been used to provide bounds on efficient learning in the presence of covariate shifts [41, 42, 23]. Although somewhat different, a related notion is that of conformal prediction [66, 3, 39], where the classifier is allowed to output a set and the goal is that the true label should be in the predicted set with high probability. In binary classification case, considering abstention as predicting the set $\{0,1\}$ relates these two notions tightly.

Fairness. Recently, in the setting of fairness, some works have studied the effect of selectively abstaining. Jones et al. find that certain forms of selective classification can magnify disparities across groups [37], and follow-up works try to restrict this type of disparities [52, 62, 67]. Some recent works have put forth the necessity of accounting for uncertainty in the setting of algorithmic fairness [2, 5, 40, 54, 49, 53, 13], but this question remains largely understudied. This question is also related to the problem of *model multiplicity*, which has recently drawn a lot of attention [7, 8, 13]. Outside of the selective classification problem, the multigroup fairness framework has recently developed various techniques for ensuring that desired properties of the predictor (e.g., accuracy, calibration) hold even when conditioned on any of the possibly intersecting groups in a rich collection [32, 29, 48, 51, 61].

2 Notation & Preliminaries

We let \mathcal{X} denote the domain, $\mathcal{Y}=\{0,1\}$ the set of labels, \mathcal{D} a distribution over $\mathcal{X}\times\mathcal{Y}$, and \mathcal{C} a concept class over \mathcal{X} of concepts c (their range is specified in each application). We assume that \mathcal{C} is closed under complement and contains the constant functions $\mathbf{0},\mathbf{1}$. We denote the marginal distribution over \mathcal{X} by $\mathcal{D}_{\mathcal{X}}$. A loss function ℓ takes a label $y\in\mathcal{Y}$ and an action $t\in\mathbb{R}$ and returns a loss value $\ell(y,t)$. Examples include the ℓ_p losses $\ell_p(y,t)=|y-t|^p$, the logistic loss $\ell(y,t)=\log(1+\exp(-yt))$, and binary classification with different false-positive/negative costs $\ell(y,t)=c_y|y-t|$. We let $\mathcal{L}=\{\ell:\mathcal{Y}\times\mathbb{R}\to\mathbb{R}\}$ denote a collection of loss functions. We are interested in minimizing loss functions: we want to find a hypothesis $h:\mathcal{X}\to\mathbb{R}$ that makes the expected loss $\ell(y,t):=\mathbb{E}_{\mathcal{D}}[\ell(y,h(x))]$ small. We work in the agnostic setting, where we want the expected loss of our hypothesis h to be at most epsilon higher than the best concept in \mathcal{C} for that loss function. Importantly, the optimal concept in \mathcal{C} depends on the choice of ℓ . We denote the ground truth predictor by $f^*(\mathbf{x})=\mathbb{E}_{\mathcal{D}}[\mathbf{y}|\mathbf{x}]$.

2.1 Multigroup fairness notions

The *multigroup* framework was introduced as a way to bridge individual and group fairness notions [32, 46]. Given a collection of subgroups $\mathcal{G} = \{g : \mathcal{X} \to \{0, 1\}\}$ that can intersect arbitrarily, we want to ensure a property of interest (accuracy, calibration) within *each* of the subgroups in \mathcal{G} .

Definition 2.1 (Multiaccuracy, calibrated multiaccuracy, and multicalibration [32, 26]). We say that a predictor h is (\mathcal{G}, ϵ) -multiaccurate for a distribution \mathcal{D} if

$$\max_{g \in \mathcal{G}} \left| \underset{\mathcal{D}}{\mathbb{E}} [g(\mathbf{x})(\mathbf{y} - h(\mathbf{x}))] \right| \le \epsilon.$$

We say the predictor h is ϵ -calibrated for \mathcal{D} if $\mathbb{E}[|\mathbb{E}[\mathbf{y}|h(\mathbf{x})] - h(\mathbf{x})|] \leq \epsilon$. We say that h is (\mathcal{G}, ϵ) -multiaccurate and calibrated if it is both (\mathcal{G}, ϵ) -multiaccurate and ϵ -calibrated. Further, we say that h is (\mathcal{G}, ϵ) -multicalibrated if

$$\max_{g \in \mathcal{G}} \mathbb{E}[|g(\mathbf{x})(\mathbb{E}[\mathbf{y}|p(\mathbf{x})] - p(\mathbf{x}))|] \le \epsilon.$$

We can efficiently construct predictors satisfying these increasingly demanding notions if we have access to the learning primitive of a weak agnostic learner for the class \mathcal{G} : we require $O(1/\epsilon^2)$ calls to the weak agnostic learner in the case of (\mathcal{G}, ϵ) -multiaccuracy [32] and of (\mathcal{G}, ϵ) -calibrated multiaccuracy [26], and $O(1/\epsilon^6)$ calls in the case of (\mathcal{G}, ϵ) -multicalibration [32, 25]. The line of work on multigroup fairness has proven to be extremely rich in recent years [24, 27, 10, 16, 18, 17].

2.2 Omnipredictors

One of the most successful applications of the multigroup fairness framework has arguably been in learning theory, where Gopalan et al. used it to propose a new indistinguishability-based learning framework [25]. This framework has been applied in many follow up works [35, 28, 27, 59, 24]. Specifically, the usual learning paradigm first chooses a loss of interest (e.g., ℓ_1 or ℓ_2), and then trains a model to minimize it. But what if we do not know the specific loss at the time of training, or if we want to change it at a later time without having the re-train from scratch? We could instead hope to construct the following object, which they called a $(\mathcal{C}, \mathcal{L})$ -omnipredictor:

Definition 2.2 (Omniprediction [25]). Given a class of loss functions \mathcal{L} and a concept class \mathcal{C} of concepts $c: \mathcal{X} \to \mathbb{R}$, a predictor $h: \mathcal{X} \to [0,1]$ is an $(\mathcal{L}, \mathcal{C}, \epsilon)$ -omnipredictor if for every $\ell \in \mathcal{L}$ there exists a function $k_{\ell}: [0,1] \to \mathbb{R}$ so that

$$\ell_{\mathcal{D}}(k_{\ell} \circ h) \leq \min_{c \in \mathcal{C}} \ell_{\mathcal{D}}(c) + \epsilon.$$

That is, for every loss $\ell \in \mathcal{L}$, there exists a simple (univariate) transformation k_{ℓ} of the predictions of h (chosen tailored to ℓ) such that $k_{\ell} \circ f$ has loss comparable to the best hypothesis $c \in \mathcal{C}$, which is chosen dependent on ℓ . That is, we can train a single predictor h that is able to do as well as the best hypothesis in \mathcal{C} separately for every loss function in \mathcal{L} . This realizes a very strong learning guarantee. Note that for every \mathcal{C}, \mathcal{L} , the ground truth predictor f^* is an $(\mathcal{L}, \mathcal{C}, 0)$ -omnipredictor. As shown in [25], the right post-processing function k_{ℓ} turns out to be the minimizer of the expected loss under the Bernoulli distribution, a fact we use to show the optimality of our selective predictor. In their main result, Gopalan et al. show that we can construct omnipredictors efficiently using the technique of multicalibration:

Theorem 2.1 (Building omnipredictors from multicalibration [25]). Let \mathcal{D} be a distribution on $\mathcal{X} \times \{0,1\}$, \mathcal{C} a family of real-valued functions on \mathcal{X} , and \mathcal{L} the family of all B-Lipschitz, convex loss functions. Then, a (\mathcal{C}, ϵ) -multicalibrated predictor h is an $(\mathcal{L}, \mathcal{C}, 2\epsilon B)$ -omnipredictor.

This result can be extended beyond convex Lipschitz loss functions, including to the exponential loss, GLM losses, 1-Lipschitz losses, proper losses, and bounded variation losses [25, 59].

2.3 Reliable agnostic learning

In our setting, we allow predictors to output an abstention ?, and so we consider triplets of loss functions $(\ell_+, \ell_-, \ell_?)$. If a predictor is allowed to abstain and thus ? is in its support, we denote it with an abstention sign in the subscript.

Losses $(\ell_+, \ell_-, \ell_?)$. We further specify loss functions depending on the value of $y \in \{0, 1\}$. Given a loss function $\ell : \mathcal{Y} \times \{\mathbb{R} \cup \{?\}\} \to \mathbb{R}$, we decompose $\ell = (\ell_+, \ell_-, \ell_?)$ as follows:

- 1. Negative labels. For inputs (y,t) where $t \neq ?$ and y = 0, we write $\ell_+(t)$ for $\ell_D(0,t)$.
- 2. **Positive labels.** For inputs (y,t) where $t \neq ?$ and y = 1, we write $\ell_{-}(t)$ for $\ell_{\mathcal{D}}(1,t)$.
- 3. **Abstentions.** For inputs (y,t) where t=?, we write $\ell_?(y)$ for $\ell(y,t)$. In turn to separate the cases y=1 and y=0, we write $\ell_?(1)=\alpha_+$ and $\ell_?(0)=\alpha_-$. Whenever the predictor cannot be uniquely inferred from the context, we still write $\ell_?(y,t)$.

We drop $\mathcal D$ if it can be directly inferred. For example, in the specific case of the 0-1 loss, $\ell_+(0,t) = |0-t|$ and $\ell_-(1,t) = |1-t|$, and so the expected loss $\mathbb E[\ell_+(\mathbf y,h(\mathbf x))]$ is equal to the rate of false positives and $\mathbb E[\ell_-(\mathbf y,h(\mathbf x))]$ to the rate of false negatives. The sum of losses $\ell_+ + \ell_-$ corresponds to the usual definition of *error* of the predictor. In turn, $\ell_?$ generalizes the definition of the abstention rate of a predictor $\mathbb E_{\mathcal D}[\mathbb I[h(\mathbf x)=?]]$. The case where $\ell_?(y)=\alpha$ for any constant $\alpha>0$ corresponds to the traditional Chow model [12, 41]. Note that we allow different abstention costs depending on whether the corresponding label is y=0 or y=1.

Definition 2.3 (Triplet of loss functions). Given a family of loss functions \mathcal{L} , each loss function $\ell \in \mathcal{L}, \ell : \mathcal{Y} \times \{\mathbb{R} \cup \{?\}\} \to \mathbb{R}$ induces the triplet of loss functions $(\ell_+, \ell_-, \ell_?)$, where $\ell_+(t) = \ell_{\mathcal{D}}(0, t)$ and $\ell_-(t) = \ell_{\mathcal{D}}(1, t)$ for all $t \neq ?$, and $\ell_?(\mathbf{y}) = \ell_{\mathcal{D}}(\mathbf{y}, t)$ for all t = ?.

We directly use the notation $(\ell_+, \ell_-, \ell_?) \in \mathcal{L}$. When we consider selective omnipredictors, we will further associate weights (λ, μ, ν) with the triplet of loss functions $(\ell_+, \ell_-, \ell_?)$, so that the total loss incurred by a predictor is equal to $\lambda \ell_+ + \mu \ell_- + \nu \ell_?$.

Allowing abstentions increases the reliability of non '?' predictions. The work most closely related to ours is the learning-theoretic framework of *reliable agnostic learning*, first proposed by Kalai, Kanade, and Mansour [43], which adapts the usual agnostic framework. While they introduced their definitions only for the case of the 0-1 loss, in our results we generalize their results to many more loss functions, and so we directly introduce the more general versions of their original definitions. Let $\mathsf{EX}(\mathcal{D})$ denote the example oracle which when queried returns $(\mathbf{x},\mathbf{y})\sim\mathcal{D}$. Given a concept class \mathcal{C} of Boolean concepts $c:\mathcal{X}\to\{0,1\}$ and a distribution \mathcal{D} , we further define the following concept classes from \mathcal{C} [43]:

$$C^+ = \{c \in C \mid \ell_+(c, \mathcal{D}) = 0\}, \qquad C^- = \{c \in C \mid \ell_-(c, \mathcal{D}) = 0\}.$$

Definition 2.4 (PRL for a family of loss functions [43, 45]). A concept class $\mathcal C$ of Boolean concepts is $\mathcal L$ -positively reliably learnable if there exists a learning algorithm that for any distribution $\mathcal D$ over $\mathcal X \times \{0,1\}$, any $\ell_+,\ell_- \in \mathcal L$, and any $\epsilon,\delta>0$, when given access to the example oracle $\mathsf{EX}(\mathcal D)$, outputs a hypothesis $h:\mathcal X \to [0,1]$ that satisfies the following with probability at least $1-\delta$:

- 1. $\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_+(h(\mathbf{x}))] \leq \epsilon$,
- 2. $\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{-}(h(\mathbf{x}))] \leq \min_{c_{+}\in\mathcal{C}^{+}} \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{-}(c_{+}(\mathbf{x}))] + \epsilon$.

The notion of \mathcal{L} -negative reliable learning (NRL) is defined analogously, by switching the positives and the negatives (see the appendix for the full definitions).

Hence, in the case of the 0-1 loss, a positive reliable classifier is one that almost never produces false positives, while simultaneously minimizing false negative errors, attaining a rate comparable to the false negative error rate of the best classifier $c_+ \in \mathcal{C}^+$ [45]. Symmetrically, a negative reliable classifier is one that almost never produces false negatives while simultaneously minimizing false positive errors, attaining a rate comparable to the false positive error rate of the best $c_- \in \mathcal{C}^-$.

Given any Boolean $c_+ \in \mathcal{C}^+$ and $c_- \in \mathcal{C}^-$, we ensemble them to construct a selective classifier $c_? = (c_+, c_-)$ as follows:

$$c_{?}(x) = \begin{cases} 1 & \text{if } c_{+}(x) = c_{-}(x) = 1, \\ 0 & \text{if } c_{+}(x) = c_{-}(x) = 0, \\ ? & \text{if } c_{+}(x) \neq c_{-}(x). \end{cases}$$

We then let $SC(C) = \{(c_+, c_-) \mid c_+ \in C^+, c_- \in C^-\}$ (for "selective clasifiers"). This ensembling provides a natural way for adding abstentions to the base class C. We can now define *fully reliable learning* using the base class SC(C):

Definition 2.5 (FRL for a family of loss functions). A concept class $\mathcal C$ of Boolean concepts is $\mathcal L$ -fully reliably learnable if there exists a learning algorithm that for any distribution $\mathcal D$ over $\mathcal X \times \{0,1\}$, any $\ell_+,\ell_-,\ell_?\in\mathcal L$, and any $\epsilon,\delta>0$, when given access to the example oracle $\mathsf{EX}(\mathcal D)$, outputs a hypothesis $h_?:\mathcal X\to [0,1]\cup\{?\}$ that satisfies:

- 1. $\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{+}(h_{?}(\mathbf{x})) + \ell_{-}(h_{?}(\mathbf{x}))] \leq \epsilon$,
- 2. $\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[\ell_{?}(\mathbf{y}, h_{?}(\mathbf{x}))] \leq \min_{c_{?} \in SC(\mathcal{C})} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[\ell_{?}(\mathbf{y}, c_{?}(\mathbf{x}))] + \epsilon.$

For the specific case where \mathcal{L} corresponds only to the 0-1 loss, Kalai, Kanade, and Mansour showed that if \mathcal{C} is efficiently agnostically learnable, then \mathcal{C} is also efficiently \mathcal{L} -reliable learnable, all for PRL, NRL, and FRL [43].

2.4 Generalized Chow model

In the original Chow abstention model, the predictor can choose to abstain at a fixed cost of $\alpha \geq 0$ [12, 41]. The goal of the predictor is to learn how to choose real-valued predictions and abstentions as to minimize the total loss. We generalize and formalize this model with what we call the *generalized Chow loss function*:

Definition 2.6 (Generalized Chow loss). Given a triplet of loss functions $(\ell_+, \ell_-, \ell_?)$ induced by $\ell: \mathcal{Y} \times \{\mathbb{R} \cup \{?\}\} \to \mathbb{R}$ with associated weights (λ, μ, ν) , where $\lambda + \mu + \nu \leq 1$, and a selective classifier $h_?: \mathcal{X} \to \mathbb{R} \cup \{?\}$, the *generalized Chow loss* incurred by h is equal to

$$\ell_{\mathrm{GC},\mathcal{D}}(h_?;\lambda,\mu,\nu) = \underset{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}{\mathbb{E}} [\lambda \ell_+(h(\mathbf{x})) + \mu \ell_-(h(\mathbf{x})) + \nu \ell_?(\mathbf{y})].$$

One can include randomized predictors h to this definition (where h assigns a *probability* of abstaining to each $x \in \mathcal{X}$); however, as we show in the appendix (Section C.1), randomization does not help in minimizing the generalized Chow loss function.

2.5 Selective omniprediction

In our work, we extend the omniprediction framework to the setting of selective classification.

In the next section, we show that we can efficiently build a $(\mathcal{L}, \mathcal{C}, \epsilon)$ -multigroup selective omnipredictor that optimally minimizes the generalized Chow loss of *any* triplet of loss functions $(\ell_+, \ell_-, \ell_?)$ induced by any $\ell \in \mathcal{L}$. We then use this result to show how to efficiently build \mathcal{L} -FRL classifiers, generalizing the main result of [43].

Definition 2.7 (Selective omniprediction). Given a concept class $\mathcal C$ on $\mathcal X$, distribution $\mathcal D$, $\epsilon>0$, and a class of loss functions $\mathcal L$, we say that a predictor $h:\mathcal X\to [0,1]$ is a $(\mathcal L,\mathcal C,\epsilon)$ -selective omnipredictor if for every $(\ell_+,\ell_-,\ell_?)\in\mathcal L$ and any associated weights (λ,μ,ν) , there exists a function $k_{\ell_+,\ell_?}^*:[0,1]\to\mathbb R\cup\{?\}$ such that for any post-processing function $k:[0,1]\to\mathbb R\cup\{?\}$,

$$\ell_{\mathrm{GC},\mathcal{D}}(k_{\ell_{\pm},\ell_{?}}^{*} \circ h; \lambda, \mu, \nu) \leq \min_{c_{?} \in k \circ \mathcal{C}} \ell_{\mathrm{GC},\mathcal{D}}(c_{?}; \lambda, \mu, \nu) + \epsilon.$$

Importantly, as in the original omniprediction framework, the optimal classifier $c_?$ in $k \circ C$ is tailored to the specific triplet of loss functions, whereas h is a *single* classifier for all of \mathcal{L} and (λ, μ, ν) .

3 Building Selective Omnipredictors

The key idea in the omniprediction learning framework is to first learn a model f that is (\mathcal{C},ϵ) -computationally indistinguishable from f^* , which is accomplished through the technique of multicalibration, and then apply a post-processing function k_ℓ^* once a loss function $\ell \in \mathcal{L}$ has been fixed. In our setting of selective classification, we similarly use the following post-processing function that minimizes expected loss under the Bernoulli distribution, which we show yields an optimal final loss:

Definition 3.1. Given loss functions $(\ell_+, \ell_-, \ell_?)$ and corresponding weights (λ, μ, ν) , let the function $k_{\ell_\pm, \ell_?}^* : [0, 1] \to \mathbb{R} \cup \{?\}$ be defined as

$$\begin{split} k^*_{\ell_{\pm},\ell_?}(p) &= \arg\min_{t \in \mathbb{R} \cup \{?\}} \underset{\mathbf{y} \sim \mathrm{Bern}(p)}{\mathbb{E}} [\lambda \ell_+(t) + \mu \ell_-(t) + \nu \ell_?(\mathbf{y})] \\ &= \arg\min_{t \in \mathbb{R} \cup \{?\}} p \cdot \Big(\mu \ell_-(t) + \nu \alpha_+\Big) + (1-p) \cdot \Big(\lambda \ell_+(t) + \nu \alpha_-\Big). \end{split}$$

Our main result in this section is the feasibility of efficiently constructing selective classifiers:

Theorem 3.1 (Constructing selective omnipredictors). Let \mathcal{C} be a concept class of concepts $c: \mathcal{X} \to [-M, M]$, \mathcal{D} a distribution on $\mathcal{X} \times \{0, 1\}$, $\epsilon > 0$, and \mathcal{L} a family loss functions with associated weights (λ, μ, ν) with $\lambda + \mu + \nu \leq 1$, such that all $\ell \in \mathcal{L}$ are B-Lipschitz. Then, a (\mathcal{C}, ϵ) -multicalibrated predictor is a $(\mathcal{L}, \mathcal{C}, 4\epsilon\beta + \epsilon B)$ -selective omnipredictor, where β is an absolute bound on $\ell_+, \ell_-, \ell_?$.

The full proof of Theorem 3.1 is deferred to the appendix; here we provide a proof sketch.

Proof sketch of Theorem 3.1. Our algorithm first constructs a (\mathcal{C}, ϵ) -multicalibrated predictor h. For each specific choice of $\ell = (\ell_+, \ell_-, \ell_?) \in \mathcal{L}$ and weights (λ, μ, ν) , we apply the post-processing function $k_{\ell_{\pm}, \ell_?}^*$ to h. We show that the generalized Chow loss incurred by $k_{\ell_{\pm}, \ell_?}^* \circ h$ is no more (within an ϵ slack) than that incurred by the best classifier in $k \circ \mathcal{C}$, where $k : [0, 1] \to \mathbb{R} \cup \{?\}$ is any post-processing function adding abstentions. We outline why this is an optimal and efficient strategy.

Following the generalized Chow loss expression (Definition 2.6), for each $t \in \mathbb{R}$, we either pay the cost of predicting, whose expected value we denote by κ_{pred} , or the cost of abstaining, whose expected value we denote by κ_{abs} :

$$\kappa_{\text{pred}}(p) = \min_{t \in \mathbb{R}} p \cdot \mu \ell_{-}(t) + (1 - p) \cdot \lambda \ell_{+}(t),$$

$$\kappa_{\text{abs}}(p) = \nu (p \cdot \ell_{?}(1) + (1-p) \cdot \ell_{?}(0)) = \nu (p \cdot \alpha_{+} + (1-p) \cdot \alpha_{-}).$$

For each point p, in order to minimize the expected generalized Chow loss under the Bernoulli distribution, we proceed in two steps: (1) Find the value $t^*(p)$ that minimizes the value of $\kappa_{\mathrm{pred}}(p)$ given a fixed value of p. This depends only on the choice of $\lambda, \ell_+, \mu, \ell_-$ and not on the underlying data. Specifically, this corresponds to finding the value $t^*(p)$ that minimizes the function $k_\ell^*(p)$, where $k_\ell^*(p) = \mathrm{argmin}_{t \in \mathbb{R}} \mathbb{E}_{\mathbf{y} \sim \mathrm{Bern}(p)}[\lambda \ell_+(\mathbf{y}, t) + \mu \ell_-(\mathbf{y}, t)]$. (2) For each predicted value h(x) = p, we then map it to either $t^*(p)$ or to '?' depending on whether it is cheaper to predict or to abstain; that is, depending on the value of $\min\{\kappa_{\mathrm{pred}}(t^*(p)), \kappa_{\mathrm{abs}}(p)\}$.

In other words, we can re-write our post-processing function $k_{\ell\pm,\ell}^*$ as $k_{\rm abs} \circ k_\ell^*$, where

$$k_{\rm abs} = \begin{cases} t^* & \text{if } \kappa_{\rm pred} \le \kappa_{\rm abs}, \\ ? & \text{if } \kappa_{\rm pred} > \kappa_{\rm abs}. \end{cases}$$

Then, the value of $k_{\ell\pm,\ell_7}^*$ can be computed efficiently because (1) computing the value of $\kappa_{\mathrm{pred}}(p)$ corresponds to solving a one-dimensional minimization problem, and (2) the value of $k_{\ell\pm,\ell_7}^*$ is then fully determined from the values of $\kappa_{\mathrm{pred}}(t^*(p))$ and of $\kappa_{\mathrm{abs}}(p)$. To show optimality, we consider the level set $\mathcal{X}_{(p,\gamma)} = \{x \in \mathcal{X} \mid h(x) = p, c = \gamma\}$ for each $p \in \mathrm{range}(h)$ and each γ in the range of c. For each set $\mathcal{X}_{(p,\gamma)}$, we split the proof into 4 cases, depending on whether h and c abstain or predict as per their respective decision rules. The key idea is that, even though the concept c abstains or predicts using an arbitrary decision rule, multicalibration ensures that the expected value of y on $\mathcal{X}_{(p,\gamma)}$ is approximately p, which allows us to show that $k_{\ell+,\ell_7}^*(h)$ incurs no more loss than $k \circ c$. \square

Interval of abstention. We further show the following about the points where $k_{\ell_{\pm},\ell_{?}}^{*} \circ h$ abstains: **Lemma 3.2.** Given any loss functions $\ell_{+},\ell_{-},\ell_{?} \in \mathcal{L}$, the points $x \in \mathbb{R}$ such that $k_{\ell_{\pm},\ell_{?}}^{*}(x) = ?$ form a contiguous interval, which we denote by I_{abs} .

This follows from the fact that $\kappa_{\mathrm{pred}}(p)$ is concave as a function of p, and that $\kappa_{\mathrm{abs}}(p)$ is affine in p. Lemma 3.2 does not require the loss functions to be convex; only affine in p. Importantly, note that we can determine I_{abs} directly from the chosen triplet of functions $(\ell_+,\ell_-,\ell_?)$, without any dependence on the underlying data. This is why our method is highly efficient: once we run the multicalibration algorithm, we directly apply our off-the-shelf post-processing function $k_{\ell_+,\ell_?}^*$.

3.1 Selective omniprediction in action

While our results are of theoretical nature, we provide experiments to demonstrate the feasibility of selective omniprediction in practice and to provide some concrete examples of the function $k_{\ell_{\pm},\ell_{?}}^{*}$ for specific choices of triplets of loss functions $(\ell_{+},\ell_{-},\ell_{?})$.

We generate synthetic data to create a binary classification problem with n=10,000 samples and implement the multicalibration algorithm to baseline predictions to obtain a \mathcal{C} -multicalibrated predictor h, where we set \mathcal{C} to be the concept class \mathcal{C} of decision trees of depth 3. For various choices of loss functions $\ell=(\ell_+,\ell_-,\ell_?)$, we compare the coverage (i.e., the fraction of the points in the domain on which the predictor does not abstain) and total loss of our post-processed $k_{\ell_\pm,\ell_?}^* \circ h$ predictor (where $k_{\ell_\pm,\ell_?}^*$ is chosen for each ℓ but ℓ is the same predictor across all loss functions) with that of a predictor optimized specifically to minimize the generalized Chow loss function, using the same base concept class ℓ of decision trees of depth 3. The bar plots show the points ℓ is where ℓ is theoretically for each of these triplets, independently of the data (see calculations in the appendix); in Figure 1 one can see that these are indeed the regions where our algorithm abstains in practice. Table 1 shows the final loss and coverage incurred by our single selective omnipredictor (post-processed accordingly) compared to those obtained by each of the decision trees, which are trained separately for each of the triplet of loss functions. The full details of the experimental set-up along with further examples and repetitions can be found in the appendix.

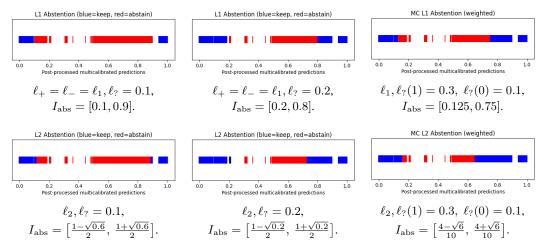


Figure 1: Final loss and coverage incurred by our single selective omnipredictor, post-processed with k_{ℓ_+,ℓ_2}^* for each of the specific triplets indicated in the subfigure caption. Red: abstain. Blue: predict.

Table 1: Comparison of coverage and losses. "Cov" stands for *coverage*, "Pred" for *predicted loss* (i.e., over the non-abstaining region), and "Total" for the total generalized Chow loss.

	$\ell_? = 0.1$			$\ell? = 0.2$			$\ell_?(1) = 0.3, \ \ell_?(0) = 0.1$		
	$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT		$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT		$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT	
ℓ_1	Cov: 22% Pred: 0.045 Total: 0.088	Cov: 2.3% Pred: 0.001 Total: 0.098	ℓ_1	Cov: 52.70% Pred: 0.083 Total: 0.139	Cov: 3.8% Pred: 0.002 Total: 0.194	ℓ_1	Cov: 42.90% Pred: 0.058 Total: 0.144	Cov: 2.5% Pred: 0.002 Total: 0.198	
ℓ_2	Cov: 24.15% Pred: 0.046 Total: 0.087	Cov: 3.8% Pred: 0.001 Total: 0.098	ℓ_2	Cov: 61.15% Pred: 0.078 Total: 0.125	Cov: 13.2% Pred: 0.010 Total: 0.183	ℓ_2	Cov: 64.6% Pred: 0.082 Total: 0.122	Cov: 13% Pred: 0.0017 Total: 0.193	

3.2 Building general reliable agnostic learners & conformal prediction

We show how we can use our efficient construction of selective omnipredictors to recover and generalize the results on reliable agnostic learning obtained by [43] from 0-1 loss to an entire family of loss functions (as defined in Section 2.3).

Theorem 3.3. Let C be a concept class of Boolean concepts, L any class of B-Lipschitz loss functions, and D a distribution on $X \times Y$. If C is agnostically learnable under D in time $T(\epsilon, \delta)$, then C is L-fully reliably learnable under D in time $T(\epsilon^2/6, \delta)$.

Conformal prediction from FRL. Lastly, we demonstrate a useful application of the reliable agnostic learning framework. Specifically, we show that one can view FRL as a conformal prediction method for the case of binary classification, where we view the $\{0,1\}$ prediction set as '?'.

In the classification setting, the goal of conformal prediction is to construct a *prediction set* of the possible labels $S(x) \subseteq \mathcal{Y}$ for each point $x \in \mathcal{X}$ such that $\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \in S(\mathbf{x})] \geq 1 - \epsilon$ for a chosen error rate $\epsilon \in (0, 1)$. This is known as the ϵ -marginal coverage guarantee. In the case of binary classification, the possible prediction sets can only be $\{0\}, \{1\}, \{0, 1\}$. We show the following:

Lemma 3.4. Let $h_?: \mathcal{X} \to \{0,1,?\}$ be an FRL predictor for $\mathcal{C}, \mathcal{D}, \epsilon$ and the 0-1 loss. Then, the prediction sets induced by the level sets of h, where we map $0 \mapsto \{0\}$, $1 \mapsto \{1\}$, and $? \mapsto \{0,1\}$, satisfy the ϵ -marginal coverage guarantee.

Remark 3.1. While any conformal prediction method must definitionally satisfy the ϵ -marginal coverage guarantee, typical algorithms offer no theoretical bounds on the size of the prediction sets. In the case of binary classification, this means that we could have an arbitrarily large number of points mapped to $\{0,1\}$ (even the entire domain, which is a trivial way of satisfying the marginal coverage guarantee). However, FRL does provide provable abstention guarantees with respect to a base concept class $\mathcal C$ of our choice. Let $h_7: \mathcal X \to \{0,1,?\}$ be an FRL predictor for the class $\mathcal C$, 0-1 loss, and $\epsilon > 0$, and let $\{0\}, \{1\}, \{0,1\}$ be its induced prediction sets as a conformal prediction method. Then,

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h_?(\mathbf{x}) = \{0, 1\}] \leq \min_{c_? \in \mathtt{SC}(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[c_?(\mathbf{x}) = ?] + \epsilon.$$

We defer the proof in the appendix, where we also run experiments implementing FRL as a conformal prediction method.

4 Learning Abstentions Fairly

So far, we have considered the question of how to learn abstentions optimally, where we measure optimality in the agnostic sense, with respect to a base concept class \mathcal{C} and a generalized Chow loss function ℓ_{GC} . The motivation for abstaining is to be able to make almost no errors when predicting, which we can accomplish by mapping the uncertain points to '?' instead. However, we might additionally have fairness concerns: suppose that we have a collection $\mathcal{G} = \{g: \mathcal{X} \to \{0,1\}\}$ of subgroups of interest of the domain. Besides achieving high accuracy over the points where we do predict a numerical value, we would also like to abstain fairly on *each* of the groups $g \in \mathcal{G}$, so that we avoid achieving high global accuracy at the expense of overly abstaining on some subgroups. Motivated by the multigroup fairness framework, we also want the groups in \mathcal{G} to be able to intersect.

How can we measure how an optimal abstention rate looks like within each of the groups $g \in \mathcal{G}$? Motivated by the reliable agnostic learning framework [43], we do so by requiring our predictor to abstain no more than the optimal selective classifier $c_?^g \in SC(\mathcal{C})$ (with an ϵ slack) on each group $g \in \mathcal{G}$, where $c_?^g$ can naturally be different for each group. That is, similar to our notion of a selective omnipredictor, we want to construct a single classifier simultaneously for all groups, but its abstention rate competes with that of a $c_?^g$ that is chosen optimally in each group. Formally, we introduce the following definition, which corresponds to the multigroup version of the original notion of realiable agnostic learning:

Definition 4.1 ((C, \mathcal{G}) -multigroup selective classification). Given a collection of subgroups \mathcal{G} of \mathcal{X} , a concept class \mathcal{C} , distribution \mathcal{D} , and $\epsilon > 0$, we say that a predictor $h_?: \mathcal{X} \to [0, 1] \cup \{?\}$ is a $(C, \mathcal{G}, \epsilon)$ -multigroup selective classifier if the following two conditions are satisfied:

- 1. Global accuracy. $\operatorname{err}_{\mathcal{D}}(h_?) := \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[|\mathbf{y} h_?(\mathbf{x})| \cdot \mathbb{1}[h_?(\mathbf{x}) \neq ?]] \leq \epsilon$.
- 2. Optimal local abstention rate. For every $g \in \mathcal{G}$,

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[h_?(\mathbf{x}) = ?] \right] \leq \min_{c_? \in \mathsf{SC}(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[c_?(\mathbf{x}) = ?] \right] + \epsilon.$$

Note that Condition 2 automatically implies an optimal global abstention rate as well, by applying the local condition with g = 1 (which we can assume is always contained in \mathcal{G}). We remark that the multigroup fairness and omniprediction literature had so far always taken $\mathcal{C} = \mathcal{G}$; our notion demonstrates why it is useful to separate the base concept class \mathcal{C} from the collection of groups \mathcal{G} .

We show that we can efficiently construct a (C, G, ϵ) -multigroup selective classifier for any C, G from a multiaccurate predictor for the class $C \cdot G = \{cg \mid c \in C, g \in G\}$ that is also globally calibrated:

Theorem 4.1. Given access to a $(\mathcal{C} \cdot \mathcal{G}, \epsilon^2/8)$ -multiaccurate and calibrated predictor, we can efficiently construct a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier in time $\operatorname{poly}(1/\epsilon)$.

The key idea in our proof is to convert a $(\mathcal{C} \cdot \mathcal{G}, \epsilon)$ -multiaccurate and calibrated predictor $h: \mathcal{X} \to [0,1]$ into a selective classifier by mapping all x such that $h(x) \in (\epsilon, 1-\epsilon)$ to '?'. For each group g, let $c_{?}^{g} = (c_{+}^{g}, c_{-}^{g})$ be an optimal selective classifier in $\mathrm{SC}(\mathcal{C})$ within g. Since $c_{+}^{g} \in \mathcal{C}^{+}$, it follows that whenever $c_{+}^{g} = 1$, the true label y on that point is also 1. By the multiaccuracy guarantee for c_{+}^{g} and g (which is in $\mathcal{C} \cdot \mathcal{G}$), we obtain that $\mathbb{E}_{\mathcal{D}}[\mathbf{y}] \approx \mathbb{E}_{\mathcal{D}}[h(\mathbf{x})] \approx 1$ in the region where $c_{+}^{g}(x) = 1$, g(x) = 1. A symmetric argument holds with c_{-}^{g} and g. We use the global calibration condition to ensure that our thresholded $h_{?}$ remains accurate in the entire domain.

It is natural to ask whether we can efficiently construct (C, G)-multigroup selective classifiers starting from a weaker learning primitive than a weak agnostic learner for $C \cdot G$. We answer this question in the positive in the case where |G| is small:

Lemma 4.2. If the class C is fully reliably learnable for the ℓ_1 loss and $\epsilon > 0$, we can construct a $(C, \mathcal{G}, \epsilon)$ -multigroup selective classifier in time $\operatorname{poly}(|\mathcal{G}|, 1/\epsilon)$ with oracle access to the full reliable learner for C.

Answering this question in generality (i.e., where \mathcal{G} can be arbitrarily large) appears to be a very interesting open question.

Calibrated multiaccuracy and multicalibration. We make a further remark about how the various multigroup fairness definitions relate to selective classification (which we show in the appendix).

- (a) If we have the stronger primitive of a $(\mathcal{C} \cdot \mathcal{G})$ -multicalibrated predictor (which implies a $(\mathcal{C} \cdot \mathcal{G})$ -multiaccurate calibrated predictor), then we can have a non-selective predictor which would also give local agnostic guarantees. This follows from the works of [25, 10, 27].
- (b) Given a $(\mathcal{C} \cdot \mathcal{G}, \epsilon)$ -multiaccurate and calibrated predictor, we can directly obtain FRL predictors for the class \mathcal{C} for the ℓ_1 loss by thresholding the predictor as we do in the proof of Theorem 4.1. Given that calibrated multiaccuracy implies agnostic learning [11], it is already implied by Theorem 4.1 that we can achieve reliable agnostic learning from calibrated multiaccuracy. However, this approach gives a direct reduction. Reliable agnostic learning is believed to be a weaker learning primitive than agnostic learning [45].

4.1 Conformal prediction from (C, G)-multigroup selective classification

Similar to Section 3, we can view $(\mathcal{C},\mathcal{G})$ -multigroup selective classification as a conformal prediction method in the case of binary classification. Besides the marginal coverage guarantee, now that we have a collection \mathcal{G} of groups one can also hope to satisfy a conditional version of coverage. Namely, for every $g \in \mathcal{G}$, we want to satisfy $\Pr_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\mathbf{y}\in\mathcal{S}(\mathbf{x})\mid g(\mathbf{x})=1]\geq 1-\epsilon$. This property is known as the (\mathcal{G},ϵ) -group conditional coverage guarantee [39]. We show that $(\mathcal{C},\mathcal{G})$ -multigroup selective classifiers do indeed satisfy this conditional guarantee:

Lemma 4.3. Let $h_?: \mathcal{X} \to [0,1] \cup \{?\}$ be a (C,\mathcal{G},ϵ) -multigroup selective classifier. Then, the prediction sets induced by the level sets of h, where we map $[0,\epsilon] \mapsto \{0\}, [1-\epsilon,1] \mapsto \{1\}$, and $(\epsilon,1-\epsilon) \mapsto \{0,1\}$ satisfy $\Pr_{(\mathbf{x},\mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \in \mathcal{S}(x) \mid g(\mathbf{x}) = 1] \geq 1 - \frac{\epsilon}{\Pr_{\mathcal{D}}[g(\mathbf{x}) = 1]}$ for all $g \in \mathcal{G}$.

Remark 4.1. As pointed out in Section 3, typical conformal prediction methods offer no theoretical bounds on the size of the prediction sets. Through our framework of $(\mathcal{C},\mathcal{G})$ -multigroup selective classification, however, we do obtain provable abstention guarantees for each $g \in \mathcal{G}$ with respect to a base concept class \mathcal{C} of our choice. Specifically, for each $g \in \mathcal{G}$, the prediction sets of our $(\mathcal{C},\mathcal{G})$ -multigroup selective classifier h_7 as specified in Lemma 4.3 satisfy

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[h_?(\mathbf{x}) = \{0, 1\}] \right] \leq \min_{c_? \in \mathtt{SC}(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} [c_?(\mathbf{x}) = ?] + \epsilon.$$

Importantly, (C, G)-multigroup selective classification as a conformal prediction method ensures group conditional coverage and a provable abstention bound on each group *even when these intersect*.

In the appendix we implement (C, G)-multigroup selective classifiers by adapting the multicalibration algorithm and demonstrate its utility as a conformal prediction method in practice.

5 Conclusion and Future Work

We conclude by providing some directions for future work.

The complexity of reliable agnostic learning. The first is concerned with the dependence on ϵ when obtaining a fully reliable learner from agnostic learning. In the case of [44], they are able to learn PRL, NRL, and FRL predictors for a concept class $\mathcal C$ in time $T(O(\epsilon^2))$ using an agnostic learner for $\mathcal C$ that runs in time $T(\epsilon)$. In our case, when we obtain fully reliable learners from selective omnipredictors in Theorem 3.3, in order to obtain a $\mathcal L$ -fully reliable learner with error ϵ we require a selective omnipredictor with error ϵ^2 . It appears that the nature of the two constraints in the definition of reliable agnostic learning (unlike the case of the generalized Chow loss formulation) induces this overhead, but it is unclear whether it is unavoidable.

Building selective omnipredictors. For our construction of selective omnipredictors, we require the multigroup fairness primitive of multicalibration. For the case of regular omniprediction (i.e., without abstentions), recent works have shown that we can construct omnipredictors from the weaker primitive of calibrated multiaccuracy, and even with weaker notions of global calibration [26, 59]. Our proof of selective omniprediction seems to require the full power of multicalibration; it is unclear whether we can relax it to calibrated multiaccuracy, or whether we can have a direct reduction from omniprediction.

Weak agnostic learner for $\mathcal{C} \cdot \mathcal{G}$. Our construction of a $(\mathcal{C}, \mathcal{G})$ -multigroup selective classifier in Section 4 requires access to a $(\mathcal{C} \cdot \mathcal{G})$ -multiaccurate and calibrated predictor. From the works on multigroup fairness [26, 11], this in requires access to a weak agnostic learner for the class $\mathcal{C} \cdot \mathcal{G}$. We do not know whether it is possible to construct $(\mathcal{C}, \mathcal{G})$ -multigroup selective classifiers having only access to separate weak agnostic learners for \mathcal{C} and \mathcal{G} , without requiring a weak agnostic learner for their intersection. This can be seen as a broader question about the learnability of intersections of concept classes.

Building selective classifiers. In Lemma 4.2 we show that we can construct a $(\mathcal{C}, \mathcal{G})$ -multigroup selective classifier from a fully reliable learner, which is believed to be a weaker primitive than (weak) agnostic learning [45]. However, we are only able to show this for classes \mathcal{G} that are small in size, given that we need to call the FRL oracle $|\mathcal{G}|$ times. Hence the question of whether we can build selective classifiers from a weaker primitive than agnostic learning for a general class \mathcal{G} remains open.

Conformal prediction & model multiplicity. Lastly, in light of our connections between reliable agnostic learning and $(\mathcal{C},\mathcal{G})$ -multigroup selective classification with conformal prediction, it would be interesting to develop this connection further, particularly focusing on the ability of these methods to provide provable guarantees on the sizes of the prediction sets beyond the setting of binary classification. It also appears fruitful to study how our framework of learning with abstentions, where a predictor is able to measure its own reliability, relates to the recent works on model multiplicity.

Acknowledgments

We thank Michael P. Kim and Inbal Livni Navon for helpful pointers. We are grateful to the participants of the Workshop on Predictions and Uncertainty at COLT 2025 for valuable feedback. During the development of this work, SC was supported by a Rhodes scholarship.

References

- [1] Gustaf Ahdritz, Aravind Gollakota, Parikshit Gopalan, Charlotte Peale, and Udi Wieder. Provable uncertainty decomposition via higher-order calibration. *arXiv* preprint arXiv:2412.18808, 2024.
- [2] Junaid Ali, Preethi Lahoti, and Krishna P Gummadi. Accounting for model uncertainty in algorithmic discrimination. In *Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society*, pages 336–345, 2021.
- [3] Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. *arXiv* preprint arXiv:2107.07511, 2021.
- [4] Tina Behzad, Sílvia Casacuberta, Emily Ruth Diana, and Alexander Williams Tolbert. Reconciling predictive multiplicity in practice. In *Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency*, pages 3350–3369, 2025.
- [5] Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, et al. Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages 401–413, 2021.
- [6] Emily Black, Klas Leino, and Matt Fredrikson. Selective ensembles for consistent predictions. *arXiv preprint arXiv:2111.08230*, 2021.
- [7] Emily Black, Manish Raghavan, and Solon Barocas. Model multiplicity: Opportunities, concerns, and solutions. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, pages 850–863, 2022.
- [8] Emily Black, John Logan Koepke, Pauline Kim, Solon Barocas, and Mingwei Hsu. Less discriminatory algorithms. *Available at SSRN*, 2023.
- [9] George EP Box and George C Tiao. *Bayesian inference in statistical analysis*. John Wiley & Sons, 2011.
- [10] Sílvia Casacuberta, Cynthia Dwork, and Salil Vadhan. Complexity-theoretic implications of multicalibration. In *Proceedings of the 56th Annual ACM Symposium on Theory of Computing*, pages 1071–1082, 2024.
- [11] Sílvia Casacuberta, Parikshit Gopalan, Varun Kanade, and Omer Reingold. How global calibration strengthens multiaccuracy. *arXiv preprint arXiv:2504.15206*, 2025.
- [12] Chi-Keung Chow. An optimum character recognition system using decision functions. *IRE Transactions on Electronic Computers*, (4):247–254, 1957.
- [13] A Feder Cooper, Katherine Lee, Madiha Zahrah Choksi, Solon Barocas, Christopher De Sa, James Grimmelmann, Jon Kleinberg, Siddhartha Sen, and Baobao Zhang. Arbitrariness and social prediction: The confounding role of variance in fair classification. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 22004–22012, 2024.
- [14] Gianluca Detommaso, Martin Bertran, Riccardo Fogliato, and Aaron Roth. Multicalibration for confidence scoring in llms. *arXiv preprint arXiv:2404.04689*, 2024.
- [15] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness. In *Proceedings of the 3rd innovations in theoretical computer science conference*, pages 214–226, 2012.
- [16] Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome indistinguishability. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, pages 1095–1108, 2021.

- [17] Cynthia Dwork, Daniel Lee, Huijia Lin, and Pranay Tankala. From pseudorandomness to multi-group fairness and back. In Gergely Neu and Lorenzo Rosasco, editors, *The Thirty Sixth Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India*, volume 195 of *Proceedings of Machine Learning Research*, pages 3566–3614. PMLR, 2023. URL https://proceedings.mlr.press/v195/dwork23a.html.
- [18] Cynthia Dwork, Omer Reingold, and Guy N Rothblum. From the real towards the ideal: Risk prediction in a better world. In 4th Symposium on Foundations of Responsible Computing (FORC 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.
- [19] Ran El-Yaniv et al. On the foundations of noise-free selective classification. *Journal of Machine Learning Research*, 11(5), 2010.
- [20] Vitaly Feldman. Distribution-specific agnostic boosting. arXiv preprint arXiv:0909.2927, 2009.
- [21] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approximate variational inference. *arXiv preprint arXiv:1506.02158*, 2015.
- [22] Surbhi Goel, Steve Hanneke, Shay Moran, and Abhishek Shetty. Adversarial resilience in sequential prediction via abstention. *Advances in Neural Information Processing Systems*, 36: 8027–8047, 2023.
- [23] Shafi Goldwasser, Adam Tauman Kalai, Yael Kalai, and Omar Montasser. Beyond perturbations: Learning guarantees with arbitrary adversarial test examples. *Advances in Neural Information Processing Systems*, 33:15859–15870, 2020.
- [24] Aravind Gollakota, Parikshit Gopalan, Adam R Klivans, and Konstantinos Stavropoulos. Agnostically learning single-index models using omnipredictors. arXiv preprint arXiv:2306.10615, 2023.
- [25] Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder. Omnipredictors. *arXiv preprint arXiv:2109.05389*, 2021.
- [26] Parikshit Gopalan, Lunjia Hu, Michael P Kim, Omer Reingold, and Udi Wieder. Loss minimization through the lens of outcome indistinguishability. arXiv preprint arXiv:2210.08649, 2022.
- [27] Parikshit Gopalan, Michael Kim, and Omer Reingold. Swap agnostic learning, or characterizing omniprediction via multicalibration. Advances in Neural Information Processing Systems, 36, 2024.
- [28] Parikshit Gopalan, Princewill Okoroafor, Prasad Raghavendra, Abhishek Sherry, and Mihir Singhal. Omnipredictors for regression and the approximate rank of convex functions. In *The Thirty Seventh Annual Conference on Learning Theory*, pages 2027–2070. PMLR, 2024.
- [29] Dutch Hansen, Siddartha Devic, Preetum Nakkiran, and Vatsal Sharan. When is multicalibration post-processing necessary? arXiv preprint arXiv:2406.06487, 2024.
- [30] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. *Advances in neural information processing systems*, 29, 2016.
- [31] David Haussler. Decision theoretic generalizations of the pac model for neural net and other learning applications. *Information and Computation*, 100(1):78–150, 1992.
- [32] Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration for the (computationally-identifiable) masses. In *International Conference on Machine Learning*, pages 1939–1948. PMLR, 2018.
- [33] Maria Heuss, Daniel Cohen, Masoud Mansoury, Maarten de Rijke, and Carsten Eickhoff. Predictive uncertainty-based bias mitigation in ranking. In *Proceedings of the 32nd ACM International Conference on Information and Knowledge Management*, pages 762–772, 2023.
- [34] Lunjia Hu and Charlotte Peale. Comparative learning: A sample complexity theory for two hypothesis classes. In *14th Innovations in Theoretical Computer Science Conference (ITCS 2023)*, 2023.

- [35] Lunjia Hu, Inbal Rachel Livni Navon, Omer Reingold, and Chutong Yang. Omnipredictors for constrained optimization. In *International Conference on Machine Learning*, pages 13497– 13527. PMLR, 2023.
- [36] Junqi Jiang, Antonio Rago, Francesco Leofante, and Francesca Toni. Recourse under model multiplicity via argumentative ensembling. *arXiv preprint arXiv:2312.15097*, 2023.
- [37] Erik Jones, Shiori Sagawa, Pang Wei Koh, Ananya Kumar, and Percy Liang. Selective classification can magnify disparities across groups. *arXiv* preprint arXiv:2010.14134, 2020.
- [38] Christopher Jung, Changhwa Lee, Mallesh Pai, Aaron Roth, and Rakesh Vohra. Moment multicalibration for uncertainty estimation. In *Conference on Learning Theory*, pages 2634– 2678. PMLR, 2021.
- [39] Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Batch multivalid conformal prediction. *arXiv preprint arXiv:2209.15145*, 2022.
- [40] Patrick Kaiser, Christoph Kern, and David Rügamer. Uncertainty-aware predictive modeling for fair data-driven decisions. *arXiv preprint arXiv:2211.02730*, 2022.
- [41] Adam Kalai and Varun Kanade. Towards optimally abstaining from prediction with ood test examples. *Advances in Neural Information Processing Systems*, 34:12774–12785, 2021.
- [42] Adam Tauman Kalai and Varun Kanade. Efficient learning with arbitrary covariate shift. In *Algorithmic Learning Theory*, pages 850–864. PMLR, 2021.
- [43] Adam Tauman Kalai, Varun Kanade, and Yishay Mansour. Reliable agnostic learning. *Journal of Computer and System Sciences*, 78(5):1481–1495, 2012.
- [44] Varun Kanade and Adam Kalai. Potential-based agnostic boosting. *Advances in neural information processing systems*, 22, 2009.
- [45] Varun Kanade and Justin Thaler. Distribution-independent reliable learning. In *Conference on Learning Theory*, pages 3–24. PMLR, 2014.
- [46] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In *International Conference on Machine Learning*, pages 2564–2572. PMLR, 2018.
- [47] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic learning. In *Proceedings of the fifth annual workshop on Computational learning theory*, pages 341–352, 1992.
- [48] Christoph Kern, Michael Kim, and Angela Zhou. Multi-cate: Multi-accurate conditional average treatment effect estimation robust to unknown covariate shifts. arXiv preprint arXiv:2405.18206, 2024.
- [49] Falaah Arif Khan, Denys Herasymuk, and Julia Stoyanovich. On fairness and stability: Is estimator variance a friend or a foe? *arXiv preprint arXiv:2302.04525*, 2023.
- [50] Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing for fairness in classification. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society*, pages 247–254, 2019.
- [51] Daniel Lee, Georgy Noarov, Mallesh Pai, and Aaron Roth. Online minimax multiobjective optimization: Multicalibeating and other applications. *Advances in Neural Information Processing Systems*, 35:29051–29063, 2022.
- [52] Joshua K Lee, Yuheng Bu, Deepta Rajan, Prasanna Sattigeri, Rameswar Panda, Subhro Das, and Gregory W Wornell. Fair selective classification via sufficiency. In *International conference on machine learning*, pages 6076–6086. PMLR, 2021.
- [53] Carol Long, Hsiang Hsu, Wael Alghamdi, and Flavio Calmon. Individual arbitrariness and group fairness. *Advances in Neural Information Processing Systems*, 36, 2024.

- [54] Carol Xuan Long, Hsiang Hsu, Wael Alghamdi, and Flavio P Calmon. Arbitrariness lies beyond the fairness-accuracy frontier. arXiv preprint arXiv:2306.09425, 2023.
- [55] Philip M Long. On agnostic learning with {0,*, 1}-valued and real-valued hypotheses. In *14th Annual Conference on Computational Learning Theory*, volume 14, page 289. Springer Science & Business Media, 2001.
- [56] Cassandra Marcussen, Aaron Putterman, and Salil Vadhan. Characterizing the distinguishability of product distributions through multicalibration. arXiv preprint arXiv:2412.03562, 2024.
- [57] Charles Marx, Flavio Calmon, and Berk Ustun. Predictive multiplicity in classification. In *International Conference on Machine Learning*, pages 6765–6774. PMLR, 2020.
- [58] Georgy Noarov and Aaron Roth. The statistical scope of multicalibration. In *International Conference on Machine Learning*, pages 26283–26310. PMLR, 2023.
- [59] Princewill Okoroafor, Robert Kleinberg, and Michael P Kim. Near-optimal algorithms for omniprediction. *arXiv preprint arXiv:2501.17205*, 2025.
- [60] Aaron Roth, Alexander Tolbert, and Scott Weinstein. Reconciling individual probability forecasts. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency*, pages 101–110, 2023.
- [61] Guy N Rothblum and Gal Yona. Multi-group agnostic pac learnability. In *International Conference on Machine Learning*, pages 9107–9115. PMLR, 2021.
- [62] Nicolas Schreuder and Evgenii Chzhen. Classification with abstention but without disparities. In *Uncertainty in Artificial Intelligence*, pages 1227–1236. PMLR, 2021.
- [63] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(3), 2008.
- [64] Anique Tahir, Lu Cheng, and Huan Liu. Fairness through aleatoric uncertainty. In *Proceedings* of the 32nd ACM International Conference on Information and Knowledge Management, pages 2372–2381, 2023.
- [65] Vianney Taquet, Vincent Blot, Thomas Morzadec, Louis Lacombe, and Nicolas Brunel. Mapie: an open-source library for distribution-free uncertainty quantification (2022). *arXiv preprint arXiv:2207.12274*, 2022.
- [66] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*, volume 29. Springer, 2005.
- [67] Tongxin Yin, Jean-François Ton, Ruocheng Guo, Yuanshun Yao, Mingyan Liu, and Yang Liu. Fair classifiers that abstain without harm. *arXiv preprint arXiv:2310.06205*, 2023.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: All mathematical proofs of our formal claims are in the appendix. These are complete and fully formal. We also place our paper correctly within the current literature. We provide full details of our synthetic data experiments in the appendix, as well as the code that we used to run them.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide a limitations section in the appendix and provide directions for future work and open problems.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a full mathematical proof for all of our results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all of our code and explain the choice of parameters, etc. in the appendix. Thus our code is fully reproducible.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We directly provide the Python code that we use for our experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All of these details are provided in our appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide repetitions of all of our experiments and demonstrate its consistency.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide all of this information in our appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and confirm that our paper conforms to it. Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Not only does our paper discuss the societal impacts of our work, it is fully motivated by it. We study selective classification with the motivation of ensuring reliability of predictions, which is crucial to ensure particularly in sensitive applications. The second half of our paper is concerned with providing algorithms that provably abstain fairly within each subgroup of interest. Our work is fully placed within the algorithmic fairness literature.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We only run self-contained experiments with synthetic data.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We credit any packages and works that we have used in producing our code.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We do not provide new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have crowdsourcing experiments or research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not applicable to our work.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We fully detail how we used LLMs in producing our code in the appendix.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Related Work

In recent years, there has been an increasingly close examination of algorithmic predictions, particularly when used in high-stakes settings. Most of these close examinations have focused on studying the potential biases present in these predictions, such as in the development of individual and group fairness notions [15, 30]. Another prominent example is the recent line of work on *multigroup fairness*, which aims to detect and avoid unwanted forms of bias on the outputs of a predictor h that maps individuals in a domain \mathcal{X} to values in [0,1], where the biases are measured with respect to a class \mathcal{G} of subgroups of the population that can intersect [32, 50].

However, we also need to study the reliability of the predictions made by h. Some recent works have put forth the necessity of accounting for uncertainty in the setting of algorithmic fairness [2, 5, 40, 54, 49, 53, 13], but this question remains largely understudied. A major application of these notions is in learning theory through the new learning paradigm of omniprediction [24, 27, 16, 18, 17]. Multigroup fairnes notions can be understood as providing computational indistinguishability guarantees, formalized through the Outcome Indistinguishability framework [16] and follow-up works [10, 56, 11], which helps provide intuition for why they are well-suited as a method to add abstentions, as we do in our work. Recent work on calibration uses higher order calibration as a way to decompose the predictive uncertainty of a model into aleatoric and epistemic components [1].

We remark that other works on multicalibration and omniprediction do not separate C and G classes, which we do in this paper.

Selective classification. The idea of building an algorithm that abstains on certain individuals is not new and has traditionally been called *selective classification* [19]. A selective classifier is allowed to also return? as an output (which indicates abstention), along with the usual numerical values. In the setting of fairness, some works have studied the effect of selectively abstaining. Jones et al. find that certain forms of selective classification can magnify disparities across groups [37], and follow-up works try to restrict this type of disparities [52, 62, 67]. Abstentions in learning have also been used to provide bounds on efficient learning in the presence of arbitrary covariate shifts [41, 42, 23, 22] and in the introduction of *partial* hypotheses classes [55, 34].

Bayesian approaches & Conformal prediction. Another major approach for the task of uncertainty quantification is that of Bayesian inference. These methods place distributions over the model parameters, and build a model by iteratively updating the prior with new data in order to obtain the posterior through an application of Bayes rule [9]. For training neural networks in a way that also allows for quantifying uncertainty, incorporating these techniques yields the so-called *Bayesian Neural Networks* (BNNs) [21]. Some fairness works that are also concerned with incorporating uncertainty have used BNNs in the context of fair prediction [5, 40, 33, 64]. However, Bayesian methods tend to be very slow and largely intractable.

An alternative to Bayesian-based approaches that is gathering growing popularity is that of *conformal* prediction, first proposed by by Gammerman, Vovk, and Vapnik [66, 3]. Conformal prediction is a technique for determining precise levels of confidence which can be applied to any method that has already been trained on the data [63]. Instead of a point-prediction (e.g., 0.8 for individual x), with conformal prediction we can also return a prediction interval that indicates the confidence of the algorithm on that prediction. The wider the interval, the lower the confidence and the higher the uncertainty. Some recent works have extended the conformal prediction setting to provide conditional guarantees instead of only marginal guarantees by adapting the multicalibration algorithm [38, 39].

Reliable learning. Still, none of the previous works studies abstention from a theoretical perspective. In the formal setting of learning theory, the study of selective classification was initiated in 2009 by Kalai, Kanade, and Mansour, who called it "reliable learning" [43]. How can we come up with a formal model of classifiers that abstain, what does it mean to "abstain optimally", and how can we learn such classifiers?

The authors answer this by adapting the original agnostic learning framework [31, 47] to what they call *agnostic reliable learning*. Here, the goal is to output a selective classifier whose accuracy nearly matches the accuracy of the best selective classifier from a pre-specified concept class. [43] show that if a concept class \mathcal{C} is agnostically learnable, then it is also agnostic reliable learnable. In the other direction, due to follow-up work by Kanade and Thaler it is widely believed that reliable agnostic learning is easier than agnostic learning [45].

PQ-learning and Chow's model of abstention. In 2020, Goldwasser, Kalai, Kalai, and Montasser presented a model of learning meant to tackle the covariate shift problem, in which the training data is distributed according to P and the test data according to Q, where P and Q can be arbitrary distributions over the domain \mathcal{X} [23]. This form of learning is not possible to achieve in general, given that P and Q might not even overlap.

To make this problem tractable, Goldwasser et al. introduce the model of PQ-learning, where the learner has access to unlabeled test examples from Q and the option to abstain on any point $x \in \mathcal{X}$. We compute the rejection rate ϵ_1 of the algorithm (i.e., the fraction of \mathcal{X} over which the classifier abstains) and the misclassification rate ϵ_2 , which quantifies the error of the classifier only over the subset of the domain on which the classifier does not abstain. Goldwasser et al. give algorithms for building selective classifiers in the PQ-learning model which guarantee low test error rate and low rejection rate with respect to P for concept classes of bounded VC dimension [23]. Their algorithm is efficient if we have access to an Empirical Risk Minimizer (ERM) for \mathcal{C} . For classes \mathcal{C} of bounded VC dimension, being able to do ERM efficiently is equivalent to proper agnostic learning [42].

In a follow-up work, Kalai and Kanade then showed that PQ-learning is equivalent to reliable learning. Moreover, they provide further evidence that the computational hardness of PQ-learning and reliable learning lies in-between PAC and agnostic learning (under the usual hardness assumptions) [42]. This separation was already shown by Kanade and Thaler, who gave an algorithm for reliably learning majorities over $\{0,1\}^d$ in time $2^{\tilde{O}(\sqrt{d})}$, whereas there are no known agnostic learning algorithms for this problem that run in time less than $2^{\Omega(d)}$ [45].

In another follow-up work, Kalai and Kanade consider a different formulation of the selective classification problem considered by Goldwasser et al., which is based on the slightly different and more general framework of Chow's abstention model [12]. Here, instead of finding a trade-off between error rates ϵ_1, ϵ_2 , we have a fixed parameter $\alpha>0$ which corresponds to the abstention cost. I.e., for each $x\in\mathcal{X}$, we either make a prediction \hat{y} and suffer loss $\ell(y,\hat{y})=|y-\hat{y}|$, or we abstain and pay a price of α . Importantly, this is a stronger model than PQ-learning/reliable learning, given that they are able to by-pass the lower bounds shown in [23]. For this reason, in this paper we prove our main results using (a generalized version of) Chow's abstention model, given that it is the strongest of the three formal learning with abstention models.

Multigroup fairness and omniprediction. In recent years, the algorithmic fairness literature has developed a rich line of work on multigroup fairness notions, with applications to the covariate shift problem, complexity theory, causal inference, the model multiplicity problem, and conformal prediction, among many others [32, 29, 48, 51, 61, 14, 58, 60].

A major application of these notions is in learning theory through the new learning paradigm of omniprediction [24, 27, 17]. Multigroup fairnes notions can be understood as providing computational indistinguishability guarantees, formalized through the Outcome Indistinguishability framework [16] and follow-up works [10], which helps provide intuition for why they are very well-suited as a method to add abstentions, as we do in our work. Recent work on calibration uses higher order calibration as a way to provably decompose the predictive uncertainty of a model into aleatoric and epistemic components [1].

Variance and predictive multiplicity. Some works that studying the reliability of predictors focus on the *predictive multiplicity problem*, which is concerned with the following fact: for a given fixed dataset, there are multiple ways in which we can train a predictor on the dataset such that it achieves high accuracy, but these various potential and equally good predictors can then disagree on individual predictions [7, 57]. Various metrics have been proposed for quantifying the variance of the predictions within the class \mathcal{M} [57], and various algorithms have been proposed for ensembling these various competing models in different ways [6, 60, 4].

Several works have studied the relationship between the variance within the class \mathcal{M} and group fairness metrics [54, 53, 2, 49, 36]. Notably, following this variance approach, Cooper et al. find that we can obtain close-to-fair predictions simply by abstaining on the individuals with high variance [13]. A drawback of these variance-based methods is that they require fitting an entire class \mathcal{M} of models.

B Deferred Definitions

B.1 Reliable agnostic learning

The framework of reliable agnostic learning was first proposed by Kalai, Kanade, and Mansour for the case of zero-one loss [43]. In the main body, we generalized the definitions to a family of loss functions \mathcal{L} . Here, we state the original definitions for the 0-1 loss, which help grasp the notions of PRL, NRL, and FRL. We first recall the usual definitions of the error, false positive rate, and false negative rate of a predictor h in the case of 0-1 loss and for Boolean labels $\mathcal{Y} = \{0, 1\}$.

$$\operatorname{err}(h, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h(\mathbf{x}) \neq \mathbf{y}],$$
$$\operatorname{false}_{+}(h, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[c(\mathbf{x}) = 1 \land \mathbf{y} = 0],$$
$$\operatorname{false}_{-}(h, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[c(\mathbf{x}) = 0 \land \mathbf{y} = 1].$$

Note that $\operatorname{err}(h, \mathcal{D}) = \operatorname{false}_+(h, \mathcal{D}) + \operatorname{false}_-(h, \mathcal{D})$. We drop the distribution \mathcal{D} when it can be inferred from context, and sometimes write $\operatorname{err}_{\mathcal{D}}(h)$ for $\operatorname{err}(h, \mathcal{D})$.

Definition B.1 (Positive Reliable Learning (PRL) [43]). A concept class \mathcal{C} of Boolean concepts is *positive reliably learnable* if there exists a learning algorithm that for any distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, any $\epsilon, \delta > 0$, with access to the example oracle $\mathsf{EX}(\mathcal{D})$, outputs a hypothesis $h: \mathcal{X} \to \{0,1\}$ that satisfies the following with probability at least $1-\delta$,

1. false₊
$$(h, D) \le \epsilon$$
,

2.
$$\operatorname{false}_{-}(h, D) \leq \min_{c_{+} \in \mathcal{C}^{+}} \operatorname{false}_{-}(c_{+}, D) + \epsilon$$
, where $\mathcal{C}^{+} = \{c \in \mathcal{C} \mid \operatorname{false}_{+}(c, \mathcal{D}) = 0\}$.

Symmetrically, we have that:

Definition B.2 (Negative Reliable Learning [43]). A concept class \mathcal{C} of Boolean concepts is *negative reliably learnable* if there exists a learning algorithm that for any distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, any $\epsilon, \delta > 0$, with access to the example oracle $\mathrm{EX}(\mathcal{D})$, outputs a hypothesis $h: \mathcal{X} \to \{0,1\}$ that satisfies the following with probability at least $1-\delta$,

1. false_
$$(h, \mathcal{D}) \leq \epsilon$$
, and

2.
$$\operatorname{false}_{+}(h, \mathcal{D}) < \min_{c \in \mathcal{C}^{-}(\mathcal{D})} \operatorname{false}_{+}(c_{-}, \mathcal{D}) + \epsilon$$
, where $\mathcal{C}^{-} = \{c \in \mathcal{C} \mid \operatorname{false}_{-}(c, \mathcal{D}) = 0\}$.

Full reliability. Both PRL and NRL are non-selective classifiers; the hypothesis h in the definitions of PRL and NRL map from \mathcal{X} to $\{0,1\}$. But if we want both the positive and the negative rates to be low (i.e., for the total error to be low), then this is not possible unless we allow for ? to be in the range of h as well. Recall the definition of the class $SC(\mathcal{C})$ derived from the concept class \mathcal{C} (Section 2.3). By the definitions of \mathcal{C}^+ and \mathcal{C}^- , note that all concepts in SC have 0 error over the non-abstaining region.

We further define the uncertainty $?(h_?, \mathcal{D})$ and accuracy $acc(h_?, \mathcal{D})$ of a Boolean selective classifier $h_?$ as follows:

$$?(h_?, \mathcal{D}) = \underset{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}{\mathbb{E}} [h(\mathbf{x}) = ?].$$

$$acc(h_?, \mathcal{D}) = \underset{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}{\mathbb{E}} [\mathbb{1}[h_?(\mathbf{x}) = 0] \cdot (1 - \mathbf{y}) + \mathbb{1}[h_?(\mathbf{x}) = 1] \cdot \mathbf{y}],$$

One can see that $\operatorname{err}(h_?, \mathcal{D}) + ?(h_?, \mathcal{D}) + \operatorname{acc}(h_?, \mathcal{D}) = 1$.

Full reliable learning is then defined as follows:

Definition B.3 (Full Reliable Learning (FRL) [43]). A concept class \mathcal{C} of Boolean concepts is *fully reliably learnable* if there exists a learning algorithm that for any distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$, any $\epsilon, \delta > 0$, with access to the example oracle $\mathsf{EX}(\mathcal{D})$, outputs a selective classifier $h_?: \mathcal{X} \to \{0, 1, ?\}$ that satisfies the following with probability at least $1 - \delta$,

1.
$$\operatorname{err}(h_?, \mathcal{D}) = \operatorname{false}_+(h_?, \mathcal{D}) + \operatorname{false}_-(h_?, \mathcal{D}) \leq \epsilon$$

2.
$$\operatorname{acc}(h_?, \mathcal{D}) \geq \max_{c_? \in SC(\mathcal{C})} \operatorname{acc}(c_?, \mathcal{D}) - \epsilon$$
.

Alternatively, using the fact that $\operatorname{err}(h_?, \mathcal{D}) + ?(h_?, \mathcal{D}) + \operatorname{acc}(h_?, \mathcal{D}) = 1$, we can write the FRL definition with the formulation used in [45], where Condition 2 is expressed in terms of the abstention rate rather than in terms of accuracy. Indeed, we can equivalently define FRL as follows:

Definition B.4 (Full Reliable Learning (FRL) [43]). A concept class \mathcal{C} of Boolean concepts is *fully reliably learnable* if there exists a learning algorithm that for any distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$, any $\epsilon, \delta > 0$, with access to the example oracle $\mathsf{EX}(\mathcal{D})$, outputs a selective classifier $h: \mathcal{X} \to \{0, 1, ?\}$, that satisfies the following with probability at least $1 - \delta$,

1.
$$\operatorname{err}(h_?, \mathcal{D}) = \operatorname{false}_+(h_?, \mathcal{D}) + \operatorname{false}_-(h_?, \mathcal{D}) \leq \epsilon$$
,

2.
$$?(h_?, \mathcal{D}) \leq \min_{c_? \in SC(\mathcal{C})} ?(c_?, \mathcal{D}) + \epsilon$$
.

When instantiating our generalized definitions (Section 2.3) to the case of the 0-1 loss, ℓ_+ corresponds to false₊, ℓ_- corresponds to false₋, and $\ell_?$ to ?.

The original definitions of PRL, NRL, and FRL were introduced only for the case of the 0-1 loss [43]. For this specific choice of loss function, Kalai, Kanade, and Mansour showed the following:

Theorem B.1 ([43]). Let \mathcal{L} contain only the 0-1 loss. If a concept class \mathcal{C} is agnostically learnable under distribution \mathcal{D} in time $T(\epsilon, \delta)$, then \mathcal{C} is \mathcal{L} -positively reliably learnable and \mathcal{L} -negative reliably learnable, both in time $T(\epsilon^2/2, \delta)$. Then, \mathcal{C} is also \mathcal{L} -full reliably learnable, in time $2T(\epsilon^2/8, \delta/2)$.

Lastly, in the main body we deferred the definition of \mathcal{L} -NRL to the appendix, which we include for completeness:

Definition B.5 (NRL for a family of loss functions [43, 45]). A concept class \mathcal{C} of Boolean concepts is \mathcal{L} -negatively reliably learnable if there exists a learning algorithm that for any distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, any $\ell_+,\ell_- \in \mathcal{L}$, and any $\epsilon,\delta>0$, when given access to the example oracle $\mathsf{EX}(\mathcal{D})$, outputs a hypothesis $h:\mathcal{X} \to [0,1]$ that satisfies the following with probability at least $1-\delta$:

1.
$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{-}(h(\mathbf{x}))] \leq \epsilon$$
,

2.
$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{+}(h(\mathbf{x}))] \leq \min_{c_{-}\in\mathcal{C}^{-}} \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\ell_{+}(c_{-}(\mathbf{x}))] + \epsilon$$
.

B.2 Agnostic learning

Definition B.6 (Weak agnostic learning). Given a concept class \mathcal{C} on \mathcal{X} and a distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, a (α, γ) -weak agnostic learner for \mathcal{C} , denoted $\mathrm{WAL}_{\mathcal{C}}$, is an algorithm that satisfies the following promise problem. Given a collection of labeled samples $(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}$, if there is some $c \in \mathcal{C}$ such that $\mathrm{err}_{\mathcal{D}}(c) \leq \alpha$, then $\mathrm{WAL}_{\mathcal{C}}$ returns a hypothesis $h : \mathcal{X} \to [0, 1]$ such that $\mathrm{err}_{\mathcal{D}}(h) \leq \gamma$ with probability at least $1 - \delta$.

Definition B.7 (Agnostic learning). Given a concept class $\mathcal C$ on $\mathcal X$ and a distribution $\mathcal D$ on $\mathcal X \times \mathcal Y$, a (strong) agnostic learner for $\mathcal C$ is an algorithm that, given a collection of labeled samples $(\mathbf x, \mathbf y) \sim \mathcal D$ and an error parameter $\epsilon > 0$, returns a hypothesis $h : \mathcal X \to [0,1]$ satisfying, with probability at least $1 - \delta$.

$$\operatorname{err}_{\mathcal{D}}(h) \leq \min_{c \in \mathcal{C}} \operatorname{err}_{\mathcal{D}}(c) + \epsilon.$$

From the results of [44, 20] on agnostic boosting, we know that strong agnostic learning reduces to weak agnostic learning for any concept class C.

Throughout the statements and proofs, by "efficiently" we mean that the algorithm runs in polynomial time in the appropriate parameters. We drop the failure probability δ from the statements.

C Deferred Proofs from Section 3

C.1 Selective omnipredictors

We emphasize that the selective omniprediction learning paradigm can be extremely useful in practice: once we have obtained a $(\mathcal{L}, \mathcal{C})$ -selective omnipredictor, we can choose any loss function in \mathcal{L} at a later time. For example, this allows us to change the abstention costs over time, or to change the cost of false positives or false negatives over time. One can envision many practical settings in which

this flexibility is highly desirable; e.g., if not catching patients with a specific illness becomes more dangerous over time. Note that our framework allows us to separate the costs of both prediction and abstention for the cases of y = 1 and y = 0.

Theorem 3.1 (Constructing selective omnipredictors). Let \mathcal{C} be a concept class of concepts $c: \mathcal{X} \to [-M, M]$, \mathcal{D} a distribution on $\mathcal{X} \times \{0, 1\}$, $\epsilon > 0$, and \mathcal{L} a family loss functions with associated weights (λ, μ, ν) with $\lambda + \mu + \nu \leq 1$, such that all $\ell \in \mathcal{L}$ are B-Lipschitz. Then, a (\mathcal{C}, ϵ) -multicalibrated predictor is a $(\mathcal{L}, \mathcal{C}, 4\epsilon\beta + \epsilon B)$ -selective omnipredictor, where β is an absolute bound on $\ell_+, \ell_-, \ell_?$.

Remark C.1. The condition $\lambda + \mu + \nu \le 1$ is to ensure that the additive error term does not scale up; equivalently we could just get $2B(\lambda + \mu + \nu)\epsilon$ as the additive error.

Proof. Given the concept class $\mathcal C$ and parameter ϵ , we discretize each $c \in \mathcal C$ to precision ϵ (i.e., into $\lceil 1/\epsilon \rceil$ many buckets). We denote these discretized concepts by $\hat c$ and the corresponding concept class by $\hat {\mathcal C}$. Because all loss functions are B-Lipschitz, discretizing the concepts to precision ϵ incurs an additive error of at most ϵB .

We begin by calling the multicalibration theorem of [32, 26] with $\mathcal{X}, \mathcal{D}, \epsilon$, and \hat{C} to obtain a (\hat{C}, ϵ) -multicalibrated predictor h. For any fixed loss function $\ell = (\ell_+, \ell_-, \ell_?) \in \mathcal{L}$, we claim that $k^*_{\ell_+, \ell_?} \circ h$, where $k^*_{\ell_+, \ell_?}$ is the post-processing function defined in Definition 3.1, is a selective omnipredictor.

By the definition of a selective omnipredictor, we want to show that generalized Chow loss incurred by $k^*_{\ell_{\pm},\ell_{?}} \circ h$ is upper-bounded by the generalized Chow loss incurred by $k \circ c$ for every $c \in \mathcal{C}$, where $k : [0,1] \to \mathbb{R} \cup \{?\}$ is an arbitrary post-processing function. By definition of $k^*_{\ell_{+},\ell_{?}}$, recall that

$$k_{\ell_{\pm},\ell_{?}}^{*}(p) = \operatorname{argmin}_{t \in \mathbb{R} \cup \{?\}} p \cdot \Big(\mu\ell_{-}(t) + \nu\ell_{?}(1)\Big) + (1-p) \cdot \Big(\lambda\ell_{+}(t) + \nu\ell_{?}(0)\Big).$$

Following this generalized Chow loss expression (Definition 2.6), we decompose it into the expected cost of predicting, which we denote by κ_{pred} , and the expected cost of abstaining, which we denote by κ_{abs} , both under the Bernoulli distribution (i.e., for $\mathbf{y} \sim \text{Bern}(p(\mathbf{x}))$ for each $p \in \text{range}(h)$):

$$\kappa_{\text{pred}}(p) = \min_{t} p \cdot \mu \ell_{-}(t) + (1 - p) \cdot \lambda \ell_{+}(t),$$

$$\kappa_{\text{abs}}(p) = \nu (p \cdot \ell_{?}(1) + (1-p) \cdot \ell_{?}(0)) = \nu (p \cdot \alpha_{+} + (1-p) \cdot \alpha_{-}).$$

Note that the prediction cost depends on the value of t, whereas the abstention cost is independent of t. Then, for each point p, in order to minimize the expected generalized Chow loss under the Bernoulli distribution $\operatorname{Bern}(p(\mathbf{x}))$, we proceed in two steps:

- Find the value $t^*(p) \in [-M, M]$ that minimizes the value of $\kappa_{\text{pred}}(p)$ given a fixed value of p. This depends only on the choice of $\mu, \ell_-, \lambda, \ell_+$ and not on the underlying data. This corresponds to finding the $t^*(p)$ value that minimizes the value of $k_\ell^*(p)$.
- For each predicted value h(x) = p, we map it to either $t^*(p)$ or ? depending on whether it is cheaper to predict or to abstain; that is, depending on the value of $\min\{\kappa_{\text{pred}}(t^*(p)), \kappa_{\text{abs}}\}$.

In other words, we can re-write k_{ℓ_+,ℓ_2}^* as $k_{\rm abs} \circ k_{\ell}^*$, where

$$k_{\text{abs}} = \begin{cases} t^* & \text{if } \kappa_{\text{pred}} \le \kappa_{\text{abs}} \\ ? & \text{if } \kappa_{\text{pred}} > \kappa_{\text{abs}} \end{cases}$$

The key idea is the following: the true labels are distributed as $\mathbf{y} \sim \mathrm{Bern}(p^*(\mathbf{x}))$. So if we had access to the true $p^*(x)$ value for each x, then the optimal prediction/abstention decision rule (i.e., the post-processing function applied to the p^* value that yields the minimum total generalized Chow loss) is precisely k_{abs} .

We can write the cost function incurred by the post-processing function $k_{\ell+,\ell_2}^* = k_{\rm abs} \circ k_\ell^*$ as:

$$\kappa(t, p) = \min\{p \cdot \mu \ell_{-}(t) + (1 - p) \cdot \lambda \ell_{+}(t), p \cdot \ell_{?}(1) + (1 - p) \cdot \ell_{?}(0)\}.$$

An important point to remark is that, while the prediction/abstention decision rule is decided with the p-values (to which we have access to, since they correspond to the predictions of the multicalibrated predictor h), the actual cost that we incur is computed with the true values p^* . Multicalibration

precisely allows us to bridge this gap: the predictor h believes that the labels are distributed according to $\operatorname{Bern}(p(\mathbf{x}))$, and so it uses the function $k_{\mathrm{abs}} \circ k_{\ell}^*$ as post-processing, which yields the optimal cost under the distribution $\mathbf{y} \sim \operatorname{Bern}(p(\mathbf{x}))$. In order to bridge the "simulated" labels $\mathbf{y} \sim \operatorname{Bern}(p(\mathbf{x}))$, which are used in our decision rule, and the "true" labels $\mathbf{y} \sim \operatorname{Bern}(p^*(\mathbf{x}))$, which yield the actual cost that we pay, we use the fact that h is \mathcal{C} -multicalibrated, which ensures that

$$\mathbb{E}[\mathbf{y} \mid h = p, \hat{c} = \gamma] \approx \mathbb{E}[p \mid h = p, c = \gamma]$$

for each γ in the range of \hat{c} . The RHS can equivalently be written as $\mathbb{E}[h \mid h = p, \hat{c} = \gamma]$. This "bridging" enabled by the multicalibration property satisfied by the predictor h is what allows us to show that our selective omnipredictor (namely, the predictor $k^*_{\ell_{\pm},\ell_{?}}$) incurs optimal loss with respect to the class \hat{C} .

We have discussed how the prediction/abstention decision rule for the multicalibrated predictor is given by $\kappa(t^*(p),p)$. As per the definition of a selective omnipredictor, we need to show that the generalized Chow loss incurred by $k^*_{\ell_{\pm},\ell_{?}}$ is upper-bounded by the generalized Chow loss incurred by any of the selective concepts $c_?$, where $c \in \mathcal{C}$ and $k : [0,1] \to \mathbb{R} \cup \{?\}$ is any post-processing function that adds abstentions to the concepts $c \in \mathcal{C}$. The only natural restriction on k is that it is a function of the values $\hat{c}(\cdot)$, and cannot be a function of x. E.g., if $\hat{c}(x_1) = \gamma = \hat{c}(x_2)$, then it must be that $\hat{c}_?(x_1) = \hat{c}_?(x_2)$. Hence, in the case of the concepts $\hat{c} \in \hat{C}$, we cannot directly assume that the prediction/abstention decision rule corresponds to $k^*_{\ell+\ell}$ as well.

However, we can use the multicalibration condition to reason about the loss incurred by the concepts \hat{c} . Specifically, for each concept $\hat{c} \in \hat{\mathcal{C}}$, we define the sets $\mathcal{X}_{(p,\gamma)} = \{x \in \mathcal{X} \mid h(x) = p, \hat{c}(x) = \gamma\}$ for each $p \in \text{range}(h)$ and eac

$$\phi_{(p,\gamma)} = \mathbb{E}[\mathbf{y}|\mathbf{x} \in \mathcal{X}_{(p,\gamma)}].$$

The fact that h is (\hat{C}, ϵ) -multicalibrated implies that

$$\phi_{(p,\gamma)} = \mathbb{E}[\mathbf{y} \mid h(\mathbf{x}) = p, \hat{c}(\mathbf{x}) = \gamma] \approx_{\epsilon} \mathbb{E}[h(\mathbf{x}) \mid h(\mathbf{x}) = p, \hat{c}(\mathbf{x}) = \gamma] = p \implies \phi_{(p,\gamma)} \approx_{\epsilon} p.$$

In practice, the multicalibration condition applies on expectation over the level sets $\mathcal{X}_{(p,\gamma)}$ for all p,γ . We fix a level set h(x)=p of h and a concept $\hat{c}\in\hat{C}$. We want to compare the loss incurred by $k^*_{\ell_\pm,\ell_?}(h)$ with the loss incurred by $k\circ c$, where $k:[0,1]\to\mathbb{R}\cup\{?\}$ is any post-processing function. Within the level set h(x)=p, all of the values $k^*_{\ell_\pm,\ell_?}(h)$ are the same, and so $k^*_{\ell_\pm,\ell_?}(h)$ is either predicting the value $t^*(p)$ on all of the points in the level set h(x)=p, or abstaining in all of the points in the level set, as determined by the cost function $\kappa(t^*(p),p)$. Within the level set h(x)=p, we further partition it according to the level sets of \hat{c} . That is, we consider the partition of \mathcal{X}_p into the sets $\mathcal{X}_{(p,\gamma)}$ for each $\gamma\in\mathrm{range}(\hat{c})$. For each $x\in\mathcal{X}_{(p,\gamma)}$, \hat{c} either predicts or abstains, using a decision rule k that is allowed to be arbitrary. For each set $\mathcal{X}_{(p,\gamma)}$, we split the proof into 4 cases, depending on whether h and \hat{c} decide to abstain or predict as per their respective decision rules.

Throughout, we let β denote a bound on the absolute values of $\ell_+, \ell_-, \ell_?$. Moreover, we can write the loss function as

$$\ell_{\mathrm{GC},\mathcal{D}}(k_{\ell_{\pm},\ell_{?}}^{*} \circ h; \lambda, \mu, \nu) = \underset{p \in \mathrm{range}(h)}{\mathbb{E}} \ \underset{\gamma \in \mathrm{range}(\hat{c})}{\mathbb{E}} \ \underset{\mathbf{x} \sim \mathcal{D}|_{\mathcal{X}_{(p,\gamma)}}}{\mathbb{E}} [\ell_{\mathrm{GC},\mathcal{D}}(\mathbf{y}, k_{\ell_{\pm},\ell_{?}}^{*}(h(\mathbf{x})))],$$

and similarly for $k \circ \hat{c}$.

Having fixed the values h=p and $\hat{c}=\gamma$, we argue about the expected loss incurred by the post-processed multicalibrated predictor versus the expected loss incurred by the concept on the level set $\mathcal{X}_{(p,\gamma)}$.

1. $k_{\ell_+,\ell_2}^* \circ h$ predicts & $k \circ \hat{c}$ predicts. We begin by swapping $\phi_{(p,\gamma)}$ for p in the following expression:

$$\phi_{(p,\gamma)} \cdot \mu \ell_{-}(t^{*}(p)) + (1 - \phi_{(p,\gamma)}) \cdot \lambda \ell_{+}(t^{*}(p)) = p \cdot \mu \ell_{-}(t^{*}(p)) + (1 - p) \cdot \lambda \ell_{+}(t^{*}(p)) + (\phi_{(p,\gamma)} - p)(\mu \ell_{-}(t^{*}(p)) - \lambda \ell_{+}(t^{*}(p)).$$

By definition of $t^*(p)$, it follows that $t^*(p)$ is the minimizer of $\kappa_{\text{pred}}(p)$ in [-M, M] given a fixed value of p. Hence,

$$p \cdot \mu \ell_{-}(t^{*}(p)) + (1-p) \cdot \lambda \ell_{+}(t^{*}(p)) \le p \cdot \mu \ell_{-}(\gamma) + (1-p) \cdot \lambda \ell_{+}(\gamma).$$

Swapping p for $\phi_{(p,\gamma)}$ again, we get that

$$p \cdot \mu \ell_{-}(\gamma) + (1-p) \cdot \lambda \ell_{+}(\gamma) + (\phi_{(p,\gamma)} - p)(\mu \ell_{-}(t^{*}(p)) - \lambda \ell_{+}(t^{*}(p))$$

$$=\phi_{(p,\gamma)}\cdot\mu\ell_-(\gamma)+(1-\phi_{(p,\gamma)})\cdot\lambda\ell_+(\gamma)+(\phi_{(p,\gamma)}-p)\big[\big(\mu\ell_-(t^*(p))-\lambda\ell_+(t^*(p))\big)-\big(\mu\ell_-(\gamma)-\lambda\ell_+(\gamma)\big)\big].$$

Putting everything together, we get that

$$\phi_{(p,\gamma)} \cdot \mu \ell_{-}(t^{*}(p)) + (1 - \phi_{(p,\gamma)}) \cdot \lambda \ell_{+}(t^{*}(p))$$

 $=\phi_{(p,\gamma)}\cdot\mu\ell_-(\gamma)+(1-\phi_{(p,\gamma)})\cdot\lambda\ell_+(\gamma)+(\phi_{(p,\gamma)}-p)\big[\big(\mu\ell_-(t^*(p))-\ell\lambda\ell_+(t^*(p))-\big(\mu\ell_-(\gamma)-\lambda\ell_+(\gamma)\big)\big].$ By the β -bound on the loss functions, and given that $\lambda+\mu+\nu\leq 1$, it follows that

$$(\phi_{(p,\gamma)} - p) \left[\left(\mu \ell_-(t^*(p)) - \ell \lambda \ell_+(t^*(p)) - \left(\mu \ell_-(\gamma) - \lambda \ell_+(\gamma) \right) \right] \le |\phi_{(p,\gamma)} - p| \cdot 4\beta.$$

Therefore, over $\mathcal{X}_{(p,\gamma)}$, where $k^*_{\ell_{\pm},\ell_?} \circ h$ is predicting p and $k \circ \hat{c}$ is predicting γ , the expected generalized Chow losses compare as follows:

$$\ell_{GC,\mathcal{D}}(k_{\ell_{\perp},\ell_{2}}^{*} \circ h; \lambda, \mu, \nu \mid \mathbf{x} \in \mathcal{X}_{(p,\gamma)}) \leq \ell_{GC,\mathcal{D}}(k \circ \hat{c}; \lambda, \mu, \nu \mid \mathbf{x} \in \mathcal{X}_{(p,\gamma)}) + |\phi_{(p,\gamma)} - p| \cdot 4\beta.$$

2. $k_{\ell_+,\ell_?}^* \circ h$ **predicts &** $k \circ \hat{c}$ **abstains.** As in the previous case, we swap $\rho_{(p,\gamma)}$ by p:

$$\phi_{(p,\gamma)} \cdot \mu \ell_{-}(t^{*}(p)) + (1 - \phi_{(p,\gamma)}) \cdot \lambda \ell_{+}(t^{*}(p)) = p \cdot \mu \ell_{-}(t^{*}(p)) + (1 - p) \cdot \lambda \ell_{+}(t^{*}(p)) + (\phi_{(p,\gamma)} - p)(\mu \ell_{-}(t^{*}(p)) - \lambda \ell_{+}(t^{*}(p)).$$

By the decision rule for h determined by the value of $\kappa(t^*(p), p)$, if $k^*_{\ell_{\pm}, \ell_{?}} \circ h$ predicts on $X_{(p,\gamma)}$ this implies that

$$p \cdot \mu \ell_{-}(t^{*}(p)) + (1-p) \cdot \lambda \ell_{+}(t^{*}(p)) \leq p \cdot \nu \ell_{?}(1) + (1-p) \cdot \nu \ell_{?}(0).$$

Again swapping p for $\phi_{(p,\gamma)}$, we obtain:

$$p \cdot \nu \ell_{?}(1) + (1-p) \cdot \nu \ell_{?}(0) + (\phi_{(p,\gamma)} - p)(\mu \ell_{-}(t^{*}(p)) - \lambda \ell_{+}(t^{*}(p))$$

$$=\phi_{(p,\gamma)}\cdot\nu\ell_?(1)+(1-\phi_{(p,\gamma)})\cdot\nu\ell_?(0)+(\phi_{(p,\gamma)}-p)\Big[\Big(\mu\ell_-(t^*(p))-\lambda\ell_+(t^*(p))\Big)-\Big(\nu\ell_?(1)-\nu\ell_?(0)\Big)\Big].$$

By the β -bound on the loss functions, and given that $\lambda + \mu + \nu \leq 1$, it follows that

$$(\phi_{(p,\gamma)} - p) \left[\left(\mu \ell_{-}(t^{*}(p)) - \lambda \ell_{+}(t^{*}(p)) \right) - \left(\nu \ell_{?}(1) - \nu \ell_{?}(0) \right) \right] \leq |\phi_{(p,\gamma)} - p| \cdot 4\beta.$$

Therefore, putting everything together, we obtain that

$$\ell_{GC,\mathcal{D}}(k_{\ell_{+},\ell_{2}}^{*}\circ h;\lambda,\mu,\nu\mid\mathbf{x}\in\mathcal{X}_{(p,\gamma)})\leq \ell_{GC,\mathcal{D}}(k\circ\hat{c};\lambda,\mu,\nu\mid\mathbf{x}\in\mathcal{X}_{(p,\gamma)})+|\phi_{(p,\gamma)}-p|\cdot 4\beta.$$

3. $k_{\ell_+,\ell_2}^* \circ h$ abstains & $k \circ \hat{c}$ predicts. We start by swapping ρ for p as in the previous two cases:

$$\phi_{(p,\gamma)} \cdot \nu \ell_?(1) + (1 - \phi_{(p,\gamma)}) \cdot \nu \ell_?(0) = p \cdot \nu \ell_?(1) + (1 - p) \cdot \nu \ell_?(0) + (\phi_{(p,\gamma)} - p)(\nu \ell_?(1) - \nu \ell_?(0)).$$

Because $k_{\ell_+,\ell_?}^* \circ h$ abstains on this level set, it must be that

$$p \cdot \nu \ell_{?}(1) + (1-p) \cdot \nu \ell_{?}(0) \le p \cdot \mu \ell_{-}(t^{*}(p)) + (1-p) \cdot \lambda \ell_{+}(t^{*}(p)).$$

By definition of $t^*(p)$ as the minimizer of κ_{pred} , for any value of γ we have that

$$p \cdot \mu \ell_{-}(t^{*}(p)) + (1-p) \cdot \lambda \ell_{+}(t^{*}(p)) \leq p \cdot \mu \ell_{-}(\gamma) + (1-p) \cdot \lambda \ell_{+}(\gamma).$$

We again switch p back to $\phi_{(n,\gamma)}$:

$$p \cdot \mu \ell_{-}(\gamma) + (1-p) \cdot \lambda \ell_{+}(\gamma) + (\phi_{(p,\gamma)} - p)(\nu \ell_{?}(1) - \nu \ell_{?}(0))$$

$$= \phi_{(p,\gamma)} \cdot \mu \ell_{-}(\gamma) + (1 - \phi_{(p,\gamma)})) \cdot \lambda \ell_{+}(\gamma) + (\phi_{(p,\gamma)} - p) [(\nu \ell_{?}(1) - \nu \ell_{?}(0)) - (\mu \ell_{-}(\gamma) + \lambda \ell_{+}(\gamma))]$$

By the β -bound on the loss functions, and given that $\lambda + \mu + \nu \leq 1$, it follows that

$$(\phi_{(p,\gamma)} - p) \left[\left(\nu \ell_?(1) - \nu \ell_?(0) \right) - \left(\mu \ell_-(\gamma) + \lambda \ell_+(\gamma) \right) \right] \le |\phi_{(p,\gamma)} - p| \cdot 4\beta.$$

Putting everything together, we obtain that

$$\ell_{\mathrm{GC},\mathcal{D}}(k_{\ell_+,\ell_2}^* \circ h; \lambda, \mu, \nu \mid \mathbf{x} \in \mathcal{X}_{(p,\gamma)}) \leq \ell_{\mathrm{GC},\mathcal{D}}(k \circ \hat{c}; \lambda, \mu, \nu \mid \mathbf{x} \in \mathcal{X}_{(p,\gamma)}) + |\phi_{(p,\gamma)} - p| \cdot 4\beta.$$

4. $k_{\ell_{\pm},\ell_{?}}^{*} \circ h$ **abstains &** $k \circ \hat{c}$ **abstains.** In this case, given that the values of $\ell_{?}(1)$ and $\ell_{?}(0)$ are independent of t, it directly follows that both $k_{\ell_{\pm},\ell_{?}}^{*} \circ h$ and $k \circ \hat{c}$ incur the exact same generalized Chow loss on $\mathcal{X}_{(p,\gamma)}$.

Putting these four cases together, and by taking the expected value over all level sets $\mathcal{X}_{(p,\gamma)}$, for all p in the range of h and γ in the range of h and h in the range of h in the range of

$$\ell_{GC,\mathcal{D}}(k_{\ell_+,\ell_2}^* \circ h; \lambda, \mu, \nu) \le \ell_{GC,\mathcal{D}}(k \circ c; \lambda, \mu, \nu) + 4\epsilon\beta.$$

Because these four cases are exhaustive and hold for all values of p and γ , we conclude that

$$\begin{split} \ell_{\mathrm{GC},\mathcal{D}}(k_{\ell_{\pm},\ell_{?}}^{*} \circ h; \lambda, \mu, \nu) &= \underset{p \in \mathrm{range}(h)}{\mathbb{E}} \underset{\gamma \in \mathrm{range}(\hat{c})}{\mathbb{E}} \underset{\mathbf{x} \sim \mathcal{D} \mid_{\mathcal{X}_{(\phi,\gamma)}}}{\mathbb{E}} [\ell_{\mathrm{GC},\mathcal{D}}(\mathbf{y}, k_{\ell_{\pm},\ell_{?}}^{*}(h(\mathbf{x})))] \\ &\leq \underset{p \in \mathrm{range}(h)}{\mathbb{E}} \underset{\gamma \in \mathrm{range}(\hat{c})}{\mathbb{E}} \underset{\mathbf{x} \sim \mathcal{D} \mid_{\mathcal{X}_{(\phi,\gamma)}}}{\mathbb{E}} [\ell_{\mathrm{GC},\mathcal{D}}(\mathbf{y}, k(c(\mathbf{x})))] + 4\epsilon\beta \\ &= \ell_{\mathrm{GC},\mathcal{D}}(k \circ c; \lambda, \mu, \nu) + 4\epsilon\beta. \end{split}$$

Therefore, for the non-discretized concept class C, and accounting for ϵB loss incurred in the clippings of each of c and $t^*(p)$, we conclude that

$$\ell_{GC,\mathcal{D}}(k_{\ell_+,\ell_?}^* \circ h; \lambda, \mu, \nu) \le \ell_{GC,\mathcal{D}}(k \circ c; \lambda, \mu, \nu) + 4\epsilon\beta + \epsilon B$$

for all loss functions in \mathcal{L} , and hence h is a selective omnipredictor, as we wanted to show.

Then, the value of $k^*_{\ell_{\pm},\ell_{?}}$ can be computed efficiently because (1) computing the value of $\kappa_{\mathrm{pred}}(p)$ corresponds to solving a one-dimensional minimization problem, and (2) the value of $k^*_{\ell_{\pm},\ell_{?}}$ is then fully determined from the values $\kappa_{\mathrm{pred}}(p)$ with the optimal $t=t^*(p)$ and of κ_{abs} , independent from the data.

Lastly, we show that allowing for randomized selective predictors does not help in minimizing the generalized Chow loss function. Suppose that the selective predictor was randomized, such that for each point $x \in \mathcal{X}$ it would predict a value $a \in [0,1]$ indicating the probability of abstention on x. Then, for a fixed t we can write our post-processing function as

$$k_{\ell_+,\ell_2}^*(p) = \operatorname{argmin}_{t,a} (1-a) \kappa_{\operatorname{pred}} + a \kappa_{\operatorname{abs}} = (\kappa_{\operatorname{abs}} - \kappa_{\operatorname{pred}}) \cdot a + \kappa_{\operatorname{pred}}.$$

For a fixed $t \in \mathbb{R} \cup \{?\}$ (and once the loss functions have been fixed), the total loss only depends on κ_{pred} and κ_{abs} , which in turn only depend on p. Note that after fixing t, $k_{\ell,a}^*$ is a linear function on κ_{pred} , κ_{abs} . This implies that the total generalized Chow loss is minimized at either a=0 or a=1, so no fractional abstention is required.

Remark C.2. If the concepts $c \in \mathcal{C}$ are not bounded a priori, then we can clip them into an interval [-M,M] for some finite value M. Given any convex loss function ℓ and parameter ϵ , we find -M and M by determining the values of $t \in \mathbb{R}$ such that $\ell(0,t) = \epsilon$ and $\ell(1,t) = \epsilon$, respectively; these correspond to the values of -M and M. This clipping is either helpful (prevents the loss from getting too large) or incurs at most ϵ additional loss; for example, for the logistic loss, we set $M = \log(1/\epsilon)$, $-M = -\log(1/\epsilon)$.

Interval of abstention. Having shown that we can efficiently build selective omnipredictors, we further show that all points p that are set to ? by $k_{\ell_{\pm},\ell_{?}}^{*}$ are in a contiguous interval. This follows from the affinity of the loss functions $\ell_{+},\ell_{-}\in\mathcal{L}$.

We can also write $\kappa_{\mathrm{pred}}(p)$ as $\kappa_{\mathrm{pred}}(p,t^*)$ to indicate that the value of t^* has been set to the optimal value for each prediction p. More generally, we let $\kappa_{\mathrm{pred}}(p,t) = p \cdot \mu \ell_{-}(t) + (1-p) \cdot \lambda \ell_{+}(t)$.

Lemma 3.2. Given any loss functions $\ell_+, \ell_-, \ell_? \in \mathcal{L}$, the points $x \in \mathbb{R}$ such that $k^*_{\ell_\pm, \ell_?}(x) = ?$ form a contiguous interval, which we denote by I_{abs} .

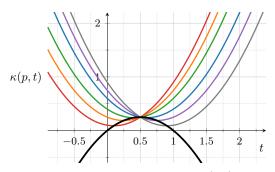
To prove Lemma 3.2, we first show the following intermediate lemma:

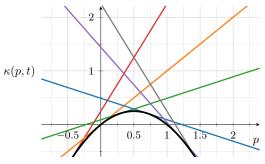
Lemma C.1. The function $\kappa_{\text{pred}}(p, t^*)$ is concave as a function of p.

Proof. Recall that $\kappa_{\text{pred}}(p, t^*) = \min_t p \cdot \mu \ell_-(t) + (1 - p) \cdot \lambda \ell_+(t)$, where $\kappa_{\text{pred}}(p, t^*) = \min_{t \in \mathbb{R}} \kappa_{\text{pred}}(p, t)$. For every fixed $t_0 \in \mathbb{R}$, the function $\kappa_{\text{pred}}(p, t_0)$ is affine in p:

$$\kappa_{\text{pred}}(p, t_0) = \left(\mu \ell_-(t_0) - \lambda \ell_+(t_0)\right) \cdot p + \lambda \ell_+(t_0).$$

Affine functions are convex and concave, and so $\kappa_{\mathrm{pred}}(p) = \min_{t_0 \in \mathbb{R}} \kappa_{\mathrm{pred}}(p, t_0)$ is equal to the pointwise infimum of a family of affine functions in p. It is a known fact in analysis that the pointwise infimum of affine functions is concave, and so $\kappa_{\mathrm{pred}}(p, t^*)$ is indeed concave as a function of p. \square





(a) Example with the ℓ_2 function; $\kappa_{\mathrm{pred}}(p,t)$ with fixed values of p. For each fixed value of p, the resulting function is convex in t.

(b) Example with the ℓ_2 function; $\kappa_{\text{pred}}(p, t)$ with fixed values of t. For each fixed value of t, the resulting function is affine in p.

Note that for our results on I_{abs} we only need affinity in p.

Proof of Lemma 3.2. Recall that $k_{\ell_{\pm},\ell_{?}}^{*}(p) = \min\{\kappa_{\mathrm{pred}}(p,t^{*}),\kappa_{\mathrm{abs}}(p)\}$. Per Lemma C.1, the function $\kappa_{\mathrm{pred}}(p,t^{*})$ is concave in p. By definition, note that $\kappa_{\mathrm{abs}}(p)$ is affine in p:

$$\kappa_{\text{abs}}(p) = (\nu \alpha_+ - \alpha_-)p + \alpha_-.$$

Therefore, the function $\kappa_{\mathrm{pred}}(p,t^*) - \kappa_{\mathrm{abs}}(p)$ is still concave in p. Hence this function has at most two roots, and hence the set of points p where $\kappa_{\mathrm{pred}}(p,t^*) \geq \kappa_{\mathrm{abs}}(p)$ forms a contiguous interval (which can be empty, in the case where it is always better to predict than to abstain). By the definition of our post-processing function $k^*_{\ell_{\pm},\ell_{?}}(p)$, this interval corresponds precisely to the set of points where $k^*_{\ell_{+},\ell_{?}}(p)=?$, and hence this interval is equal to I_{abs} .

Figure 2b illustrates the concavity of $\kappa_{\rm pred}(p,t)$ as a function of t (left) and the affinity of $\kappa_{\rm pred}(p,t)$ as a function of p (right), which prove that the abstentions as allocated by the selective omnipredictor occur in one contiguous (and possibly empty) interval $I_{\rm abs}$.

Omniprediction with constraints. Recent work by Hu, Livni-Navon, Reingold, and Yang extends the line of work on omniprediction to constrained optimization problems [35]. This allows the learner to train agnostic to the final choice of loss function as well as of constraints that will be later imposed (as long as these satisfy certain conditions). By viewing Condition 1 in the definitions of PRL, NRL, and FRL as a constraint, one could potentially adapt their results in order to construct \mathcal{L} -PRL and \mathcal{L} -NRL predictors, and then ensemble them in the usual way to obtain \mathcal{L} -FRL predictors. It is unclear how this approach could be used to obtain optimality in the more general framework of selective omniprediction with generalized Chow losses (Definition 2.7).

¹In the proof of Theorem 3.1 we used $\kappa_{\text{pred}}(p)$. Here we write t^* to remind that the function has been minimized with respect to t.

²In the case of ties, we decide to predict.

C.2 FRL from selective omniprediction

Theorem 3.3. Let $\mathcal C$ be a concept class of Boolean concepts, $\mathcal L$ any class of B-Lipschitz loss functions, and $\mathcal D$ a distribution on $\mathcal X \times \mathcal Y$. If $\mathcal C$ is agnostically learnable under $\mathcal D$ in time $T(\epsilon, \delta)$, then $\mathcal C$ is $\mathcal L$ -fully reliably learnable under $\mathcal D$ in time $T(\epsilon^2/6, \delta)$.

Note that here we use our proposed notion of \mathcal{L} -FRL (Definition 2.5), which is a generalization of the 0-1 version proposed in [43].

Proof. Let ϵ be the target error parameter for fully reliable learning. We consider the parameters $\lambda = \mu = 1/3$ and $\nu = \epsilon/6$. From \mathcal{C} , we define the concept class \mathcal{C}' of concepts $c': \mathcal{X} \to \{0, 1/2, 1\}$ as containing the concepts $(c_1 + c_2)/2$ for every possible pairing $c_1, c_2 \in \mathcal{C}$. Defining the post-processing $k \circ \mathcal{C}'$ as mapping 0 to 0, 1 to 1, and 1/2 to ?, we get that $\mathrm{SC}(\mathcal{C}) \subseteq k \circ \mathcal{C}'$. Let $c_?^*$ be an optimal abstaining classifier in $\mathrm{SC}(\mathcal{C})$. By definition of $\mathrm{SC}(\mathcal{C})$, it follows that all concepts in $\mathrm{SC}(\mathcal{C})$ incur 0 error over the non-abstaining region, and hence

$$\ell_{\mathrm{GC},\mathcal{D}}(c_?^*;\lambda,\mu,\nu) = \nu \ell_?(c_?^*).$$

Let h be a $(\mathcal{L}, \mathcal{C}', \gamma)$ -selective omnipredictor (which we can obtain for \mathcal{C}' given that \mathcal{C}' is agnostically learnable, as shown in Theorem 3.1). By the selective omniprediction guarantee, it follows that for any post-processing function $k : [0, 1] \to \mathbb{R} \cup \{?\}$,

$$\ell_{\mathrm{GC},\mathcal{D}}(h;\lambda,\mu,\nu) \leq \min_{c_2' \in k \circ \mathcal{C}} \ell_{\mathrm{GC},\mathcal{D}}(c_2';\lambda,\mu,\nu) + \gamma.$$

In particular, using the post-processing k that maps 0 to 0, 1 to 1, and 1/2 to ?, this implies that

$$\ell_{GC,\mathcal{D}}(h;\lambda,\mu,\nu) \leq \ell_{GC,\mathcal{D}}(c_2^*;\lambda,\mu,\nu) + \epsilon = \nu \ell_2(c_2^*) + \gamma.$$

By setting $\gamma = \epsilon^2/6$, and using the fact that $\ell_?(c_?^*) \le 1$, we get and since $\lambda = 1/3$, $\nu = \epsilon/6$,

$$\frac{1}{3}\ell_+(h) \le \epsilon/6 + \epsilon^2/6,$$

and so $\ell_+(h) \leq \epsilon$. Similarly, we have that $\ell_-(h) \leq \epsilon$. Finally,

$$\gamma \ell_?(h) \le \gamma \ell_?(c_?^*) + \epsilon^2/6,$$

since $\gamma = \epsilon/6$, it follows that,

$$\ell_?(h) \le \ell_?(c_?^*) + \epsilon.$$

This completes the proof.

C.3 Conformal prediction from FRL

Lemma 3.4. Let $h_?: \mathcal{X} \to \{0, 1, ?\}$ be an FRL predictor for $\mathcal{C}, \mathcal{D}, \epsilon$ and the 0-1 loss. Then, the prediction sets induced by the level sets of h, where we map $0 \mapsto \{0\}$, $1 \mapsto \{1\}$, and $? \mapsto \{0, 1\}$, satisfy the ϵ -marginal coverage guarantee.

Proof. Let $\operatorname{err}(h_?, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h_?(\mathbf{x}) \neq \mathbf{y}]$ denote the error of the selective predictor $h_?$ and recall that

$$false_{+}(h_{?}, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h_{?}(\mathbf{x}) = 1 \land \mathbf{y} = 0] \quad false_{-}(h_{?}, \mathcal{D}) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h_{?}(\mathbf{x}) = 0 \land \mathbf{y} = 1].$$

Since $\operatorname{err}(h_7, \mathcal{D}) \leq \epsilon$ by the FRL guarantee of h_7 and $\operatorname{err}(h_7, \mathcal{D}) = \operatorname{false}_+(h_7, \mathcal{D}) + \operatorname{false}_-(h_7, \mathcal{D})$, it follows that

$$false_+(h_?, \mathcal{D}) \le \epsilon, \quad false_-(h_?, \mathcal{D}) \le \epsilon.$$

This implies that for all y = 1,

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \notin \{1\}] \le \epsilon,$$

and symmetrically for all $\mathbf{y}=0$. Therefore, we satisfy the marginal coverage guarantee for the prediction sets $\{0\}, \{1\}$. We also trivially satisfy it for the prediction set $\{0,1\}$, since \mathbf{y} is Boolean and so $\Pr_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}[\mathbf{y}\in\{0,1\}]=1$.

Lastly, we formalize and prove Remark 3.1, which shows that FRL viewed as a conformal prediction method, besides satisfying the ϵ -marginal coverage guarantee, also provides a provable upper bound on the size of the set $\{0,1\}$, which constitutes a measure of uncertainty:

Lemma C.2. Let $h_?: \mathcal{X} \to \{0,1,?\}$ be an FRL predictor for $\mathcal{C}, \mathcal{D}, \epsilon$, and the 0-1 loss. Then, the prediction sets induced by the level sets of $h_?$ satisfy:

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[h_?(\mathbf{x}) = \{0, 1\}] \leq \min_{c_? \in \mathsf{SC}(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[c_?(x) = ?] + \epsilon.$$

Proof. This follows directly from Condition 2 in the definition of FRL, which ensures that

$$?(h_?, \mathcal{D}) \leq \min_{c_? \in SC(\mathcal{C})} ?(c_?, \mathcal{D}) + \epsilon.$$

D Examples of Selective Omnipredictors

In this section, we provide concrete examples of the post-processing function $k_{\ell\pm,\ell\gamma}^*$ for specific choices of loss function triplets $(\ell_+,\ell_-,\ell_?)$. We do so for the triplets of loss functions used in Figure 1, and for each triplet we theoretically derive the abstention interval $I_{\rm abs}$. Recall that $I_{\rm abs}$ only depends on the chosen generalized Chow loss, and not on the underlying data, which is what makes our selective omniprediction framework extremely efficient to adapt to many different loss functions.

 ℓ_1 loss with different abstention costs. Consider letting ℓ_-, ℓ_+ correspond to the 0-1 loss, and let the abstention cost be fixed at some value $\alpha > 0$. That is:

$$\ell_{-}(t) = |1 - t|, \quad \ell_{+}(t) = |t|, \quad \ell_{?}(y) = \alpha.$$

Then,

$$\kappa_{\text{pred}}(p) = \min_{t} p \cdot |1 - t| + (1 - p) \cdot |t|, \quad \kappa_{\text{abs}} = \alpha.$$

The value $t^*(p)$ that minimizes $\kappa_{\text{pred}}(p)$ for each p corresponds to $k_{\ell}^*(p) = t^*(p) = \mathbb{1}[p \ge 1/2]$. Then, for each predicted value h(x) = p, $k_{\ell_{\pm},\ell_{?}}^*$ will compare the expected prediction cost under the Bernoulli distribution $\mathbf{y} \sim \text{Bern}(p)$, namely

$$\kappa_{\text{pred}}(p) = p \cdot |1 - t^*(p)| + (1 - p) \cdot |t^*(p)| = p \cdot |1 - \mathbb{1}[p \ge 1/2]| + (1 - p) \cdot |\mathbb{1}[p \ge 1/2]|, (1)$$

with the expected cost of abstention $\kappa_{\rm abs} = \alpha$. If $\kappa_{\rm pred}(p) \le \kappa_{\rm abs}$, then $k^*_{\ell_{\pm},\ell_{?}}(p) = t^*(p)$; otherwise, $k^*_{\ell_{\pm},\ell_{?}}(p) = ?$.

We compute the interval $I_{\rm abs}$ for different choices of α . For an arbitrary value of $\kappa_{\rm abs}=\alpha$, $I_{\rm abs}$ corresponds to the interval contained between the roots of the polynomial $\kappa_{\rm pred}(p)-\kappa_{\rm abs}$, which is a function in p. In the case of $\alpha=0.1$, the roots of $\kappa_{\rm pred}(p)-0.1$ (where $\kappa_{\rm pred}$ is given in Equation 1) yield $I_{\rm abs}=[0.1,0.9]$. For $\alpha=0.2$, the roots of $\kappa_{\rm pred}(p)-0.2$ yield [0.2,0.8].

Lastly, we consider the case where $\ell_{?}(1) = \alpha_{+} = 0.3$ and $\ell_{?}(0) = \alpha_{-} = 0.1$. Here, we have that

$$\kappa_{\text{abs}}(p) = p \cdot \alpha_{+} + (1-p) \cdot \alpha_{-}.$$

Then, the roots of the polynomial $\kappa_{\mathrm{pred}}(p) - p \cdot \alpha_+ + (1-p) \cdot \alpha_-$ for $\alpha_+ = 0.3$ and $\alpha_- = 0.1$ yield $I_{\mathrm{abs}} = [0.125, 0.75]$.

 ℓ_2 loss with different abstention costs. In the case of the ℓ_2 loss, and still with fixed abstention cost $\ell_7(y) = \alpha$, we have that

$$k_{\ell_{\pm},\ell_{?}}^{*}(p,t) = p \cdot (1-t)^{2} + (1-p) \cdot (0-t)^{2} + a\alpha.$$

Hence, if we decide to predict, we pay an expected cost of $\kappa_{\mathrm{pred}}(p) = \min_t p \cdot (1-t)^2 + (1-p) \cdot (0-t)^2$. If we abstain, we pay an expected cost $\kappa_{\mathrm{abs}}(p) = \alpha$. Both of these expected costs are under the Bernoulli distribution $\mathbf{y} \sim \mathrm{Bern}(p)$. For a fixed value of p, the function $\kappa_{\mathrm{pred}}(p,t)$ is minimized at $t^*(p) = p$, and hence

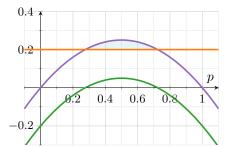
$$\kappa_{\mathrm{pred}}(p,t^*) = p \cdot (1-p)^2 + (1-p) \cdot p^2.$$

Hence, the value of $k_{\ell+\ell_2}^*(p)$ is fully determined by the quantity $\min\{p\cdot (1-p)^2+(1-p)\cdot p^2,\alpha\}$.

We can similarly compute the interval $I_{\rm abs}$ for different choices of α by computing the roots of the polynomial $\kappa_{\rm pred} - \kappa_{\rm abs}$. In the case of $\alpha = 0.1$, the roots of $\kappa_{\rm pred}(p) - 0.1$ yield $I_{\rm abs} = [\frac{1-\sqrt{0.6}}{2}, \frac{1+\sqrt{0.6}}{2}]$. For $\alpha = 0.2$, the roots of $\kappa_{\rm pred}(p) - 0.2$ yield $I_{\rm abs} = [\frac{1-\sqrt{0.2}}{2}, \frac{1+\sqrt{0.2}}{2}]$.

Lastly, we again consider the case where $\ell_?(1) = \alpha_+ = 0.3$ and $\ell_?(0) = \alpha_- = 0.1$. The roots of the polynomial $\kappa_{\mathrm{pred}}(p) - p \cdot \alpha_+ + (1-p) \cdot \alpha_-$ for $\alpha_+ = 0.3$ and $\alpha_- = 0.1$ yield $I_{\mathrm{abs}} = [\frac{4-\sqrt{6}}{10}, \frac{4+\sqrt{6}}{10}]$.

All of these theoretically-derived abstention intervals $I_{\rm abs}$ can be visualized in our experiments, as summarized in Figure 1. We further provide an illustrative example in Figure 3 to show how the abstention interval $I_{\rm abs}$ widens when we decrease the cost of abstention from 0.2 to 0.1.



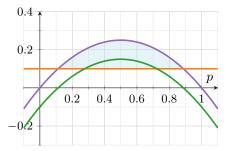


Figure 3: Example with the ℓ_2 loss and $\ell_?(y)=0.2$ for all y (i.e., the traditional Chow abstention model) in the left subfigure and $\ell_?(y)=0.1$ for all y in the right subfigure. The purple line represents $\kappa_{\mathrm{pred}}(p,t^*)$ and the orange line represents $\kappa_{\mathrm{abs}}(p)$. The green line represents $\kappa_{\mathrm{pred}}(p,t^*)-\kappa_{\mathrm{abs}}(p)$, so its roots determine the interval I_{abs} where we abstain optimally (shaded in blue). In the left example, $I_{\mathrm{abs}}=\left[(1-\sqrt{0.2})/2,(1+\sqrt{0.2})/2\right]$, independent of the data. As we decrease the cost of abstention from $\alpha=0.2$ to $\alpha=0.1$ (and so the orange line moves down), our selective omnipredictor obtains an increasingly wider abstention interval I_{abs} (e.g., in the right subfigure), as one would expect.

E Experiments for Section 3

E.1 Selective omnipredictors

We construct selective omnipredictors from multicalibration to demonstrate the feasibility of our abstention method in practice. We remark that, as far as we are aware, none of the previous works on omniprediction included experimental evaluations. Because our experiments are a proof of concept, we use synthetic data for all of them.³

We first provide a full description of the experimental set-up that we used to generate Figure 1 and Table 1 in Section 3.1. Next, we provide further repetitions of our experiment showing selective omnipredictors in action.

First, we generate 10,000 samples and 20 features as our data using sk-learn's function make_classification and train a random forest to obtain baseline predictions. We then implement the multicalibration algorithm from scratch using the concept class $\mathcal C$ of decision trees of depth 3. At each step, we check for correlation between any concept in $\mathcal C$ and the residuals computed with the current predictions. For the multicalibration algorithm, we use a discretization parameter of 0.1, a learning rate of 0.01, and 200 maximum iterations. The multicalibration algorithm is run on the validation set (20% of the data) and we then report all of our statistics on the test set (20% of the data). This gives us a predictor h; note that so far we have not used any loss functions.

Next, we choose specific triplets $(\ell_+,\ell_-,\ell_?)$ and for each we apply our post-processing function $k^*_{\ell_+,\ell_?}$. We use the triplets that are shown in Tables 1, 2, 3, 4. This is a pre-computed function that we derive mathematically, so it is extremely efficient to post-process our h in this way. For each triplet, we compute the total coverage, the total loss over the non-abstaining region (i.e., $\ell_+ + \ell_?$), and the

³The code for this paper can be found at https://github.com/silviacasac/learning-to-abstain.

abstention loss (i.e., $\ell_?$). Separately, we do loss-specific minimization to compare with. In order to use the same concept class \mathcal{C} , we implement decision trees that minimize the Chow losses for the chosen triplet $(\ell_+,\ell_-,\ell_?)$. That is, we train a different decision tree (that adds abstentions) for each of the different triplets in Tables 1, 2, 3, 4. We similarly report the total coverage, the total loss over the non-abstaining region, and the abstention loss (i.e., $\ell_?$). Further details on our experiments can be found directly in our code.

We repeat all of this process for different initializations of the synthetic data and report several runs in Tables 1, 2, 3, 4. All of them demonstrate the same pattern: our post-processed predictor h, even though it is a single predictor for any of the loss triplets, achieves better coverage and better loss than the loss-specific abstaining decision tree. This is because the multicalibration process helps calibrate the predictions towards 0 and 1. In contrast, the decision tree abstains significantly more (and thus obtains lower loss over the non-abstention region). Therefore, this demonstrates the utility of using selective omniprediction in practice.

Table 2: Comparison of coverage and losses. "Cov" stands for *coverage*, "Pred" for *predicted loss* (i.e., over the non-abstaining region), and "Total" for the total generalized Chow loss.

	$\ell_? = 0$	0.1	$\ell_? = 0.2$			$\ell_?(1) = 0.3, \ \ell_?(0) = 0.1$		
	$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT		$k_{\ell_{\pm},\ell_?}^* \circ h$	Abst. DT		$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT
ℓ_1	Cov: 45.70% Pred: 0.038 Total: 0.072	Cov: 1.9% Pred: 0.010 Total: 0.108	ℓ_1	Cov: 89.15% Pred: 0.069 Total: 0.083	Cov: 4.4% Pred: 0.030 Total: 0.221	ℓ_1	Cov: 62.60% Pred: 0.065 Total: 0.093	Cov: 4.8% Pred: 0.005 Total: 0.192
ℓ_2	Cov: 47.55% Pred: 0.037 Total: 0.070	Cov: 4.4% Pred: 0.003 Total: 0.098	ℓ_2	Cov: 89.65% Pred: 0.066 Total: 0.079	Cov: 10.5% Pred: 0.007 Total: 0.186	ℓ_2	Cov: 66.65% Pred: 0.057 Total: 0.085	Cov: 11.5% Pred: 0.012 Total: 0.181

Table 3: Comparison of coverage and losses. "Cov" stands for *coverage*, "Pred" for *predicted loss* (i.e., over the non-abstaining region), and "Total" for the total generalized Chow loss.

	$\ell_? \equiv 0.1$			$\ell? = 0.2$			$\ell_?(1) = 0.3, \ \ell_?(0) = 0.1$		
	$k_{\ell_{\pm},\ell_?}^* \circ h$	Abst. DT		$k_{\ell\pm,\ell_?}^*\circ h$	Abst. DT		$k_{\ell\pm,\ell_?}^*\circ h$	Abst. DT	
ℓ_1	Cov: 20.50% Pred: 0.027 Total: 0.085	Cov: 9.5% Pred: 0.032 Total: 0.122	ℓ_1	Cov: 43.80% Pred: 0.043 Total: 0.131	Cov: 12% Pred: 0.176 Total: 0.211	ℓ_1	Cov: 39% Pred: 0.042 Total: 0.136	Cov: 11.25% Pred: 0.010 Total: 0.184	
ℓ_2	Cov: 22.90% Pred: 0.032 Total:0.084	Cov: 12% Pred: 0.009 Total: 0.097	ℓ_2	Cov: 59.20% Pred: 0.064 Total: 0.119	Cov: 20.3% Pred: 0.015 Total: 0.174	ℓ_2	Cov: 58.20% Pred: 0.075 Total: 0.119	Cov: 23.6% Pred: 0.014 Total: 0.161	

Table 4: Comparison of coverage and losses. "Cov" stands for *coverage*, "Pred" for *predicted loss* (i.e., over the non-abstaining region), and "Total" for the total generalized Chow loss.

	$\epsilon_? = 0.1$		$\ell_? \equiv 0.2$			$\ell_?(1) \equiv 0.3, \ \ell_?(0) \equiv 0.1$		
	$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT		$k_{\ell\pm,\ell?}^*\circ h$	Abst. DT		$k_{\ell\pm}^*,_{\ell?} \circ h$	Abst. DT
ℓ_1	Cov: 48.7% Pred: 0.022 Total: 0.062	Cov: 10.7% Pred: 0.029 Total: 0.118	ℓ_1	Cov: 74.15% Pred: 0.043 Total: 0.084	Cov: 19.3% Pred: 0.065 Total: 0.226	ℓ_1	Cov: 70.80% Pred: 0.044 Total: 0.078	Cov: 13.15% Pred: 0.008 Total: 0.178
ℓ_2	Cov: 50.45% Pred: 0.024 Total: 0.062	Cov: 19.3% Pred: 0.005 Total: 0.086	ℓ_2	Cov: 79.25% Pred: 0.048 Total: 0.079	Cov: 24.9% Pred: 0.013 Total: 0.164	ℓ_2	Cov: 76.85% Pred: 0.048 Total: 0.072	Cov: 24.6% Pred: 0.020 Total: 0.164

E.2 Conformal prediction from FRL

As shown in Lemma 3.4 and Remark 3.1 (formalized in Lemma C.2), we can view FRL as a conformal prediction method. We illustrated the feasibility of implementing FRL in practice and compare its

Table 5: Match on ℓ_1 : for each weight w, choose α minimizing the difference in ℓ_1 error between the FRL and the conformal prediction methods.

Weight	α	FRL MAE	CP MAE	FRL coverage	CP coverage
1.0	0.25	0.250	0.260	100.0%	97.0%
5.0	0.05	0.139	0.130	54.5%	42.3%
10.0	0.05	0.113	0.130	40.0%	42.3%
25.0	0.01	0.078	0.027	25.5%	11.0%
50.0	0.01	0.045	0.027	17.7%	11.0%
75.0	0.01	0.062	0.027	16.0%	11.0%
150.0	0.01	0.015	0.027	13.1%	11.0%
200.0	0.01	0.000	0.027	9.4%	11.0%

coverage and ℓ_1 error with that of standard conformal prediction algorithms. Similar to our other experiments in the paper, our experiments are a proof of concept for our theoretical results, but do not intend to perform an exhaustive comparison to all of the conformal prediction methods in the literature.

We generate 5,000 data samples synthetically using sk-learn's make_blobs function, which generates isotropic Gaussian blobs for clustering. To create an FRL predictor, we do it by training a PRL and an NRL predictor separately for the same data, and then ensembling them in the usual way (i.e., if the two agree on a prediction we keep it, otherwise we abstain). To create the PRL and NRL predictors, we use random forests where we give extra weight w to the label that we wish to penalize most for the predictions (so false positives in the case of PRL, and false negatives in the case of NRL). We try weights w = [1, 5, 10, 25, 50, 75, 150, 200]. This ensures that our trained predictors achieve the required one-sided guarantees. For the ensembled FRL, we compute its global coverage and ℓ_1 error.

Next, we use a popular conformal prediction algorithm for binary classification to compare to. We choose the widely-used MAPIE library [65] and use the standard split conformal prediction method using the LAC method to compute the conformity score. We note that this is the only allowed conformity score method in MAPIE for binary classification, which is why we did not add other conformity score methods. We use a random forest as the base class, and train different models for different confidence levels of $\alpha = [0.01, 0.05, 0.10, 0.20, 0.25]$ (i.e., this is the parameter for the marginal coverage guarantee). When tested on the test set, the conformal prediction method returns prediction sets $\{0\}$, $\{1\}$, or $\{0,1\}$. We view the set $\{0,1\}$ as equivalent to an abstention ?, and then compute the global coverage and ℓ_1 error for the conformal prediction method.

To compare both methods for all of the weights w = [1, 5, 10, 25, 50, 75, 150, 200] and coverage parameter $\alpha = [0.01, 0.05, 0.10, 0.20, 0.25]$ we match them based on a) matched ℓ_1 error, and b) matched coverage. We report the results pairs of tables as follows: a) for each weight w, we take the α value that corresponds to the closest ℓ_1 error of the FRL predictor for this w, and we report the errors and coverages for this pair. We then also report the results by matching coverages instead: b) for each weight w, we instead take the coverage value that corresponds to the closest coverage to that of the FRL predictor for this w, and we report the errors and coverages for this pair.

We do several repeats of our experiment for different initializations of the synthetic data and report the pairs of tables. Tables 5 and 6 correspond to one run, Tables 7 and 8 to another, and 9 and 10 to a last run. We observe the same pattern: FRL provides similar coverage and error guarantees to the standard conformal prediction method, with FRL usually having a higher coverage and lower ℓ_1 error.

F Deferred Proofs from Section 4

F.1 (C, G)-multigroup selective classification

Theorem 4.1. Given access to a $(\mathcal{C} \cdot \mathcal{G}, \epsilon^2/8)$ -multiaccurate and calibrated predictor, we can efficiently construct a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier in time $\operatorname{poly}(1/\epsilon)$.

Table 6: Match on coverage: for each weight w, choose α minimizing the difference in coverage between the FRL and the conformal prediction methods.

Weight	α	FRL ℓ_1	$\operatorname{CP} \ell_1$	FRL coverage	CP coverage
1.0	0.25	0.250	0.260	100.0%	97.0%
5.0	0.10	0.139	0.172	54.5%	62.7%
10.0	0.05	0.113	0.130	40.0%	42.3%
25.0	0.01	0.078	0.027	25.5%	11.0%
50.0	0.01	0.045	0.027	17.7%	11.0%
75.0	0.01	0.062	0.027	16.0%	11.0%
150.0	0.01	0.015	0.027	13.1%	11.0%
200.0	0.01	0.000	0.027	9.4%	11.0%

Table 7: Match on ℓ_1 : for each weight w, choose α minimizing the difference in ℓ_1 error between the FRL and the conformal prediction methods.

Weight	α	FRL ℓ_1	$\operatorname{CP}\ell_1$	FRL coverage	CP coverage
1.0	0.25	0.226	0.223	100.0%	98.5%
5.0	0.10	0.136	0.155	56.7%	64.5%
10.0	0.05	0.111	0.093	43.2%	41.0%
25.0	0.05	0.084	0.093	28.7%	41.0%
50.0	0.05	0.075	0.093	21.3%	41.0%
75.0	0.01	0.052	0.026	19.1%	11.6%
150.0	0.01	0.052	0.026	15.5%	11.6%
200.0	0.01	0.046	0.026	10.8%	11.6%

Table 8: Match on coverage: for each weight w, choose α minimizing the difference in coverage between the FRL and the conformal prediction methods.

Weight	α	FRL ℓ_1	$\operatorname{CP}\ell_1$	FRL coverage	CP coverage
1.0	0.25	0.226	0.223	100.0%	98.5%
5.0	0.10	0.136	0.155	56.7%	64.5%
10.0	0.05	0.111	0.093	43.2%	41.0%
25.0	0.05	0.084	0.093	28.7%	41.0%
50.0	0.01	0.075	0.026	21.3%	11.6%
75.0	0.01	0.052	0.026	19.1%	11.6%
150.0	0.01	0.052	0.026	15.5%	11.6%
200.0	0.01	0.046	0.026	10.8%	11.6%

Table 9: Match on ℓ_1 : for each weight w, choose α minimizing the difference in ℓ_1 error between the FRL and the conformal prediction methods.

Weight	α	FRL ℓ_1	$\operatorname{CP}\ell_1$	FRL coverage	CP coverage
1.0	0.25	0.239	0.247	100.0%	98.8%
5.0	0.10	0.127	0.147	57.3%	67.2%
10.0	0.05	0.104	0.083	43.3%	41.1%
25.0	0.05	0.070	0.083	29.9%	41.1%
50.0	0.01	0.047	0.038	23.4%	13.0%
75.0	0.01	0.046	0.038	19.5%	13.0%
150.0	0.01	0.034	0.038	14.9%	13.0%
200.0	0.01	0.000	0.038	10.2%	13.0%

Table 10: Match on coverage: for each weight w, choose α minimizing the difference in coverage between the FRL and the conformal prediction methods.

Weight	α	FRL ℓ_1	$CP\ell_1$	FRL coverage	CP coverage
1.0	0.25	0.239	0.247	100.0%	98.8%
5.0	0.10	0.127	0.147	57.3%	67.2%
10.0	0.05	0.104	0.083	43.3%	41.1%
25.0	0.05	0.070	0.083	29.9%	41.1%
50.0	0.01	0.047	0.038	23.4%	13.0%
75.0	0.01	0.046	0.038	19.5%	13.0%
150.0	0.01	0.034	0.038	14.9%	13.0%
200.0	0.01	0.000	0.038	10.2%	13.0%

Proof. Let $g \in \mathcal{G}$ be some group and let us focus on the part of the domain $\mathcal{X}_g = \{x \mid g(x) = 1\}$. Consider the classes $\mathcal{C}_g^+, \mathcal{C}_g^-$ derived from the Boolean concept class \mathcal{C} , where $\mathcal{C}_g^+(\mathcal{D}) = \{c \in \mathcal{C} \mid \Pr[c(\mathbf{x}) = 1, g(\mathbf{x}) = 1, \mathbf{y} = 0] = 0\}$ and $\mathcal{C}_q^-(\mathcal{D}) = \{c \in \mathcal{C} \mid \Pr[c(\mathbf{x}) = 0, g(\mathbf{x}) = 1, \mathbf{y} = 1] = 0\}$.

Let h be a $(\mathcal{C} \cdot \mathcal{G}, \epsilon^2/8)$ -multiaccurate and calibrated predictor for \mathcal{X}, \mathcal{D} , which we can build using the main theorem in [26]. Consider any $c_+ \in \mathcal{C}_g^+ \subseteq \mathcal{C}$. The multiaccuracy condition is ensured for all $c \cdot g \in \mathcal{C} \cdot \mathcal{G}$, and so for this particular c_+ and fixed group g we have that

$$\left| \underset{\mathcal{D}}{\mathbb{E}} \left[(g(\mathbf{x}) \cdot c_{+}(\mathbf{x}))(\mathbf{y} - h(\mathbf{x})) \right] \right| \leq \epsilon^{2}/8.$$

Given that whenever $c_+(x) = 1$ and g(x) = 1, we have that y = 1 by definition of C_g^+ , it follows that

$$\mathbb{E}[\mathbf{y} \mid g(\mathbf{x}) = 1, c_{+}(\mathbf{x}) = 1] = 1.$$

That is, within the region in \mathcal{X}_g where $c_+(x) = 1$, we have that $\mathbb{E}_{\mathcal{D}}[\mathbf{y}] = 1$. Then, by the multiaccuracy guarantee on $c_+ \cdot g$, it follows that the expected value of h over the same region (i.e., where $c_+(\mathbf{x}) = 1$ inside of \mathcal{X}_g) is also close to 1:

$$\left| \underset{\mathcal{D}}{\mathbb{E}} \left[(g(\mathbf{x}) \cdot c_{+}(\mathbf{x}))(\mathbf{y} - h(\mathbf{x})) \right] \right| = \left| \underset{\mathcal{D}}{\mathbb{E}} \left[(g(\mathbf{x}) \cdot c_{+}(\mathbf{x}))(1 - h(\mathbf{x})) \right] \right| \le \epsilon^{2} / 8,$$

and so

$$\mathbb{E}_{\mathcal{D}}[h(\mathbf{x}) \mid g(\mathbf{x}) = 1, c_{+}(\mathbf{x}) = 1] \ge 1 - \frac{\epsilon^{2}}{8 \mathbb{E}_{\mathcal{D}}[g(\mathbf{x})c_{+}(\mathbf{x})]}.$$
 (2)

Now, we have two cases, either $\Pr[c_+(\mathbf{x}) = 1, g(x) = 1] = \mathbb{E}_{\mathcal{D}}[c_+(\mathbf{x})g(\mathbf{x})] \le \epsilon/2$, in which case we trivially have,

$$\mathbb{E}\left[\mathbb{1}[h(\mathbf{x}) \ge 1 - \epsilon] \cdot g(\mathbf{x})\right] \ge \mathbb{E}[c_{+}(\mathbf{x})g(\mathbf{x})] - \epsilon/2,$$

or, from Equation 2, we have that

$$\underset{\mathcal{D}}{\mathbb{E}} \left[\mathbb{1}[h(x) \le 1 - \epsilon] \mid g(\mathbf{x}) = 1, c_{+}(\mathbf{x}) = 1 \right] \le \frac{\epsilon}{4 \, \mathbb{E}_{\mathcal{D}}[g(\mathbf{x})c_{+}(\mathbf{x})]}$$

In this case, by taking the complement and multiplying both sides by $\mathbb{E}_{\mathcal{D}}[g(\mathbf{x})c_{+}(\mathbf{x})]$, we get,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{1}[h(\mathbf{x}) \ge 1 - \epsilon] \cdot g(\mathbf{x})\right] \ge \mathbb{E}_{\mathcal{D}}\left[\mathbb{1}[h(x) \ge 1 - \epsilon] \cdot g(\mathbf{x})c_{+}(\mathbf{x})\right]$$
$$\ge \mathbb{E}[c_{+}(\mathbf{x})g(\mathbf{x})] - \epsilon/4.$$

Thus, in either case we have,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{1}[h(\mathbf{x}) \ge 1 - \epsilon] \cdot g(\mathbf{x})\right] \ge \mathbb{E}_{\mathcal{D}}[c_{+}(\mathbf{x})g(\mathbf{x})] - \epsilon/2.$$

A symmetric argument holds in the case of $c_- \in \mathcal{C}^-$ with the same group g. By the definition of $\mathcal{C}_g^-(\mathcal{D})$, it holds that whenever $c_-(\mathbf{x}) = 0$ and $g(\mathbf{x}) = 1$, $\mathbf{y} = 0$, and so within the region in \mathcal{X}_g where $c_-(\mathbf{x}) = 0$, $\mathbb{E}_{\mathcal{D}}[\mathbf{y}] = 0$. Let \bar{c}_- be the complement of c_- (which we can take since \mathcal{C} is closed under complement). Then, it follows that:

$$\mathbb{E}[\mathbf{y} \mid g(\mathbf{x}) = 1, \bar{c}_{-}(\mathbf{x}) = 1] = 0.$$

By the multiaccuracy guarantee on $\bar{c}_- \cdot g$, we can use an identical argument above (by a case distinction on whether $\Pr[c_-(\mathbf{x}) = 0, g(\mathbf{x}) = 1] \ge \epsilon/2$) to show that

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{1}[h(\mathbf{x}) \le \epsilon] \cdot g(\mathbf{x})\right] \ge \mathbb{E}_{\mathcal{D}}[\bar{c}_{-}(\mathbf{x})g(\mathbf{x})] - \epsilon/2,$$

From the $(\mathcal{C} \cdot \mathcal{G}, \epsilon^2/8)$ -multiaccurate and calibrated h, we construct our $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier h_7 by post-processing h as follows:

$$h_{?}(x) = \begin{cases} h(x) & \text{if } h(x) \in [0, \epsilon] \cup [1 - \epsilon, 1], \\ ? & \text{if } h(x) \in (\epsilon, 1 - \epsilon). \end{cases}$$

Observe that

$$\mathbb{E}_{\mathcal{D}} \left[\mathbb{1}[h_{?}(\mathbf{x}) \neq ?] \cdot g(\mathbf{x}) \right] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{1}[h(\mathbf{x}) \geq 1 - \epsilon] \cdot g(\mathbf{x}) \right] + \mathbb{E}_{\mathcal{D}} \left[\mathbb{1}[h(\mathbf{x}) \leq \epsilon] \cdot g(\mathbf{x}) \right] \\
\geq \mathbb{E}_{\mathcal{D}} [c_{+}(\mathbf{x})g(\mathbf{x})] + \mathbb{E}_{\mathcal{D}} [\bar{c}_{-}(\mathbf{x})g(\mathbf{x})] - \epsilon.$$

Recall that any $c_? \in SC(\mathcal{C})$ is of the form (c_+, c_-) . By the construction of $SC(\mathcal{C})$ (see Section 2.3) and given that \bar{c}_- is the complement of c_- it follows that

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{1}[c_{?}(\mathbf{x}) \neq ?] \cdot g(\mathbf{x})\right] \leq \mathbb{E}_{\mathcal{D}}[(c_{+}(\mathbf{x})) + \bar{c}_{-}(\mathbf{x}))g(\mathbf{x})]$$

Therefore, the two above equation show that

$$\underset{\mathcal{D}}{\mathbb{E}} \left[\mathbb{1}[h_?(\mathbf{x}) \neq ?] \cdot g(\mathbf{x}) \right] \ge \underset{\mathcal{D}}{\mathbb{E}} \left[\mathbb{1}[c_?(\mathbf{x}) \neq ?] \cdot g(\mathbf{x}) \right] - \epsilon.$$

Hence, on each $g \in \mathcal{G}$, $h_?$ does not abstain significantly more often than the optimal $c_?$ for each group.

Note that the global calibration property of $h_?$ and the fact that the predicted values of $h_?(\mathbf{x})$ are in $[0, \epsilon)$ or $(1 - \epsilon, 1]$ implies that both the false positive and negative rates of $h_?$ are bounded by ϵ thus satisfying Condition 1 in Definition 4.1.

Note that to achieve the global accuracy guarantee, we only used the global calibration condition and the fact that we abstain in the region where $h(x) \in (\epsilon, 1-\epsilon)$ (per our definition of $h_?$ from h). In the other hand, to achieve the local abstention guarantee, we used the multiaccuracy guarantee and the definitions of \mathcal{C}^+ and \mathcal{C}^- . Hence, our proof clearly delineates the complementary roles played by each of the multiaccuracy and calibration. This complementarity is structurally similar to the recent result by [11] demonstrating that calibrated multiaccuracy implies agnostic learning.

It is natural to ask whether we can efficiently construct $(\mathcal{C},\mathcal{G})$ -multigroup selective classifiers starting from a weaker learning primitive than that of a calibrated multiaccurate predictor for the class $\mathcal{C} \cap \mathcal{G}$. What is the weakest learning primitive that we can build it from? In Theorem 4.2 below, we answer this question in the positive in the case where $|\mathcal{G}|$ is small. Specifically, we show that in this case, we can construct it from fully reliable learning:

Lemma 4.2. If the class C is fully reliably learnable for the ℓ_1 loss and $\epsilon > 0$, we can construct a $(C, \mathcal{G}, \epsilon)$ -multigroup selective classifier in time $\operatorname{poly}(|\mathcal{G}|, 1/\epsilon)$ with oracle access to the full reliable learner for C.

Proof. For each $g \in \mathcal{G}$, we call the FRL oracle with the restricted domain $\{x \mid g(x) = 1\}$, error parameter $\epsilon/|\mathcal{G}|$, classes \mathcal{C} , \mathcal{G} , and the 0-1 loss function. Let $h_?^g : \{x \mid g(x) = 1\} \to \{0,1,?\}$ denote the selective classifier that we obtain with an FRL call with the domain $\mathcal{X}_g = \{x \mid g(x) = 1\}$. We construct our final global classifier $h_? : \mathcal{X} \to \{0,1,?\}$ as follows: for every point $x \in \mathcal{X}$, consider the set $\mathcal{K} \subseteq \mathcal{G}$ of all groups $g \in \mathcal{C}$ such that g(x) = 1. Then, $h_?$ is equal to the plurality vote of the $|\mathcal{K}|$ total classifiers $h_?^g$.

By the FRL guarantee, each $h_{?}^g$ makes a wrong prediction on at most $\epsilon/|\mathcal{G}|$ points in \mathcal{X} . In the worst case, all the $|\mathcal{G}|$ error regions are disjoint and cause all the majority votes taken on the points x in these regions to cause the wrong prediction. Hence,

$$\operatorname{err}_{\mathcal{D}}(h_?) = \underset{\mathcal{D}}{\mathbb{E}}[|\mathbf{y} - h_?(\mathbf{x})| \cdot \mathbb{1}[h_?(\mathbf{x}) \neq ?]] = |\mathcal{G}| \cdot \frac{\epsilon}{|\mathcal{G}|} \leq \epsilon,$$

and thus we satisfy Condition 1 in the definition of (C, G)-multigroup selective classification (global accuracy).

Secondly, we have not added further abstentions in our ensembling of the $h_?^g$ predictors, and so we continue to satisfy optimal local abstention rate within each $g \in \mathcal{G}$. Namely, the FRL guarantee on each g ensures that

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[h_?(\mathbf{x}) = ?] \right] \leq \min_{c_? \in SC(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[c_?(\mathbf{x}) = ?] \right] + \epsilon.$$

In fact, we are getting a better $\epsilon/|\mathcal{G}|$ error. Hence, we satisfy Condition 2 in the definition in the definition of $(\mathcal{C}, \mathcal{G})$ -multigroup selective classification. Thus we have shown that $h_?$ is a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier, as desired.

F.2 Multigroup fairness primitives

We recall that multicalibration is a stronger notion than calibrated multiaccuracy, which is in turn a stronger notion than multiaccuracy.

(a) If we have the stronger primitive of a $(C \cdot G)$ -multicalibrated predictor (which implies a $(C \cdot G)$ -multiaccurate calibrated predictor), then we can have a non-selective predictor which would give local agnostic guarantees. This follows from the works of [25, 10, 27].

Formalized:

Lemma F.1. Given access to a $(C \cap G, \epsilon)$ -multicalibrated predictor, we can construct a classifier $h: \mathcal{X} \to [0, 1]$ in time $\operatorname{poly}(1/\epsilon)$ satisfying the following local accuracy property: for every $g \in \mathcal{G}$,

$$\underset{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}{\mathbb{E}}[|\mathbf{y} - h(\mathbf{x})| \mid g(\mathbf{x}) = 1] \leq \min_{c \in \mathcal{C}} \underset{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}{\mathbb{E}}[|\mathbf{y} - c(\mathbf{x})| \mid g(\mathbf{x}) = 1] + \epsilon.$$

Note that a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier achieves a local accuracy property within each $g \in \mathcal{G}$, where the error term is weighted by $1/\Pr_{\mathcal{D}}[g(\mathbf{x})=1]$. In Lemma F.1, however, we do so without requiring abstentions, which is why we need the stronger notion of multicalibration rather than of calibrated multiaccuracy. Note that accuracy notion in Lemma F.1 is of the agnostic form, rather than an absolute error guarantee.

(b) Given a $(C \cdot G, \epsilon)$ -multiaccurate and calibrated predictor, we can directly obtain FRL predictors for the class C for the ℓ_1 loss by thresholding the predictor as we do in the proof of Theorem 4.1. Given that calibrated multiaccuracy implies agnostic learning [11], it is already implied by Theorem 4.1 that we can achieve reliable agnostic learning from calibrated multiaccuracy. However, this approach gives a direct reduction. Reliable agnostic learning is believed to be a weaker learning primitive than agnostic learning [45].

Formalized:

Lemma F.2. Given access to a $(C \cdot G, \epsilon)$ -multiaccurate and calibrated predictor h, we can apply a post-processing function to h to obtain an \mathcal{L} -FRL predictor for the ℓ_1 loss.

Proof. Let h be a $(C \cdot G, \epsilon)$ -multiaccurate and calibrated predictor. We first construct a \mathcal{L} -FRL predictor h_7 from h by applying the same post-processing function as in the proof of Theorem 4.1. Namely, we let

$$h_{?}(x) = \begin{cases} h(x) & \text{if } h(x) \in [0, \epsilon] \cup [1 - \epsilon, 1], \\ ? & \text{if } h(x) \in (\epsilon, 1 - \epsilon). \end{cases}$$

By the definition of FRL, we need to show that $h_?$ satisfies 1) low global error, and 2) optimal abstention. This follows directly from our Theorem 4.1 by using the group g = 1.

We remark that we can extend the previous lemma to the 0-1 loss.

F.3 Conformal prediction from $(\mathcal{C}, \mathcal{G})$ -multigroup selective classification

Lemma 4.3. Let $h_?: \mathcal{X} \to [0,1] \cup \{?\}$ be a (C,\mathcal{G},ϵ) -multigroup selective classifier. Then, the prediction sets induced by the level sets of h, where we map $[0,\epsilon] \mapsto \{0\}, [1-\epsilon,1] \mapsto \{1\}$, and $(\epsilon,1-\epsilon) \mapsto \{0,1\}$ satisfy $\Pr_{(\mathbf{x},\mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \in \mathcal{S}(x) \mid g(\mathbf{x}) = 1] \geq 1 - \frac{\epsilon}{\Pr_{\mathcal{D}}[g(\mathbf{x}) = 1]}$ for all $g \in \mathcal{G}$.

Proof. By the definition of a (C, G, ϵ) -multigroup selective classifier, it follows that h_7 satisfies the global accuracy guarantee with an ϵ error parameter. This directly implies a local accuracy guarantee on each $g \in \mathcal{G}$ if we weight the error parameter by the probability mass assigned by \mathcal{D} to g; that is:

$$\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[|\mathbf{y} - h_?(\mathbf{x})| \cdot \mathbb{1}[h_?(\mathbf{x}) \neq ?] \mid g(\mathbf{x}) = 1 \right] \leq \frac{\epsilon}{\Pr_{\mathcal{D}}[g(\mathbf{x}) = 1]}.$$

Then, the result follows from the fact that for all v = 1,

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \in \{1\} \mid g(\mathbf{x}) = 1] \leq \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}}[|\mathbf{y} - h_{?}(\mathbf{x})| \cdot \mathbb{I}[h_{?}(\mathbf{x}) \neq ?] \mid g(\mathbf{x}) = 1],$$

and symmetrically for all y = 0 it follows that

$$\Pr_{(\mathbf{x},\mathbf{y}) \sim \mathcal{D}}[\mathbf{y} \in \{0\} \mid g(\mathbf{x}) = 1] \leq \mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim \mathcal{D}}[|\mathbf{y} - h_?(\mathbf{x})| \cdot \mathbb{1}[h_?(\mathbf{x}) \neq ?] \mid g(\mathbf{x}) = 1].$$

Lastly, we formalize and prove Remark 4.1, which shows that $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classification, when used as a conformal prediction method, besides satisfying the conditional coverage guarantee, also provides a provable upper bound on the size of the set $\{0,1\}$ within each group $g \in \mathcal{G}$:

Lemma F.3. Let $h_?: \mathcal{X} \to [0,1] \cup ?$ be a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier. Then, the prediction sets induced by the level sets of h_2 satisfy:

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[h_?(\mathbf{x}) = \{0, 1\}] \right] \leq \min_{c_? \in SC(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[c_?(\mathbf{x}) = ?] \right] + \epsilon$$

for every group $g \in \mathcal{G}$.

Proof. This follows directly from the optimal local abstention rate guarantee of a $(\mathcal{C}, \mathcal{G}, \epsilon)$ -multigroup selective classifier, which ensures that for every $g \in \mathcal{G}$,

$$\Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[h_?(\mathbf{x}) = ?] \right] \leq \min_{c_? \in \mathsf{SC}(\mathcal{C})} \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[g(\mathbf{x}) \cdot \mathbb{1}[c_?(\mathbf{x}) = ?] \right] + \epsilon.$$

Experiments for Section 4 G

Lastly, we implement our $(\mathcal{C}, \mathcal{G})$ -multigroup selective ominpredictors in practice. To do so, we modify the construction our proof of Theorem 4.1 to adapt the multicalibration algorithm that we used in the experiments for Section 3. Again for our proof of concept, we generate 10,000 samples synthetically using sk-learn's make_classification function. For the concept class \mathcal{C} , we use the same class of decision trees of depth 3. For the class of groups \mathcal{G} , we generate them from the data using randomness by allowing the groups to intersect and by ensuring some correlation with the labels within each group. In these experiments, we use 10 groups, and each ends up having size of between 300 and 400 samples.

We use the same discretization parameter 0.1 and learning rate 0.01 in the update step as in the experiments for Section 3.1. We perform the multicalibration algorithm across all groups in \mathcal{G} . In each, we use the same concept class \mathcal{C} of decision trees of depth 3 to find correlation with the residuals and we cap the number of iterations at 150. We see that the $(\mathcal{C}, \mathcal{G})$ -multicalibration greatly reduces the ℓ_2 (i.e., Brier score) and expected calibration error (ECE) for each of the groups in \mathcal{G} , as shown in Table 11. We emphasize that, as far as we are aware, our work is the first to separate the roles of the concept class \mathcal{G} and the group collection \mathcal{G} (in the multigroup fairness literature, one usually sets $\mathcal{C} = \mathcal{G}$).

Table 11: Group-wise metrics before and after (C, \mathcal{G}) -multicalibration.

\overline{G}	N	$Brier_{\rm pre}$	$\mathrm{Brier}_{\mathrm{post}}$	ECE_{pre}	ECE_{post}
0	414	0.106	0.004	0.162	0.036
1	389	0.122	0.003	0.139	0.036
2	419	0.120	0.005	0.158	0.046
3	395	0.119	0.006	0.164	0.047
4	416	0.111	0.005	0.170	0.047
5	387	0.111	0.005	0.178	0.051
6	410	0.116	0.009	0.118	0.054
7	400	0.120	0.008	0.152	0.060
8	388	0.120	0.011	0.168	0.063
9	380	0.116	0.011	0.156	0.060

Table 12: Group-wise metrics before and after (C, \mathcal{G}) -multicalibration.

G	N	$\mathrm{Brier}_{\mathrm{pre}}$	$\mathrm{Brier}_{\mathrm{post}}$	ECE_{pre}	$ECE_{\rm post}$
0	381	0.072	0.002	0.149	0.024
1	394	0.084	0.003	0.134	0.029
2	400	0.079	0.006	0.137	0.033
3	406	0.081	0.004	0.142	0.036
4	380	0.089	0.008	0.140	0.049
5	390	0.095	0.007	0.136	0.051
6	400	0.090	0.009	0.137	0.045
7	396	0.090	0.010	0.141	0.052
8	416	0.095	0.010	0.126	0.053
9	379	0.082	0.011	0.158	0.048

We give another example from another run with a different initialization of synthetic data:

Next, we turn our $(\mathcal{C}, \mathcal{G})$ -multicalibrated predictor into a $(\mathcal{C}, \mathcal{G})$ -multigroup selective classifier, we apply the thresholding function that we repeatedly use in our proofs in Section 4: namely, for a chosen value of ϵ , we map the predicted value to 0 if it is $\leq \epsilon$, to 1 if it is $\geq \epsilon$, and to ? otherwise. We then compute the coverage and ℓ_1 error (i.e., mean absolute error) of our $(\mathcal{C}, \mathcal{G})$ -multigroup selective classifier within each of the groups $g \in \mathcal{G}$ for different values of ϵ .

Separately, we again use the MAPIE library to train a conformal prediction method *separately within* each of the groups $g \in \mathcal{G}$. Notably, this methodology does not technically allow the groups to intersect, but we report the statistics independently on every group. In contrast, our method yields one global predictor, instead of a predictor for each group that does not allow for intersections. This is a significant advantage of using $(\mathcal{C},\mathcal{G})$ -multigroup selective classification as a conformal prediction method. We remark that two recent works use the multicalibration algorithm to obtain group conditional coverage guarantees for an intersecting collection of groups and perform extensive evaluations [38, 39]. We once again remark that the significance of our theoretical results in Section 4 are to extend the multigroup fairness framework to learn how to abstain fairly, and that the use of our algorithms as conformal prediction methods is presented as a use case rather than the end goal.

For the MAPIE training, we use random forests as the base class and $\alpha=0.1$ as the parameter for the coverage guarantee. After training the predictor, we obtain the prediction sets $\{0\},\{1\}$, and $\{0,1\}$ for each of the points in the test set. Viewing $\{0,1\}$ as equivalent to ?, we compute the coverage and ℓ_1 error of the conformal prediction method within each group (where we remark that the predictor is trained separately for every group, unlike our selective classifier). We report the coverage and ℓ_1 errors of the selective classifier for different values of ϵ (specifically, $\epsilon=0.2,0.3,0.4$) and compare it to the coverage and ℓ_1 errors of the per-group conformal prediction method. We perform different runs with different initializations of the synthetic data and report the results in Tables 13, 14, and 15. All runs show a similar pattern: the selective classifier is competitive with the conformal prediction method within each group $g \in \mathcal{G}$, even though we have a single predictor for all groups and the conformal prediction method is trained separately on each group.

Table 13: Per-group Coverage and ℓ_1 error for $(\mathcal{C}, \mathcal{G})$ -multigroup selective classification thresholding at $\epsilon = 0.20$, $\epsilon = 0.30$, $\epsilon = 0.40$, compared with a separate conformal prediction predictor per group.

Group	N	$Cov_{0.20}$	$\ell_{10.20}$	$Cov_{0.30}$	$\ell_{10.30}$	$Cov_{0.40}$	$\ell_{10.40}$	$Cov^{\mathcal{G}}$	$\ell_1^{\mathcal{G}}$
0	421	0.983	0.104	0.988	0.106	1.000	0.107	0.988	0.108
1	405	0.983	0.118	0.985	0.118	0.990	0.120	0.938	0.100
2	408	0.975	0.131	0.983	0.135	0.993	0.141	0.963	0.115
3	384	0.977	0.120	0.979	0.122	0.992	0.123	0.958	0.114
4	410	0.949	0.118	0.956	0.117	0.973	0.128	0.956	0.128
5	401	0.960	0.114	0.970	0.116	0.980	0.120	0.963	0.098
6	388	0.961	0.123	0.977	0.129	0.985	0.134	0.951	0.108
7	399	0.952	0.124	0.967	0.122	0.987	0.124	0.962	0.109
8	400	0.932	0.123	0.948	0.127	0.970	0.139	0.963	0.109
9	409	0.914	0.131	0.917	0.133	0.961	0.155	0.941	0.132

Table 14: Per-group Coverage and ℓ_1 error for (C, G)-multigroup selective classification thresholding at $\epsilon = 0.20$, $\epsilon = 0.30$, $\epsilon = 0.40$, compared with a separate conformal prediction predictor per group.

Group	N	$Cov_{0.20}$	$\ell_{10.20}$	$Cov_{0.30}$	$\ell_{10.30}$	$Cov_{0.40}$	$\ell_{10.40}$	$Cov^\mathcal{G}$	$\ell_1^{\mathcal{G}}$
0	407	0.973	0.078	0.978	0.080	0.988	0.082	0.988	0.082
1	381	0.958	0.090	0.969	0.100	0.992	0.098	0.969	0.095
2	422	0.979	0.099	0.988	0.101	0.995	0.102	0.988	0.118
3	386	0.948	0.093	0.959	0.092	0.974	0.096	0.984	0.111
4	384	0.948	0.082	0.958	0.087	0.979	0.098	0.992	0.102
5	391	0.954	0.056	0.959	0.059	0.977	0.068	0.982	0.078
6	389	0.928	0.066	0.941	0.071	0.967	0.077	0.985	0.081
7	400	0.910	0.074	0.932	0.078	0.955	0.081	0.998	0.128
8	411	0.937	0.078	0.956	0.084	0.973	0.092	0.985	0.099
9	414	0.908	0.069	0.923	0.071	0.952	0.081	0.988	0.108

G.1 Code reproducibility

We include all of the code that we use to obtain the experimental results for Sections 3 and 4 as a ZIP file in the supplementary material. These experiments were conducted locally using a system equipped with an M1 chip and 16 GB of local memory. We used ChatGPT to help debug the code and implement the abstaining decision trees, and we studied the multicalibration code provided in the Python package from the paper [29] to aid us with our implementation (which we did from scratch, given that the implementation in [29] finds correlation with the residuals using the Boolean groups g in \mathcal{G} , whereas we want to use the real-valued concepts c in the concept class \mathcal{C}).

Table 15: Per-group Coverage and ℓ_1 error for $(\mathcal{C},\mathcal{G})$ -multigroup selective classification thresholding at $\epsilon=0.20,\,\epsilon=0.30,\,\epsilon=0.40$, compared with a separate conformal prediction predictor per group.

Group	N	$Cov_{0.20}$	$\ell_{10.20}$	$Cov_{0.30}$	$\ell_{10.30}$	$Cov_{0.40}$	$\ell_{10.40}$	$Cov^{\mathcal{G}}$	$\ell_1^{\mathcal{G}}$
0	393	0.977	0.146	0.985	0.147	1.000	0.148	0.827	0.138
1	409	0.971	0.131	0.983	0.132	0.990	0.133	0.856	0.131
2	381	0.971	0.119	0.979	0.118	0.984	0.120	0.803	0.101
3	360	0.964	0.118	0.975	0.120	0.992	0.132	0.831	0.110
4	377	0.966	0.140	0.981	0.141	0.984	0.143	0.862	0.154
5	389	0.961	0.155	0.979	0.157	0.985	0.157	0.823	0.150
6	387	0.948	0.125	0.974	0.130	0.987	0.134	0.858	0.139
7	361	0.958	0.150	0.970	0.154	0.992	0.165	0.853	0.169
8	373	0.920	0.122	0.952	0.124	0.973	0.129	0.847	0.133
9	393	0.959	0.149	0.985	0.150	0.987	0.149	0.852	0.152