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Abstract

Simulation models are becoming a staple tool across application domains from
economics to biology. When such models are stochastic, evaluating their likelihood
functions in a reasonable time is typically infeasible or even impossible. In these
settings, simulation-based inference (SBI) procedures are a convenient means to
approximating conventional parameter calibration procedures. A popular example
is approximate Bayesian computation (ABC), in which the observed data is com-
pared to the simulation output at different parameter values through some distance
function. While many such methods exist, few are compatible with panel data of
various kinds, as might appear in medical settings, for example; many methods
instead assume iid observations in both the simulated and observed data. We seek
to address this gap through the use of signature maximum mean discrepancies
as distance measures in ABC. Through experiments with a dynamical model of
functional brain networks, we demonstrate that such an approach can flexibly
operate on panel data of various kinds, for example dynamic graph data arising
from multiple patients/subjects in fMRI settings.

1 Introduction

Computer simulations are a key component in many areas of scientific research and in numerous
real-world decision-making processes. Such programs are implemented to model the behaviour
of some real-world system, and often entail the use of random number generators internally to
capture stochastic influences. Performing a forward simulation of the model to generate data x
may thus be represented as a draw from the model’s likelihood function – x ∼ p(x | θ) – and the
problem of model calibration – discovering values for the model’s free parameters θ that result in
model behaviour that closely matches real-world data y – can be appropriately performed using
likelihood-based parameter inference procedures.

In general, however, the likelihood for arbitrary simulation models is not available in closed form,
and it is also typically not possible to evaluate the likelihood function numerically within a reasonable
time. This exacerbates the application of classical likelihood-based parameter inference procedures
and motivates the development of alternative techniques, from which a class of simulation-based
inference (SBI) procedures that approximate standard, exact inference methods have emerged (see
e.g. 4, for a recent survey).
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One prevailing approach to SBI is approximate Bayesian computation (ABC) (1; 13; 17). Given a
prior density π(θ) on parameters, ABC approximates the exact parameter posterior given by Bayes’
theorem,

π(θ | y) ∝ p(y | θ)π(θ), (1)
by, broadly speaking, assigning higher posterior density to parameter values that generate simulations
x sufficiently close to y under the topology induced by some distance measure D. A key step in
the application of ABC then is the choice of distance employed in the algorithm, which has led to
significant research effort investigating the appropriateness of a large collection of ABC distances
under different problem settings (see e.g. 2; 5; 12).

However, many such approaches make limiting assumptions on the form of the data, such as assuming
that the data x consists of iid vector-valued observations, and few are compatible with more structured
settings such as sequential data consisting of potentially non-Euclidean observations. Such settings
arise in, for example, biomedical applications – where the data may consist of multiple instances
of longitudinal data recorded for different patients or subjects, who may reasonably be treated as
iid instances from some underlying distribution – or in the natural or behavioural sciences – where
multiple independent experiments may be run in which the behaviour of some system or a collection of
individuals is recorded over time. Developing SBI methods that can readily handle data consisting of
multiple iid sequences is thus an important step in bridging the gap between explanatory, mechanistic
models of these systems and data generated by the real-world counterparts to these models.

To address this challenge, we propose to build on previous work on the use of the signature method
in computational statistics and machine learning (3; 5; 7; 9; 10; 11) by introducing ABC based on
the signature maximum mean discrepancy (MMD). Our approach embodies a principled approach
to automatically building distances D between simulated sequences and iid sequences from the
real-world, such as medical panel data, for use in ABC procedures. Furthermore, we illustrate such
an approach can be readily applied to complex, structured data encountered in such settings by
demonstrating its use on a model of dynamic brain networks that generates sequences of graphs
describing the evolving functional connectivity of simulated patients’ brains. Further, this extends
previous work on calibrating parameters for dynamic graph simulators using neural SBI methods (6).

2 Background

We provide some background on path signatures. Let H be a Hilbert space and h : [0, T ] → H a
continuous H-valued path on interval [0, T ]. Assume further that h is of bounded variation, i.e.

∥h∥1−var := sup
P∈ζ(0,T )

|P|−1∑
j=1

∥∥htj+1 − htj

∥∥
H < ∞, (2)

where ζ(0, T ) is the set of all partitions of the interval [0, T ] and |P| is the size of the partition. The
path signature (10) of h is the infinite set of tensors obtained through the following iterated integrals:

Sig(h) :=

(
1,

∫ T

0

dh,

∫ T

0

∫ t

0

dh⊗ dht, . . . ,

∫ T

0

∫ t

0

dh⊗(m−1) ⊗ dht, . . .

)
(3)

Such objects appear in the solutions to controlled and stochastic differential equations, and provide
an efficient summary of the responses of a controlled differential equation to its driving path (10). Of
particular relevance to us is the signature kernel (9; 14). Defining the inner product

⟨A,B⟩ :=
∑
m≥0

⟨am, bm⟩H⊗m (4)

for C = (c0, c1, c2, . . . ) ∈ R⊕H⊕H⊗2 ⊕ . . . , we arrive at the definition of the signature kernel:

Definition 1 (Signature kernel, Kiraly and Oberhauser (9)) Let h, g be two bounded variation
paths on [0, T ] in H. With an inner product as in Equation 4, the signature kernel is defined to be

k(h, g) = ⟨Sig(h), Sig(g)⟩. (5)

It can be shown that the signature kernel computations can be completely kernelised and expressed
through inner products on points in the path, permitting the sequentialisation of arbitrary “static”
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kernels κ on the data space X . This enables the signature kernel to be applied to data evolving in
arbitrary topological spaces provided a suitable static kernel κ is available.

A further property of signatures is that the expected signature characterises the law of stochastic
processes (3). An additional application of the signature kernel then is to construct maximum mean
discrepancies for stochastic processes, giving a distance between distributions on paths (3; 14) as

DM(P,Q) := ∥Eh∼P [Sig(h)]− Eg∼Q[Sig(g)]∥2 , (6)

an unbiased estimate of which may be obtained as

D̂M(P,Q) =
1

n(n− 1)

∑
i ̸=j

k(x(i),x(j)) +
1

m(m− 1)

∑
i̸=j

k(y(i),y(j))− 2

nm

∑
i,j

k(x(i),y(j)) (7)

where x(i) and y(i) are iid sequences (discretised paths) drawn from P and Q, respectively.

3 Method

In this paper, we consider a generalisation of the method presented in (5) by considering that the
signature MMD, Equations (6)-(7), can be used in ABC algorithms in cases where multiple iid
sequences are obtained from real-world data. In such cases, the discrepancy measure used in (5),
namely the signature MMD between Dirac measures on real data y and simulated data x, calculated as

D(x,y) :=
∥∥Ex∼δx [Sig(x)]− Ey∼δy [Sig(y)]

∥∥2 = ∥Sig(x)− Sig(y)∥2 , (8)

can be generalised to either the scoring rule

DS(δx, Q) := ∥Ex∼δx [Sig(x)]− Ey∼Q[Sig(y)]∥2 (9)

if the simulation budget permits only one simulation per θ, or the distance on distributions on
sequences

DM(Pθ, Q) := ∥Ex∼Pθ
[Sig(x)]− Ey∼Q[Sig(y)]∥2

if the simulation budget allows for multiple draws from the simulator at parameters θ. Both distances
may be estimated as in Equation (7). The parameter posterior π(θ | y) may then be approximated
through, for example, rejection ABC, such that the ABC posterior follows

πREJ(θ | y) ∝ π(θ)

∫
1 [DA ≤ ε] p(x | θ)dx, (10)

where y is the collection of observed, real-world sequences and DA is Equation (9) or (6) as desired.

4 Experiments

To illustrate our proposed method, we perform experiments with a dynamic graph simulator based on
a larger model which has been used to simulate evolving functional brain network connectivities in
patients (18). The model may be summarised as follows:

st | st−1 = ℓ ∼ Multinomial(πℓ1, . . . , πℓS) (state transition) (11)
βt | st ∼ N (µs,Σs) (logit of connection probabilities) (12)
Wt | βt ∼ Bernoulli(f(βt,Ω)). (t-th adjacency matrix) (13)

In the equations above, the st ∈ {1, . . . , S} denote the state of the subject at time t; the πrs denote
the transition probabilities between states r, s = 1, . . . , S; βt ∈ RQ2

consist of the logits of the
connection probabilities between each of the Q communities of nodes in the brain; µs and Σs are
parameters depending on the current state s; Wt is the adjacency matrix at time t; and Ω ∈ RN×Q

is a matrix denoting community membership, where Ωnq = 1 if node n is in community q and 0
otherwise. In our experiments, we observe only the brain connectivity matrices Wt, such that the
simulated data x is a sequence of graphs, while the pseudo-observed (simulated) data y consists of
R > 1 iid sequences of graphs and represent a collection of dynamic functional connectivity matrices
observed in the “real world” from “real” patients.
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(a) Signature MMD posterior. (b) Posterior with hand-crafted summary statistics.

We consider the task of inferring the transition matrix elements πij using our proposed ABC pipeline
based on the signature MMD. We use a Weisfeiler–Lehman graph kernel (15) to construct the static
kernel κ employed in the signature kernel computations, in order for the signature MMD to be applied
immediately to dynamic graph data. We place uniform Dirichlet priors on each row of the transition
matrix π (such that the hyperparameters are (1, 1, 1)); further experimental details are provided
in Appendix A.1. We use a rejection ABC scheme in which 104 parameters are sampled from the
prior, from which we retain the top 5% of samples generating the smallest distances. As a baseline
comparison method, we perform rejection ABC using the squared Euclidean distance between hand-
crafted summary statistics, which we take to be the counts of edges between each pair of communities
at each timestep. These are well-known sufficient statistics for the static SBM, see e.g. (8).

In Figures 1a and 1b, we show the ABC posteriors obtained using the distance in Equation 9 and
the hand-crafted summary statistics, respectively. The marginal densities are shown on the diagonal,
while the off-diagonals show the joint bivariate densities. Both posteriors are fairly diffuse and assign
relatively high density to the true parameter values, shown as the red lines and crosses. We further
show in Table 1 statistics describing the distribution of the L2 distances between summary statistics
of the generated data, and those of samples from the posterior predictive distributions associated
with the ABC posteriors based on (i) Equation (9), and (ii) directly using these hand-crafted summary
statistics. From this, we see that our signature-based approach tends to generate smaller distances
than the approach based on hand-crafted summary statistics, even compared on this same basis.
Overall, this suggests that our method is a useful automatic approach to constructing approximate
parameter posteriors in settings involving multiple iid sequences from the real-world.

5 Conclusion

In this paper, we investigate the use of the signature maximum mean discrepancy in approximate
Bayesian computation when panel data is available from the real-world, as may be encountered in
medical settings or in the natural or behavioural sciences. Through experiments with a dynamic
graph simulator used to model evolving functional brain connectivity, we demonstrate that such an
approach may be successfully applied to temporal graph data to relate mechanistic models to data.

Method Min 25% 50% 75% Max

Signature (ours) 2420 2780 2947 3130 4800
Hand-crafted 2623 3012 3171 3369 5824

Table 1: Posterior predictive checks for the dynamic graph simulator. Columns show percentiles of
the distribution of L2 distances between summary statistics. Lower values indicate better predictions.
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A Appendix

A.1 Further details on experimental setup

In the reported numerical experiments, we take: the number of states S = 3; number of brain regions
of interest (nodes) N = 20; number of time steps T = 30; number of “observed” subjects in y to be
R = 10; and four communities of nodes (such that Ω ∈ {0, 1}N×4) for which the network partition
is assumed to be known.

A.2 Further details on signature kernel computations

For all signature kernel computations, we use the sigkernel1 package (14), and use a dyadic order
1 in the finite element scheme to solve the corresponding Goursat partial differential equation. As the
static kernel κ, we use a Weisfeiler-Lehman (WL) kernel in which all nodes are assigned the same
initial label of 1 and we use 2 iterations of the WL procedure and a normalised Vertex Histogram
as the base kernel within the WL kernel. For the graph kernel computations, we use the grakel2

package (16).

1https://github.com/crispitagorico/sigkernel
2https://github.com/ysig/GraKeL
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