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Abstract

As semantic parsing and complex reasoning are
fundamental to tackling complex question an-
swering over knowledge bases (KBQA), the
growing trend is to leverage large language
models (LLMs), which exhibit outstanding se-
mantic understanding and logical reasoning
abilities, for this task. However, most of the ex-
isting LLM-based KBQA systems still operate
as black boxes, unable to provide explanations
for the derived results, motivating us to develop
an interpretable and trustworthy KBQA system.
In this paper, we innovatively introduce ques-
tion templates as intermediary outcomes for the
logical reasoning of LLMs to make the multi-
step reasoning process of the existing KBQA
system interpretable. Specifically, our method,
named Keging, first decomposes complex ques-
tions into simpler sub-questions according to
predefined question templates using LLMs, and
then addresses each sub-question by retrieving
relevant information from knowledge bases or
performing logical reasoning to achieve the fi-
nal answer. To make Keging more practical and
trustworthy, we develop an automatic pipeline
for question template construction to scale up
the number of question templates at a low cost,
and also incorporate the uncertainty estima-
tion technique to provide confidence levels for
the reasoning answers. Extensive experiments
demonstrate that Keging can achieve compa-
rable performance to previous state-of-the-art
methods and has better interpretability by ren-
dering a step-by-step reasoning process.

1 Introduction

Aimed at locating the answer candidates for nat-
ural language questions from a specified knowl-
edge base (KB), knowledge base question answer-
ing (KBQA) offers an attractive alternative for
users to access vast amounts of structured infor-
mation within large-scale KBs (Bollacker et al.,
2008; Hoffart et al., 2011; Vrandeci¢ and Krotzsch,
2014; Lehmann et al., 2015), and thus has gained

widespread attention in both academic and indus-
trial applications. As answering simple factoid
questions becomes increasingly straightforward
(Bordes et al., 2015; Hu et al., 2017; Petrochuk
and Zettlemoyer, 2018) due to the advancements
in deep neural models (Yin et al., 2016; Miller
et al., 2016; Hao et al., 2017; Yu et al., 2017),
the focus has shifted towards tackling complex
questions that require multi-hop reasoning (Trivedi
et al., 2017; Luo et al., 2018; Talmor and Berant,
2018; Cui et al., 2019; Cao et al., 2020), bringing
new challenges of requiring sophisticated reason-
ing. Over the past years, approaches to solving
complex KBQA have evolved into two dominant
paradigms: 1) semantic parsing (SP)-based meth-
ods (Yih et al., 2015; Lan and Jiang, 2020; Chen
et al., 2021c¢; Ye et al., 2022; Das et al., 2021) aim
to translate the question into a logical form that
can be executed against KBs, which typically relies
on a powerful semantic parser implemented by ad-
vanced neural models; 2) information retrieval (IR)-
based methods (Sun et al., 2018; He et al., 2021;
Oguz et al., 2020) focus on extracting a question-
related subgraph from KBs and subsequently per-
form complex reasoning over this subgraph.
Recently, with large language models (LLMs)
(Brown et al., 2020; Chen et al., 2021a; Chowdhery
et al., 2022) exhibiting outstanding capabilities in
various reasoning-related tasks (Wei et al., 2022;
Wang et al., 2022), there is an emerging trend to
leverage them for KBQA. Capitalizing on the excel-
lent generalization ability of LLMs to perform zero-
shot and few-shot learning, a straightforward ap-
proach under the IR paradigm is to prepend the re-
trieved facts (i.e., triples in the subgraph) from KBs
to the target question (Baek et al., 2023), thereby
forming a prompt to be forwarded to LLMs for
generating the answer. Another approach under
the SP paradigm leverages in-context learning to
enable LLMs to generate valid logical forms for the
target question by imitating a few demonstrations



(Gu et al., 2022; Li et al., 2023a; Tan et al., 2023).
Both of these schemes are training-free and versa-
tile across different knowledge domains, yet their
performance cannot rival SOTA results without ex-
plicitly adapting LLMs to the formal structure of
KBs. Therefore, some recent studies (Luo et al.,
2023; Xu et al., 2023; Li et al., 2024) tend to focus
on aligning the inherent knowledge of LLMs with
the structured knowledge of KBs by fine-tuning
LLMs on a moderate quantity of data consisting
of pairs of complex questions and their formal pro-
grams. These fine-tuning based methods usually
perform more competitively and generalize better
to novel schema items (e.g., relations) in KBs.
Despite achieving promising performance, the
black-box nature of the working mechanisms be-
hind these LLM-based approaches makes the rea-
soning process difficult to interpret. This hinders
users from interacting with them to gain deeper
insights into the decision-making process. In ad-
dition, the lack of confidence estimation for the
deduced answers diminishes the reliability of these
systems when deployed in real-world applications.
Aimed at constructing an interpretable and trust-
worthy LLM-based KBQA system, we innovatively
introduce question templates as intermediary out-
comes for reasoning. This novel KBQA pipeline
enables the decomposition of each complex ques-
tion into a series of sub-questions and then we can
perform logical reasoning on the knowledge graph
by adjusting the logical chains used to solve these
sub-questions, ultimately deriving the answer. Our
contributions are summarized as follows:

* To make the multi-step reasoning process of
the KBQA system interpretable, we innova-
tively introduce the question templates as in-
termediary outcomes for logical reasoning
of LLMs and develop a novel interpretable
KBQA system, named Keging.

* To scale up the number of question templates
and make it align with the huge amount of
logical chains in KG, we develop an automatic
pipeline to construct a collection of question
templates that facilitate the mapping of natural
language queries to the logical chains.

* We introduce the uncertainty estimation tech-
nique into Keging to provide confidence levels
for the reasoning answers, thereby making the
reasoning process more trustworthy and facil-
itating friendly interaction with users.

* Abundant experiments demonstrate the supe-
riority and effectiveness of our method over
previous LL.M-based approaches.

2 Related work

Existing literature (Lan et al., 2022) typically cate-
gorizes KBQA approaches into two mainstreams,
i.e., semantic parsing-based (SP-based) methods
and information retrieval-based (IR-based) meth-
ods. Due to the page limitation, we have moved
this section to the Appendix A.

3 Keqing for Knowledge base Question
answering

3.1 Motivation of Keqing

The motivation of our work includes two folds:

1) Align the reasoning logic of LLMs with the log-
ical chains of knowledge graph. To align the inher-
ent knowledge of LLMs with the human-induced
knowledge in knowledge graphs (KGs), existing
methods either convert KGs into corpora, aiming
for LLMs to acquire underlying structured knowl-
edge through supervised fine-tuning (Oguz et al.,
2020), or employ demonstration to enable LLMs to
mimic the reasoning logic of exemplars (Li et al.,
2023a). However, neither of these two approaches
can guarantee an exact match between the reason-
ing logic of LLMs and the logical chains of KGs.
This is because LL.Ms without logical alignment
often treat multi-hop questions as single-hop ones
or unnecessarily break down single-hop questions
into multiple hops. While this may not always
affect the inference result, it can lead to inconsis-
tencies with human-induced reasoning logic and
reduce interpretability.

Thus, to achieve logical alignment at the seman-
tic level, rather than at the symbolic level where the
reasoning logic in SQL form could be difficult for
LLMs to understand (Cheng et al., 2022), we intro-
duce question templates as intermediary outcomes
for reasoning so that each complex question can be
decomposed into a series of sub-questions. Then,
by adjusting the logical chains of solving these
sub-questions, we can perform logical reasoning
on KG and ultimately derive the answers. The pri-
mary challenge we face is scaling up the number of
question templates to make it align with the huge
amount of logical reasoning chains in KG, which
is also the issue to be addressed in Section 3.3.

2) Trustworthy/Interpretable LLM-based KBQA
system. Existing LLM-based KBQA systems heav-
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Based on the inference results, the director of Written on the Wind is Douglas Sirk. The movies that Douglas Sirk directed include Shockproof, All
That Heaven Allows, Magnificent Obsession, A Time to Love and a Time to Die, There's Always Tomorrow, The Tarnished Angels, Meet Me at the Fair,
Lured, Sleep, My Love, All | Desire, Battle Hymn, Imitation of Life, and Written on the Wind. The actors who starred in these movies are Cornel
Wilde, Claudette Colbert, Boris Karloff, Rock Hudson, Don Ameche, Robert Cummings, John Gavin, Patricia Knight, Charles Coburn, Lucille Ball, Barbara

L Stanwyck, Lauren Bacall, Dorothy Malone, Rochelle Hudson, and Sandra Dee.
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Figure 1: The workflow of Keging applied for KBQA mainly consists of four stages: #1 Question Decomposition: decompose a
complex question into several sub-questions similar to predefined question templates; #2 Knowledge Retrieval: retrieve candidate
entities on the KG by aligning decomposed sub-questions to pre-collected logical chains; #3 Candidate Reasoning: select
the correct answer from the candidate answers to solve each sub-question; #4 Response Generation: generate response by

summarizing multiple rounds of questions and answers.

ily rely on the black-box logical reasoning of LLMs
(Tan et al., 2023), which makes it difficult to inter-
pret the reasoning process or even to provide confi-
dence levels for the inference results. Moreover, if
the causes of errors in KBQA system remain unin-
terpretable, e.g. the LLM only fails to understand
the solution of a particular step in a multi-step rea-
soning chain, it becomes impossible for humans to
make targeted adjustments to the current KBQA
system, and current methods tend to continuously
increase training data in hopes that the LLM will be
able to perform automatic corrections (Gu and Su,
2022), which usually leads to a significant waste of
computational resources.

As for Keging, by introducing question templates
for logical reasoning and then mapping each sub-
question to the corresponding logical chain, it can

intuitively explain the reasoning process of KBQA
to users. This also facilitates user error identifica-
tion, allowing them to determine whether errors
are due to faults in LLMs’ semantic-level logical
reasoning or inappropriate logical chain design for
the sub-questions. Moreover, Keging can also pro-
vide confidence levels for the reasoning answers
through the uncertainty estimation techniques in
Section 3.3, making it more trustworthy.

3.2 Workflow of Keqging

Under the scenario of KBQA, given a natural
language query ¢, the target of KBQA is to re-
trieve an answer list A from a symbolic KG de-
noted as KC for the query q. Assuming a training
set D = {(qi, A;)}Y, consisting of N question-
answer pairs, an ideal KBQA model is supposed
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Figure 2: The pipeline of aligning decomposed sub-questions to executable logical chains on KG, where each sub-question will
be mapped to a set of logical chains corresponding to top-K relevant question templates.

to learn reasoning patterns (a.k.a. logical chains),
each of which is a subset of KG edges, from given
QA pairs, and then select reasonable logical chains
to deduce the answer to the query ¢ (Lan et al.,
2021). Thus, as shown in Fig. 1, the workflow of
Keging mainly consists of four modules, specif-
ically Question Decomposition, Knowledge Re-
trieval, Candidate Reasoning, and Response Gen-
eration, and we will introduce the technical details
of each module in the following parts.

1) Decompose complex questions through slot fill-
ing. The advantages of introducing the module of
Question Decomposition are two folds: 1) com-
pared to the code form of SQL instructions, the
text form of decomposed sub-questions are much
easier to be learned by LLMs, most of whose pre-
training corpus is still in text form (Touvron et al.,
2023; Chiang et al., 2023); 2) for each practical
question in our daily life, especially in the field of
math or science, multiple solutions could exist for
the same question, where sufficient pre-collected
logical chains for each question template can gen-
erate multiple potential answer candidates. As a
result, more tolerance could be provided for the
following reasoning procedure.

Formally, given a complex question (query) g;
from the user and a set of predefined sub-question
templates Q = {¢*)}X_ | the target of the Ques-
tion Decomposition module in Keging is to de-
compose the given query g; into 7' sub-questions
through the generation of LLMs, formulated as:

{g 3 = LLM(q), qiv € {dM}, ()

where the training objective of each sub-question
gi,t 1s to be exactly matched with one of K pre-
defined question templates. As the formulation of
prompt and instruction shown in Table 6, taking
the original question g; as the input query, LLMs
are finetuned to filling the slots of sub-questions
i+ by generation, as well as corresponding seed
entities and dependencies.
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Figure 3: The compound value types (CVTs) of the Freebase
dataset, where each triplet (s, 7, 0) can be converted to text by
serializing their text surface forms.

For instance, to solve the 3-hop MetaQA ques-
tion in Fig. 1, specifically “..., what other works the
director of Written on Wind has done and which
Jamous actors were in them?”, Keging is supposed
to answer the following questions sequentially: 1)
“who was the director of [mask]?”, 2) “[mask] was
the director of which movies?”, and 3) “who acted
in the movie [mask]?”. Besides, Keging also auto-
matically detects the seed entity ”Written on Wind”
and then forward it coupled with the first question
“who was the director of [mask]?” to the following
procedures to obtain the answer entities. These
answer entities are treated as seed entities of the
second question ”[mask] was the director of which
movies?”. Then, the final answers are iteratively
acquired based on the question dependency.

2) Retrieve candidate entities on KG. Considering
it is not guaranteed that the generated sub-questions
will exactly match the predefined question tem-
plates during the inference phase, we introduce an
additional question-matching procedure to fill this
gap, as shown in Fig. 2. With the same notation
in Eq. (1) denoting the generated sub-questions
as {gi+}1_, and predefined question templates as
{q™}K_ |, the template-matching process aims to
map each sub-question g; ; to its most relevant ques-
tion templates, resulting in a set of logical chains
to be executed on the KG for retrieving potential
answer candidates.

Formally, inspired by recent works (Das et al.,
2022), we propose to use RoBERTa (Liu et al.,
2019), a popular variant of BERT (Devlin
et al.,, 2018), to encode both the decomposed



sub-questions {g;:+}7_; and question template
{q(’“)}kK:1 to the same latent space. Subsequently,
we measure their semantic distances with cosine
similarity, specifically:

hqi’t = BERT(qi7t>, hq(k) = BERT(q(k))7

(k)) B hq thq(k)

= edl ()
g o[ rgee ]

Sim(git, q
According to the obtained similarity scores, we
can rank the relevance between {¢*)} X and ¢, ,,
and assign the most relevant question template to
qi,t- Noticeably, selecting top-K relevant question
templates for each sub-question seems more attrac-
tive due to the benefit of extending the scope of
retrieved answer candidates, but at the cost of in-
creasing the difficulty of the following reasoning
procedure. Then, for each question template ¢(*),
we will collect a set of logical chains from KBQA
dataset to answer this question, where the quality
of the projection from question template to the set
of collected logical chains will directly influence
the performance of Keqing.

After obtaining the seed entity and matching the
decomposed sub-questions to the corresponding
logical chains, the target of Knowledge Retrieval
module is to search the answer candidates along
the logical chains on the KG. Formally, given the
sub-question g; ; marked with seed entity s; ; and

the set of collected logical chains R; ; = { 1(12 lLllt,

where each rl(t) defines an executable single hop

reasoning path on the KG. Starting from the seed

entity s, we can perform logical reasoning along

( ) and obtain the resulting triplets:

(s,r,0) := (subject, relation, object),  (3)

which represents that the subject has the rela-

tion to the object, resulting in a set of triplets

including potential answer candidates denoted as
t—{(szh zt? Elz) 11

3) Answer questions with retrieved candidate enti-

ties. With the retrieved answer candidates C; ; =

{(sit,r z t, o; t)}l in hand, the target of Candi-
date Reasomng is to select the correct entities to
answer the current question g; ¢, where the chal-
lenge lies in how to enable LL.Ms to understand the
triplets and process the reasoning procedure.

The most straightforward way is to directly con-
vert the triplet into text using simple heuristics,
such as serializing the triplet (s, r, 0) by concate-
nating the text surface forms of subject, relation

and object, as shown in Fig. 3. Then, the reason-
ing capability of LLMs can be used to select the
correct answers. However, in practice, we find that
even the most advanced LLMs, including Chat-
GPT, will often overlook certain correct answer
candidates. Therefore, we employ LLMs to selec-
tively identify the most reliable reasoning logic,

denoted as 7“@ o from numerous executable logical

Thus given the answer candi-

dates C; ¢ = { Sit,T ”, Elt)) ;-1 and input ques-

tion ¢; ¢, Keging is forced to read the context by
adding the prompt on the front, as shown in Ta-
ble 6. Subsequently, the correct answers selected
by LLMs can be formulated as

chains {r } -

i t = LLM(QZ t‘Cz t = {(Siﬂfv rz(,lt)7 059) ZL:ZI)7
)
where Cfy = {(si iy, of)lrl} = ri 3} de-
notes the subset of retrieved answer candidates sat-
isfying the most reliable reasoning logic selected
by LLMs.

For the selection of LLMs to implement the Can-
didate Reasoning module, we can choose ChatGPT
due to its excellent capability of logical reasoning
to select correct answers from context and zero-
shot generalization to solve unseen questions. An-
other solution is finetuning open-source LLMs, fol-
lowing the same way as Question Decomposition,
which is more suitable for domain-specific KBQA.
4) Generate response by summarizing question
answers. After multiple rounds of questions and
answers, for each complex question ¢;, we obtain
the decomposed sub-questions {g;, t}t , and corre-
sponding generated answers {C t}t 1» which can
be treated as an execution log. To allow users to
understand the logic of KBQA more intuitively,
we introduce a Response Generation module to
summarize the inference process of Keging, by in-
troducing the prompt “with the task execution logs,
the Al assistant needs to describe the process and
inference results...” shown in Table 6, equipped
with the execution log as input. Finally, Keging can
generate a comprehensive response, as shown in
the response part of Fig. 1.

3.3 Technical Contributions

Incorporating question templates into the workflow
of the KBQA system, Keging is equipped with the
ability to explain the logical reasoning process to
users and facilitate error identification, as well as
provide confidence levels for the reasoning answers
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through the application of uncertainty estimation
techniques (Lin et al., 2023). In this section, we
will focus on elaborating the technical contribu-
tions of Keging in the following parts.

1) Manually intervened question template con-
struction pipeline. To scale up the number of
question templates to make it align with the huge
amount of logical reasoning chains in KG, we de-
velop a pipeline for manually intervened question
template construction, as shown in Fig. 4. The
target of the whole pipeline is to assign a suitable
question template ¢*) € Q to each logical chain
r¥) ¢ R on the KG, mainly including four stages:
1) Initialization: the initial pool is comprised of a
limited number of manually constructed pairs con-
sisting of logical chains and question templates; 2)
Construction: for each logical chain 7(*) in training
data, we select several semantically closest pairs
from the pool as demonstrations, and then utilize
ChatGPT to generate the corresponding question
template ¢(*) through in-context learning; 3) Eval-
uation: for each generated question template ¢(*),
we evaluate its similarity to the questions existing
in the training set. the generation of the template
highly matching with the question is considered as
successful. If not, it will be required to wait for
the next generation after the pool is updated. After
multiple iterations, most of templates that highly
match with questions in the training set can be gen-
erated successfully. Only a few failure templates
will be manually intervened and finally stored back
in the pool. 4) Extrapolation: for those logical
chains not present in the training set, if a similar
logical chain can be found in the pool, its question
template will be generated using ChatGPT. Other-
wise, the corresponding question template will be
manually constructed by humans.

2) Uncertainty estimation of KBQA process in Ke-
ging. Uncertainty estimation has become a popular

research direction for LLMs to make the gener-
ated responses trustworthy (Lin et al., 2023), but
few studies have been conducted in the field of
LLM-based KBQA systems. With the workflow
described in Section 3.2, for each complex question
qi, Keqing is able to decompose it into a series of
sub-questions with Question Decomposition mod-
ule, denoted as {g; +}7_,, and reach out an optimal
logical chain with Candidate Reasoning module,
denoted as {r*t}f 1> resulting in the final set of
answer candidates candidates C*T To measure
the confidence level of the final answer set, we
perform the uncertainty evaluation by repeatedly
executing the workflow of Keging. Assuming a
total of M times execution, the confidence level of
the set of inference results, denoted as C: g,,m), for
each execution can be assessed as follows:

Conf(C; *(m Z Sim( qlt , :(tm))
x Conf(r; (m)) 5)
where Sim(ql(T), T gm)) can be estimated with the

defination in Eq. (2) Since the question template

qZ gm) can be treated as a query of the logical chain

T gm) in semantic level, Conf(r; (tm)) can be di-
re7ctly provided by ChatGPT Whenyselectively iden-
tifying the most reliable reasoning logic in Eq. (4).
After M rounds of confidence level of KBQA pro-
cess estimation, denoted as {Conf(C; +(m )) 1>
we can sum up the confidence levels for the same
answer candidates and ultimately obtain the most

confident set of inference results.

4 Experiments

4.1 Experimental setup

Datasets. To evaluate the performance of Keging,
we have conducted experiments on three public



Method MetaQA

1-hop 2-hop 3-hop
KVMemNN (Miller et al., 2016) 96.2 82.7 48.9
VRN (Zhang et al., 2018) 97.5 89.9 62.5
GraftNet (Sun et al., 2018) 97.0 94.8 77.7
PullNet (Sun et al., 2019) 97.0 99.9 914
EmbedKGQA (Saxenaet al.,, 2020)  97.5 98.8 94.8
NSM (He et al., 2021) 97.2 99.9 98.9
CBR-SUBG (Das et al., 2022) 97.1 99.8 99.3
ChatGPT (Jiang et al., 2023) 61.9 31.0 43.2
StructGPT (Jiang et al., 2023) 94.2 93.9 80.2
KB-BINDER (Li et al., 2023a) 93.5 99.6 96.4
Keging-Llama2 (Ours) 98.4 99.9 99.6

Table 1: Performance comparison of different methods
the MetaQA benchmark (Hits@1 in percent).

on

Table 2: Performance comparison of different meth-
ods on the WebQSP benchmark.

Method F1
GraftNet (Sun et al., 2018) 62.8
QGG (Lan and Jiang, 2020) 74.0
ReTraCk (Chen et al., 2021b) 71.0
NSM (He et al., 2021) 69.0
CBR-SUBG (Das et al., 2022) 72.8
TIARA (Shu et al., 2022) 76.7
DecAF (Yu et al., 2022) 78.8
FlexKBQA-Codex (Lietal., 2023b)  60.6
Pangu-Codex (Gu et al., 2022) 68.3
Pangu-T5 (Gu et al., 2022) 79.6
KB-BINDER-Codex (Li et al, 74.4
2023a)

Keging-Llama2 (Ours) 78.2
Keging-ChatGPT (Ours) 82.3

Method Overall 11D Compositional  Zero-shot
EM F1 EM F1 EM F1 EM F1
QGG (Lan and Jiang, 2020) - 36.7 - 40.5 - 33.0 - 36.6
GloVE+Transduction (Guetal,, 2021) 17.6 184 50.5 51.6 164 18.5 3.0 3.1
GloVE+Ranking (Gu et al., 2021) 395 451 622 673 40.0 47.8 289 338
BERT+Transduction (Guetal,,2021)  33.3 36.8 51.8 539 31.0 36.0 25.7 293
BERT+Ranking (Gu et al., 2021) 50.6 58.0 599 67.0 455 53.9 48.6 557
RnG-KBQA (Ye et al., 2022) 68.8 744 862 89.0 63.8 71.2 63.0 69.2
DecAF (Yu et al., 2022) 684 788 84.8 899 734 81.8 58.6 723
TIARA (Shu et al., 2022) 73.0 785 884 912 664 74.8 73.3 80.7
Pangu (Gu et al., 2022) 737 799 82.6 87.1 749 81.2 69.1 76.1
KB-BINDER (Li et al., 2023a) 50.6 56.0 519 574 50.6 56.6 49.9 551
FlexKBQA (Li et al., 2023b) 62.8 694 713 758 59.1 65.4 60.6 68.3
Keging-Llama2 (Ours) 72.5 787 814 867 684 75.6 729 77.8

Table 3: Performance comparison of different methods on the GrailQA dev set.

KBQA datasets with varying levels of difficulty,
including MetaQA (Zhang et al., 2018), WebQues-
tionsSP (WebQSP) (Yih et al., 2016), and GrailQA
(Gu et al., 2021). A detailed description of these
datasets can be found in Appendix B.

Baselines. Among the baselines for compari-
son, we have included a diversity of competitive
KBQA methods, ranging from graph neural net-
work (GNN)-based systems to the ones capitalizing
on pre-trained language models; we inherit their
results from the paper directly with the same eval-
uation metric. Notably, the main competitors of
Kegqing are those approaches driven by LLMs such
as ChatGPT (Jiang et al., 2023), StructGPT (Jiang
et al., 2023), Pangu (Gu et al., 2022), KB-BINDER
(Liet al., 2023a), and FlexKBQA (Li et al., 2023b).

Evaluation Metrics. Following previous work
(He et al., 2021; Gu et al., 2022), we use Hits@1,
F1 score, and EM as our evaluation metrics, which
refer to accuracies of the single top-ranked answer,
coverage of all the answers, and strict exact-match

answer, respectively.

Implementation details. To achieve question de-
composition, we employed Llama2 (Touvron et al.,
2023), one of the most popular open-source LLMs,
as the base model and fine-tuned a version of 7 bil-
lion parameters with LoRA (Hu et al., 2021). We
set the rank  of LoRA to 16 and apply LoRA to the
query and value weights in attention, resulting in
about only 8 million trainable parameters. We train
different numbers of epochs for different datasets,
with an initial learning rate of 3e-4 adjusted by
the cosine scheduler. Appendix C provides more
implementation details.

4.2 Experimental results

In this section, we present an in-depth analysis of
our experimental results to illustrate the superiority
of Keging, mainly focusing on three questions:

1) Does Keqing perform competitively enough
compared to other KBQA methods? Table 1, Ta-
ble 2, and Table 3 show the performance compari-
son of different approaches on MetaQA, WebQSP,
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Figure 5: Correct and errors prediction results in the
GrailQA dataset.

and GrailQA, respectively. It can be found that
Keging consistently outperforms all baseline meth-
ods on MetaQA and WebQSP, demonstrating its
effectiveness in addressing complex KBQA tasks
requiring multi-step inference. Meanwhile, we
note in Table 2 that Keging-ChatGPT achieves bet-
ter perform- ance than Keging-Llama2, suggesting
that ChatGPT offers superior reasoning ability than
Llama?2 in deciding which logic chain can be used
to work out the answer to a sub-question.

As for the performance on GrailQA, we observe
from Table 3 that Keging-Llama?2 is on par with the
state-of-the-art results. Although Keging’s overall
score is slightly lower than Pangu, it yields bet-
ter performance in the zero-shot setting, which we
attribute to the fact that LLMs are more capable
of generalizing at the semantic level than at the
programmatic level. Therefore, decomposing com-
plex questions can generalize more effectively than
mapping them into logical forms.

2) Why use fine-tuned LLMs instead of the more
powerful ChatGPT to realize question decompo-
sition? As discussed in Section 3.1, fine-tuning
plays a crucial role in bridging the gap between
the internal knowledge of LLMs and the structured
knowledge of KG, with the objective that each of
the decomposed sub-questions can be addressed in
just one step of reasoning. However, since question
decomposition operates at the semantic level, one
can reasonably guess that the more powerful Chat-
GPT or GPT4 would perform equally well with the
benefit of in-context learning.

To test this hypothesis, we conduct the relevant
experiment, with the result displayed in Fig. 6.
Note that our fine-tuned Llama2-7B model just
utilizes a small subset (10%) of all training data,
surpassing both GPT-4 and GPT-3.5, even though
they draw on the in-context learning.

3) Does Keqing enjoy better interpretability and

r
Fintuned Llama2-7B (zero-shot)
In-Context Learning (4-shot)
In-Context Learning (4-shot)

1=}
S
T

Accuracy (%)
s o @
S 3 3
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Llama2-7B GPT-4 GPT-3.5

Figure 6: Comparison of decomposition performance
of different LLMs.

may be further improved by user feedback? To
prove the interpretability of Keging, we provide
case studies in Appendix F, which show the suc-
cessful reasoning paths of some questions involv-
ing different levels of generalization. In addition,
we also analyzed the different error types of Keging
on GrailQA, as exhibited in Fig 5. According to
the statistics, reasoning errors are the most com-
mon (12%) one among all errors, this is primarily
due to the LLM selecting the logical chain as the
final reasoning path based on confidence, which
leads to a diversification of reasoning paths and
increases the reasoning error rate. Retrieval errors
(7%) and decomposition errors (8%) appear in sim-
ilar proportions because these two errors are often
coupled; decomposition errors directly lead to re-
trieval errors. However, some logical chains with
retrieval errors can still answer zero-shot questions
in the test set, resulting in a slightly lower rate of
retrieval errors. Refining these major error cases
is promising for specifically improving Keging’s
performance.

More experimental results and analysis can be
found in Appendix E, F, and G.

5 Conclusion

In this paper, we present Keqing, a novel method
for developing an interpretable and trustworthy
KBQA system. Our approach begins by decompos-
ing complex questions into simpler sub-questions
using predefined templates, followed by employing
LLMs for logical reasoning. To enhance Keqing’s
practicality and credibility, we developed an auto-
matic pipeline for low-cost template construction
and introduced uncertainty estimation techniques
to assign confidence levels to reasoning answers.
Extensive experiments demonstrate that Keqing not
only matches the performance of state-of-the-art
methods but also offers superior interpretability.



6 Limitation

As discussed in Appendix, the performance of Ke-
ging on KBQA is still limited by a series of issues,
like the question decomposition and answer ex-
traction capability of used LLM, and recall rate
of retrieval module, either of which can be further
improved. Moreover, a more serious question in
practice is how to construct a precise and compre-
hensive knowledge graph for specific fields.
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A Related Works

Existing literature (Lan et al., 2022) typically cate-
gorizes KBQA approaches into two mainstreams,
i.e., semantic parsing-based (SP-based) methods
and information retrieval-based (IR-based) meth-
ods. Specifically, IR-based methods extract a
question-specific subgraph from KB and then rank
the candidate entities in the subgraph to derive the
final answer. While SP-based methods represent a
more favored direction by parsing questions into
executable KB queries. Traditional methods (Yih
et al., 2015) generate the query graph in stages,
often resulting in a large number of noisy candi-
dates. To address this, methods like QGG (Lan and
Jiang, 2020) and AQG (Chen et al., 2021c) prune
the search space. Recent works leveraging natural
language generation approach KBQA as a Seq2Seq
task. CBR-KBQA (Das et al., 2021) uses T5 to di-
rectly transform questions to SPARQL. Recently,
LLMs have demonstrated strong few-shot learning
abilities across various tasks, leading to increasing
exploration (Gu et al., 2022; Li et al., 2023a; Tan
et al., 2023) of the few-shot setting on the KBQA
task.

In this paper, we propose Keging following the
promising SP-based paradigm. By incorporating
question decomposition into the KBQA system, our
approach enjoys better interpretability in the way
of rendering the reasoning process transparent, thus
facilitating user interaction for useful feedback.

B Dataset Descriptions

MetaQA encompasses a movie ontology derived
from the WikiMovies Dataset along with three sets
of question-answer pairs categorized by varying
levels of difficulty.

WebQSP comprises questions sourced from We-
bQuestions, answerable through Freebase, and it
assesses i.i.d. generalization primarily on straight-
forward questions.

GrailQA represents a diverse KBQA dataset
constructed on Freebase, spanning 32,585 entities
and 3,720 relations across 86 domains. Its design
aims to evaluate KBQA models’ generalization
across three tiers: I.I.D., compositional, and zero-
shot.

Table 4 lists the statistics for the train/dev/test
splits of these datasets.
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Table 4: Dataset statistics.

Dataset Train Dev Test

GrailQA 44337 6763 13231

WebQSP 3098 - 1639
MetaQA-lhop 96106 9992 9947
MetaQA-2hop 118680 14872 14872
MetaQA-3hop 114196 14274 14274

C Runtime and Memory Complexity

All our experiments were done on two NVIDIA
RTX A6000 GPUs (with 48GB RAM each), and
the results were averaged from five randomly
seeded experiments. Besides, the specific ver-
sions of ChatGPT and GPT4 we called through
the OpenAl API were gpt-3.5-turbo-1106 and
gpt-4-turbo.

As presented in Figure 1, the workflow of Keging
mainly consists of four stages, where #1 Question
Decomposition, #3 Candidate Reasoning, and #4
Response Generation are all performed with the
powerful capabilities of LLMs, while #2 Knowl-
edge Retrieval is a self-contained module that
serves the purpose of searching for facts relevant to
each sub-question from the given KB, which can be
incorporated into any existing advanced retrieval
technique.

Although we can use off-the-shelf LLMs to com-
plete Question Decomposition and Candidate Rea-
soning, we instead employed a fine-tuned LLM
in our experiments to achieve better performance.
Concretely, we chose to train the Llama2 model
with 7 billion parameters (Llama2-7B (Touvron
et al., 2023)) using a parameter-efficient fine-tuning
technique, i.e., LORA (Hu et al., 2021), which we
found to achieve reasonably good performance, fin-
ished on two NVIDIA RTX A6000 graphics cards
with 48G memory for each. The detailed informa-
tion about runtime and memory usage are listed in
Table 5.

D Prompt Used in Keqing

The prompt plays a crucial role in harnessing the
power of large language models. By carefully craft-
ing the prompt, users can effectively communicate
their tasks and intentions, thereby guiding the LLM
to generate responses that are accurate and aligned
with task goals, which improves the overall us-
ability and effectiveness of the model. Here, we
present the prompt we used in each of the necessary
modules of Keging in Table 6.



dev M test --- decompose to questions

999 999

98.1
97.3

1-hop

2-hop

dev I test --- decompose to relations

3-hop

Figure 7: Performance comparison of decomposing KBQA questions into sub-questions and logical chains by

finetuning Llama2 on MetaQA dataset.
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Figure 8: Performance of Keging on WebQSP using different numbers of question templates to match each sub-question.

E Ablation Study

Effect of the number of retrieved question tem-
plates: As claimed in Section 2, Keging will select
top-K relevant question templates for each sub-
question to extend the scope of candidate answers
retrieved, and here we investigate the influence of
the number of retrieved question templates. From
the results shown in Fig. 8, we can observe that the
performance of Keging generally improves as the
increase of the number of retrieved question tem-
plates, indicating that sufficient answer candidates
can provide tolerance for the following procedure
of answer reasoning. Moreover, this gain of per-
formance gradually decays with the increase of the
number of retrieved question templates, reflecting
the fact that excessive context can cause misunder-
standings of LLMs used for Candidate Reasoning.

For the ablation study, we mainly focus on inves-
tigating the factors that will influence the perfor-
mance of Keging to answer the following questions,
1) will decomposing complex problems into sub-
problems using LLMs perform better than directly
predicting logical chains? 2) how the number of
question templates retrieved for each sub-question
affects the performance of Keging?

Generate sub-questions v.s. generate logical
chains: As shown in Fig. 7, we conduct the per-
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formance comparison of decomposing complex
questions into sub-questions and logical chains on
MetaQA dataset, where the only modification is to
repalce Question Decomposition and Knowledge
Retrieval modules in Keging with LLMs that are
finetuned to directly predict logical chains. From
the results, we can find that the performance of Ke-
ging to accomplish KQBA tasks by generating sub-
questions comprehensively outperforms the other
one targeted at generating logical chains, reflecting
the fact that the logic of decomposing questions
in text form could be easier to be captured by pre-
trained LLMs than that in SQL form.

F Qualitative Visualization

Case study on various KBQA benchmarks: To
demonstrate the effectiveness of Keging, we con-
duct a comprehensive case study that covers ex-
amples involving different levels of generaliza-
tion, as shown in Fig. 9. For instance, analyz-
ing the i.i.d test case from MetaQA, we can see
that Keging precisely breaks the input question
into three simple sub-questions and finally obtains
the correct answer by iteratively answering each
sub-question. For the zero-shot test case from
WebQSP, even though the gold logic chain “origi-
nal_idea.innovator” has not appeared in the train-



MetaQA > i.i.d test case
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WebQSP > i.i.d test case

Query: who did Cam Newton sign with?

Retrieved Subgraph

Response: Based on the inference results, Cam Newt-
on is an American football player who has signed with
the sports team “Carolina Panthers”, as this team pays
his daily salary.

.@

WebQSP > Zero-Shot test case

Query: who developed the TCP/IP reference model?

Seen relation

—— inventor.inventions =

Retrieved Subgraph

Response: Based on the inference results, the Trans-
mission Control Protocol and Internet Protocol were
developed by Vint Cerf and Robert E. Kahn. They’re also
the founders of the organization “Internet Society”.

GrailQA > Compositional test case

Query: what is the rocket engine oxidizer that is used by
a bipropellant rocket engine with the smallest expansion

e
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Response: Based on the inference results, we first need
to infer the minimum expansion ratio of a bipropellant
rocket engine, which is 12, and the bipropellant rocket
engine with this expansion ratio is RS-27A. Finally, we
find that the oxidizer used by RS-27A is Liquid Oxygen.

Tip: Keging is usually more helpful for the request that
involves knowledge in the given database.

Figure 9: Case study of evaluating Keging on the testing samples of various KBQA benchmarks.

ing set, surprisingly, Keging still arrives at the right
answer by matching a semantically similar logic
chain “inventor.inventions”. For the compositional
test case from GrailQA, Keging demonstrates its
ability to solve combinatorial problems that did not
appear in the training set by utilizing the logical
chains to solve sub-questions.

G Failure examples

In this section, we further analyzed the potential
causes leading to Keging’s failure to produce the
correct answer, which can be roughly categorized
into three cases: i) the LLM failed to decompose
the original question properly; ii) the retrieved
knowledge does not contain the correct answer to

the question; iii) the LLM failed to extract the right
answer from the given context. In the following,
we display a representative example of each of the
three failures.

H Retrieval Process

As shown in Fig 10, user questions are decomposed
by Large Language Models (LLMs) to generate
sub-questions similar to those in the Knowledge
Graph (KG). Based on the generated sub-questions,
Top-K relational matching is performed within the
template repository. Then, a SPARQL query is
constructed by selecting the relations with a high
confidence level, as determined by the LLMs, to
query the database and retrieve the answer.
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Stage Dateset  Trainingexamples LoRABS GPUusage Trainingepoch Trainingtime Precision
MetaQA 32927(10%) 64 18.5G 1 1.1h bf16
[c]QuestionDecomposition | WebQSP 3098 16 27.8G 10 11.8h bf16
GrailQA 44337 32 37.9G 3 6.8h bf16
MetaQA 24695(10%) 16 15.3G 3 4.5h bf16
[c]CandidateReasoning WebQSP 3098 4 23.7G 10 5.7h bf16
GrailQA 30496 4 23.8G 3 7.6h bf16

Table 5: Basic statistics of the required memory of GPUs, tuning time, batch size (denoted as BS) per device using
LoRA tuning.

Decomposition Failure

Question: what unit of measurement system of electric field of strenght does watt per square
metre per steradian have?

Gold answer:

[{"question": "which unit of measurement system uses [MASK] as a unit of electric field of
strength?", "id": 0, "dep": [-1], "seed_entity": ["watt per square metre per steradian"], "function":
Hnone" }]

Generated response:

[{"question": "what is the electric field strength of [MASK]?", "id": 0, "dep": [-1], "seed_entity":
["watt per square metre per steradian"], "function": "none"}, {"question": "what unit of measure-
ment system is used for [MASK]?", "id": 1, "dep": [0], "seed_entity": ["<GENERATED>-0"],
"function": "none"}]

Retrieval Failure

Question: what is the xbox 360 controller game version that supports the europe region?

Gold Logical Chain:
["computer.computer_peripheral.supporting_game_versions"],
["cvg.game_version.regions"]

Gold answer: ["Sonic & Sega All-Stars Racing with Banjo-Kazooie"]

Retrieved Logical Chain:
['cvg.computer_game_region.versions_released_in_this_region",
"cvg.cvg_platform.games_on_this_platform",
"cvg.computer_videogame.versions",

"cvg.game_version.game",
"cvg.game_series.games_in_series_inv"],

["cvg.computer_videogame.peripherals_supported",
"cvg.computer_game_distribution_system.platforms_supported_inv",
"cvg.game_version.peripheral_classes_supported”,
"cvg.computer_videogame.processors_supported",
"cvg.cvg_platform_family.platforms_inv",
"cvg.computer_videogame.game_series"]

Generated response: [" "]




Reasoning Failure

Question: what is the event that shares the conference venue associated with electronic
entertainment expo 2009?

Gold answer: ["Electronic Entertainment Expo 2011", "Electronic Entertainment Expo 2010",
"Electronic Entertainment Expo 2012", "Electronic Entertainment Expo 2013", "Electronic
Entertainment Expo 2014" |

Gold Logical Chain:
["conferences.conference_venue.conferences", "conferences.conference.venue']

Retrieved Logical Chain:
["conferences.conference_venue.conferences”,
"basketball.basketball_conference.league",
"conferences.type_of_conference.conferences_of_this_type",
"exhibitions.exhibition_run.venue_inv",
"conferences.conference.proceedings”,
"conferences.conference_subject.specific_conferences_about_this"],

["conferences.conference.focus",
"conferences.conference.proceedings",
"basketball.basketball_conference.league",
"conferences.conference_venue.conferences",
"conferences.conference.venue"
"conferences.type_of_conference.conferences_of_this_type"]

i i in:

Reasoning Logical Chain
["conferences.conference_subject.specific_conferences_about_this",
"conferences.conference.focus"]

Generated response:
["Electronic Entertainment Expo 2011", "Electronic Entertainment Expo 2012", "Electronic
Entertainment Expo 2009", "Electronic Entertainment Expo 2010"]

Question

fighting street is the version of which video game?

Decomposition Street Fighter Entity_name

"question": "which video game has [MASK] as versions?", m.085bt8 Entity_id
"id": 0, "dep": [-1],"seed_entity": ["fighting street"],

"function": "none" =
Ee tSPARQL
QUERY
which video game has [MASK] as versions? fighting street SPARQL
g :f;g‘;;, g—e entity PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
inking
7 = ¢ PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
Top-K relations PREFIX : <http://rdf.freebase.com/ns/>
. . SELECT (?x0 AS ?value) WHERE {
T o m.08p990
..Cvg'compmer‘.v'deogam..e AEREID P SELECT DISTINCT ?x0 WHERE {
S EHNE ST, Entity_id VALUES ?x1 :{Entity_id}

"cvg.game_version.platform", 240 {relation} 2x1

FILTER ( ?x0 !=?x1 )}

Figure 10: Retrieve Candidate Entities on Knowledge Graph
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Table 6: The details of the prompt design of each module in Keging. The Execution Logs in Response Generation
module indicates the record of multiple rounds of questions and answers.

Module Name

Prompt Templates

Instruction: Parse the user input question to several subquestions:
[{"question":  subquestion, "id": subquestion_id, "dep": depen-
dency_subquestion_id, "seed_entity": seed_entity or <GENERATED>-
dep_id }]. The special tag "<GENERATED>-dep_id" refer to the generated
answer of the dependency subquestion and "dep_id" must be in "dep" list.
The "dep" field denotes the ids of the previous prerequisite subquestions
which generate a new answer entity that the current subquestion relies on.
Think step by step about all the subquestions needed to resolve the user’s
request. Parse out as few subquestions as possible while ensuring that the an-
swer to the input question can be derived. Pay attention to the dependencies
and order among subquestions. If the user input question can’t be parsed,
you need to reply empty JSON [].

Input: I recently watched the movie Written on the Wind, and I think it was
well made. I'd like to know what other works the director of this film has
done and which famous actors were in them.

Output: {"question": "who was the director of [mask]?", "id": O,
"dep": [-1], "args": {"seed_entities": ["Written on the Wind"]}}, {"ques-
tion": "[mask] was the director of which movies?", "id": 1, "dep": [0],
"args": "seed_entities": ["<GENERATED>-0"]}}, {"question": "who
acted in the movie [mask]?", "id": 2, "dep": [1], "args": "seed_entities":
"<GENERATED>-1"]}}]

Question Decomposition

Instruction: Choose the most plausible relation to answer the user’s ques-
tion: ["relation"]. If you don’t know the answer, say you don’t know, don’t
try to make up the answer. The relation must be selected from the following
Candidate Reasoning options: {"written by", "directed by", "starred actors" }.

Input: Who was the director of Written on the Wind?

Output: ["directed by"]

Instruction: With the task execution logs, the Al assistant needs to describe
the process and inference results. Please first think cafefully and directly
answer my request based on the inference results. Then please detail your
workflow step by step including the used models and inference results for
my request in your friendly tone. Please filter out information that is not
relevant to my request. If there is nothing in the results, please tell me you
Response Generation can’t make it.

Input: Execution Logs.

Output: Based on the inference results, the director of Written on the Wind
is Douglas Sirk. The movies that Douglas Sirk directed include Shockproof,
All That Heaven Allows, Magnificent Obsession, A Time to Love and a
Time to Die, There’s Always Tomorrow, The Tarnished Angels, Meet Me
at the Fair, Lured, Sleep, My Love, All I Desire, Battle Hymn, Imitation of
Life, and Written on the Wind. The actors who starred in these movies are
Cornel Wilde, Claudette Colbert, Boris Karloff, Rock Hudson, Don Ameche,
Robert Cummings, John Gavin, Patricia Knight, Charles Coburn, Lucille
Ball, Barbara Stanwyck, Lauren Bacall, Dorothy Malone, Rochelle Hudson,
and Sandra Dee.
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