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Abstract001

The great success of large language models002
has encouraged the development of large multi-003
modal models, with a focus on image-language004
interaction. Despite promising results in var-005
ious image-language downstream tasks, it is006
still challenging and unclear how to extend007
the capabilities of these models to the more008
complex video domain, especially when deal-009
ing with explicit temporal signals. To address010
the problem in existing large multimodal mod-011
els, in this paper we adopt visual instruction012
tuning to build a unified causal video-oriented013
language modeling framework, named UNI-014
CORN. Specifically, we collect a comprehen-015
sive dataset under the instruction-following for-016
mat, and instruction-tune the model accord-017
ingly. Experimental results demonstrate that018
without customized training objectives and in-019
tensive pre-training, UNICORN can achieve020
comparable or better performance on estab-021
lished temporal video-language tasks includ-022
ing moment retrieval, video paragraph caption-023
ing and dense video captioning. Moreover, the024
instruction-tuned model can be used to automat-025
ically annotate internet videos with temporally-026
aligned captions. Compared to commonly used027
ASR captions, we show that training on our gen-028
erated captions improves the performance of029
video-language models on both zero-shot and030
fine-tuning settings. Source code can be found031
here and will be released upon acceptance.032

1 Introduction033

Recent breakthroughs in large language mod-034

els (LLMs) (Ouyang et al., 2022; cha, 2023; Ope-035

nAI, 2023; vic, 2023; Touvron et al., 2023a,b) have036

reignited the enthusiasm about the achievement of037

artificial general intelligence where a single foun-038

dation model can accomplish a large variety of039

downstream tasks based on human instructions. To-040

wards this ultimate goal, the community has wit-041

nessed promising advances in large multimodal042

models (LMMs) for vision and language (Liu et al.,043

2023b,a; Wang et al., 2023b; Dai et al., 2023; Bai 044

et al., 2023; Li et al., 2023a; Zhu et al., 2023), the 045

two essential modalities to understand the world. 046

Most of these LMMs follow the pipeline of visual 047

instruction tuning (Liu et al., 2023b) and demon- 048

strate strong capabilities in vision-centric tasks like 049

image classification and object detection (Wang 050

et al., 2023b), and vision-language tasks like im- 051

age captioning and visual question answering (Dai 052

et al., 2023; Liu et al., 2023b). 053

Despite impressive results in the image domain, 054

videos, another important data format in the vision 055

modality, are under-explored. In contrast to images, 056

videos have an extra temporal dimension and are 057

much more difficult to process due to increased 058

complexity. Existing approaches either directly ap- 059

ply LMMs trained on image-text pairs (Dai et al., 060

2023) to the video domain without fine-tuning or 061

develop video-oriented LMMs (Zhang et al., 2023a; 062

Muhammad Maaz and Khan, 2023; Li et al., 2023c) 063

on short trimmed videos. However, such models 064

are limited to handle problems which are less de- 065

pendent on temporal information like action recog- 066

nition and video question answering. It still re- 067

mains unclear how to solve video-language tasks 068

that requires explicitly modeling temporal informa- 069

tion, including moment retrieval (Hendricks et al., 070

2017; Lei et al., 2021), video paragraph caption- 071

ing (Park et al., 2019), and dense video caption- 072

ing (Krishna et al., 2017) in one single LMM. 073

In fact, the inherent disparities among these task 074

formats pose a challenge to the development of 075

such models: moment retrieval requires predicting 076

the temporal location of a moment described by 077

language, paragraph captioning entails to write a 078

coherent story from an untrimmed video, while 079

the goal of dense video captioning is to gener- 080

ate captions and temporal locations for a series 081

of moments simultaneously. These tasks are typi- 082

cally solved individually by specifically-designed 083

models (Lei et al., 2020a; Yang et al., 2023; Lei 084
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Visual input example, Playing Tennis (34s in total):

Task 1: Moment Retrieval
Instruction Please predict start and end time of the fol-

lowing moment: He hits the ball over the net
several times. The output format should be
<start><end>.

Response <16><48>

Task 2: Video Paragraph Captioning

Instruction Provide a detailed description of the video, cap-
turing its key moments.

Response A man is bouncing a tennis ball on an outdoor
court. He hits the ball over the net several times.
The balls roll over to the opposing fence, broken
in half from the impact.

Table 1: Example of instruction-following data. The
response of moment retrieval is computed by time tok-
enization for the window [7.7s, 22.1s] with 75 bins.

et al., 2021; Lin et al., 2023). While attempts have085

been made to unify these temporal video-language086

tasks (Wang et al., 2023a; Yan et al., 2023), sep-087

arate modules and training objectives tailored for088

each task are involved in these methods, making089

them complicated in both training and inference.090

To address the above challenge, we propose a091

UNIfied Causal videO-oRiented laNguage model-092

ing framework (UNICORN) that unifies the tasks093

as a simple yet generic language modeling prob-094

lem. For moment retrieval and video paragraph095

captioning, we convert original training datasets096

into corresponding instruction-following formats,097

as shown in Table 1. In particular, inspired by098

previous efforts in discretizing bounding box coor-099

dinates (Chen et al., 2022; Peng et al., 2023; Zhang100

et al., 2023b), our approach represents the continu-101

ous event boundaries as a sequence of discrete time102

tokens and processes them similarly as language103

tokens. On a range of datasets and tasks, we show104

that this unified approach achieve comparable or105

better performance over previous methods.106

On the other hand, the development of large107

video-language models is hindered by the lack108

of semantically- and temporally-aligned video-109

text pairs, an issue unique to the video domain.110

As pointed out in (Han et al., 2022), the mod-111

els pre-trained on commonly-used noisy datasets112

such as HowTo100M (Miech et al., 2019) and YT-113

Temporal-1B (Zellers et al., 2022) suffer from the114

misalignment between videos and ASR captions115

severely. Thanks to the generalization ability of116

LMMs, our UNICORN can be leveraged to au-117

tomatically generate captions for internet videos. 118

We demonstrate that qualitatively the generated 119

captions are better semantically- and temporally- 120

aligned with the videos than the original ASR cap- 121

tions, and quantitatively incorporating our gener- 122

ated captions in either instruction-tuning for mo- 123

ment retrieval or end-to-end video representation 124

learning leads to significant performance gains. 125

Our contributions are threefold: (1) We propose 126

UNICORN, a simple and generic framework that 127

unifies various temporal video-language tasks via 128

language modeling; (2) Our approach achieves 129

comparable or better performance to state-of-the- 130

art methods on multiple downstream tasks, includ- 131

ing moment retrieval, video paragraph captioning, 132

and dense video captioning; (3) Compared to exist- 133

ing captions, those automatically generated by our 134

method have shown to be better aligned with the 135

videos, both semantically and temporally. Empiri- 136

cally, the generated captions have demonstrated to 137

improve performance of models trained on them. 138

Our automatic annotation pipeline is useful for em- 139

powering the development of future LMMs. 140

2 Related Work 141

Large Multimodal Models. Large language mod- 142

els are taking the world by storm with their in- 143

credible capabilities to answer questions in a co- 144

herent and informative way aligned with human 145

instructions (cha, 2023; Ouyang et al., 2022; vic, 146

2023; OpenAI, 2023; Touvron et al., 2023a,b). The 147

universality and generalization of LLMs make it 148

potential to unlock the door to a foundation general- 149

purpose model. Towards this goal, a variety of large 150

multimodal models are emerging to bridge different 151

modalities, in particular vision and language (Liu 152

et al., 2023b,a; Wang et al., 2023b; Dai et al., 2023; 153

Bai et al., 2023; Li et al., 2023a; Zhu et al., 2023). 154

Such LMMs adopt the pipeline of visual instruction 155

tuning (Liu et al., 2023b) by converting original 156

datasets into the instruction-following format and 157

casting traditional vision problems as a language 158

modeling task. For instance, LLaVa (Liu et al., 159

2023b) generates multimodal language-image in- 160

structional data using GPT-4 (OpenAI, 2023) and 161

develops an LMM connecting a pre-trained image 162

encoder and a pre-trained large language model to 163

deal with vision-language tasks. InstructBLIP (Dai 164

et al., 2023) enlarges the task coverage by gath- 165

ering 26 publicly available datasets and proposes 166

an instruction-aware visual feature extraction pro- 167
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cess. These models achieve the state-of-the-art168

performance on numerous downstream tasks, rang-169

ing from vision-centric ones such as image clas-170

sification and object detection to vision-language171

ones such as image captioning and visual reason-172

ing. Despite efforts in understanding images, few173

attempts have been made for video-language tasks174

due to additional complexity. Thus, in this paper175

we study how to model the interaction between176

long untrimmed videos and captions from the per-177

spective of language modeling.178

Video-Language Modeling. Video-language tasks179

have been widely studied, especially these requires180

specific temporal modeling, such as moment re-181

trieval (Lei et al., 2021; Lin et al., 2023; Mun et al.,182

2020; Zeng et al., 2020), video paragraph caption-183

ing (Lei et al., 2020a; Park et al., 2019; Yang et al.,184

2023; Wang et al., 2021), and dense video caption-185

ing (Krishna et al., 2017; Yang et al., 2023; Wang186

et al., 2021). Some methods (Lin et al., 2023; Yan187

et al., 2023; Wang et al., 2023a; Li et al., 2022)188

pre-train a model on large-scale corpus to generate189

latent video and language representations, which190

can be then adapted to different downstream tasks.191

This line of work typically requires elaborate ar-192

chitectural designs and multiple training objectives193

tailored for each target task. In contrast, we pro-194

pose a more elegant unified framework to integrate195

various temporal video-language tasks into a sim-196

ple yet generic language modeling problem. Com-197

pared with existing video-oriented LMMs targeting198

at short video clips (Li et al., 2023c; Zhang et al.,199

2023a; Muhammad Maaz and Khan, 2023), UNI-200

CORN attaches more attention to long untrimmed201

videos. The most relevant method to UNICORN202

is Vid2Seq (Yang et al., 2023), which also formu-203

lates dense video captioning as language modeling.204

However, it should be emphasized that Vid2Seq205

depends heavily on video-language pre-training206

and is unable to handle tasks other than caption-207

ing. On the contrary, by visual instruction tuning208

on high quality datasets, UNICORN demonstrates209

superior performance on a series of video-language210

tasks without intensive pre-training. Moreover, our211

method can be applied towards noisy video datasets212

to generate better-aligned captions.213

3 Method214

In this section, we introduce our unified framework215

UNICORN in detail. We start by discussing how to216

transform the original datasets for different down-217

stream tasks into the general instruction-following 218

format in Section 3.1. Then in Section 3.2, we 219

describe the model architecture designed for video- 220

language interaction. In Section 3.3, we present the 221

training pipeline of UNICORN including datasets 222

and training objective. Finally in Section 3.3, we 223

demonstrate how to conduct inference with the ob- 224

tained model on downstream tasks together with 225

the process to generate captions for noisy datasets. 226

3.1 Instruction-Following Data Generation 227

As the ultimate goal is to unify various temporal 228

video-language tasks, we cast moment retrieval and 229

video paragraph captioning datasets into a common 230

instruction following format. For dense video cap- 231

tioning, it can be regarded as a two-stage procedure 232

of paragraphing captioning and moment retrieval 233

and thus no specific training data are required. We 234

provide details in following sections. 235

Moment Retrieval In moment retrieval (MR) 236

(Hendricks et al., 2017; Gao et al., 2017; Krishna 237

et al., 2017; Lei et al., 2020b, 2021), a continu- 238

ous time window is predicted given an untrimmed 239

video and a language moment query. With the task 240

definition, an example instruction can be: “Please 241

predict start and end time of the following mo- 242

ment: {target}”, where {target} is replaced by the 243

specific query. We curate a template instruction list 244

in Appendix B, to explicitly teach the underlying 245

model the concepts of the task and the objective. 246

A key challenge here is how to generate output 247

sequences to represent moment locations. To re- 248

duce the exploration space for more controllable 249

predictions, we follow previous sequence genera- 250

tion strategies for such continuous values (Chen 251

et al., 2022; Peng et al., 2023; Yang et al., 2023; 252

Wang et al., 2023b; Chen et al., 2023), and dis- 253

cretize the timestamp t in a d-s long video into an 254

integer in {0, 1, . . . , Nbin − 1} with Nbin equally- 255

spaced bins by ⌊t×Nbin⌋/d. Moreover, since re- 256

cent LLMs exhibit surprising performance in math- 257

ematical reasoning, we use the original vocabulary 258

without extra time tokens, which in turn reduces 259

the number of trainable parameters and avoids pre- 260

training to re-acquire the ability to reason about 261

numbers. Meanwhile, to distinguish our discrete 262

relative timestamps from other numerical expres- 263

sions such as “5 apples”, we enclose the timestamp 264

values by “<start><end>” where start and end are 265

replaced by corresponding converted timestamps. 266

For instance, the moment in Table 1 starting at 267

7.7s and ending at 22.1s within a 34s-long video 268
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rack. A woman is scrubbing the dog 
with shampoo. Another dog jumps 
up on the fence behind them.
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of the given video, capturing 
its key moments.
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Input Video

Concat

Visual Tokens

Response

…

Figure 1: UNICORN framework using video paragraph captioning as an example. We encode each video frame
separately and concatenate their resulting visual tokens to represent the video. We highlight the encoding process of
one frame in red. All modules are instruction-tuned with the language modeling loss except the image encoder.

is transformed into the desired output sequence269

“<16><48>” after our proposed time tokenization270

with 75 bins. To make output predictions consis-271

tent in format, we append a language constraint272

to our instruction: “The output format should273

be <start><end>.” For a moment query associ-274

ated with multiple time windows, we regard each275

query-location pair as an individual data sample.276

Video Paragraph Captioning The task of video277

paragraph captioning (VPC) (Park et al., 2019; Lei278

et al., 2020a) aims at generating a set of coherent279

sentences to describe an untrimmed video that con-280

tains several events. While previous pipelines (Park281

et al., 2019; Lei et al., 2020a) segment the video282

into multiple clips from ground-truth event bound-283

ary proposals, our method takes as input frames284

sampled from the whole video together with the285

instruction “Provide a detailed description of the286

given video, capturing its key moments.”. We287

generate a diverse template set in Appendix B to288

reduce overfitting and strengthen the understanding289

of the task. We leverage the paragraph caption of290

the target video as the prediction.291

Dense Video Captioning The goal of dense video292

captioning (DVC) (Krishna et al., 2017) is to gener-293

ate multiple corresponding captions for a series of294

events together with their temporal locations from295

the untrimmed video. It is much harder than mo-296

ment retrieval and paragraph captioning since it re-297

quires predicting events and their timestamps simul-298

taneously. The most straightforward way to convert299

the task into the instruction-following format is to300

construct a sequence with both events and locations301

given a specific input prompt. However, design302

choices such as event serialization (e.g., chronolog-303

ical or random) and where to insert time windows304

might affect the performance significantly (Chen 305

et al., 2022; Yang et al., 2023). Furthermore, the 306

training of such models is challenged by the longer 307

input sequence with both timestamps and event de- 308

scriptions. It also takes extra computational costs 309

to learn redundant information from moment re- 310

trieval and video paragraph captioning again. Con- 311

sidering the inherent property of DVC, we find that 312

it can be naturally decomposed into a two-stage 313

procedure of video paragraph captioning followed 314

by moment retrieval. Thus, no additional training 315

data are required and this task can be addressed at 316

inference-time by the model instruction-tuned on 317

two tasks above, with more details in Section 3.3. 318

3.2 Model Architecture 319

To bridge together video frames and natural lan- 320

guage instructions as the ultimate input sequence, 321

we propose a large multimodal language model, 322

demonstrated in Figure 1. Specifically, a sequence 323

of visual tokens are obtained by feeding frames and 324

the corresponding instruction from an untrimmed 325

video into our per-frame encoding module. Visual 326

tokens are then processed by a projection layer to 327

the same latent space as the large language model 328

(LLM). The LLM takes the concatenation of visual 329

tokens and instruction tokens as input and generates 330

the desired output given different task instructions. 331

Compared with image-language interaction, few 332

attempts have been made in the video domain due 333

to increased complexity. However, using image 334

encoders to conduct per-frame encoding for videos 335

by brute force will lead to an extremely long se- 336

quence of visual tokens proportional to the number 337

of frames. On the other hand, a completely new en- 338

coder might require a considerable amount of train- 339

ing to align modalities of vision and language again. 340
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To strike a balance between two aforementioned341

issues, we resort to the recently proposed Instruct-342

BLIP (Dai et al., 2023) and make some adaptions343

on the Q-Former module to handle the video input.344

In detail, our method first extracts nq visual tokens345

from each frame using the frame-based encoding of346

the original Q-Former. For efficiency, we then ap-347

ply average pooling in a frame-wise manner, which348

results in one token for each frame. Given a video349

of N frames, these N tokens are further processed350

by a module with two self-attention layers to inte-351

grate temporal information. Our design maintains352

a reasonable length of visual tokens for instruction353

tuning and takes advantage of pre-trained LLMs354

for feature alignment between the two modalities.355

3.3 Training and Inference356

With the data in instruction-following format, we357

now present a unified framework of instruction358

tuning on various downstream tasks.359

Training. The instruction-following format makes360

it feasible to train the model to predict next to-361

kens with an auto-regressive language modeling362

loss. Given input video frames X={xi}Ni=1 and363

task instruction Y = {yj}Mj=1, we maximize the364

log likelihood of the output sequence Z={zk}Lk=1:365

max
∑L

k=1 log pθ(zk|X,Y, z1:k−1), where L is the366

output sequence length, pθ is the output probability367

distribution over the LLM vocabulary given model368

parameters θ. We finetune the whole model except369

the image encoder using LoRA (Hu et al., 2022).370

Inference. For moment retrieval and paragraph371

captioning, we prompt the instruction tuned model372

using corresponding task instructions to generate373

responses via beam search. For dense video cap-374

tioning, we divide it into two stages, where the375

model first generates a paragraph caption, and then376

temporally locate each sentence in the paragraph377

with moment retrieval task instruction.378

4 Experiments379

In this section, we evaluate UNICORN compre-380

hensively against state-of-the-art methods to show381

its effectiveness. We first introduce experimen-382

tal setup in Section 4.1. Then we present results383

on downstream tasks including moment retrieval,384

video paragraph captioning and dense video cap-385

tioning in Section 4.2. Ablation studies are con-386

ducted in Section 4.3 for better understanding of387

our designs. Finally, in Section 4.4 we investigate388

the quality of the automatic annotation generated389

by UNICORN on HowTo100M.390

4.1 Experimental Setups 391

Architecture. The backbone of our video encod- 392

ing module is adapted from InstructBLIP (Dai 393

et al., 2023). Specifically, we implement the 394

video encoder with the same image encoder (ViT- 395

G/14) (Fang et al., 2023), Q-Former with 32 learn- 396

able query embeddings and a fully-connected pro- 397

jection layer as the original InstructBLIP struc- 398

ture, plus a temporal modeling module with 2 self- 399

attention layers. For the language side, we select 400

Vicuna-7B (vic, 2023), a publicly available LLM 401

fine-tuned from LLaMa (Touvron et al., 2023a). 402

Datasets. Rather than intensive pre-training on a 403

large scale noisy dataset without annotations, we di- 404

rectly fine-tune our model on a comprehensive set 405

of publicly available video-language datasets, in- 406

cluding QVHighlights (Lei et al., 2021), Charades- 407

STA (Gao et al., 2017), ActivityNet Captions (Kr- 408

ishna et al., 2017), and YouCook2 (Zhou et al., 409

2018a). The collection covers various domains 410

with different length distributions. More details 411

about datasets are included in Appendix C. 412

Implementation details. We adopt LAVIS (Li 413

et al., 2023b) under BSD 3-Clause License to run 414

all the experiments and our usage is compatible 415

with its license. The model is instruction tuned for 416

5 epochs with a batch size of 32. We randomly 417

sample a task at a time based on data size. We 418

use AdamW (Loshchilov and Hutter, 2019) with 419

β1=0.9, β2=0.999, and weight decay 0.05 for op- 420

timization. The learning rate is warmuped from 421

10−6 to 10−4 in the first epoch, followed by a co- 422

sine decay with a minimum of 10−5. We freeze the 423

image encoder and fine-tune the rest of the model, 424

with LoRA applied on the LLM. There are around 425

243M trainable parameters. UNICORN is trained 426

with 8 NVIDIA A100 (80G) GPUs in 12 hours. 427

Evaluation. For moment retrieval, we evaluate 428

on QVHighlights, Charades-STA, and ActivityNet 429

Captions. We report the standard metrics Recall 430

at 1 under temporal Intersection over Union (IoU) 431

thresholds of 0.5 and 0.7, abbreviated as R@0.5 432

and R@0.7. Besides, we use the average mAP 433

over IoU thresholds [0.5:0.05:0.95] on QVHigh- 434

lights with multiple ground-truth segments for 435

one moment, and mean IoU (mIoU) for the other 436

two datasets. For video paragraph captioning, we 437

use commonly-adopted metrics CIDEr (Vedantam 438

et al., 2015) (C) and METEOR (Banerjee and 439

Lavie, 2005) (M) and report results on YouCook2 440

and ActivityNet Captions. As to dense video cap- 441
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Method QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

LGI (Mun et al., 2020) — — — 59.5 35.5 51.4 41.5 23.1 41.1
2D TAN (Zhang et al., 2020b) — — — 46.0 27.5 41.2 44.5 26.5 —
VSLNet (Zhang et al., 2020a) — — — 42.7 24.1 41.6 43.2 26.2 43.2
MDETR (Lei et al., 2021) 59.8 40.3 36.1 52.1 30.6 45.5 — — —
GVL (Wang et al., 2023a) — — — — — — 48.9 27.2 46.4
UnLoc (Yan et al., 2023) 64.5 48.8 — 58.1 35.4 — 48.0 29.7 —
UniVTG (Lin et al., 2023) 58.9 40.9 35.5 58.0 35.6 50.1 — — —
UniVTG, PT (Lin et al., 2023) 65.4 50.1 43.6 60.2 38.5 52.2 — — —
UNICORN 68.4 51.9 45.0 69.0 45.6 58.9 48.4 29.8 47.1

Table 2: Moment retrieval on QVHighlights (test),
Charades-STA (test), and ActivitityNet Captions
(val_2). We bold the best, underline the second-best.

tioning, we follow the existing protocol (Krishna442

et al., 2017) to compute captioning metrics over the443

matched pairs between generated sentences and the444

ground truth. SODA_c (Fujita et al., 2020) (S) is445

also used to measure the temporal coherence for a446

set of captions. This task is evaluated on YouCook2447

and ActivityNet Captions as well.448

4.2 Results449

We evaluate our instruction-tuned model on three450

video-language tasks: moment retrieval, video para-451

graph captioning, and dense video captioning. Note452

that all results are obtained from one shared model453

and different tasks are addressed by changing the454

prompting instructions at inference time only.455

Moment retrieval. In Table 2, our method is com-456

pared with state-of-the-art algorithms for this task457

on three representative datasets, QVHighlights (Lei458

et al., 2021), Charades-STA (Gao et al., 2017), and459

ActivityNet Captions (Krishna et al., 2017). It can460

be observed that our method achieves comparable461

(mostly better) performance on all three datasets. In462

particular, on QVHighlights we achieve 68.4, 51.9,463

and 45.0 for R@0.5, R@0.7 and average mAP re-464

spectively, improving the best-performing baseline465

UniVTG with pre-training substantially by +3.0,466

+1.8 and +1.4. In contrast to complicated designs467

such as a localization loss in previous approaches,468

we remove most of the specification and only use469

a generic language modeling loss: UNICORN is470

mainly based on the intuition that if a model knows471

about where the moment is, we just need to teach472

it how to read the location out. In summary, UNI-473

CORN makes minimal assumptions on the task yet474

accomplishes it with superior performance.475

Video paragraph captioning. Table 3 shows the476

video paragraph captioning results. In UNICORN,477

we consider this task as a general captioning prob-478

lem. Without any customized training objectives or479

prior knowledge on the input such as ground-truth480

event proposals as in previous methods (Park et al.,481

2019; Lei et al., 2020a), our method demonstrates482

outstanding performance over other baselines un-483

Method Backbone YouCook2 ActivityNet
C M C M

With GT Proposals
VTransformer (Zhou et al., 2018b) V (ResNet-200) + F 32.3 15.7 22.2 15.6
Transformer-XL (Dai et al., 2019) V (ResNet-200) + F 26.4 14.8 21.7 15.1
MART (Lei et al., 2020a) V (ResNet-200) + F 35.7 15.9 23.4 15.7
GVDSup (Zhou et al., 2019) V (ResNet-101) + F + O — — 22.9 16.4
AdvInf (Park et al., 2019) V (ResNet-101) + F + O — — 21.0 16.6
PDVC (Wang et al., 2021) V + F (TSN) — — 27.3 15.9
With Learned Proposals
MFT (Xiong et al., 2018) V + F (TSN) — — 19.1 14.7
PDVC (Wang et al., 2021) V + F (TSN) — — 20.5 15.8
PDVC (Wang et al., 2021) V (CLIP) — — 23.6 15.9
TDPC (Song et al., 2021) V (ResNet-200) + F — — 26.5 15.6
Vid2Seq (Yang et al., 2023) V (CLIP) — — 28.0 17.0
GVL (Wang et al., 2023a) V (TSN) — — 26.0 16.3
UNICORN V (CLIP) 37.8 18.3 34.8 17.3

Table 3: Video paragraph captioning results on
YouCook2 (val) and ActivityNet Captions (ae-test).
V/F/O refers to visual/flow/object features.

Method Backbone YouCook2 ActivityNet
S C M S C M

MT (Zhou et al., 2018b) TSN — 6.1 3.2 — 9.3 5.0
ECHR (Wang et al., 2020) C3D — — 3.8 3.2 14.7 7.2
PDVC (Wang et al., 2021) TSN 4.4 22.7 4.7 5.4 29.0 8.0
PDVC (Wang et al., 2021) CLIP 4.9 28.9 5.7 6.0 29.3 7.6
UEDVC (Zhang et al., 2022) TSN — — — 5.5 26.9 7.3
E2ESG (Zhu et al., 2022) C3D — 25.0 3.5 — — —-
Vid2Seq (Yang et al., 2023) CLIP 5.7 25.3 — 5.9 30.2 8.5
GVL (Wang et al., 2023a) TSN 4.9 26.5 5.0 6.2 32.8 8.5
UNICORN CLIP 5.7 37.0 7.7 6.3 35.4 9.2

Table 4: Results of DVC on YouCook2 (val) and Activi-
tyNet Captions (val_1 and val_2).

der both settings of ground truth or learned pro- 484

posals. It further showcases the strong adaptation 485

of LMMs to downstream tasks through instruction 486

tuning with high-quality instruction-following data. 487

488Dense video captioning. We generate dense video 489

captions following the procedure in Section 3.1 and 490

evaluate the performance in Table 4. It can be ob- 491

served that our method takes the lead among the 492

compared approaches, including Vid2Seq which 493

leverages language models to predict captions and 494

timestamps simultaneously. These promising re- 495

sults also validate our divide-and-conquer strategy 496

for dense video captioning. Such an inference 497

design makes the training more efficient without 498

learning on redundant and lengthy DVC data again 499

while still achieving competitive results. 500

4.3 Ablation Studies 501

We conduct ablation studies to analyze effects of 502

the key components in UNICORN, including train- 503

ing strategies, the choice of time tokens, and vari- 504

ous model designs. We evaluate on QVHighlights 505

(val) for moment retrieval and ActivityNet Cap- 506

tions (ae-test) for video paragraph captioning. Ad- 507

ditional analysis including base model selection 508

can be found at Appendix D. 509

Training strategies. We study the effects of train- 510

ing strategies for UNICORN. Specifically, three 511

strategies are considered: single-task & single 512

dataset, single task & multi-dataset, and multi- 513
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(a) Comparison of training strategies.

Training Setup QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

Single-task, single-dataset 66.3 51.5 42.8 33.6 16.4
Single-task, multi-dataset 68.2 52.3 44.8 34.6 16.9
Multi-task, multi-dataset 69.5 54.4 45.3 34.8 17.3

(b) The number of frames.

#frames QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

25 61.5 37.4 35.0 33.4 16.9
50 65.4 47.9 41.4 34.5 17.0
75 69.5 54.4 45.3 34.8 17.3
100 67.8 52.8 44.7 34.6 17.3

(c) LoRA & temporal modeling.

LoRA Temporal QVHighlights ActivityNet
modeling R@0.5 R@0.7 mAP C M

✗ ✗ 60.6 36.4 33.2 23.0 16.0
✓ ✗ 66.7 49.2 39.8 34.4 17.2
✗ ✓ 65.5 47.0 40.4 27.6 16.8
✓ ✓ 69.5 54.4 45.3 34.8 17.3

Table 5: Ablation studies on training strategies and model designs of LoRA and temporal modeling.

task & multi-dataset. For the single-task version,514

we fine-tune two separate models with correspond-515

ing instructions tailored for moment retrieval and516

video paragraph captioning respectively, and select517

one representative dataset for each task for eval-518

uation. For the single-dataset version, we train519

only on the training split of the evaluation dataset520

(i.e., QVHighlights for moment retrieval and Activ-521

ityNet Captions for video paragraph captioning)522

We report detailed results in Table 5a. By in-523

troducing datasets from different domains for the524

same task, we can improve the model’s capability525

on the single dataset. Besides, in contrast to tra-526

ditional multi-task training strategies, instruction527

tuning on various descriptions works as a unified528

approach to integrate different tasks and can even529

boost the performance from understanding a video530

from multiple perspectives. Meanwhile, it is more531

convenient to store only one model to accomplish532

distinct tasks, which narrows the gap from con-533

structing a general-purpose foundation model.534

Time tokens R@0.5 R@0.7 mAP

Dedicated 64.1 48.2 40.7
Original vocab 66.3 51.5 42.8

Table 6: Different time token.

Time tokens. We535

can either introduce536

new dedicated time537

tokens or directly538

use the digits in the original vocabulary to rep-539

resent time. We investigate the impact of the two540

strategies in the single-task, single-dataset setup541

on QVHighlights in Table 6. We observed that542

the original vocabulary performs better than new543

dedicated tokens, which indicates the knowledge544

of digits in LLM can be readily transferred to our545

tasks. Meanwhile, new tokens would introduce ex-546

tra training overheads and increase the number of547

trainable parameters by 262M, more than double548

of the original value, see details in Appendix D.549

Number of frames. By default, we evenly sample550

75 frames from a video as model inputs. In Table551

5b, we study the impact with #frames of 25, 50,552

75, and 100. The performance generally improves553

when we adopt more frames while it saturates or554

even gets worse around 100 frames. Since the555

videos in the datasets we studied are usually not556

very long (e.g., videos in QVHighlights are on av-557

erage 150 seconds long), we hypothesize that 75558

frames are enough to cover the semantic informa- 559

tion needed for the tasks. We report more results 560

about #frames in Appendix D. 561

LoRA. We use a parameter-efficient fine-tuning 562

method LoRA to fine-tune the LLM of UNICORN. 563

In Table 5c, LoRA has been proven effective in 564

boosting performance for downstream tasks (row 565

1 vs. 2 and row 3 vs. 4). It is expected that frozen 566

LLM would not work properly as we have assigned 567

new meanings to original digit tokens to represent 568

discrete time bins, and LoRA training mitigates the 569

issue without tuning the whole LLM intensively. 570

Temporal modeling. Since our model is adapted 571

from image-based InstructBLIP, we include an ad- 572

ditional module with self-attention layers to incor- 573

porate temporal information for videos in Figure 574

3. As shown in Table 5c, when temporal modeling 575

is enabled from average pooling to self-attention 576

interaction (row 1 vs. 3 and row 2 vs. 4), there is 577

substantial improvement in moment retrieval and 578

paragraph captioning, indicating the necessity of 579

this module for temporal video-language tasks. 580

4.4 Auto Annotation of HowTo100M 581

Thanks to the generalization of LMMs, the model 582

to handle temporal video-language tasks can be 583

deployed on unseen public internet videos such as 584

HowTo100M (Miech et al., 2019). These videos 585

are paired with auto speech recognition (ASR) tran- 586

scripts, a majority of which are not visually and 587

temporally aligned (Miech et al., 2020; Tang et al., 588

2021; Han et al., 2022). Since our model is ca- 589

pable of generating dense captions, it is promis- 590

ing to leverage UNICORN for annotating the 591

dataset automatically. We use our trained model 592

to densely caption a subset of 240K videos from 593

HowTo100M (Han et al., 2022) and denote the 594

dataset as HTM-UNICORN. We anonymize names 595

with their pronouns and prompt the model not to 596

generate offensive responses. We compare it with 597

two variants with the same set of videos, HTM- 598

ASR (Miech et al., 2019) with original ASR tran- 599

scripts, and HTM-AA (Han et al., 2022) which 600

has been aligned temporally via an automated pro- 601

cess. Note that UNICORN can output diverse cap- 602
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0:00 0:20 0:27 0:49 1:20 1:36 1:45 2:22 2:53

A woman is seen speaking to the camera and 
leads into her holding up various objects

She then holds up a piece of clay and 
begins creating an egg out of the clay

She paints the egg with several 
colors using a brush.

More eggs are shown 
hanging on a string

Input
Video

HTM-
UNICORN Various pictures of clay eggs are shown 

followed by a woman speaking to the camera.
The woman then begins drawing on the clay and ends with her 
showing off the product.

Several different colored clay eggs 
are shown hanging from the string.

She shows how she makes the clay eggs into necklace.

She ties them onto a string 
and hangs them up.

My name is Anna and 
I make DIY videos 
about fashion lorraine

Each egg is the combination of 
two colors to make the blue egg

You let the paint dry and then 
take web cord and tie two notesHTM-AA

The eggs are made out of
air drying clay. You can 
use some water to make

Add an eye pin and let them dry 
completely. Each egg is the combination 
of two colors to make the blue egg

Tell me which one 
is your favorite. 
I’ll see you soon

HTM-ASR
My name is Anna and 
I make DIY videos 
about fashion lorraine

You let the paint dry 
and then take web 
cord and tie two notes

…

Timestamp

Figure 2: Comparison among captions from HTM-ASR, HTM-AA, and UNICORN respectively. For HTM-
UNICORN, we show three sets of generated captions via beam search, coded with different colors.

Dataset #queries Zero-shot Fine-tuning
R@0.5 R@0.7 mAP R@0.5 R@0.7 mAP

InstructBLIP — — — — 66.3 51.5 42.8
HTM-ASR (Miech et al., 2019) 5.0M 7.7 2.8 1.9 63.5 48.3 40.3
HTM-AA (Han et al., 2022) 3.3M 13.0 4.8 3.5 65.8 50.6 42.1
HTM-UNICORN 690K 44.2 26.4 26.0 68.9 53.6 45.0
HTM-UNICORN ×2 1.4M 47.5 30.8 29.9 69.5 54.0 45.2
HTM-UNICORN ×3 2.1M 50.0 32.7 30.4 70.2 54.6 45.5

Table 7: Zero-shot and fine-tuning moment retrieval
evaluation on QVHighlights (val). HTM-UNICORN
×n indicates we generated n sets of captions for a video.

tions using beam search (Vijayakumar et al., 2016),603

which can increase the training data size and as a604

result improve model performance with more data.605

In Figure 2, we present an qualitative compar-606

ison of three variants. Our HTM-UNICORN is607

the best aligned with the input video both visu-608

ally and temporally, compared with HTM-ASR609

and HTM-AA. In addition, captions from different610

sets can complement each other, leading to more611

comprehensive descriptions of the video. Quan-612

titatively, we use three HowTo100M variants to613

pre-train the model for moment retrieval, and eval-614

uate on QVHighlights under zero-shot and fine-615

tuning settings. We convert these datasets into the616

instruction-following format described in Section617

3.1, and train the model from the same initializa-618

tion. In Table 7, we observe that our automatically619

annotated HTM achieves superior zero-shot perfor-620

mance, which shows the better alignment of mo-621

ments and timestamps. For fine-tuning, we notice622

that performance even degrades when pre-trained623

on HTM-ASR and HTM-AA, potentially due to624

data noise, while the model pre-trained on HTM-625

UNICORN outperforms other variants, reflecting626

the high quality of the generated dataset.627

Besides, we follow (Han et al., 2022) to conduct628

end-to-end representation learning with an Info-629

NCE loss (Miech et al., 2020). After contrastive630

pre-training, we evaluate video representations by631

PT Dataset Backbone UCF101 HMDB51 K400

HTM-ASR (Miech et al., 2020) S3D 82.1 55.2 55.7
HTM-AA (Han et al., 2022) S3D 83.2 56.7 56.2
HTM-UNICORN S3D 84.1 57.7 56.6

Table 8: Linear probing accuracy for action recognition.

linear probing on three action recognition datasets, 632

UCF101 (Soomro et al., 2012), HMDB51 (Kuehne 633

et al., 2011), and Kinetics-400 (K400) (Kay et al., 634

2017) in Table 8. UNICORN achieves the highest 635

accuracy on all three datasets, which again demon- 636

strates the best quality of our generated captions. 637

Captions generated from our automated annota- 638

tion pipeline has shown to be better than noisy web 639

data both qualitatively and quantitatively. As data 640

quality and quantity are crucial for the performance 641

of large models (Zhou et al., 2024; Ji et al., 2023; 642

Liu et al., 2023a), we hope such a pipeline could be 643

useful for empowering the development of future 644

large multimodal models. 645

5 Conclusion 646

In this paper, we propose a unified causal video- 647

oriented language modeling framework UNICORN 648

to address temporal video-language tasks. By fine- 649

tuning on instruction-following data constructed 650

from existing datasets, our model achieves out- 651

standing performance on various downstream tasks 652

including moment retrieval, video paragraph cap- 653

tioning and dense video captioning. We further 654

show that UNICORN can be leveraged in automatic 655

annotation on internet videos such as HowTo100M 656

for semantically- and temporally-aligned captions. 657

These captions can be used to improve video- 658

language model performance against ASR ones. 659

In conclusion, UNICORN paves the way towards 660

a general-purpose foundation model that explicitly 661

considers temporal information. 662
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6 Limitations663

Currently, UNICORN is good at localizing an event664

which only appears once in the video, but would be665

confused when an event happens more than once.666

This is due to the training data mostly have events667

appearing once. Future work can be collecting data668

with events that appear more than once to improve669

models’ ability on these scenarios.670
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A Societal Impact927

Similar to many data-driven methods, the predic-928

tions from our model might be inaccurate and bi-929

ased towards the distribution of data on which it is930

trained on. Therefore, users should not completely931

rely on the model in real-world scenarios.932

B Instruction Templates933

We provide the list of instruction templates for mo-934

ment retrieval and video paragraph captioning re-935

spectively in Table 9 and Table 10.

• “Please predict start and end time of the fol-
lowing moment."

• “Can you tell me the time window of this
event?"

• “What is the location of the moment?"

Table 9: The list of instructions for moment retrieval.

936

• “Provide a detailed description of the given
video, capturing its key moments."

• “Describe the following video in detail, includ-
ing the actions and scenes."

• “Clarify the contents of the displayed video
with great detail, focusing on its progression."

• “Offer a thorough analysis of the video, dis-
cussing its various elements and storyline."

Table 10: The list of instructions for video paragraph
captioning.

C Datasets937

In this section, we present more details about938

datasets used for both instruction-tuning and evalu-939

ation. An overview of statistics of training data940

is presented in Table 11. We mix all samples941

of the same task across datasets and obtain two942

large training sets: one for moment retrieval SMR943

with |SMR|=71829 video-query pairs, and the other944

for paragraph captioning SVPC with |SVPC|=16533945

videos. These datasets are introduced comprehen-946

sively below.947

QVHighlights (Lei et al., 2021). This dataset948

includes 10,148 trimmed videos with an average949

length of 150 sec that covers daily vlogs, travel950

vlogs, and news events scenarios. There are in total951

10,310 queries associated with 18, 367 moments.952

Following (Lei et al., 2021), we use train split for953

Dataset Domain #Videos #Queries MR VPC

QVHighlights Vlog 7100 12803 ✓ ✗

Charades-STA Activity 5336 12404 ✓ ✓

ActivityNet Captions Activity 10009 37421 ✓ ✓

Youcook2 Instruction 1188 9201 ✓ ✓

Table 11: Statistics of training data.

instruction tuning of moment retrieval, test split for 954

evaluation, and val split for ablation studies. The 955

license is Attribution-NonCommercial-ShareAlike 956

4.0 International and our usage is consistent with 957

its license. 958

Charades-STA (Gao et al., 2017). The dataset 959

contains 6,672 videos with an average duration of 960

30.6 sec and 16,128 moment/caption pairs. Each 961

video is annotated with 2.4 segments on average. 962

We use train split for instruction tuning and test for 963

evaluation. The license is License Non-Commercial 964

Use and our usage is consistent with its license. 965

ActivityNet Captions (Krishna et al., 2017). 966

The dataset contains 14,934 untrimmed videos of 967

various human activities from YouTube. On aver- 968

age, each video lasts 120s and is annotated with 969

3.7 temporally-localized sentences. The dataset is 970

split into 10,009 and 4,925 videos for training and 971

validation, respectively. train split is included in 972

instruction tuning for both moment retrieval and 973

video paragraph captioning. The validation set has 974

two independent dense video captioning annota- 975

tions (val_1 and val_2). For moment retrieval, we 976

evaluate on val_2 according to prior work (Yan 977

et al., 2023). For video paragraph captioning, we 978

report results on the ae-test split following (Lei 979

et al., 2020a; Zhou et al., 2019). For dense video 980

captioning, we use both val_1 and val_2 for evalu- 981

ation, by computing the average of the scores over 982

each set for SODA_c and by using the standard 983

evaluation tool (Krishna et al., 2017) for all other 984

dense event captioning metrics. The license is not 985

specified by the original authors. 986

YouCook2 (Zhou et al., 2018a). It has 1,790 987

untrimmed videos of cooking procedures. On av- 988

erage, each video lasts 320s and is annotated with 989

7.7 temporally-localized sentences. The dataset is 990

split into 1,333 videos for training and 457 videos 991

for validation. We use train split for instruction 992

tuning and evaluate on val split. The license is MIT 993

License and our usage is consistent with its license. 994

Besides, we adopt a subset of HowTo100M (Han 995

et al., 2022) with 240K videos for automatic an- 996
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#frames QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

25 61.5 37.4 35.0 63.4 38.0 55.0 43.6 25.9 43.9
50 65.4 47.9 41.4 67.3 46.0 58.1 46.2 28.3 46.1
75 69.5 54.4 45.3 69.0 45.6 58.9 48.4 29.8 47.1
100 67.8 52.8 44.7 68.4 46.0 58.4 48.5 29.3 46.5

Table 12: Effects of the number of frames on moment retrieval.

LoRA Temporal modeling QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

✗ ✗ 60.6 36.4 33.2 62.3 36.8 55.0 43.1 25.9 43.8
✓ ✗ 66.7 49.2 39.8 67.6 44.5 58.2 44.3 27.5 45.1
✗ ✓ 65.5 47.0 40.4 66.8 43.4 57.3 44.9 27.7 45.3
✓ ✓ 69.5 54.5 45.3 69.0 45.6 58.9 48.4 29.8 47.1

Table 13: Effects of LoRA and temporal modeling on moment retrieval.

notation. It is a large-scale dataset of narrated997

videos with an emphasis on instructional videos998

where content creators teach complex tasks with999

an explicit intention of explaining the visual con-1000

tent on screen (Miech et al., 2019). The license is1001

not specified by the original authors. For evalua-1002

tion, we leverage three action recognition tasks:1003

UCF101 (license not specified) (Soomro et al.,1004

2012) , HMDB51 (CC BY 4.0) (Kuehne et al.,1005

2011) and Kinetics-400 (CC BY 4.0) (Kay et al.,1006

2017). Our usage is consistent with their licenses.1007

D Additional Results1008

Additional experimental results are reported in this1009

section, including the analysis of dedicated time1010

tokens, effects of the number of frames, effects of1011

LoRA and temporal modeling, and the influence1012

of different pre-training data ratios. We only run1013

instruction tuning once and all results in Section 41014

and this section are from this single model.1015

Extra overheads of dedicated time tokens. As1016

mentioned in Section 4.3, new dedicated time to-1017

kens would introduce a considerably larger number1018

of trainable parameters. In particular, given the1019

current implementation of LLMs, it is challenging1020

to train new tokens only without affecting the rest1021

of parameters in the embedding layer and the fi-1022

nal output layer. Thus, we take an alternative to1023

tune all parameters in these two layers: given the1024

original vocabulary size of 32000, the number of1025

new time tokens of 75, and the hidden dimension1026

of 4096, the total number of trainable parameters is1027

computed as: (32000 + 75)× 4096× 2 = 262M.1028

Number of frames. In addition to results pre- 1029

sented in Table 5b, we show more complete exper- 1030

iments on moment retrieval and video paragraph 1031

captioning in Table 12 and Table 14. The trends 1032

are consistent with what we observed in Table 5b, 1033

where 75 frames are enough to cover all the seman- 1034

tic information needed for these two tasks. 1035

#frames YouCook2 ActivityNet
C M C M

25 29.2 16.9 33.4 16.9
50 34.3 17.8 34.5 17.0
75 37.8 18.3 34.8 17.3

100 37.4 18.5 34.6 17.3

Table 14: Effects of the number of frames on video
paragraph captioning.

LoRA and temporal modeling. We present 1036

more thorough and comprehensive experimental 1037

results to understand the effects of LoRA and tem- 1038

poral modeling. In Table 13 and 15, we can con- 1039

clude that both LoRA training and temporal mod- 1040

eling contribute to performance gains in moment 1041

retrieval and video paragraph captioning.

LoRA Temporal modeling YouCook2 ActivityNet
C M C M

✗ ✗ 25.7 16.9 23.0 16.0
✓ ✗ 32.3 17.7 34.4 17.2
✗ ✓ 26.5 17.4 27.6 16.8
✓ ✓ 37.8 18.3 34.8 17.3

Table 15: Effects of LoRA and temporal modeling on
video paragraph captioning.

1042
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Base model selection. It should be emphasized1043

that UNICORN is a generic framework to which1044

we can flexibly utilize various LMMs as the base1045

model with a simple re-design to take video in-1046

puts. We analyze the effects of adopting different1047

base models like LLaVA (Liu et al., 2023b) here1048

to justify our framework design. Specifically, we1049

instruction-tuned LLaVA for moment retrieval and1050

video paragraph captioning. Results are shown in1051

Table 16 and it is expected that the performance of1052

LLaVA variant drops compared with our Instruct-1053

BLIP variant, due to the information loss from 2561054

frame-level tokens pooled to one token. Besides,1055

InstructBLIP has a QFormer while LLaVA only1056

uses a simple projection layer, which may be insuf-1057

ficient to align video and language. We also added1058

an experiment with InstrutBLIP-13B and observed1059

performance gains with a larger model size.1060

Base model QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

LLaVA-7B (Liu et al., 2023b) 66.3 51.5 42.8 33.6 16.4
InstructBLIP-7B (Dai et al., 2023) 68.2 52.3 44.8 34.6 16.9

InstructBLIP-13B (Dai et al., 2023) 69.5 54.4 45.3 34.8 17.3

Table 16: Comparison of different base models.

Ratios of PT dataset. We also alter the ratio of1061

pre-training dataset and record corresponding per-1062

formance in Figure 3. With only 25% of the videos,1063

the model using UNICORN captions far outper-1064

forms other counterparts trained on all videos,1065

demonstrating the effectiveness of our captions1066

compared to ASR captions and its de-noised ver-1067

sion. Meanwhile, UNICORN can generate multiple1068

captions for the same video, with more sets of cap-1069

tions, we see a consistent performance gain from1070

the model. Notably, when using 3 sets of captions1071

(×3), the performance is improved from 44.2 to1072

50.0 for R@0.5.1073

25% 50% 75% 100%
Data Ratio

10

20

30

40

50

R@
0.

5

×3
×2

Moment Retrieval on QVHighlights
HTM-ASR
HTM-AA
HTM-UNICORN

Figure 3: Zero-shot moment retrieval on QVHighlights
(val) under different data ratios.

14


	Introduction
	Related Work
	Method
	Instruction-Following Data Generation
	Model Architecture
	Training and Inference

	Experiments
	Experimental Setups
	Results
	Ablation Studies
	Auto Annotation of HowTo100M

	Conclusion
	Limitations
	Societal Impact
	Instruction Templates
	Datasets
	Additional Results

