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Abstract

The sensitivity to adversarial attacks and noise is a significant drawback of neural net-
works, and understanding and certifying their robustness has attracted much attention.
Studies have attempted to bridge two extreme analyses of robustness; one is the worst-case
analysis, which often gives too pessimistic certification, and the other is the average-case
analysis, which often fails to give a tight guarantee of robustness. Among them, Randomized
Smoothing became prominent by certifying a worst-case region of a classifier under input
noise. However, the method still suffers from several limitations, probably due to the lack of
a larger underlying framework to locate it. Here, inspired by the Smoothed Analysis of al-
gorithmic complexity, which bridges the worst-case and average-case analyses of algorithms,
we provide a theoretical framework for robustness analyses of classifiers, which contains
Randomized Smoothing as a special case. Using the framework, we also propose a novel
robustness analysis that works even in the small noise regime and thus provides a more con-
fident robustness certification than Randomized Smoothing. To validate the approach, we
evaluate the robustness of fully connected and convolutional neural networks on the MNIST
and CIFAR-10 datasets, respectively, and find that it indeed improves both adversarial and
noise robustness.

1 Introduction

Deep learning has significantly advanced machine learning in various real-world tasks over the last decade.
Despite its success, deep learning is not sufficiently robust to small input perturbations known as adversarial
perturbations Szegedy et al. (2014) or intrinsic noise that can occur in the inputs. Besides research to
improve the adversarial and noise robustness of neural networks, theoretical studies to quantify and certify
robustness have also emerged to address the problem.

One extreme of robustness quantification of neural networks is adversarial robustness certification, which
tries to identify a set of inputs that the model is guaranteed to classify correctly. Thus, a larger set indicates
a more robust model. A major example of this is Certified Radius, which is the radius of a ball such that
it is centered on a correctly classified input and does not contain adversarial examples. Since this analysis
provides a safe region against any perturbation, it gives a worst-case robustness of the model. However, the
analysis may give a too pessimistic view of the real-world performance of the model, as the Certified Radius
is often smaller than the spread of natural noise.

The other extreme is robustness analysis using random input perturbations (Franceschi et al., 2018; Weng
et al., 2019; Couellan, 2021; Tit & Furon, 2021; Anderson & Sojoudi, 2023). Since the average performance
of a classifier is given by its classification probability, which is difficult to obtain, in practice one analyzes
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its lower and upper bounds. Then, a higher lower bound for larger variances indicates higher robustness
to noise. In contrast to Certified Radius, the expectation over all directions, which mitigates the effect of
misclassification regions with small volume, gives a better measure of empirical performance. However, the
analysis can be too optimistic since, for instance, it gives “infinite” robustness for linear classifiers in binary
classification because the misclassification probability is always below 0.5 for finite noise strength.

Given the above, approaches have attempted to bridge those two extremes (Fawzi et al., 2016; Rice & Bair,
2021; Robey et al., 2022), with Randomized Smoothing (Cohen et al., 2019) being the most prominent. In
this analysis, one obtains Certified Radius of a smoothed classifier, a smoothed version of a deterministic
classifier given by injecting noise into the input. Namely, the robustness of the classifier is measured here
by the radius of a ball around the input, within which all points are classified correctly on average. As in
average-case robustness, smoothing mitigates the effect of small regions. In addition, the analysis can scale
to arbitrary neural networks. However, the analysis still has limitations. For instance, its Certified Radius
scales with the variance of the input noise, resulting in vanishing it for small variances and information loss
for larger variances Mohapatra et al. (2021). It is also unclear whether the analysis can be placed in a general
theoretical framework and whether we can extend it based on the framework.

Here, to address these problems, we borrow an idea from studies of algorithmic complexity. Inspired by
the Smoothed Analysis of algorithmic complexity, which bridges the worst-case and average-case analyses of
algorithms (Spielman & Teng, 2004), we provide a novel theoretical framework for the robustness analysis
of classifiers. Smoothed Analysis aims to obtain a more faithful description of the empirical algorithmic
time complexity compared to worst-case and average-case by obtaining the worst-case performance when
subject to random perturbations, which is very similar to the protocol of Randomized Smoothing. However,
applying the Smoothed Analysis of algorithmic complexity to the robustness analysis of neural networks is not
straightforward, because one needs to identify a suitable performance metric to which the analysis is applied.
For this problem, we show that a loss function satisfying a certain condition can be a suitable performance
metric for the analysis in the robustness setting for classification tasks. We then show that Randomized
Smoothing is a special case in the framework when the loss is the 0-1 loss. We call this robustness analysis
framework Smoothed Robustness Analysis, SRA.

The above finding may imply that if we use a loss function other than the 0-1 loss as the performance
metric, SRA may solve the problem of Randomized Smoothing that the certified region vanishes for small
noise variances. Motivated by this, we propose the use of the margin loss and show that it indeed provides
a Certified Radius that not only does not vanish for small noise variances but is more confident since the
variance of the margin decreases with the noise variance until it converges to the zero-noise margin. We
refer to the proposed Certified Radius based on the SRA with the margin loss as Margin Smoothed Certified
Radius, MSCR.

As a proof of concept for our approach, by deriving an explicit expression for the MSCR for K-Lipschitz
classifiers, we used it as an objective that, when maximized, is expected to induce both adversarial and noise
robustness to them. Experiments were conducted on the MNIST and CIFAR-10 datasets for 1-Lipschitz
fully connected and convolutional neural networks, respectively, and their robustness against adversarial
perturbations, isotropic Gaussian noise, and progressive linear corruptions were quantified. We found that,
under the considered settings, the maximization of MSCR improves robustness to both adversarial and
random noise for a simpler dataset (MNIST), and for a more complex dataset (CIFAR-10), it leads to an
increase in noise robustness while maintaining similar clean accuracy and adversarial robustness.

1.1 Related works

1.1.1 Bridging adversarial and noise robustness

To incorporate adversarial and noise robustness, various studies have explored robustness spectra locating
the worst- and the average-case analyses in its opposing ends. Fawzi et al. (2016) considered the expected
distance to the decision boundary over randomly sampled input with dimensions between 1 and nin, which
interpolate between the worst-case and random noise regimes. Rice & Bair (2021) proposed using the lq norm
of a smooth loss with respect to a chosen measure as a robustness metric. When the uniform ball is used as

2



Published in Transactions on Machine Learning Research (04/2024)

the measure, it gives the worst-case loss for q =∞ and the expected loss over the ball for q = 1, interpolating
between them through q. To address the lack of interpretability or impracticality of existing methods, Robey
et al. (2022) introduced the probabilistically robust learning framework that interpolates between adversarial
and average training by introducing the misclassification tolerance parameter ρ determining the stringency
of the worst loss within a feasible region. For the 0-1 loss with a uniform distribution in the input, ρ = 0
corresponds to adversarial training, where the loss for one sample is zero only if there is no adversarial
example within a uniform ball. In contrast, when ρ = 0.5, the framework achieves average-case robustness,
where a training sample contributes to the loss only if its classification probability is less than 0.5.

1.1.2 Randomized smoothing

While the above works bridge the worst and the average cases as two ends of a spectrum, Randomized
Smoothing explicitly uses one noise and one adversarial mechanism to bridge them. Randomized smoothing
was first proposed by Lecuyer et al. (2019) within the realms of differential privacy as PixelDP, providing
radius certification of l1 and l2 balls of smoothed classifiers by employing the Laplace and Gaussian distri-
butions as input noise, respectively. In their seminal work, Cohen et al. (2019) proved a tight l2 certified
radius for the case of Gaussian input noise and named the analysis Randomized Smoothing. In the analysis, a
deterministic classifier that returns a 0-1 vector, with 1 in the correct class element, becomes a probabilistic
one called smoothed classifier, which returns the probability of each class by injecting noise into the input.
Then, using the probabilities of the correct and largest incorrect classes, one can obtain the certified radius
of this smoothed classifier, that is, the radius of a ball around the input within which all points are correctly
classified on average. In other words, it measures the worst-case robustness of an averaged, or smoothed,
classifier.

Two significant properties make Randomized Smoothing attractive for robustness certification. First, smooth-
ing acts as in average-case robustness, mitigating the effect of close but small misclassification regions. Sec-
ond, it is scalable to arbitrary NNs: While most certification methods rely on the architecture of the neural
network, such as its Lipschitz constant for Lipschitz-based Certified Radius (Cisse et al., 2017; Tsuzuku
et al., 2018; Weng et al., 2018; Leino et al., 2021), or its activation functions as in Certified Radius based on
convex relaxation (Weng et al., 2018; Wong & Kolter, 2018), Randomized Smoothing depends only on the
input noise distribution and the classification probability estimation method.

1.1.3 Lipschitz-constrained NNs

Lipschitz-constrained neural networks have been widely studied as a promising way to improve their ad-
versarial robustness. Although expressiveness and scalability have been major concerns of the approach,
significant advances have been made very recently. For expressiveness, studies revealed that these networks
can in fact ensure their expressivity even under Lipschitz constraints (Anil et al., 2019; Béthune et al., 2022).
For scaling, based on the approach of Fazlyab et al. (2019), Araujo et al. (2023) and Wang & Manchester
(2023) showed that constrained networks can scale to tiny-imagenet, and Losch et al. (2023) and Hu et al.
(2023), using the idea of Leino et al. (2021), succeeded in showing the scaling to tiny-imagenet and even
to imagenet, respectively. Recently, Delattre et al. (2024) connected Randomized Smoothing and Lipschitz
margin using a 1-Lipschitz simplex mapping. They used the expected margin over the simplex mapping
and showed improvements over usual Randomized Smoothing and margin certified radii. We adopted the
1-Lipschitz architecture to obtain the estimated certified radius at training time, and due to its stability by
avoiding exploding and vanishing gradients.

1.1.4 Algorithm analysis: worst-case, average-case and smoothed

Analysis of algorithms is a field of computer science that focuses on comparing algorithmic performance
(Cormen, 2009) to determine which algorithm performs the best under given performance metrics and
constraints. One approach is the worst-case analysis, which provides the worst possible performance of
an algorithm given certain constraints, such as input size. Thus, an algorithm with a good worst-case
performance is guaranteed to always perform better than one with a worse worst-case. However, the worst-
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case analysis can be too pessimistic, since the worst-case may comprise instances that might be rare or
nonexistent in practice (Spielman & Teng, 2009; Roughgarden, 2021).

In these cases, average-case analysis provides a more realistic description by assigning a measure to the
instance space and obtaining the performance metric as a weighted average (Ritter, 2000). However, in
practice, average-case analysis requires overly simplified distributions, such as the uniform distribution over
all possible instances, which do not correspond to the real instance distribution and yields results that
strongly depend on the chosen distribution (Roughgarden, 2021).

Smoothed Analysis is introduced to address the limitations of worst- and average-case analyses Spielman
& Teng (2004). This approach consists in incorporating randomness in the algorithm, which leads to the
so-called smoothed algorithm, and then applying a worst-case analysis. Unlike average-case analysis, the
distribution used in the averaging stage of Smoothed Analysis is preferable to have only a small variance
around the state under evaluation. Therefore, the analysis is expected to avoid biases about the real under-
lying distribution by using small perturbations, similar to sensing noise or random faults. While Smoothed
Analysis has inspired several studies on neural networks (Blum & Dunagan, 2002; Haghtalab et al., 2020;
Robey et al., 2022), its relation to robustness analysis has not been fully explored yet.

2 Smoothed Robustness Analysis: Smoothed Analysis for the robustness of
classifiers

In this section, we provide how the “Smoothed Analysis of algorithms” can be applied to the robustness
analysis of neural networks and show that the derived framework indeed includes adversarial, noise, and
Randomized Smoothing robustness as special cases.

2.1 Smoothed Robustness Analysis

Since Smoothed Analysis is given as the worst-case performance under random perturbations, to extend the
framework to analyze the robustness of neural networks, we need to identify a suitable performance metric
that properly measures the performance of the networks and is analytically or, at least, numerically tractable.

In the case of classification tasks, let us first choose a noise distribution ρ(x, θ) parametrized by an input x
and θ. Then, if the loss function T (x) satisfies the following condition with respect to the given distribution,
we will see that it can be a suitable performance metric for the smoothed analysis in the context of the
robustness of the classifier.
Condition 1 (Constant Γ). There is some constant Γ ∈ R s.t. Ex′∼ρ(x,θ)[T (x′)] < Γ implies that Pc(x; ρ) >
0.5 for all x ∈ X, where Pc(x; ρ) is the probability of correct classification of x under the noise distribution
ρ(x, θ).

In addition to choosing the noise distribution ρ(x, θ) and the loss function T (x) that satisfies the above
condition, let us specify a region Ω(x) around the input x. Then, we can provide the theorem that establishes
the Smoothed Analysis for the robustness of classifiers.
Theorem 1 (Smoothed Robustness Analysis). Let T̃ (x) denote the maximal average loss within the region
Ω(x) ⊂ X around input x over the distribution ρ(x̃; θ), parametrized by x̃ ∈ Ω(x) and θ, i.e.,

T̃ (x) = max
x̃∈Ω(x)

Ex′∼ρ(x̃;θ)[T (x′)]. (1)

If T̃ (x) < Γ, then no perturbation within Ω(x) causes a misclassification on average.

Proof. The proof of the theorem directly follows from Condition 1, since the worst proportion of misclassified
samples must be less than half due to condition T̃ (x) < Γ, and thus the samples are correctly classified on
average.
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We call the robustness analysis of the classifier based on the above theorem Smoothed Robustness Analysis,
(SRA) and define a classifier to be Smoothed Robust on input x with respect to the loss T̃ (x) if it satisfies
the above inequality T̃ (x) < Γ for given Ω(x) and ρ(x̃, θ).

Depending on the choice of region Ω(x) and noise distribution ρ(x̃, θ), this analysis yields the worst-, average-
case, or a combination of both. If Ω(x) = {x}, then the max operation is restricted to x itself, which gives
the average-case. Conversely, if ρ(x̃; θ) = δ(x̃), then the expectation operator yields the pointwise value of
the loss without smoothing effect, hence it gives the worst-case. The three different cases are illustrated in
Figure 1.

One of the most practical applications of this analysis is robustness certification. While one can use the
inequality T̃ (x) < Γ to verify the robustness of a given classifier with respect to a given region Ω(x) and
distribution ρ(x, θ), the inequality can also be used inversely to obtain a region Ω(x) (e.g., a lp-ball) that
satisfies the inequality for a given noise distribution. In other words, from the inequality one can find a
Certified Radius such that inputs in the ball of the radius are always correctly classified on average under
the noise distribution, that is Smoothed Robust. In the following, we will use this approach to show the
relationship between the analysis and Randomized Smoothing, and to provide numerical calculations.

Figure 1: Illustrations of average-case (left), worst-case (center), and smoothed (right) robustness analyses.
Different colors correspond to different classes according to the classifier, and the dot located in the center
is the input analyzed. For average-case, if the average loss is smaller than a given constant, it is correctly
classified on average. For worst-case, if the maximum of the loss inside the region is smaller than the constant,
then it is safe inside the region. For the SRA, if the maximum of the average loss inside the region is smaller
than the constant, then the classifier is safe inside the region on average, i.e., the smoothed classifier is safe
there.

2.2 Randomized Smoothing as SRA with the 0-1 loss

One of the significant features of SRA is that it can yield, in theory, a family of robustness analyses by
changing the loss function T (x), as long as the loss satisfies Condition 1 and one can derive the constant Γ
required for the condition.

Here, we show that Randomized Smoothing is a special case of SRA where the loss T (x) is the 0-1 loss. The
0-1 loss is defined as

L01(x, c) =

0, if c = arg max
i

oi(x)

1, otherwise
(2)

, where oi(x) is the ith component of the classification score vector and c is the correct class. Then we can
show that the 0-1 loss satisfies the Condition 1.
Theorem 2. The 0-1 loss satisfies Condition 1 with Γ = 0.5.

Proof. For an arbitrary noise distribution ρ(x, θ), it holds that Ex′∼ρ(x,θ)[L01(x′, c)] = Pi ̸=c(x; ρ(·)) =
1−Pc(x; ρ(·)), where Pi ̸=c(x; ρ(·)) and Pc(x; ρ(·)) are the probability of incorrect and correct classification,
respectively. Thus, Ex′∼ρ(x,θ)[L01(x′, c)] < 0.5 implies Pc(x; ρ(·)) > 0.5, which means Γ = 0.5.
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Since the theorem justifies the use of the 0-1 loss L01(x, c) as the loss T (x) of RSA, we can use the inequality
L̃01(x) = maxx̃∈Ω(x) Ex′∼ρ(x̃;θ)[L01(x′)] < 0.5 to obtain a certified radius. However, because, as shown
in the above proof, Ex′∼ρ(x,θ)[L01(x′, c)] is equal to the misclassification probability under given noise, i.e.
misclassification probability of the smoothed classifier, this procedure means that one can obtain a certified
radius based on worst-case analysis of the misclassification probability of the smoothed classifier. This is
exactly the same as the general idea of Randomized Smoothing (Cohen et al., 2019; Lecuyer et al., 2019).
For the case where the noise distribution ρ(x, θ) is the Gaussian with variance σ2

x and the region Ω(x) is
the l2 ball around the input, the radius is given as (Cohen et al., 2019)

ϵ01,l2(x;N (0, σ2
xI)) = σx

2

(
Φ−1(Pc)− Φ−1(max

i ̸=c
Pi)
)

, (3)

where Φ−1(·) is the inverse of the cumulative distribution function of the standard normal distribution.

3 Margin-based SRA: Smoothed Robustness Analysis with the margin loss

One major drawback of Randomized Smoothing is that the certified radius scales with the input noise variance,
as in equation 3, meaning that for small variances the certified region vanishes. However, in the literature of
smoothed analysis of algorithmic complexity, the smaller the variance of the perturbation, the better, which
cannot be done by Randomized Smoothing. Recently, Delattre et al. (2024) succeeded in eliminating this
scaling factor of the input variance by first noting that, for K-Lipschitz classifiers, the output variance is
bounded by K2σ2

x, and then using the margin of the probability vectors instead of the probability itself. This
suggests that the margin might be suitable for SRA. In this section, we will show that this is indeed the case
by proposing the use of the margin loss as the loss T (x) of RSA. We also derive a closed-form estimate of
the certified radius under the setting of K-Lipschitz classifiers, which we will use in our numerical simulation
given in the next section.

3.1 Margin Loss

The margin loss is defined as the difference between the largest output in incorrect classes and the output
of the correct class,

LM (x, c) = om(x)− oc(x), (4)

where c denotes the correct class and m is the largest incorrect index, m = arg max
i̸=c

oi(x).

Then, for the loss, we can prove the following proposition.
Proposition 3. If the output of a classifier is continuous and symmetrically distributed under an input
perturbation ρ, the margin loss satisfies Condition 1 with Γ = 0 for the distribution.

Proof. This basically follows from the inequality for the smoothed margin L̄M (x, c; ρ(·)) of continuous and
symmetrically distributed outputs,

L̄M (x, c; ρ(·)) = Ex′∼ρ(x,θ)[max
i ̸=c

oi(x′)]− µc > med[max
i̸=c

oi(x)]− µc,

where µc is the mean correct output, med[·] refers to the median. The full proof is given in Appendix A.1.

This proposition justifies our use of the margin loss as T (x) of RSA if the output of the classifier smoothed
by the input noise is symmetric. We found this condition for the output to be adequate both empirically,
as shown in Appendix D.1, and theoretically, since independent rectified Gaussian random variables satisfy
the Central Limit Theorem, as shown in Appendix A.6, which means that their sum converges to a normal
distribution, thus continuous and symmetrical. In the following, therefore, we assume that the output of the
classifier satisfies the condition and apply the RSA based on the margin loss to them.
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Let us assume that the classifier is Lp-Lipschitz. Then we can prove the following theorem insisting that the
radius

ϵSM,lp
(x; ρ(·)) = −L̄M (x, c; ρ(·))

αpLp
, (5)

is the certified radius in the sense of SRA with the margin loss, where L̄M (x, c; ρ(·)) = Ex∼ρ(·) [LM (x, c)] is
the margin loss smoothed by the input noise, and αp is a constant depending on the norm (αp =

√
2 and 2

for p = 2 and ∞, respectively 1). The theorem is given as
Theorem 4. Let the region Ω(x) be the l2-ball with radius ϵSM,l2(x; ρ(·)). Then, L̃M (x) =
maxx̃∈Ω(x) Ex′∼ρ(x̃;θ)[LM (x′, c)] < 0 for any δ s.t. ∥δ∥ < − L̄M (x,c;ρ(·))

αpLp
.

Proof. The theorem follows from two propositions. The first claims that the margin loss LM of a Lp-
Lipschitz classifier is αpLp-Lipschitz, and the other says that the convolution of a K-Lipschitz function with
a probability density function is also K-Lipschitz. The full proof is in Appendix A.2.

Significantly, unlike the certified radius obtained from Randomized Smoothing (Eq. 3), the certified radius
derived here for the margin-based RSA (Eq. 5), does not vanish even in the zero-variance limit of the noise
distribution ρ(·). Rather, it just converges to the conventional certified radius of the classifier that is not
perturbed by input noise,

ϵM,lp
(x) = −LM (x, c)

αpLp
(6)

This property can make the obtained certified radius more confident by avoiding the information loss due to
the larger variances required to obtain meaningful certified radius under Randomized Smoothing. We refer
to the certified radius obtained through the margin-based SRA, Eq. 5, as Margin Smoothed Certified Radius
(MSCR).

To proceed further and obtain a closed-form expression of the MSCR, one needs to specify the output
distribution of the classifier. Assuming that the outputs can be approximated by a multidimensional normal
with independent elements yields the following approximation of L̄M . (The derivation is in the Appendix
A.3),

L̄M

(
x, c, σ2

x

) ∼= √σ2
1 + σ2

2
2π

exp
(
− (µ1 − µ2)2

2 (σ2
1 + σ2

2)

)
+ µ2 + µ1 − µ2

2

(
1 + erf

(
µ1 − µ2√
2 (σ2

1 + σ2
2)

))
− µc. (7)

Here, µc, µ1 and µ2 are the mean of the correct, the largest and the second largest incorrect outputs, respec-
tively, and σ2

1 and σ2
2 are the variance of the largest and the second largest incorrect outputs, respectively.

By putting the expression into Eq. 5, we obtain a closed-form expression of the MSCR.

Note that the above approximation is similar to the one that Zhen et al. (2021) used to obtain the approxi-
mation of the probability of the correct classification,

Pc

(
x, σ2

x

) ∼= 1
2

[
1 + erf

(
µc − µ1√
2(σ2

c + σ2
1)

)]
, (8)

which gives a lower bound on the certified radius of the Randomized Smoothing,

ϵ01,l2 = σx

2

(
Φ−1(Pc)− Φ−1(max

i ̸=c
Pi)
)
≥ σx

2
(
Φ−1(Pc)− Φ−1(1− Pc)

)
= σxΦ−1(Pc) ∼= σxΦ−1

(
Φ
(

µc − µ1√
σ2

c + σ2
1

))
= σx

µc − µ1√
σ2

c + σ2
1

.

(9)

1We prove on Proposition 5 in Appendix A.2 that αp = 2
1
q , where 1

q
+ 1

p
= 1, for 0 < p, q ≤ +∞
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4 Proof of Concept

The properties of MSCR mentioned above may suggest that if one uses this certified radius, Eq. 5, as an
objective function one can improve both adversarial and noise robustness compared to the certified radius
of Randomized Smoothing, Eq. 3, and the conventional certified radius, Eq. 6. Here, to show that this is
indeed the case, we conduct numerical experiments as a proof of concept of the proposed margin-based SRA.

4.1 Objective functions

Direct maximization of a certified radius without any bounds degrades the clean accuracy of classifiers, due
to the trade-off between robustness and accuracy. To avoid this problem, instead of directly maximizing the
certified radius, we introduce a hyperparameter d that controls the maximal contribution of the certified
radius and try to minimize the hinge loss,

ℓ·,l2

(
x, c, d, σ2

x

)
= ReLU(d− ϵ·,l2

(
x, c, σ2

x

)
)

Here, ϵ·,l2

(
x, c, σ2

x

)
denotes the certified radius under · classification loss (e.g., "01" or "M" for 0-1 or margin

losses, respectively) under Gaussian input noise with variance σ2
x. In our experiments, we minimized the

hinge loss with MSCR,

ℓSM,l2

(
x, c, d, σ2

x

)
= ReLU(d− ϵSM,l2

(
x, c, σ2

x

)
) = ReLU

(
d + L̄M (x, c; ρ(x, σ2

x))√
2K

)
on the MNIST handwritten digit (LeCun & Cortes, 2010) and CIFAR-10 datasets (Krizhevsky, 2009) for
1-Lipschitz fully connected and convolutional neural networks, respectively.

For comparison, we also implemented the hinge losses with MSCR but without smoothing, i.e., averaging over
input noise, ϵM,l2(x, c, σ2

x = 0) (MCR) and with the certified radius of Randomized Smoothing ϵ01,l2

(
x, c, σ2

x

)
as the lower bound given in Eq. 9 under the Zhen’s approximation (we refer to it as Zhen loss). In addition
to them, for completeness, we also used the Multiclass Hinge loss (MH) ℓMH (x, c, d) =

∑
i ̸=c max(0, d −

(oc(x) − oi(x))) that tries to maximize the difference from all incorrect ones (Anil et al., 2019; Li et al.,
2019b), the Softmax Cross-Entropy (SCE) ℓSCE (x, c) = − log exp oc(x)∑

i
exp oi(x)

that is the most widely used loss
for classifiers but neither enforces margin maximization nor acts on a smoothed classifier, and the Smoothed
Classifier Softmax Cross-Entropy (SC-SCE) ℓSC-SCE (x, c) = − log exp µc(x)∑

i
exp µi(x)

. We summarize these losses
in Table 1.

To keep the networks 1-Lipschitz throughout the learning, we used ReLU activation while keeping the weight
matrices orthogonal. For the fully connected network, this means that the rows of the weight matrices are
mutually orthogonal (Appendix C.2.1), and for convolutions, filters are mutually and "internally" orthogonal
(Appendix C.2.2). "Orthogonal weights" means that all their singular values are 1, which means that they
are 1-Lipschitz in the l2-norm sense. We used algorithms that guarantee an approximate orthogonalization
of weight matrices for every training step (Björck & Bowie, 1971; Li et al., 2019b).

Further details of the experiments, including network architecture, hyperparameters, robustness metrics,
datasets, evaluation of output statistics, as well as a qualitative overview of orthogonal convolutions are in
Appendix C.

4.2 Hyperparameter search

Figure 2 shows the colormap of test data clean accuracy for MNIST experiments, area under the curve of
certified radius curve AUCCR,l2 through the margin (worst-case robustness), and area under the curve of
noise accuracy AUCGN (average-case robustness) for different combinations of hyperparameters d and σ2

x

on MSCR and Zhen losses.

First, these plots show the well-documented generalization-robustness trade-off. For both losses, we can
see that hyperparameter pairs with lower clean accuracy (darker areas in the first column) are inversely
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Table 1: Losses used in this work. Margin-based are the ones that explicitly try to maximize the margin.
Smoothed are the ones that use a smoothed classifier. Acronyms are MSCR: Margin Smoothed Certified
Radius loss (proposed here), Zhen: Zhen’s loss (Randomized Smoothing), MCR: Margin Certified Radius
loss (MSCR without smoothing), MH: Multiclass Hinge loss, SCE: Softmax Cross-Entropy, and SC-SCE:
Smoothed Classifier Softmax Cross-Entropy.

Loss
MSCR Zhen MCR MH SCE SC-SCE

Margin-based ✓ ✓ ✓ ✓ ✗ ✗
Smoothed ✓ ✓ ✗ ✗ ✗ ✓

Clean accuracy Adversarial Noise

MSCR

Zhen

Figure 2: Heatmap of clean accuracy, AUCCR,l2 (margin), and AUCGN for MSCR and Zhen losses. For
each column, the colormaps share the same maximum and minimum.

correlated with higher robustness (lighter areas in the second and third columns). Second, we point out that
for the MSCR case the two parameters contribute to robustness in complementary ways: while a larger d in
general improves the adversarial robustness, by controlling the worst-case distance to the decision boundary,
a larger σ2

x induces higher robustness to noise, since a classifier trained in this case learns to correctly
classify on average even for stronger random perturbations. On the other hand, for Zhen loss, σ2

x seems to
be responsible for tuning the robustness, with little relation to d. This dependence on σ2

x can be understood
by Randomized Smoothing employing only σ2

x to quantify the robustness with no direct enforcement on the
non-smoothed worst-case.

In figure 3 we show the colormap of the AUCCR,l2 through Randomized Smoothing (Cohen et al., 2019).
Interestingly, different from figure 2, in which adversarial robustness with respect to the margin certified
radius and noise robustness indicates different kinds of robustness, we see that indeed the Smoothed Robust-
ness, as captured by Randomized Smoothing, bridges adversarial and noise robustness, with regions of higher
robustness in between the regions of higher adversarial and noise robustness.

4.3 Robustness comparison

Since a highly robust classifier has lower clean accuracy, and vice versa, to compare the robustness improve-
ment we restrict the parameter pairs with clean accuracy within a range Acc ±∆ and select the ones with
highest AUCCR,l2 for Randomized Smoothing certified radius, since we saw that it nicely merges worst- and
average-case. In figures 4 and 5 we show the robustness curves from the robustness metrics described in
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MSCR Zhen

Smoothed Robustness

Figure 3: Heatmap of AUCCR,l2 of certified radius obtained through Randomized Smoothing (Cohen et al.,
2019) for MSCR and Zhen losses. The colormaps share the same maximum and minimum.

Appendix B for conditions 98.5 ± 0.3 (i.e., non-clean accuracy degradation case) and 95.5 ± 0.3 (i.e., clean
accuracy degradation case), respectively, for MNIST dataset.

a) b)

c) d)

Figure 4: Robustness comparison for MNIST dataset between MSCR, MCR and Zhen losses for the highest
AUCCR,l2 for Randomized Smoothing within 98.5±0.3 (%) clean accuracy. For (a) and (b) the vertical axis is
the amount of safe samples, horizontal axis is the certified radius for margin CR and Randomized Smoothing
CR, respectively; For (c) and (d) the vertical axis is the accuracy, and horizontal axis the perturbation
intensity of Gaussian noise (c) and Linear image corruption (d). The dashed horizontal and vertical lines in
(d) indicate the approximate 50% performance drop point in humans from Jang et al. (2021). Each curve is
the average of three trainings, and the error bars are shown.

In Figure 4, we see that the MSCR loss achieves the highest adversarial (a and b) and noise (c) robustness
and a linear corruption (d) robustness similar to the Zhen loss. Interestingly, while the usual non-smoothed
margin loss (MCR) achieves higher adversarial robustness than does the Zhen loss (a and b), it has similar
noise robustness (c) and worse linear corruption robustness (d). The main takeaways here are, first, how
even the MCR loss is more adversarially robust compared to the Zhen loss, both in terms of the margin
and Randomized Smoothing certified radius. Second, smoothing the margin significantly improves its noise
robustness, as expected, and slightly improves its adversarial robustness. Third, even though the Zhen
loss showed lower adversarial and noise robustness than did the MSCR, it showed slightly better linear
image corruption robustness, similar to what we would expect human subjects to achieve. These differences
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a) b)

c) d)

Figure 5: Robustness comparison for MNIST dataset between MSCR, MCR and Zhen losses for the highest
AUCCR,l2 for Randomized Smoothing within 95.5±0.3 (%) clean accuracy. For (a) and (b) the vertical axis is
the amount of safe samples, horizontal axis is the certified radius for margin CR and Randomized Smoothing
CR, respectively; For (c) and (d) the vertical axis is the accuracy, and horizontal axis the perturbation
intensity of Gaussian noise (c) and Linear image corruption (d). The dashed horizontal and vertical lines in
(d) indicate the approximate 50% performance drop point in humans from Jang et al. (2021). Each curve is
the average of three trainings, and the error bars are shown.

demonstrate that evaluating a classifier’s robustness is not trivial and that no single metric rules out a
classifier as the most robust one.

Now from figure 5, different from the previous case, we observe that MSCR and MCR losses behave more
similarly, with an overall slight improvement in robustness for the MSCR loss in the noisy (c) and linear
corruption (d) settings. In particular, the Zhen loss showed an improvement in its noise (c) and Random-
ized Smoothing (b) robustness, with the former surpassing the MSCR and MCR losses, at the expense of
higher training variance, as shown by the error bars, and decreased margin robustness (a). For the sake of
completeness, we show the curves obtained for the other losses as continuous lines in Figure 6.

The robustness obtained with these other losses (given similar clean accuracy) was, for all cases, lower than
or similar to that obtained with MSCR (continuous green) or MCR (dashed green) losses. Curiously, we
found that the Multiclass Hinge loss (MH), widely used in the robustness literature, yields a performance
similar to that of the SCE, which does not enforce any kind of robustness. The SC-SCE loss is a simple
alternative to probability-based losses (as in Randomized Smoothing); however, we found that, at least under
the 1-Lipschitz constraint, there is a large decrease in clean accuracy, with best accuracy of 95.6%, making
it an unsuitable choice.

4.4 CIFAR-10 experiments

For the MNIST experiments we carried a grid search over all losses’ hyperparameters; however, due to
computational constraints, we trained NNs on CIFAR-10 only for the MSCR, MCR and Zhen losses. Addi-
tionally, instead of a grid search, we found the best combination of hyperparameters by first picking values
close to those from the 98.5± 0.3 results and changing them to neighboring values. Because the architecture
used was relatively small (Appendix C) and therefore of low capacity, we noticed that the clean accuracy
did not exceed 64%, so we selected the hyperparameters for the best adversarial robustness with a clean
accuracy 62.5± 0.2. The obtained accuracy curves are in figure 7.
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a) b)

c) d)

Figure 6: Robustness comparison for between all losses described in Section 4.1 for the highest AUCCR,l2

for Randomized Smoothing within 95.5 ± 0.3 (%) clean accuracy. For (a) and (b) the vertical axis is the
amount of safe samples, horizontal axis is the certified radius for margin CR and Randomized Smoothing
CR, respectively; For (c) and (d) the vertical axis is the accuracy, and horizontal axis the perturbation
intensity of Gaussian noise (c) and Linear image corruption (d). The dashed horizontal and vertical lines in
(d) indicate the approximate 50% performance drop point in humans from Jang et al. (2021). Each curve is
the average of three trainings, and the error bars are shown.

From the two left plots we see that the curves for MSCR and MCR overlap for the margin certified radius but
MSCR improved over MCR for noise robustness. This indicates that while the d hyperparameter contributes
to the margin, the σ2

x contributes to noise robustness. And indeed, we see an improvement of MSCR under
Randomized Smoothing robustness. On the other hand, Zhen loss obtained a much higher noise robustness
(c), and a slightly better linear corruption robustness (d), but at the cost of lower adversarial robustness (a)
and (b).

5 Discussion

Motivated by recent attempts in bridging worst- and average-case robustness analyses of classifiers, in the
present work, we employed the smoothed analysis framework of complexity of algorithms to propose the
Smoothed Robustness Analysis (SRA) framework, which includes Randomized Smoothing as a special case
when the 0-1 loss is its performance metric (Sec. 2). Considering the argument from the smoothed analysis
literature that the noise variance should be small, which cannot be achieved by the usual Randomized
Smoothing, we proposed the margin loss as a more suitable performance metric for SRA and derived the
Margin Smoothed Certified Radius (MSCR), which is expected to be a more reliable robustness certification
as it does not vanish for small noise variances (Sec. 3). To validate the proposal, we conducted experiments
to maximize the MSCR and showed improvements in both adversarial and noise robustness (Sec. 4). Here,
we discuss the interpretations and limitations of the work and outline possible future directions.

5.1 Multiclass hinge losses

We proposed the margin loss defined by the difference between the largest incorrect and correct outputs
as a suitable performance metric for SRA. Because the margin provides a simple proxy of the distance to
the decision boundary, it has been widely used in the context of margin maximization as a regularization
(Tsuzuku et al., 2018; Zhang et al., 2021). Other works proposed the use of a summation of all pairwise dif-
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a) b)

c) d)

Figure 7: Robustness comparison between MSCR, MCR and Zhen losses for the highest AUCCR,l2 for
Randomized Smoothing within 62.5±0.2 (%) clean accuracy on CIFAR-10.. For (a) and (b) the vertical axis is
the amount of safe samples, horizontal axis is the certified radius for margin CR and Randomized Smoothing
CR, respectively; For (c) and (d) the vertical axis is the accuracy, and horizontal axis the perturbation
intensity of Gaussian noise (c) and Linear image corruption (d). The dashed horizontal and vertical lines in
(d) indicate the approximate 50% performance drop point in humans from Jang et al. (2021). Each curve is
the average of three trainings, and the error bars are shown.

ferences between incorrect and correct outputs as the loss to improve the robustness of Lipschitz-constrained
networks (Anil et al., 2019; Li et al., 2019b). Since, in our experiments, the networks trained with the latter
(MH) showed lower robustness than those trained with the former (MCR) (fig. 6), we discuss the reasons
for this difference and possible future directions related to the use of other more suitable losses.

Both margin losses are part of a larger group of large margin losses from the support vector machine
literature called multiclass hinge losses. Vapnik (1998) and Weston & Watkins (1999) independently proposed
extending the binary hinge loss to the multiclass case by taking the sum of pairwise differences between correct
and incorrect outputs, in which the MH loss is a special case. Until then, multiclass SVMs were treated as
|C| · (1−|C|) binary SVMs between all outputs, where |C| is the number of classes, which resulted in a larger
computational overhead. Crammer & Singer (2001) then proposed a simplified multiclass hinge loss that
depends only on the difference between the correct class output and the largest incorrect, i.e., the margin
loss in our work.

To better understand the statistical learning properties of these losses, Zhang (2004) showed that these
two losses are not Fisher consistent, i.e., in the infinite sample limit, the index of the largest output is not
necessarily the index of the correct posterior classification probability of the Bayes classifier. More precisely,
the MH loss is consistent if the probability of the correct output is greater than 0.5 or if the probability
of the second largest is less than 1

|C| , and the margin loss is consistent only if the probability of correct
classification is greater than 0.5. This result is related to our finding that as long as the smoothed margin
is negative, the probability of correct classification is greater than 0.5, but not determined otherwise.

Since this consistency is generally a desirable feature, Liu (2007) proposed using a modification of the
margin loss to make it consistent by truncating the margin loss so that it stops increasing at some value.
The truncated margin loss can be written as the difference between the usual margin loss and a shifted margin
loss ℓT M (x, c, d) = ℓM (x, c, d) − ℓM (x, c,−d) = ReLU(d + (om(x) − oc(x)) − ReLU(−d + (om(x) − oc(x)),
and it has a maximum of 2d when the margin for input x is om(x) − oc(x) ≥ d. Wu & Liu (2007) used
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this loss to improve the accuracy of multiclass SVMs to ignore sample outliers, hence a possible direction
is to obtain an approximation of the smoothed truncated margin loss, similar to the one from the present
work, and verify whether it helps in the robustness-accuracy trade-off by ignoring few samples that might
contribute heavily to the loss.

A recent work by Delattre et al. (2024) improves Randomized Smoothing CR by using the Lipschitz constant
of the classifier together with the sparsemax function. Sparsemax was proposed by Martins et al. (2016) as
a (almost everywhere) differentiable embedding on the simplex, like the softmax, but with most values as
zero, hence the sparse. They show that for the binary case, sparsemax is the “‘hard’ sigmoid”, i.e., 0 valued,
then linear, until it reaches 1. Subtracting this value from 1 for the binary case leads to a truncated hinge
loss, similar to the one in the SVM literature. Whether there is a direct connection between them we leave
for future investigations.

Here we add that, unlike Dogan et al. (2016), who empirically showed in several datasets that the MH loss,
for the case of support vector machines, has better accuracy than other hinge losses, we found the margin
(MCR) loss to perform better. Interestingly, we found the MCR loss to significantly improve the overall
robustness compared to other usual losses, but also to be unstable if used on unconstrained NNs. Hence, it
might be the best cost-performance option for improving robustness in Lipschitz-constrained NNs.

5.2 Robustness-accuracy trade-off

In Section 4.2, we showed that, by tuning the hyperparameters d and σ2
x, we achieve different degrees

of adversarial and noise accuracy, respectively, at the cost of clean accuracy. Although this robustness-
accuracy trade-off has been widely demonstrated (e.g. Su et al., 2018; Cohen et al., 2019; Li et al., 2019a),
to the best of our knowledge, only Laugros et al. (2019) showed evidence of adversarial and noise robustness
corresponding to two different kinds of robustness, i.e., a model robust to AEs is not necessarily robust to
random perturbations and vice versa. Using losses with parameters that explicitly account for these two
robustness, we provide additional evidence for the findings of Laugros et al. (2019).

We also point out that while early works defended that this trade-off is unavoidable (Tsipras et al., 2019;
Zhang et al., 2019), recent accounts favor the idea that this is a consequence of model limitations (Stutz
et al., 2019; Olfat & Aswani, 2020; Yang et al., 2020; Leino et al., 2021; Li et al., 2022). More specifically,
recent works argue that enforcing a tight global Lipschitz constant (Richardson & Weiss, 2021) and proper
loss hyperparameter selection (Béthune et al., 2022) in Lipschitz-constrained networks can suffice to avoid
this trade-off. Given the 1-Lipschitzness of the networks in the present work and that methods for exact
calculation of Lipschitz constants of feedforward ReLU neural networks are known (Jordan & Dimakis, 2020;
Bhowmick et al., 2021), we leave for future work the computation of the constants of the trained networks
to verify whether they correlate with the robustness-accuracy gap.

Despite intensive efforts, we still need a definitive solution to the problem of adversarial robustness. Recent
works show evidence that top-down information about context and expectation improves general classification
robustness (Huang et al., 2020; Alamia et al., 2023), indicating that this might play a central role in achieving
the robustness observed in biological brains. From the neuroscience side, a recent work by Guo et al. (2022)
showed that robust networks are sensitive to adversarial attacks similar to those measured in primate brains,
hypothesizing that an error correction mechanism might be involved. Thus, future works that address this
trade-off should take into consideration this possible limitation of feedforward neural networks.

5.3 Relationship to ‘intermediate-q’ robustness

We mentioned how SRA connects to Randomized Smoothing in the case of the 01 loss. The work by Rice &
Bair (2021) proposes a method to study ‘intermediate-q robustness’ that bridges these two cases based on
the lq-norm of a smooth loss ℓ(x, c) over a measure µ(x) that depends on input x,

∥ℓ(x, c)∥µ(x),q = Ex′∼µ(x)[|ℓ(x′, c)|q]
1
q . (10)

Their method considers the usual definition of losses as nonnegative scalar functions, so |ℓ(x′, c)| = ℓ(x′, c).
When q →∞ and µ(x) is a uniform ball, one obtains the worst-case, i.e., the maximal loss within the ball.
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When q = 1, this expression gives the average loss on the measure µ(x). The connection of SRA with this
method is that the averaging step from SRA generates a smooth function ℓ(x, c) = Ex̃∼ρ(x)[ℓ′(x̃, c)], ℓ′(x, c)
being a loss not necessarily smooth, and then SRA (for nonnegative losses) can be written in this lq-norm
approach as

∥ℓ(x, c)∥Ω(x),l∞ = Ex′∼Ω(x)[Ex̃∼ρ(x′)[ℓ′(x̃, c)]∞] 1
∞ . (11)

The main difference between SRA and the method of Rice & Bair (2021) is that while the former incorporates
the worst and average cases as two axes, one controlled by the size of the worst-case region Ω(x) ⊂ X and
the other by the variance of the smoothing distribution ρ(x), the latter combines them as two extremes in a
spectrum. Additionally, SRA characterizes the robustness of a classifier by stating whether it is “safe” under
a choice of noise distribution and adversarial region given some loss. Then, a robustness comparison is done
by evaluating which classifier is safe for larger regions (e.g. larger certified radius) and input variances. The
approach based on the lq-norm acts as a robustness metric, in which by choosing the norm and measure, in
theory, a classifier with larger lq-norm is more robust.

5.4 Limitations and other future directions

Given the nature of this work as a first exposition of Smoothed Robustness Analysis, our experiments were
limited only to 1-Lipschitz fully connected and convolutional neural networks under isotropic Gaussian noise,
dealing with l2-norm radius certification. Future works with margin SRA, therefore, should consider other
noise distributions and estimation methods of the smoothed margin that do not require the assumptions
of symmetry and independence of outputs, thus allowing its application to NNs other than 1-Lipschitz. A
lower bound on the margin certified radius that takes into account the complex relationship between pairwise
margins, in line with the soft margin proposed by Fazlyab et al. (2023), is another possible direction.

Although we obtained improvements in noise robustness with MSCR compared to MCR on CIFAR-10
while maintaining its clean accuracy and adversarial robustness, the difference was more subtle than that
for MNIST. We hypothesize that for larger CNNs that achieve higher clean accuracy smoothing is more
beneficial, since overparametrized models tend to have more complex geometries. Due to time constraints,
we leave this an open question.

Finally, since smoothed analysis was originally proposed to capture the algorithmic complexity observed in
practice, another possible direction is to test the SRA as a measure of neural network complexity. Intuitively,
when comparing multiple classifiers under the same loss given the same input region Omega and distribution
rho, the one with the smallest average (over test samples) SRA has a decision boundary that better separates
unseen data even under small noise. This might be related to the notion of compression from information
bottleneck (Shwartz-Ziv & Tishby, 2017), in which neural networks that correctly classify inputs with more
noise better compress their relevant information, resulting in lower model complexity. SRA may contribute
to elucidating the connection between robustness and complexity.
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A Proofs and derivations

A.1 Relation of smoothed margin and classification probability

Proposition 3. Let the output layer o(x) of a classifier be continuous and symmetrically distributed, i.e.,
the marginal distribution of i-th dimension oi(x) is symmetrically distributed. If Ex′∼ρ(x,θ)[LM (x′, c)] < 0,
then the probability of correct classification Pc(x; ρ(·)) > 0.5.

Proof. We have the following inequality for the smoothed margin L̄M (x, c; ρ(·)) of continuous and symmet-
rically distributed outputs,

L̄M (x, c; ρ(·)) = Ex′∼ρ(x,θ)[max
i ̸=c

oi(x′)]− µc > med[max
i̸=c

oi(x)]− µc = med[max
i ̸=c

oi(x)]−med[oc(x)],

where µc is the mean correct output, med[·] refers to the median, the inequality step holds in the case of
continuous symmetrically distributed outputs since the distribution of max

i ̸=c
oi(x) is positively skewed 2, which

2We refer to Arellano-Valle & Genton (2008); Navarro & Arevalillo (2023) for a detailed account on exact analysis of order
statistics
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means that Ex′∼ρ(x,θ)[max
i ̸=c

oi(x′)] > med[max
i ̸=c

oi(x′)], and µc = med[oc(x)] since oc(x) is symmetrically
distributed.

If the difference between the two medians is negative, then the probability of oc(x) > max
i ̸=c

oi(x) is greater

than 0.5. Therefore, if L̄M (x, c; ρ(·)) < 0, the probability of correct classification is greater than 0.5.

A.2 Smoothed radius certification with margin function

Here we derive a certified radius of a smoothed Kp-Lipschitz classifier based on the margin function. First
we show that the margin of such classifier is 2

1
q Kp-Lipschitz, where 1

q + 1
p = 1, then we use the result that

the smoothed form of a scalar K-Lipschitz function is also K-Lipschitz to arrive at the certified radius of a
smoothed classifier ϵlp

(x; ρ(·)) = − L̄M (x,c;ρ(·))

2
1
q Kp

.

Proposition 5. The margin function LM (x, c) of a Kp-Lipschitz classifier with fixed c is 2
1
q Kp-Lipschitz,

where 1
q + 1

p = 1.

Proof. To prove this proposition, we first need to show that the margin as a function of the output o(x)
is 2

1
q -Lipschitz, then we finish the proof by using the composition of Lipschitz functions. First, the margin

LM (x, c) = om(x)−oc(x) can be written as LM (x, c) = vc,m ·o(x), where vc,m is a vector with 1 at position
m, −1 at position c, and 0 elsewhere. Then, from the definition of Lipschitz continuity, we need to find an
upper bound on |LM (x1, c)− LM (x2, c)| = |vc,m1 · o(x1)− vc,m2 · o(x2)| ∀ x1, x2 ∈ X that is proportional
to ∥x1 − x2∥p.

Then the following inequality holds,

|LM (x1, c)− LM (x2, c)| = |vc,m1 · o(x1)− vc,m2 · o(x2)| ≤ |vc,mM
· o(x1)− vc,mM

· o(x2)|
= |vc,mM

· (o(x1)− o(x2))|
≤ ∥vc,mM

∥q ∥o(x1)− o(x2)∥p

= 2
1
q ∥o(x1)− o(x2)∥p ,

(12)

where mj = arg max
i̸=c

oi(xj) and M = arg max
i∈{1,2}

v(c, mi) · o(xi). The first inequality holds since, if mM = m1,

then v(c, m1) · o(x1) ≥ v(c, m2) · o(x2) ≥ v(c, m1) · o(x2), therefore |v(c, m1) · o(x1)− v(c, m2) · o(x2)| ≤
|v(c, m1) · o(x1)− v(c, m1) · o(x2)| (if mM = m2 the indices 1 and 2 are exchanged). The second inequality
is due to Holder’s inequality |fg| ≤ ∥f∥q ∥g∥p, where 1

q + 1
p = 1. We have the last equality because

∥vc,mM
∥q = (1q + | − 1|q)

1
q = (2 · 1q)

1
q = 2

1
q .

Using inequality 12 and the fact that the classifier is Kp-Lipschitz, i.e., ∥o(x1)− o(x2)∥p ≤ Kp ∥x1 − x2∥p,
we finally have |LM (x1, c)− LM (x2, c)| ≤ 2

1
q Kp ∥x1 − x2∥p.

Corollary 5.1 (Margin-based certified radius). For a correctly classified input x, ε = −LM (x,c)

2
1
q Kp

is a lower

bound on the norm of the minimal perturbation δ ∈ X required to make LM (x + δ) = 0. In other words, the
classifier correctly classifies x to all perturbations δ ∈ X s.t. ∥δ∥p < ε.

To see this, we first note that LM (x, c) < 0 since x is correctly classified. Second, a minimal successful
adversarial perturbation δ implies LM (x + δ, c) = 0. By substituting both in the Lipschitz inequality we
have | LM (x, c)| = −LM (x, c) ≤ 2

1
q Kp ∥δ∥p, which implies that the minimal successful perturbation has

norm ∥δ∥p ≥ −
LM (x,c)

2
1
q Kp

. Conversely, any perturbation less than that lower bound is guaranteed to not result

in misclassification.

To proceed, we need to prove that the smoothed form of a K-Lipschitz function due to the application of
random noise is also K-Lipschitz. For this we use the following definition of smoothed function:
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Definition 1. The smoothed form of a function F : X→ Y by convolution with a probability density function
ρ(x; θ) parametrized by θ is

F̂ (x; θ) :=
∫
Rnx

dtρ(t; θ)F (x− t).

Then we have the following proposition about the lipschitzness of a smoothed scalar function:
Proposition 6. Let F (x) be a Kp-Lipschitz scalar function of x ∈ X. Then its smoothed form F̂ (x; θ) is
Kp-Lipschitz, where the subscript p stands for the lp-norm.

Proof. ∣∣∣F̂ (x1; θ)− F̂ (x2; θ)
∣∣∣ =

∣∣∣∣∫
Rnx

dtρ(t; θ)(F (x1 + t)− F (x2 + t))
∣∣∣∣

≤
∫
Rnx

dtρ(t; θ) |(F (x1 + t)− F (x2 + t))|

≤
∫
Rnx

dtρ(t; θ)Kp ∥x1 − x2∥p = Kp ∥x1 − x2∥p ,

where the first inequality holds because the absolute value of an integral is always less than or equal to the
integral of an absolute value, and the second inequality is because F (x) is Kp-Lipschitz.

Finally, using the previous results, we obtain a certified radius of a smoothed classifier based on its smoothed
margin.
Theorem 4. Let the smoothed margin L̂M

(
x, c, σ2

x

)
be defined according to Eq. 4 and Eq. 1. If

L̂M

(
x, c, σ2

x

)
< 0, then L̂M

(
x + δ, c, σ2

x

)
< 0 ∀ δ ∈ Rnx s.t. ∥δ∥p < − L̂M(x,c,σ2

x)
2

1
q Kp

, where Kp is the

Lipschitz constant of the classifier and 1
q + 1

p = 1.

Proof. From Proposition 5 we know that the Lipschitz constant of the margin function is 2
1
q Kp. Using

Proposition 6, we have that the smoothed margin is also 2
1
q Kp-Lipschitz. Then, using the same argument

from Corollary 5.1, we have that the minimal perturbation δ ∈ X s.t. L̂M

(
x + δ, c, σ2

x

)
= 0 has norm

∥δ∥p ≥ −
L̂M(x,c,σ2

x)
2

1
q Kp

. Conversely, any perturbation less than that lower bound is guaranteed to not result in

misclassification on the smoothed classifier.

A.3 Closed-form estimate of smoothed margin

To obtain a closed-form estimate of the smoothed margin, we assume that the outputs follow a multidimen-
sional normal with mean vector µ(o) and covariance matrix Σ(o) = diag(var(o)), where diag(x) denotes
the diagonal matrix with the vector x in the diagonal elements and var(o) is the variance vector of the
output vector o.

For a multivariate normal output o(x) we have the smoothed margin,

L̄M

(
x, c, σ2

x

)
= Ex∼p(x)

[
max
i ̸=c

oi (x)− oc (x)
]

= Eo∼p(o)

[
max
i ̸=c

oi (x)
]
− µc

=
∑
i ̸=c

∞∫
−∞

oiρ (oi)
∏
j ̸=i

1
2

[
1 + erf

(
oi − µj√

2σj

)]
doi − µc,

(13)

where in the second line we took the expectation over the output instead of the input, and the indices are
sorted in descending order, with 1 being the index of the largest mean among the incorrect outputs.
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We approximate the product of CDF to just the CDF of the largest mean among the ones involved in the
product, which gives the following expression,

L̄M

(
x, c, σ2

x

) ∼= σ2
1√

2π (σ12 + σ22)
exp

(
− (µ1 − µ2)2

2 (σ12 + σ22)

)
+ µ1

2

(
1 + erf

(
µ1 − µ2√

2 (σ12 + σ22)

))

+
|C|−1∑

i=2

σ2
i√

2π (σ12 + σi
2)

exp
(
− (µ1 − µi)2

2 (σ12 + σi
2)

)
+ µi

2

(
1− erf

(
µ1 − µi√

2 (σ12 + σi
2)

))
− µc.

Empirically, we found that using the terms involving the two largest means is enough to give a close ap-
proximation (Appendix D.2). Then, by leaving the two terms, we arrive at the following expression as the
smoothed margin,

L̄M

(
x, c, σ2

x

) ∼= √σ2
1 + σ2

2
2π

exp
(
− (µ1 − µ2)2

2 (σ2
1 + σ2

2)

)
+ µ2 + µ1 − µ2

2

(
1 + erf

(
µ1 − µ2√
2 (σ2

1 + σ2
2)

))
− µc.

A.4 Closed-form estimate of correct class probability

Just like the approximation of the smoothed margin, for the closed-form estimate of correct class probability
we make the assumption that the output vector o(x) follows a multidimensional normal distribution with
independent dimensions. This gives the following integral,

Pc

(
x, σ2

x

)
= P (oc(x) > oi(x),∀i ̸= c) =

∞∫
−∞

ρ (oc)
∏
i ̸=c

1
2

[
1 + erf

(
oc − µi√

2σi

)]
doc, (14)

By considering only the term of largest mean µi in the product, we have

Pc

(
x, σ2

x

) ∼= 1
2

[
1 + erf

(
µc − µ1√
2(σ2

c + σ2
1)

)]
.

A.5 ReLU moments

Let the preactivation s of a ReLU unit h = ReLU(s) follow a Gaussian distribution N (µ, σ2). Then, h will
follow a rectified Gaussian distribution NR(µ, σ2) with density function

ρ(h; µ, σ2) = Φ
(
−µ

σ

)
δ(h) +

exp(− (h−µ)2

2σ2 )
√

2πσ
H(h)

where Φ (x) = 1
2

[
1 + erf

(
x√
2

)]
is the cumulative distribution function of the standard normal distribution;

δ(x) is the Dirac delta function, and H(x) is the Heaviside step function. The expected value and variance
of h ∼ NR(µ, σ2) are denoted as follows:

A.5.1 Expected value of rectified Gaussian distributed variable

The expected value h̄ of a unit h ∼ NR(µ, σ2) is

h̄ = Eh∼NR(µ,σ2)[h] =
∞∫

−∞

h ρ(h; µ, σ2) dh =
∞∫
0

h
exp(− (h−µ)2

2σ2 )
√

2πσ
dh
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Substituting h−µ
σ = z,

h̄ =
∞∫

− µ
σ

(σz + µ)
exp(− z2

2 )
√

2π
dz = −σ

exp(− z2

2 )
√

2π

∣∣∣∣∣
∞

− µ
σ

+ µ

∞∫
− µ

σ

exp(− z2

2 )
√

2π
dz

= σ
exp(− µ2

2σ2 )
√

2π
+ µ

2

[
1 + erf

(
µ√
2σ

)]
,

where the second integral is the complementary cumulative distribution function 1− Φ
(−µ

σ

)
.

A.5.2 Variance of rectified Gaussian distributed variable

For the variance Var(h) = Eh∼NR(µ,σ2)[h2]− h̄2, we need the second moment Eh∼NR(µ,σ2)[h2],

Eh∼NR(µ,σ2)[h2] =
∞∫

− µ
σ

(σz + µ)2 exp(− z2

2 )
√

2π
dz

=
∞∫

− µ
σ

(σ2z2 + 2µσz + µ2)
exp(− z2

2 )
√

2π
dz

= σ2
∞∫

− µ
σ

z2 exp(− z2

2 )
√

2π
dz + 2µσ

exp(− µ2

2σ2 )
√

2π
+ µ2

2

[
1 + erf

(
µ√
2σ

)]
,

obtained substituting h−µ
σ = z, and using the previous two integrals of the expected value. The integral

with the z2 term is then calculated with integration by parts,

σ2
∞∫

− µ
σ

z2 exp(− z2

2 )
√

2π
dz = −σ2z

exp(− z2

2 )
√

2π

∣∣∣∣∣
∞

− µ
σ

+ σ2
∞∫

− µ
σ

exp
(
− z2

2

)
√

2π
dz

= −µσ
exp(− µ2

2σ2 )
√

2π
+ σ2

2

[
1 + erf

(
µ√
2σ

)]
.

Adding the three terms yields the second moment of h,

Eh∼NR(µ,σ2)[h2] = µh̄ + σ2

2

[
1 + erf

(
µ√
2σ

)]
,

and its variance,

Var(h) = σ2

2

[
1 + erf

(
µ√
2σ

)]
− h̄(h̄− µ).

A.6 CLT for independent rectified Gaussian random variables

In Section 3, to obtain the average classification condition constant for the margin loss we assumed the
output layer to be symmetrically distributed, which we show in Appendix D.1 to be empirically satisfied.
For wide enough layers this is the case, since for the case of independent, but not necessarily identically
distributed, rectified Gaussian random variables, the Central Limit Theorem (CLT) applies, which we prove
in this section.
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Proposition 7. Let h1, . . . , hn be a sequence of independent rectified Gaussian random variables, where hk

has mean h̄k and variance Var(hk) = σ2
k. Then, the sum

n∑
k=1

hk satisfies the CLT.

Proof. For the proof we use the following theorem and condition:

Theorem 8 (Lindeberg theorem (Billingsley, 1995)). Assume a sequence x1, . . . , xn of n independent random
variables, where the random variable xk has mean E[xk] = 0 and variance σ2

k = E[x2
k]. Then, the sum

n∑
k=1

xk

converges to a normal distribution N (0, s2
n), where s2

n =
n∑

k=1
σ2

k, if the Lindeberg condition holds for all ϵ > 0.

Condition 2 (Lindeberg condition). Assume a sequence x1, . . . , xn of n independent random variables,
where the random variable xk has mean E[xk] = 0 and variance σ2

k = E[x2
k]. Then,

lim
n→∞

n∑
k=1

1
s2

n

∫
|xk|≥ϵsn

x2
kdPk = 0 (15)

is the Lindeberg condition, where s2
n =

n∑
k=1

σ2
k.

Let us consider a sequence h1, . . . , hn of independent rectified Gaussian random variables, where hk has
mean h̄k and variance Var(hk) = σ2

k. Without loss of generality, let σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
n and xk = hk − h̄k

so that it satisfies3 E[xk] = 0. We also define

ℓ = arg max
k

[∫
|xk|≥

√
nϵσ1

x2
kdPk

]
. (16)

Then, for all ϵ > 0,

lim
n→∞

1
s2

n

n∑
k=1

∫
|xk|≥ϵsn

x2
kdPk ≤ lim

n→∞

1
nσ2

1

n∑
k=1

∫
|xk|≥

√
nϵσ1

x2
kdPk

≤ lim
n→∞

1
nσ2

1
n

∫
|xℓ|≥

√
nϵσ1

x2
ℓdPℓ

= 1
σ2

1
lim

n→∞

∫
|xℓ|≥

√
nϵσ1

x2
ℓdPℓ

= 0,

where we used nσ2
1 ≤ s2

n for the first and Eq. 16 for the second inequality. The last limit is zero because
Pℓ(xℓ) is a shifted rectified Gaussian distribution, which means that lim

n→−∞
Pℓ(xℓ) = 0 and Pℓ(xℓ) rapidly

decays for large xℓ, i.e., it decays exponentially while the x2
ℓ part of the integrand grows quadratically.

Therefore, Lindeberg’s condition is satisfied, so the sum of independent but not necessarily identically dis-
tributed rectified Gaussian random variables follows the CLT.

B Robustness metrics

Since the motivation for SRA is that adversarial and noise robustness are distinct from each other, we measure
the adversarial robustness through the margin certified radius and the noise robustness under isotropic

3This change of variable shifts the mean of the sum to 0 without changing the variance and the second moment integral of
Eq. 15
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Gaussian input noise. We also measure the Smoothed Robustness through the Randomized Smoothing certified
radius. For the certified radius, we obtain the "survival" curves for constant increments in the certified radius.
For noise robustness, we measured the average accuracy for increments of input variance. For MNIST
training, to visualize how both types of robustness changed for different pairs of loss hyperparameters (d, σ2

x)
in the MSCR and Zhen losses, we computed the area under the curve AUCCR,l2 of the survival curves of
certified radius (Tsai et al., 2021b;a; Li et al., 2024), and similarly propose the area under the curve AUCGN

of the noise accuracy curve. The AUC is a simple and intuitive metric of overall robustness since AUCCR,lp

is the average certified radius under lp attacks, and AUCGN is the expected standard deviation that causes
the input to be misclassified on average4.

While the previous three metrics give information about both worst-, average-case and smoothed robustness,
they do not tell how robust a classifier is in real-world scenarios, or how it compares to human subjects.
Motivated by this, we implemented the linear image corruption method from Jang et al. (2021). In their
work, they were interested in how robust Deep NNs are compared to humans in image classification and
proposed a simple method of corrupting an image by building an image that is a linear combination of the
original times a constant Γ ∈ [0, 1] and a noise image times (1 − Γ). With this method, we can not only
compare the different trained NNs but also qualitatively determine how far they are from human robustness,
since one of the results from Jang et al. (2021) is that human subjects in general reached a 50% decrease in
accuracy when the original image was about 25% of the final corrupted image.

B.1 Adversarial robustness

To assess the worst-case robustness, i.e., adversarial robustness, we computed the certified radius. The
first is through the deterministic margin from Eq. 6, the second through Randomized Smoothing with the
CERTIFY algorithm by Cohen et al. (2019). For the latter, we used 105 samples, α = 0.001, and σ = 0.25.
After obtaining the certified radius for each correctly classified sample we obtained the certified radius curve
as the total number of samples with CR greater than a specific radius. From these curves we obtained their
area under the curve AUCCR,l2 as

AUCCR,l2(Xtest) = 0.5∆ε
∑
j=0

(TotCR(Xtest, (j + 1) ·∆ε) + TotCR(Xtest, j ·∆ε)) ,

where the summation is over the integer j and TotCR(Xtest, j ·∆ε) is the total number of CR greater than
radius j ·∆ε.

B.2 Noise robustness

To evaluate the average-case robustness, i.e., robustness to noise, we measured how the performance is
gradually affected by increasing the standard deviation of an additive isotropic Gaussian noise. For each
trained NN the following routine was carried to measure its noise robustness:

1. Measure the noise accuracy for zero variance (i.e., the clean accuracy) NoiseAcc(Xtest, σx = 0) of all
test samples Xtest

2. Increase the input standard deviation σx by ∆σx = 0.2 for MNIST, or 0.2/2 for CIFAR-10

3. For each input, sample 100 noise vectors5 δ from N (0, σ2
xInx

), where Inx
is the identity matrix with

nx diagonal elements, and nx is the input dimension

4. Calculate the accuracy for each of the noise samples and store its average in NoiseAcc(Xtest, σx)

5. Repeat from step 2 until the average noise accuracy is less than 0.13 ( 1
|C| plus a small cutoff value,

in this case 0.03)
4Since for large input variances the noise accuracy converges to one divided by the number of classes, we resort to normal-

ization of the noise accuracy curve described in B.2
5On Appendix D.3 we discuss how we chose this number of samples
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To quantify the robustness to noise we also employ the area under the curve AUCGN . While for the survival
curve of the certified radius there is a big enough radius that drops the accuracy to zero, yielding a finite
AUC, for the noise accuracy the accuracy drops to around 1/|C|, where |C| is the number of classes, so we
cannot apply the AUC directly. Because of this, we normalize the noise accuracy so that it maintains the
same value for zero noise, but decreases the lowest accuracy from 1/|C| to 0, which gives a finite AUC.

Then, we have the normalized noise accuracy NoiseAcc′(Xtest, σx,j) with σx,j = j ·∆σx,

NoiseAcc′(Xtest, σx,j) = (1− αj)NoiseAcc(Xtest, σx,j)
1− αjNoiseAcc(Xtest, σx,j)

where αj is a [0, 1] mapping, being 0 for j = 0 and 1 for j →∞,

αj = 1−
NoiseAcc(Xtest, j ·∆σx)−min

k
NoiseAcc(Xtest, k ·∆σx)

NoiseAcc(Xtest, 0)−min
k

NoiseAcc(Xtest, k ·∆σx) .

The meaning of this expression is that for σx = 0 the accuracy remains the same, while the minimal accuracy
becomes 0 for σx ≫ 0.

Then, using this normalized accuracy we can calculate the AUCGN as

AUCGN = 0.5∆σx

∑
j=0

(
NoiseAcc′ (Xtest, (j + 1) ·∆σx) + NoiseAcc′(Xtest, j ·∆σx)

)
.

The values of ∆ε and ∆σx were picked in such a way that it takes around 10 of these increments to completely
degrade the performance.

B.3 Linear corruption robustness

The linear image corruption from Jang et al. (2021) allows a simple way of controlling the quality of an
image by adjust a single parameter α ∈ [0, 1], where for α = 1 we have the original image and for α = 0
there is a complete loss of information. In their method, given an image x ∈ [0, 255]nx and a “gray” noisy
image n, i.e., all pixels valued with 255/2 plus a small additive noise δ ∼ N (0, 6/255), the final image to be
presented is a linear combination

I = αx + (1− α)n

where the parameter α ∈ [0, 1] can be interpreted as the signal-to-signal-plus-noise ratio, which when equals
to 1 there is a pure signal and when 0 there is pure noise. Then, by presenting images with different values
of α in 0.05 increments, they measured the reduction in classification performance in both human and NN
classifiers.

C Complete experimental settings

C.1 NN Architecture

For the MNIST experiments we used a multilayer perceptron with three hidden layers of 512 units each and
ReLU activation, which due to its computational simplicity allowed for an extensive evaluation of all losses
considered in 4.1, their respective hyperparameters grid search, as well as the variations in their robustness
performance. 6

For the CNN architecture, we used four convolutional layers of output channel sizes (8, 8, 16, 16), kernel sizes
(4, 3, 4, 3) and strides (2, 1, 2, 1), with a single fully connected layer of 512 units and ReLU activations in all

6The code for all our experiments can be found at https://github.com/ThomRC/sra
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layers. We adopted other architecture elements from Li et al. (2019b), such as not using pooling layers, since
these are not norm-preserving, and in our case would result in a heavily skewed preactivation distribution,
therefore not allowing the use of the moments of the ReLU. Like them, we also use "invertible downsampling"
to reduce the dimensionality, since striding is not norm-preserving. So, to have an operation equivalent to
stride 2 one reshapes the previous layer by stacking each entry of a 2 × 2 non-overlapping patch, which
multiplies the channel size by 4, hence decreasing the dimension of the posterior layer while preserving the
norm.

C.2 ReLU moment propagation

In the estimates of the smoothed margin and probability of correct classification, we assumed independent
normally distributed outputs. Orthogonal weights are required to mitigate the dependence of preactivations,
which for wide layers are approximately normal with mean µl = Wlh̄l−1 and covariance matrix Σl =
[Wl⊙Wl] Var(hl−1), where Wl is the weight tensor of l-th layer (i.e., the weight matrix and the convolutional
kernel for the fully connected and convolutional cases, respectively), ⊙ is the elementwise product, h̄l−1 is
the mean of the (l-1)-th hidden layer and Var(hl−1) its variance, both of same shape as hl−1. In training with
smoothed losses we implemented moment propagation (Wu et al., 2019) under ReLU activation functions.

Moment propagation consists of computing the mean vector µl and covariance matrix Σl of the preactivations
sl of the l-th layer given by the mean activation of the previous hidden layer h̄l−1 and covariance cov hl−1,
which in turn are estimated using µl−1 and Σl−1. Although ReLU activation with normally distributed
preactivation has simple closed forms for its mean and variance7, the covariance does not have a closed form
expression, thus requiring an approximation (Wu et al., 2019). Fortunately, by using row-orthogonal weight
matrices, which mitigate covariances, we do not need to worry about the covariances and need to compute
only the mean and variance of ReLU layers.

C.2.1 Orthogonal weight matrices

We adopted the Björk orthogonalization algorithm (Björck & Bowie, 1971) to obtain orthogonal weight
matrices. In the Björk orthogonalization there are two parameters, the order of the approximation p and
the number of iterations q. By setting the order p = 1 and starting with a matrix A0 = A the algorithm
computes an approximate orthogonal matrix iteratively as

Ak+1 = Ak

(
3
2I − 1

2A⊤
k Ak

)
.

This sequence of operations, even though resulting in large overhead for more iterations, is amenable to
backpropagation, where the entries of the 0-th matrix A are updated, and easily implemented.

For the implementation of Björk orthogonalization we used the code from Anil et al. (2019) as base. However,
different from their work, in which a progressive orthogonalization is acceptable, i.e., increasing the iteration
number to better approximate an orthogonal matrix as the training converges, and similar to Berg et al.
(2019), where they had to enforce orthogonality for their normalizing flows approach, we start the training
with 30 iterations and every 10 epochs the layerwise number of iterations ql is decreased to the minimum

that satisfies
∑

i̸=j
∥W̃l,i·W̃ ⊤

l,j∥
nl∗(nl−1) ≤ ε, i.e., the mean pairwise dot product between different rows of the weight

matrix from l-th layer obtained after the orthogonalization, W̃l, should be less than ε, nl being the number
of units in the l-th layer. We found that in general this mean is not less than 10−8, even for a large number
of iterations, so we set ε = 10−7 in all experiments.

C.2.2 Orthogonal convolutional layers

There exist several algorithms for building orthogonal convolutional layers (Singla et al., 2022; Singla & Feizi,
2021; Yu et al., 2022; Xu et al., 2022; Trockman & Kolter, 2021; Meunier et al., 2022). We used the imple-
mentation of block convolution orthogonal parameterization from Li et al. (2019b) since it uses the Björck

7We derive both in the Appendix A.5.
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orthogonalization as backbone, which we already had implemented. We show their algorithm in 1, with some
minor modifications for conciseness, where ci and co are the layer’s number of input and output channels, k
is the kernel size, □ is the block convolution8 operator defined as [A□B]i,j =

∑∞
i′=∞

∑∞
j′=∞ [Ai′,j′Bi−i′,j−j′ ],

where A and B are mA × nA and mB × nB block matrices, Ai,j = 0 for i ̸⊂ {0, mA} ∨ j ̸⊂ {0, nA}. To
generate symmetric projectors P and Q with rank ⌊ ci

2 ⌋, Li et al. (2019b) used orthogonal square matrices
Mi and Ni and multiplied each row by a "masking" vector with the first ⌊ ci

2 ⌋ entries equals to one and the
others to zero.

Algorithm 1: Block Convolution Orthogonal Parametrization
Input: co × ci orthogonal matrix H(H0), ci × ⌊ ci

2 ⌋ orthogonal matrices Mi(Mi,0), Ni(Ni,0) for i from
1 to k − 1, assuming ci ≥ co

Result: Orthogonal Convolution Kernel W ∈ Rkco×kci

Initialize W as a 1× 1 convolution with W [0, 0] = H;
for i from 1 to k-1 do

P , Q←MiM
⊤
i , NiN

⊤
i ; ▷ Construct half-rank symmetric projectors;

W ←W□

[
P Q P (I −Q)

(I − P )Q (I − P )(I −Q)

]
;

end
Output: W

This algorithm is a modification of the one proposed by Xiao et al. (2018) to allow the parameterization
of the orthogonal matrices with unconstrained ones H0, Mi,0 and Ni,0 that will have its values updated
during training. However, unlike these works in that the goals of Xiao et al. (2018) and Li et al. (2019b)
were to preserve the input and gradient norms, respectively, our reason for using orthogonal convolutions is
to mitigate the covariance between units that emerges from the non-orthogonality.

To illustrate how non-orthogonality can be an issue in our case, let us consider the case of filters of size
2× 2× cin and stride 1. The first pixel in the first channel of the convolutional layer is the inner product of
this filter and the first 2 × 2 × cin pixels in the input. The second pixel of the first channel is the product
between the filter and the 2×2× cin pixels in the input after shifting one pixel to the right. Because there is
an overlap of 2× 1× cin input pixels, the covariance between these two pixels from the second layer is zero
only if the first and second 2× 1× cin parts of the filter are orthogonal. Hence, non-orthogonal convolutions
can create strong correlations between units, even with isotropic input noise, thus hindering the use of our
closed-form estimates of moments of ReLU and smoothed losses.

To gain some insight into why this final block matrix is equivalent to an orthogonal convolutional layer, here
we describe it qualitatively (for a rigorous and quantitative description, we refer the reader to (Kautsky &
Turcajov, 1994) and Li et al. (2019b)). The algorithm by Xiao et al. (2018) is an extension to the 2D case
of the one from Kautsky & Turcajov (1994), which in turn shows how to build 1D discrete orthonormal
wavelets. In terms of wavelet analysis (Kautsky & Turcajov, 1994; Chui, 1992), the output matrix W is an
orthonormal 2D discrete wavelet, and the r-th rows of each submatrix Wi,j correspond to the coefficients of
one element of the orthonormal basis of the wavelet. By stacking each of these k2 rows in the order of the
indices i and j, we have one filter of depth ci and size k.

For a wavelet to be orthonormal it needs to have block autocorrelation - the "non-flipped" convolution with
itself - as the zero matrix for all values except at "zero", i.e., when the wavelet "overlaps" itself. To roughly
sketch why this is the case, we first point out that all elements in its first column end with the projector
Qk−1, while all elements in the last column end in I −Qk−1. When calculating the autocorrelation of this
matrix, all the products of the first column entries with the transpose of the entries of the last columns result
in the zero matrix, since Qk−1 and I − Qk−1 are orthogonal. Then, due to sequential convolutions with
2 × 2 block matrices, the columns from 2 to k − 1 have both entries that end in Qk−1 and I −Qk−1, but
the columns i s.t. 1 < i ≤ k/2 always have the same number of Qk−1 entries as the column k− i has entries

8The intuition of the block convolution is that, just like the convolution between two functions "flips" the function over each
axis, it moves the "flipped" block matrix on the left over the block matrix on the right, and each entry of the resulting block
matrix is the sum of the matrix multiplication of the overlapping entries.
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I − Qk−1. This kind of anti-symmetry in the distribution of projectors in W due to its generation from
block convolutions of projectors, with directly neighboring elements having products of projections differing
in only one projector, results in the autocorrelation of the matrix W having all entries 0, except the center
one, that is the autocorrelation of the unshifted matrix.

C.3 Datasets

The MNIST dataset (LeCun & Cortes, 2010) consists of 60000 training and 10000 test 28×28, and CIFAR-10
(Krizhevsky, 2009) of 50000 training and 10000 test 32 × 32 × 3 8-bit images, labeled from 0 to 9 with the
number reflecting the respective class of the image. The only pre-processing was the scaling of each pixel
from the range 0-255 to 0-1 by dividing all input elements by 255.

C.4 Loss hyperparameters search

We used σ2
x ∈ {0.001, 0.005, 0.01, 0.05, 0.1} for the SC-SCE loss. For the MCR and MH losses,

we used d ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. For the Zhen loss we did a grid search over σ2
x ∈

{0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 1.75} and d ∈ {5, 10, 15, 20, 25, 30}. For the MSCR, over σ2
x ∈

{10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1, 5×10−1, 100} and d ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}.

C.5 Training

The weight update algorithm was Adam (Kingma & Ba, 2017) with a learning rate of 0.01 and 0.005 for
the MNIST and CIFAR-10 experiments, respectively, with the usual hyperparameters β1 = 0.9, β2 = 0.999,
starting the weight updates only after 2000 steps of updating the adaptive parameters m and v for learning
stability.

Finally, we found that using cosine annealing as proposed by Loshchilov & Hutter (2017) with warm restarts
resulted in generally better and faster convergences. We implemented the method described in their ap-
pendix, so we will not go into details, but the method works by decaying the scale of the learning rate from
1 to 0 in the first n0 epochs according to the cosine function and, after reaching the n0-th epoch, the scaling
goes back to 1 and starts the decay again. When the scaling goes back to 1 this is called a warm restart
and helps avoid poor local minima and, to improve stability, the decay takes more time in-between warm
restarts, with nk+1 = m · nk epochs from the k-th to the (k + 1)-th warm restart, where m is a constant
integer greater than 1. By choosing n0 = 20 and m = 2, in epoch 300 it finishes the third warm restart, with
160 epochs, which we found to result in stable training.

D Complementary experimental results

D.1 Approximate output normality

In Section 4.1, we assumed that the output layer is distributed according to a multivariate normal distribution
with independent outputs to obtain closed-form estimates of the smoothed margin and the probability of
correct classification. Here we compare the values of the empirical smoothed margin and probability of
correct classification with the ones obtained through numerical integration to show that for the case of
orthogonal weight matrices with wide enough layers (512 units) this assumption is fairly satisfied.

We carried the numerical integration of the integral equations 13 and 14 used for the estimates with
integrate.quad function from python’s scipy package. The integration interval was selected to be µj±4σj ,
where j is the index of the output variable that the integration is taken, since smaller values would result in
larger integration errors, while larger ones would increase the computational cost with small improvements
in precision.

For the empirical evaluation, we obtained sample estimates of the probability of correct classification,

P ′
c

(
x, σ2

x

)
=
∑N

i=1 1oc(xi)>oj(xi),∀j ̸=c

N
,
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where N = 106 was the number of samples taken by forwarding different samples of input perturbation from
an isotropic Gaussian noise.

Both the sample and the numerical integration values were obtained by increments of ∆σx = 0.032 in the
input standard deviation, using a NN with settings from Section C.5 after 30 training epochs. In figure 8 we
see that the approximate output normality assumption is satisfied, given that the numerical and empirical
values agree well.

Figure 8: Comparison of correct classification probability Pc through numerical integration (continuous blue)
and sample estimate (dashed green) for different values of input variance σ2

x. The second axis shows the
mean absolute error between the numerical and sample estimate values (dotted red). Each curve corresponds
to the average over test samples after 30 epochs.

D.2 Closed-form approximations

In figure 9 we present how close the approximations (dashed purple lines) of the smoothed margin (Eq.
7) and probability of correct classification (Eq. 8) are, respectively, to their integral equations 13 and 14
(continuous blue lines). We can see that, overall, the approximations are close to their numerical values,
starting to diverge only for larger values of input variance. We also point out that the maximal mean absolute
error occurs when half the samples are misclassified on average, i.e., when Pc = 0.5 and LM = 0 on average.

Figure 9: Comparison of approximation (purple) and numerical integration (blue) values of probability of
correct classification (left) and absolute smoothed margin (right) for increasing input variance. The second
axis shows the mean absolute error between the numerical and approximation values (red line). Each curve
corresponds to the average over test samples after 30 epochs, and we plot the absolute smoothed margin for
better visualization, since as the variance increases, the signs of the SM start to change making the average
SM close to zero.
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D.3 Accuracy under noise

In Appendix B.2 we describe using 100 samples for the estimate of accuracy under noise. In figure 10 we
show that as the number of samples increases, the variance of the noise accuracy estimate decreases. For
this plot we used input variance of σx = 1, which is a large variance. For 100 samples, the error bar becomes
close to 1 in 10000, and since 10000 is the size of our test sample we used this value.

Figure 10: Plot of the estimate noise accuracy for different number of samples. The error bars were computed
over five estimates using the shown sample number.

32


	Introduction
	Related works
	Bridging adversarial and noise robustness
	Randomized smoothing
	Lipschitz-constrained NNs
	Algorithm analysis: worst-case, average-case and smoothed


	Smoothed Robustness Analysis: Smoothed Analysis for the robustness of classifiers
	Smoothed Robustness Analysis
	Randomized Smoothing as SRA with the 0-1 loss

	Margin-based SRA: Smoothed Robustness Analysis with the margin loss
	Margin Loss

	Proof of Concept
	Objective functions
	Hyperparameter search
	Robustness comparison
	CIFAR-10 experiments

	Discussion
	Multiclass hinge losses
	Robustness-accuracy trade-off
	Relationship to ‘intermediate-q’ robustness
	Limitations and other future directions

	Proofs and derivations
	Relation of smoothed margin and classification probability
	Smoothed radius certification with margin function
	Closed-form estimate of smoothed margin
	Closed-form estimate of correct class probability
	ReLU moments
	Expected value of rectified Gaussian distributed variable
	Variance of rectified Gaussian distributed variable

	CLT for independent rectified Gaussian random variables

	Robustness metrics
	Adversarial robustness
	Noise robustness
	Linear corruption robustness

	Complete experimental settings
	NN Architecture
	ReLU moment propagation
	Orthogonal weight matrices
	Orthogonal convolutional layers

	Datasets
	Loss hyperparameters search
	Training

	Complementary experimental results
	Approximate output normality
	Closed-form approximations
	Accuracy under noise


