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ABSTRACT

Recent empirical studies have demonstrated that diffusion models can effectively
learn the image distribution and generate new samples. Remarkably, these mod-
els can achieve this even with a small number of training samples despite a large
image dimension, circumventing the curse of dimensionality. In this work, we
provide theoretical insights into this phenomenon by leveraging key empirical
observations: (i) the low intrinsic dimensionality of image data, (ii) a union of
manifold structure of image data, and (iii) the low-rank property of the denois-
ing autoencoder in trained diffusion models. These observations motivate us to
assume the underlying data distribution of image data as a mixture of low-rank
Gaussians and to parameterize the denoising autoencoder as a low-rank model ac-
cording to the score function of the assumed distribution. With these setups, we
rigorously show that optimizing the training loss of diffusion models is equivalent
to solving the canonical subspace clustering problem over the training samples.
Based on this equivalence, we further show that the minimal number of samples
required to learn the underlying distribution scales linearly with the intrinsic di-
mensions under the above data and model assumptions. This insight sheds light on
why diffusion models can break the curse of dimensionality and exhibit the phase
transition from failure to success in learning distributions. Moreover, we empir-
ically establish a correspondence between the subspaces and the semantic repre-
sentations of image data, facilitating image editing. We validate these results with
extensive experimental results on both simulated distributions and image datasets.

1 INTRODUCTION

Generative modeling is a fundamental task in deep learning, which aims to learn a data distribution
from training data to generate new samples. Recently, diffusion models have emerged as a new fam-
ily of generative models, demonstrating remarkable performance across diverse domains, including
image generation (Alkhouri et al., 2024; Ho et al., 2020; Rombach et al., 2022), video content gen-
eration (Bar-Tal et al., 2024; Ho et al., 2022), speech and audio synthesis (Kong et al., 2020; 2021),
and solving inverse problem (Chung et al., 2022; Song et al., 2024). In general, diffusion models
learn a data distribution from training samples through a process that imitates the non-equilibrium
thermodynamic diffusion process (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2021).
Specifically, the training and sampling of diffusion models involve two stages: (i) a forward diffu-
sion process where Gaussian noise is incrementally added to training samples at each time step, and
(ii) a backward sampling process where the noise is progressively removed through a neural net-
work that is trained to approximate the score function at all time steps. As described in prior works
(Hyvärinen & Dayan, 2005; Song et al., 2021), the generative capability of diffusion models lies in
their ability to learn the score function of the data distribution, i.e., the gradient of the logarithm of
the probability density function (pdf ). We refer the reader to (Chen et al., 2024a; Croitoru et al.,
2023; Yang et al., 2023) for a more comprehensive introduction and survey on diffusion models.

Despite the recent advances in understanding sampling convergence (Chen et al., 2023b; Lee et al.,
2022; Li et al., 2023), distribution learning (Chen et al., 2023a; Oko et al., 2023), memorization
(Gu et al., 2023; Somepalli et al., 2023; Wen et al., 2023; Zhang et al., 2024), and generalization
(Kadkhodaie et al., 2023; Yoon et al., 2023; Zhang et al., 2023) of diffusion models, the fundamental
working mechanisms remain poorly understood. One of the key questions is

When and why can diffusion models learn the underlying data distribution without suffering from
the curse of dimensionality?
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(a) (b)
Figure 1: (a) Visualization of the union of manifold structure of image data. Here, different images
lie on different manifolds Mi ⊆ Rn of intrinsic dimension d with d ≪ n. (b) An illustration of
training samples that are generated according to the MoLRG model. This model is a local lineariza-
tion of a union of manifolds.

At first glance, the answer might seem quite straightforward. If a diffusion model can learn the em-
pirical distribution of the training data that accurately approximates the underlying data distribution,
then the puzzle is solved! However, it has been shown in (Li et al., 2024) that the number of samples
for an empirical distribution to approximate the underlying data distribution could grow exponen-
tially with respect to (w.r.t.) the data dimension. Moreover, Oko et al. (2023); Wibisono et al. (2024)
showed that to learn an ϵ-accurate score estimator measured by the ℓ2-norm via score matching or
kernel-based approach, the required size of training samples grows at the rate of O(ϵ−n), where n is
the data dimension. These theoretical findings indicate that learning the underlying distribution via
diffusion models suffers from the curse of dimensionality. In contrast, recent studies (Kadkhodaie
et al., 2023; Zhang et al., 2023) showed that the number of training samples for a diffusion model to
learn the underlying distribution is much smaller than the worst-case scenario, breaking the curse of
dimensionality. Therefore, there is a significant gap between theory and practice.

In this work, we aim to address the above question of learning the underlying distribution via dif-
fusion models by leveraging low-dimensional models. Our key observations are as follows: (i) The
intrinsic dimensionality of real image data is significantly lower than the ambient dimension, a fact
well-supported by extensive empirical evidence in Gong et al. (2019); Pope et al. (2020); Stanczuk
et al. (2024); (ii) Image data lies on a disjoint union of manifolds of varying intrinsic dimensions, as
empirically verified in Brown et al. (2023); Kamkari et al. (2024); Loaiza-Ganem et al. (2024) (see
Figure 1(a)); (iii) We empirically observe that the denoising autoencoder (DAE) (Pretorius et al.,
2018; Vincent, 2011) of diffusion models trained on real-world image datasets exhibit low-rank
structures (see Figure 3). Based on these observations, we conduct a theoretical investigation of
distribution learning through diffusion models by assuming that (i) the underlying data distribution
is a mixture of low-rank Gaussians (see Definition 1) and (ii) the denoising autoencoder is parame-
terized according to the score function of the MoLRG. Notably, these assumptions will be carefully
discussed based on the existing literature and validated by our experiments on real image datasets.

1.1 OUR CONTRIBUTIONS

This work studies the DAE-based training loss of diffusion models under the above low-dimensional
data model and network parameterization. Our contributions can be summarized as follows:

• Equivalence between training diffusion models and subspace clustering. Under the above
setup, we show that the training loss of diffusion models is equivalent to the unsupervised subspace
clustering problem (Agarwal & Mustafa, 2004; Vidal, 2011; Wang et al., 2022) (see Theorem 3).
This equivalence implies that training diffusion models is essentially learning low-dimensional
manifolds of the data distribution.

• Understanding breaking the curse of dimensionality in learning distributions. By leveraging
the above equivalence and the data model, we show that if the number of samples exceed the
intrinsic dimension of the subspaces, the optimal solutions of the training loss can recover the
underlying distribution. This explains why diffusion models can break the curse of dimensionality.
Conversely, if the number of samples is insufficient, it may learn an incorrect distribution.

• Correspondence between semantic representations and the subspaces. Interestingly, we find
that the discovered low-dimensional subspaces in a pre-trained diffusion model possess semantic

2
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Figure 2: Correspondence between the singular vectors of the Jacobian of the DAE and se-
mantic image attributes. We use a pre-trained DDPM with U-Net on the MetFaces dataset (Karras
et al., 2020). We edit the original image x0 by changing xt into xt + αvi, where vi is a singular
vector of the Jacobian of the DAE xθ(xt, t). In the last column, the editing direction s is random.

meanings for natural images; see Figure 2. This motivates us to propose a training-free method to
edit images on a frozen-trained diffusion model.

We also conduct extensive numerical experiments on both synthetic and real data sets to verify our
assumptions and validate our theory. More broadly, the theoretical insights we gained in this work
provide practical guidance as follows. First, we have shown that the number of samples for learning
the underlying distribution via diffusion models scales proportionally with its intrinsic dimension.
This insight allows us to improve training efficiency by quantifying the number of required training
samples. Second, the identified correspondence between semantic representations and subspaces
provides valuable guidance on controlling data generation. By manipulating the semantic represen-
tations within these subspaces, we can achieve more precise and targeted data generation.

1.2 RELATED WORKS AND DISCUSSIONS

Learning a mixture of Gaussians via diffusion models. Recent works have extensively studied
distribution learning and generalizability of diffusion models for learning a mixture of full-rank
Gaussian (MoG) model (Chen et al., 2024b; Cole & Lu, 2024; Gatmiry et al., 2024; Shah et al.,
2023; Wu et al., 2024). Specifically, they assumed that there exist centers µ1, . . . ,µK ∈ Rn such
that image data approximately follows from the following distribution:

x ∼
K∑

k=1

πkN (µk, In), (1)

where πk ≥ 0 is the mixing proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1. No-
tably, the MoLRG model is distinct from the above MoG model that is widely studied in the literature.
Specifically, the MoGmodel consists of multiple Gaussians with varying means and covariance span-
ning the full-dimensional space (see Eq. (1)), while a MoLRG comprises multiple Gaussians with
zero mean and low-rank covariance (see Eq. (7)), lying in a union of low-dimensional subspaces. As
such, the MoLRG model, inspired by the inherent low-dimensionality of image datasets (Gong et al.,
2019; Pope et al., 2020; Stanczuk et al., 2024), offers a deeper insight into how diffusion models can
learn underlying distributions in practice without suffering from the curse of dimensionality.

Memorization and generalization in diffusion models. Recently, extensive studies (Kadkhodaie
et al., 2023; Yoon et al., 2023; Zhang et al., 2023) empirically revealed that diffusion models learn
the score function across two distinct regimes — memorization (i.e., learning the empirical distri-
bution) and generalization (i.e., learning the underlying distribution) — depending on the training
dataset size vs. the model capacity. For a model with a fixed number of parameters, there is a
phase transition from memorization to generalization as the number of training samples increases

3
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(Kadkhodaie et al., 2023; Zhang et al., 2023). Notably, most existing studies on the memorization
and generalization of diffusion models are empirical. In contrast, our work provides rigorous theo-
retical explanations for these intriguing experimental observations based on the MoLRG model. We
demonstrate that diffusion models learn the underlying data distribution with the number of training
samples scaling linearly with the intrinsic dimension.

Notation. We write matrices in bold capital letters like A, vectors in bold lower-case letters like
a, and scalars in plain letters like a. Given a matrix, we use ∥A∥ to denote its largest singular value
(i.e., spectral norm), σi(A) its i-th largest singular value, and aij its (i, j)-th entry, rank(A) its
rank, ||A||F its Frobenius norm. Given a vector a, we use ∥a∥ to denote its Euclidean norm and ai
its i-th entry. Let On×d denote the set of all n× d orthonromal matrices. We simply write the score
function ∇x log p(x) of a distribution with probability density function (pdf) p(x) as∇ log p(x).

2 PROBLEM SETUP

In this work, we consider an image dataset consisting of samples {x(i)}Ni=1 ⊆ Rn, where each data
point is i.i.d. sampled from an underlying data distribution pdata(x). Instead of learning this pdf
directly, score-based diffusion models aim to learn the score function from the training samples.

2.1 PRELIMINARIES ON SCORE-BASED DIFFUSION MODELS

Forward and reverse SDEs of diffusion models. In general, diffusion models consist of forward
and reverse processes indexed by a continuous time variable t ∈ [0, 1]. Specifically, the forward
process progressively injects noise into the data. This process can be described by the following
stochastic differential equation (SDE):

dxt = f(t)xtdt+ g(t)dwt, (2)
where x0 ∼ pdata, the scalar functions f(t), g(t) : R→ R respectively denote the drift and diffusion
coefficients,1 and {wt}t∈[0,1] is the standard Wiener process. For ease of exposition, let pt(x) denote
the pdf of xt and pt(xt|x0) the transition kernel from x0 to xt. According to Eq. (2), we have

pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t In), where st = exp

(∫ t

0

f(ξ)dξ

)
, σt =

√∫ t

0

g2(ξ)

s2(ξ)
dξ, (3)

where st := s(t) and σt := σ(t) for simplicity. The reverse process gradually removes the noise
from x1 via the following reverse-time SDE:

dxt =
(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t, (4)

where {w̄t}t∈[0,1] is another standard Wiener process, independent of {wt}, running backward in
time from t = 1 to t = 0. It is worth noting that if x1 and∇ log pt are provided, the reverse process
has exactly the same distribution as the forward process at each time t ≥ 0 (Anderson, 1982).

Training loss of diffusion models. Unfortunately, the score function∇ log pt is usually unknown,
as it depends on the underlying data distribution pdata. To enable data generation via the reverse
SDE (4), a common approach is to estimate the score function ∇ log pt using the training sam-
ples {x(i)}Ni=1 based on the scoring matching (Ho et al., 2020; Song et al., 2021). Because of the
equivalence between the score function∇ log pt(xt) and the posterior mean E [x0|xt], i.e.,

stE [x0|xt] = xt + s2tσ
2
t∇ log pt(xt), (5)

according to Tweedie’s formula and (3), an alternative approach to estimate the score function
∇ log pt is to estimate the posterior mean E [x0|xt]. Consequently, extensive works (Chen et al.,
2024c; Kadkhodaie et al., 2023; Karras et al., 2022; Vincent, 2011; Xiang et al., 2023) have consid-
ered training a time-dependent function xθ(·, t) : Rn × [0, 1] → Rn, known as denoising autoen-
coder (DAE), parameterized by a neural network with parameters θ to estimate the posterior mean
E [x0|xt]. To determine the parameters θ, we can minimize the following empirical loss:

min
θ

ℓ(θ) :=
1

N

N∑
i=1

∫ 1

0

λtEϵ∼N (0,In)

[∥∥∥xθ(stx
(i) + γtϵ, t)− x(i)

∥∥∥2] dt, (6)

1In general, the functions f(t) and g(t) are chosen such that (i) xt for all t close to 0 approximately follows
the data distribution pdata and (ii) xt for all t close to 1 is nearly a standard Gaussian distribution; see, e.g., the
settings in Ho et al. (2020); Karras et al. (2022); Song et al. (2021).
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where λt : [0, 1]→ R+ is a weighting function and γt := stσt. As shown in Vincent (2011), training
the DAE is equivalent to performing explicit or implicit score matching under mild conditions. We
refer the reader to Appendix A.1 for the relationship between this loss and the score-matching loss
in (Song et al., 2021; Vincent, 2011).

2.2 LOW-DIMENSIONAL DATA AND MODELS

Mixture of low-rank Gaussian data distribution. Although real-world image datasets are high
dimensional in terms of pixel count and overall data volume, extensive empirical works (Gong et al.,
2019; Kamkari et al., 2024; Pope et al., 2020; Stanczuk et al., 2024) suggest that their intrinsic
dimensions are much lower. For instance, Pope et al. (2020) indicated that even for complex datasets
like ImageNet (Russakovsky et al., 2015), the intrinsic dimensionality is approximately 40, which is
significantly lower than its ambient dimension. Recently, Brown et al. (2023); Kamkari et al. (2024);
Loaiza-Ganem et al. (2024) empirically validated the union of manifolds hypothesis, demonstrating
that high-dimensional image data often lies on a disjoint union of manifolds instead of a single
manifold. These observations motivate us to model the underlying data distribution as a mixture
of low-rank Gaussians, where the data points are generated from a mixture of several Gaussian
distributions; see Figure 1(b). We formally define the MoLRG distribution as follows:
Definition 1 (Mixtures of Low-Rank Gaussians). We say that a random vector x ∈ Rn follows a
mixture of K low-rank Gaussian distribution with parameters {πk}Kk=1 and {U⋆

k}Kk=1 if

x ∼
K∑

k=1

πkN (0,U⋆
kU

⋆T
k ), (7)

where U⋆
k ∈ On×dk denotes the orthonormal base of the k-th component and πk ≥ 0 is the mixing

proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1.

Before we proceed, we make some remarks on this data model. First, to study how diffusion mod-
els learn the underlying data distribution, many recent works have studied a mixture of full-rank
Gaussian distributions (see Eq. (1)); see, e.g., Chen et al. (2024b); Gatmiry et al. (2024); Shah
et al. (2023). However, compared to this model, MoLRG is a more suitable model for capturing the
low-dimensionality in image data distribution. Second, Brown et al. (2023); Kamkari et al. (2024)
conducted extensive numerical experiments to validate that image datasets such as MNIST and Im-
ageNet approximately lie on a union of low-dimensional manifolds. Because a nonlinear manifold
can be well approximated by its tangent space (i.e., a linear subspace) in a local neighborhood, the
MoLRG model, which represents data as a union of linear subspace, serves a good local approxi-
mation of a union of manifolds. Finally, assuming Gaussian distributions in each subspace in the
MoLRG model is to ensure theoretical tractability, making it a practical starting point for theoretical
studies on real-world image datasets. Now, we compute the ground-truth posterior mean E [x0|xt]
when x0 satisfies the MoLRG model as follows.
Lemma 1. Suppose that x0 satisfies the MoLRG model. For each time t > 0, it holds that

E [x0|xt] =
st

s2t + γ2
t

∑K
k=1 πk exp

(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp
(
ϕt∥U⋆T

k xt∥2
) , where ϕt :=

s2t
2γ2

t (s
2
t + γ2

t )
. (8)

We defer the proof of this lemma to Appendix A.2. Notably, this lemma provides guidance on the
network parameterization of the DAE xθ(·, t) as discussed below.

Low-rank network parameterization. When we train diffusion models with the U-Net architec-
ture (Ronneberger et al., 2015) on various image datasets, it is observed that the numerical rank
of the Jacobian of the DAE, i.e., ∇xt

xθ(xt, t), is substantially lower than the ambient dimension
in most time steps; see Figure 3(a). When training diffusion models with U-Net on the samples
generated according to the MoLRG model, the Jacobian of the DAE also exhibits a similar low-rank
pattern; see Figure 3(b). The above observations motivate us to consider a low-rank parameterization
of the network. According to the ground-truth posterior mean of the MoLRG model in Lemma 1, a
natural parameterization for the DAE is

xθ(xt, t) =
st

s2t + γ2
t

K∑
k=1

wk(θ;xt)UkU
T
k xt, wk(θ;xt) =

πk exp
(
ϕt∥UT

k xt∥2
)∑K

l=1 πl exp
(
ϕt∥UT

l xt∥2
) , (9)
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(a) Real image datasets (b) Mixture of low-rank Gaussians
Figure 3: Low-rank property of the DAE of trained diffusion models. We plot the ratio of the
numerical rank of the Jacobian of the denoising autoencoder, i.e., ∇xtxθ(xt, t), over the total di-
mension against the signal-to-noise ratio (SNR) 1/σt on trained diffusion models. (a) We train
diffusion models on image datasets CIFAR-10, CelebA, FFHQ, and AFHQ. The experimental de-
tails are provided in Appendix C.1. (b) We respectively train diffusion models with the low-rank
parameterization (9) and U-Net on a mixture of low-rank Gaussian distributions.

where the network parameters θ = {Uk}Kk=1 satisfy Uk ∈ On×dk . Although this approach may
seem idealized, it offers several practical insights. First, if we consider a single low-rank Gaussian,
the network parameterization takes the form x−st/(s2t +γ2

t )UUTx, which resembles the structure
of a practical U-Net with a linear encoder, decoder, and skip connections. This provides theoretical
insights into why U-Net is preferred for training diffusion models. Second, to learn the underlying
distribution, the number of samples should be proportional to its intrinsic dimension. In practice,
this informs us on how to use a minimal number of samples to train diffusion models to achieve
generalization.

Similar simplifications have been widely used for theoretical analysis in various ideal data distribu-
tions; see, e.g., Chen et al. (2023a; 2024b); Gatmiry et al. (2024); Shah et al. (2023). Notably, under
this specific network parameterization in Eq. (9), learning the score function ∇ log pt(xt) reduces
to learning the network parameters θ in Eq. (9) according to Lemma 1 and Eq. (5).

3 MAIN RESULTS

Based on the setups in Section 2.2, we are ready to conduct a theoretical analysis of distribution
learning using diffusion models.

3.1 A WARM-UP STUDY: A SINGLE LOW-RANK GAUSSIAN CASE

To begin, we start from a simple case that the underlying distribution pdata is a single low-rank
Gaussian. Specifically, the training samples {x(i)}Ni=1 ⊆ Rn are generated according to

x(i) = U⋆ai + ei, (10)

where U⋆ ∈ On×d denotes an orthonormal basis, ai
i.i.d.∼ N (0, Id) is coefficients for each i ∈ [N ],

and ei ∈ Rn is noise for all i ∈ [N ].2 According to (9), we parameterize the DAE into

xθ(xt, t) =
st

s2t + γ2
t

UUTxt, (11)

where θ = U ∈ On×d. Equipped with the above setup, we can show the following result.
Theorem 1. Suppose that the DAE xθ(·, t) in Problem (6) is parameterized into (11) for each
t ∈ [0, 1]. Then, Problem (6) is equivalent to the following PCA problem:

max
U∈Rn×d

N∑
i=1

∥UTx(i)∥2 s.t. UTU = Id. (12)

2Since real-world images inherently contain noise due to various factors, such as sensor limitation, environ-
ment conditions, and transition error, it is reasonable to add a noise term to this model.

6
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We defer the proof to Appendix A.3. In the single low-rank Gaussian model, Theorem 1 shows
that training diffusion models with a DAE of the form (11) to learn this distribution is equivalent to
performing PCA on the training samples. Leveraging this equivalence, we can further characterize
the number of samples required for learning underlying distribution under the data model (10).
Theorem 2. Consider the setting of Theorem 1. Suppose that the training samples {x(i)}Ni=1 are
generated according to the noisy single low-rank Gaussian model defined in (10). Let Û denote an
optimal solution of Problem (6). The following statements hold:

i) If N ≥ d, it holds with probability at least 1−1/2N−d+1−exp (−c2N) that any optimal solution
Û satisfies ∥∥∥ÛÛT −U⋆U⋆T

∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

N −
√
d− 1

, (13)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.

ii) If N < d, there exists an optimal solution Û ∈ On×d such that with probability at least 1 −
1/2d−N+1 − exp (−c′2d),∥∥∥ÛÛT −U⋆U⋆T

∥∥∥
F
≥
√
2min{d−N,n− d} −

c′1

√∑N
i=1 ∥ei∥2√

d−
√
N − 1

, (14)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian moment.

Remark 1. We defer the proof to Appendix A.4. Building on the equivalence in Theorem 1 and the
DAE parameterization (11), Theorem 2 clearly shows a phase transition from failure to success in
learning the underlying distribution as the number of training samples increases. This phase transi-
tion is further corroborated by our experiments in Figures 4(a) and 4(b). Note that our theory cannot
explain why diffusion models memorize training data (i.e., learning the empirical distribution). This
is because the parameterization (11) is not as sufficiently over-parameterized as architectures like
U-Net. We plan to explore this over-parameterized setting in future work to better understand how
diffusion models achieve memorization and to extend our theoretical insights accordingly.

3.2 FROM SINGLE LOW-RANK GAUSSIAN TO MIXTURES OF LOW-RANK GAUSSIANS

In this subsection, we extend the above study to the MoLRG distribution. In particular, we consider
a noisy version of the MoLRG model as defined Definition 1. Specifically, the training samples are
generated by

x(i) = U⋆
kai + ei with probability πk, ∀i ∈ [N ], (15)

where U⋆
k ∈ On×dk denotes an orthonormal basis for each k ∈ [K], ai

i.i.d.∼ N (0, Idk
) is coeffi-

cients, and ei ∈ Rn is noise for each i ∈ [N ]. As argued by Brown et al. (2023), image data lies on a
disjoint union of manifolds. This motivates us to assume that the basis matrices of subspaces satisfy
U⋆T

k U⋆
l = 0 for each k ̸= l. To simplify our analysis, we assume that d1 = · · · = dK = d and the

mixing weights satisfy π1 = · · · = πK = 1/K. Moreover, we consider a hard-max counterpart of
Eq. (9) for the DAE parameterization as follows:

xθ(xt, t) =
st

s2t + γ2
t

K∑
k=1

ŵk(θ,x0)UkU
T
k xt, (16)

where θ = {Uk}Kk=1 and the weights {ŵk(θ;x0)}Kk=1 are set as

ŵk(θ;x0) = 1, if k = k0, ŵk(θ;x0) = 0, otherwise, (17)

where k0 ∈ [K] is an index satisfying ∥UT
k0
x0∥ ≥ ∥UT

l x0∥ for all l ̸= k0 ∈ [K]. We should point
out that we use two key approximations here. First, the soft-max weights {wk(θ,xt)} in Eq. (9)
are approximated by the hard-max weights {ŵk(θ;x0)}Kk=1. Second, ∥UT

k xt∥ is approximated by
its expectation, i.e., Eϵ[∥UT

k xt∥2] = Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t∥UT

k x0∥2+γ2
t d. We refer the

reader to Appendix B.1 for more details on these approximation. Now, we are ready to show the
following theorem.
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Theorem 3. Suppose that the DAE xθ(·, t) in Problem (6) is parameterized into (16) for each
t ∈ [0, 1], where ŵk(θ,x0) is defined in (17) for each k ∈ [K]. Then, Problem (6) is equivalent to
the following subspace clustering problem:

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1, . . . ,UK ] ∈ On×dK , (18)

where Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
for each k ∈ [K].

We defer the proof to Appendix B.2. When the DAE is parameterized into (16), Theorem 3 demon-
strates that optimizing the training loss of diffusion models is equivalent to solving the subspace
clustering problem (Vidal, 2011; Wang et al., 2022). Moreover, the equivalence allows us to charac-
terize the required minimum number of samples for learning the underlying MoLRG distribution.

Theorem 4. Consider the setting of Theorem 3. Suppose that the training samples {x(i)}Ni=1 are
generated by the MoLRG distribution in Definition 1. Suppose d ≳ logN and ∥ei∥ ≲

√
d/N for

all i ∈ [N ]. Let {Ûk}Kk=1 denote an optimal solution of Problem (6) and Nk denote the number of
samples from the k-th Gaussian component. Then, the following statements hold:

(i) If Nk ≥ d for each k ∈ [K], there exists a permutation Π : [K] → [K] such that with
probability at least 1−2K2N−1−

∑K
k=1

(
1/2Nk−d+1 + exp (−c2Nk)

)
for each k ∈ [K],

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

Nk −
√
d− 1

, (19)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.

(ii) If Nk < d for some k ∈ [K], there exists a permutation Π : [K] → [K] and k ∈ [K] such
that with probability at least 1− 2K2N−1 −

∑K
k=1

(
1/2d−Nk+1 + exp (−c′2Nk)

)
,

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≥
√
2min{d−Nk, n− d} −

c′1

√∑N
i=1 ∥ei∥2√

d−
√
Nk − 1

, (20)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian

Remark 2. We defer the proof to Appendix B.3. We discuss the implications of our results below.

• Phase transition in learning the underlying distribution. This theorem demonstrates that when
the number of samples in each subspace exceeds the dimension of the subspace and the noise
is bounded, the optimal solution of the training loss (6) under the parameterization (16) can re-
cover the underlying subspaces up to the noise level. Conversely, when the number of samples is
insufficient, there exists an optimal solution that may recover wrong subspaces; see Figures 4(c,d).

• Connections to the phase transition from memorization to generalization. We should clarify the
difference between the phase transition described in Theorems 2 & 4 and the phase transition from
memorization to generalization. Our phase transition refers to the shift from failure to success of
learning the underlying distribution as the number of training samples increase, whereas the latter
concerns the shift from memorizing data to generalizing from it as the number of training samples
increases. Nevertheless, our theory still sheds light on the minimal number of samples required
for diffusion models to enter the generalized regime.

4 EXPERIMENTS & PRACTICAL IMPLICATIONS

In this section, we first investigate phase transitions of diffusion models in learning distributions
under both theoretical and practical settings in Section 4.1. Next, we demonstrate the practical
implications of our work by exploring the correspondence between low-dimensional subspaces and
semantic representations for controllable image editing in Section 4.2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14
2

3

4

5

6

7

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) PCA

2 4 6 8 10 12 14
2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

(b) Diffusion Model

2 4 6 8 10 12 14
2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

(c) Subspace Clustering

2 4 6 8 10 12 14
2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

(d) Diffusion Model

Figure 4: Phase transition of learning the MoLRG distribution. The x-axis is the number of
training samples and y-axis is the dimension of subspaces. Darker pixels represent a lower empirical
probability of success. When K = 1, we apply SVD and train diffusion models to solve Problems
(12) and (6), visualizing the results in (a) and (b), respectively. When K = 2, we apply a subspace
clustering method and train diffusion models for solving Problems (18) and (6), visualizing the
results in (c) and (d), respectively.

4.1 PHASE TRANSITION IN LEARNING DISTRIBUTIONS

In this subsection, we conduct experiments on both synthetic and real datasets to study the phase
transition of diffusion models in learning distributions.

Learning the MoLRG distribution with the theoretical parameterizations. To begin, we op-
timize the training loss (6) with the theoretical parameterization (9), where the data samples are
generated by the MoLRG distribution. First, we apply stochastic gradient descent (see Algorithm 1)
to solve Problem (6) with the DAE parameterized as (9). For comparison, according to Theorem 1
(resp., Theorem 3), we apply a singular value decomposition (resp., subspace clustering (Wang et al.,
2022)) to solve Problem (12) (resp, Problem (18)). We conduct three sets of experiments, where the
data samples are respectively generated according to the single low-rank Gaussian distribution (10)
with K = 1 and a mixture of low-rank Gaussian distributions (15) with K = 2, 3. In each set, we
set the total dimension n = 48 and let the subspace dimension d and the number of training samples
N vary from 2 to 8 and 2 to 15 with increments of 1, respectively. For every pair of d and N , we
generate 20 instances, run the above methods, and calculate the successful rate of recovering the
underlying subspaces. The simulation results are visualized in Figure 4 and Figure 7. It is observed
that all these methods exhibit a phase transition from failure to success in learning the subspaces as
the number of training samples increases, which supports the results in Theorems 2 and 4.

Learning the MoLRG distribution with U-Net. Next, we optimize the training loss (6) with pa-
rameterizing the DAE xθ(·, t) using U-Net, detailed experiment settings are in Appendix D.2. We
measure the generalization ability of U-Net via generalization (GL) score defined in Eq. (48). The
trained diffusion model is in the memorization regime when the GL score is close to 0, while it is in
the generalization regime when the GL score is close to 1. Detailed discussions about the metric are
in Appendix D.2. In the experiments, we generate the data samples using the MoLRG distribution
with K = 2, n = 48, and dk ∈ {3, 4, 5, 6}. Then, we plot the GL score against the Nk/dk for
each dk in Figure 5(a). It is observed that for a fixed dk, the generalization performance of diffu-
sion models improves as the number of training samples increases. Notably, for different values of
dk, the plot of the GL score against the Nk/dk remains approximately consistent. This observation
indicates that the phase transition curve for U-Net learning the MoLRG distribution depends on the
ratio Nk/dk rather than on Nk and dk individually. When Nk/dk ≈ 60, GL score ≈ 1.0 suggesting
that U-Net generalizes when Nk ≥ 60dk. This linear relationship for the phase transition differs
from Nk ≥ dk in Theorem 4 due to training with U-Net instead of the optimal network parame-
terization in Eq. (9). Nevertheless, Theorem 2 and Theorem 4 still provide valuable insights into
learning distributions via diffusion models by demonstrating a similar phase transition phenomenon
and confirming a linear relationship between Nk and dk.

Learning real image data distributions with U-Net. Finally, we train diffusion models using
U-Net on real image datasets AFHQ, CelebA, FFHQ, and CIFAR-10. The detailed experiment
settings are deferred to Appendix D.3. we utilize the generalization (GL) score on the real-world
image dataset according to Zhang et al. (2023). The definition of the metric is in Eq. (49) and
detailed discussions are in Appendix D.3. Intuitively, GL score measures the dissimilarity between
the generated sample x and all N samples yi from the training dataset {yi}Ni=1. A higher GL score
indicates stronger generalizability. For each data set, we train U-Net and plot the GL score against

9
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(a) MoLRG distribution (b) Real image data distribution
Figure 5: Phase transition of learning distributions via U-Net. In (a), the x-axis is the number of
training samples over the intrinsic dimension, while in (b), it is the total number of training samples.
The y-axis is the GL score. We train diffusion models with the U-Net architecture on (a) the data
samples generated by the MoLRG distribution with K = 2, n = 48 and dk varying from 3 to 6 and
(b) real image datasets CIFAR-10, CelebA, FFHQ and AFHQ. The GL score is low when U-Net
memorizes the training data and high when it learns the underlying distribution.

the number of training samples in Figure 5(b). The phase transition in the real dataset is illustrated in
Figure 5(b). As observed, the order in which the samples need to generalize follows the relationship:
AFHQ > CelebA > FFHQ ≈ CIFAR-10. Additionally, from our previous observations in Figure 3,
the relationship of the intrinsic dimensions for these datasets is: AFHQ > FFHQ > CelebA ≈
CIFAR-10. Both AFHQ and CelebA align well with our theoretical analysis, which indicates that
more samples are required for the model to generalize as the intrinsic dimension increases.

4.2 SEMANTIC MEANINGS OF LOW-DIMENSIONAL SUBSPACES

In this subsection, we conduct experiments to verify the correspondence between the low-
dimensional subspaces of the data distribution and the semantics of images on real datasets. We
denote the Jacobian of the DAE xθ(xt, t) by Jt := ∇xt

xθ(xt, t) ∈ Rn×n and let Jt = UΣV T

be an singular value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r,
V = [v1, · · · ,vr] ∈ On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular
values. To validate the semantic meaning of the basis vectors vi, we vary the value of α from neg-
ative to positive and visualize the resulting changes in the generated images. In the experiments,
we use a pre-trained diffusion denoising probabilistic model (DDPM) (Ho et al., 2020) on the Met-
Faces dataset (Karras et al., 2020). We randomly select an image x0 from this dataset and use the
reverse process of the diffusion denoising implicit model (DDIM) (Song et al., 2020) to generate xt

at t = 0.7T , where T denote the total number of time steps. We respectively choose the changed di-
rection as the leading right singular vectors v1,v3,v4,v5,v6 and use x̃t = xt+αvi to generate new
images with α ∈ [−4, 4] shown in Figure 8. It is observed that these singular vectors enable different
semantic edits in terms of gender, hairstyle, and color of the image. For comparison, we generate a
random unit vector s and move xt along the direction of s, where the editing strength α is the same
as the semantic edits column-wise. The results are shown in the last column of Figure 2. Moving
along random directions provides minimal semantic changes in the generated images, indicating that
the low-dimensional subspace spanned by V is non-trivial and corresponds to semantic meaningful
image attributes. More experimental results can be found in Figure 8, Figure 9 in Appendix D.3.

5 CONCLUSION & DISCUSSION

In this work, we studied the training loss of diffusion models to investigate when and why diffusion
models can learn the underlying distribution without suffering from the curse of dimensionality.
Motivated by extensive empirical observations, we assumed that the underlying data distribution is a
mixture of low-rank Gaussians. Specifically, we showed that minimizing the training loss is equiv-
alent to solving the subspace clustering problem under proper network parameterization. Based on
this equivalence, we further showed that the optimal solutions to the training loss can recover the
underlying subspaces when the number of samples scales linearly with the intrinsic dimensionality
of the data distribution. Moreover, we established the correspondence between the subspaces and se-
mantic representations of image data. Since our studied network parameterization is not sufficiently
over-parameterized, a future direction is to extend our analysis to an over-parameterized case to fully
explain the transition from memorization to generalization.
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Supplementary Material

In the appendix, the organization is as follows. We first provide proof details for Section 2 and
Section 3 in Appendix A and Appendix B, respectively. Then, we present our experimental setups
for Figure 3 in Appendix C and for Section 4 in Appendix D. Finally, some auxiliary results for
proving the main theorems are provided in Appendix E.

To simplify our development, we introduce some further notation. We denote by N (µ,Σ) a multi-
variate Gaussian distribution with mean µ ∈ Rn and covariance Σ ⪰ 0. Given a Gaussian random
vector x ∼ N (µ,Σ), if Σ ≻ 0, with abuse of notation, we write its pdf as

N (x;µ,Σ) :=
1

(2π)n/2 det1/2(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (21)

If a random vector x ∈ Rn satisfies x ∼ N (µ,UUT ) for some µ ∈ Rn and U ∈ On×d, we have

x = µ+Ua, (22)

where a ∼ N (0, Id). Therefore, a mixture of low-rank Gaussians in Definition 1 can be expressed
as

P (x = U⋆
kak) = πk, where ak ∼ N (0, Idk

), ∀k ∈ [K]. (23)

A PROOFS IN SECTION 2

A.1 RELATION BETWEEN SCORE MATCHING LOSS AND DENOISER AUTOENCODER LOSS

To estimate∇ log pt(x), one can train a time-dependent score-based model sθ(x, t) via minimizing
the following objective Song et al. (2021):

min
θ

∫ 1

0

ξtEx0∼pdata
Ext|x0

[
∥sθ(xt, t)−∇ log pt(xt|x0)∥2

]
dt, (24)

where ξt : [0, 1] → R+ is a positive weighting function. Let xθ(·, t) : Rd × [0, 1] → Rd de-
note a neural network parameterized by parameters θ to approximate E[x0|xt]. According to the
Tweedie’s formula (5), sθ(xt, t) = (stxθ(xt, t)− xt) /γ

2
t can be used to estimate score functions.

Substituting this and∇ log pt(xt|x0) = (stx0 − xt) /γ
2
t due to (3) yields

min
θ

∫ 1

0

ξtEx0∼pdata
Ext|x0

[∥∥∥∥ 1

γ2
t

(stxθ(xt, t)− xt)−
1

γ2
t

(stx0 − xt)

∥∥∥∥2
]
dt

=

∫ 1

0

ξt
s2tσ

4
t

Ex0∼pdata
Eϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt,

where the equality follows from xt = stx0 + γtϵ due to (3). Then, we obtain

min
θ

∫ 1

0

λtEx0∼pdata
Eϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt, (25)

where λt = ξt/(s
2
tσ

4
t ). However, only data points {x(i)}Ni=1 sampled from the underlying data

distribution pdata are available in practice. Therefore, we study the following empirical counterpart
of Problem (25) over the training samples, i.e., Problem (6). We refer the reader to (Kadkhodaie
et al., 2023, Section 2.1) for more discussions on the denoising error of this problem.

A.2 PROOF OF IN LEMMA 1

Assuming that the underlying data distribution follows a mixture of low-rank Gaussians as defined
in Definition 1, we first compute the ground-truth score function as follows.
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Proposition 1. Suppose that the underlying data distribution pdata follows a mixture of low-rank
Gaussian distributions in Definition 1. In the forward process of diffusion models, the pdf of xt for
each t > 0 is

pt(x) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In), (26)

where γt = stσt. Moreover, the score function of pt(x) is

∇ log pt(x) = −
1

γ2
t

(
x− s2t

s2t + γ2
t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k x∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

)
. (27)

Proof. Let Y ∈ {1, . . . ,K} be a discrete random variable that denotes the value of components of
the mixture model. Note that γt = stσt. It follows from Definition 1 that P(Y = k) = πk for each
k ∈ [K]. We first compute

pt(x|Y = k) =

∫
pt (x|Y = k,ak)N (ak;0, Idk

) dak =

∫
pt(x|x0 = U⋆

kak)N (ak;0, Idk
) dak

=

∫
N (x; stU

⋆
kak, γ

2
t In)N (ak;0, Idk

) dak

=
1

(2π)n/2(2π)dk/2γn
t

∫
exp

(
− 1

2γ2
t

∥x− stU
⋆
kak∥2

)
exp

(
−1

2
∥ak∥2

)
dak

=
1

(2π)n/2γn
t

(
s2t + γ2

t

γ2
t

)−d/2

exp

(
− 1

2γ2
t

xT

(
In −

s2t
s2t + γ2

t

U⋆
kU

⋆T
k

)
x

)
∫

1

(2π)dk/2

(
γ2
t

s2t + γ2
t

)−d/2

exp

(
−s2t + γ2

t

2γ2
t

∥∥∥∥ak −
st

s2t + γ2
t

U⋆T
k x

∥∥∥∥2
)
dak

=
1

(2π)n/2
1(

(s2t + γ2
t )

dγ
2(n−d)
t

)1/2 exp

(
− 1

2γ2
t

xT

(
In −

s2t
s2t + γ2

t

U⋆U⋆T

)
x

)

=
1

(2π)n/2 det1/2(s2tU
⋆
kU

⋆T
k + γ2

t In)
exp

(
−1

2
xT
(
s2tU

⋆
kU

⋆T
k + γ2

t In
)−1

x

)
= N (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In),

where the second equality follows from (3), the third equality uses (21), the fourth equality is due
to the fact that ⟨x,U⋆

ka⟩ is an odd function, and the second to last equality uses det(s2tU
⋆
kU

⋆T
k +

γ2
t In) = (s2t + γ2

t )
dγ

2(n−d)
t and (s2tU

⋆
kU

⋆T
k + γ2

t In)
−1 =

(
In − s2t/(s

2
t + γ2

t )U
⋆
kU

⋆T
k

)
/γ2

t due
to the matrix inversion lemma and U⋆T

k U⋆
k = Idk

. This, together with P(Y = k) = πk for each
k ∈ [K], yields

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In).

Next, we directly compute

∇ log pt(x) =
∇pt(x)
pt(x)

=

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)
(
− 1

γ2
t
x+

s2t
γ2
t (s

2
t+γ2

t )
U⋆

kU
⋆T
k x

)
∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

= − 1

γ2
t

(
x− s2t

s2t + γ2
t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k x)∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

)
.

⊔⊓
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Proof of Lemma 1. According to (5) and Proposition 1, we compute

E [x0|xt] =
xt + γ2

t∇ log pt(xt)

st
=

st
s2t + γ2

t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k xt∑K

k=1 πkN (xt;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

=
st

s2t + γ2
t

∑K
k=1 πk exp

(
− 1

2γ2
t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

U⋆
kU

⋆T
k xt∑K

k=1 πk exp

(
− 1

2γ2
t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

=
st

s2t + γ2
t

∑K
k=1 πk exp

(
1

2γ2
t

s2t
s2t + γ2

t

∥U⋆T
k xt∥2

)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp

(
1

2γ2
t

s2t
s2t + γ2

t

∥U⋆T
k xt∥2

) ,

where the third equality uses (21) and
(
s2tU

⋆
kU

⋆T
k + γ2

t In
)−1

=
(
In − s2t/(s

2
t + γ2

t )U
⋆
kU

⋆T
k

)
/γ2

t
due to the matrix inversion lemma. ⊔⊓

A.3 PROOF OF THEOREM 1

Proof of Theorem 1. Plugging (11) into the integrand of (6) yields

Eϵ

[∥∥∥∥ st
s2t + γ2

t

UUT
(
stx

(i) + γtϵ
)
− x(i)

∥∥∥∥2
]

=

∥∥∥∥ s2t
s2t + γ2

t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2

(s2t + γt)2
Eϵ

[
∥UUT ϵ∥2

]
=

∥∥∥∥ s2t
s2t + γ2

t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2d

(s2t + γt)2
,

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any given x ∈ Rn due to ϵ ∼ N (0, In),
and the second equality uses Eϵ

[
∥UUT ϵ∥2

]
= Eϵ

[
∥UT ϵ∥2

]
=
∑d

i=1 Eϵ

[
∥uT

i ϵ∥2
]
= d due to

U ∈ On×d and ϵ ∼ N (0, In). This, together with γt = stσt and (6), yields

ℓ(U) =
1

N

N∑
i=1

∫ 1

0

λt

(
∥x(i)∥2 − 1 + 2σ2

t

(1 + σ2
t )

2
∥UTx(i)∥2 + σ2

t d

(1 + σ2
t )

2

)
dt,

Obviously, minimizing the above function in terms of U amounts to

min
UTU=Id

−
∫ 1

0

(1 + 2σ2
t )λt

(1 + σ2
t )

2
dt

1

N

N∑
i=1

∥UTx(i)∥2,

which is equivalent to Problem (12). ⊔⊓

A.4 PROOF OF THEOREM 2

Proof of Theorem 2. For ease of exposition, let

X =
[
x(1) . . . x(N)

]
∈ Rn×N , A = [a1 . . . aN ] ∈ Rd×N , E = [e1 . . . eN ] ∈ Rn×N .

Using this and (10), we obtain

X = U⋆A+E. (28)

Let rA := rank(A) ≤ min{d,N} and A = UAΣAV
T
A be an singular value decomposition (SVD)

of A, where UA ∈ Od×rA , VA ∈ ON×rA , and ΣA ∈ RrA×rA . It follows from Theorem 1 that
Problem (6) with the parameterization (11) is equivalent to Problem (12).
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(i) Suppose that N ≥ d. Applying Lemma 3 with ε = 1/(2c1) to A ∈ Rd×N , it holds with
probability at least 1− 1/2N−d+1 − exp (−c2N) that

σmin(A) = σd(A) ≥
√
N −

√
d− 1

2c1
, (29)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies
rA = d and UA ∈ Od. Since Problem (12) is a PCA problem, the columns of any optimal solution
Û ∈ On×d consist of left singular vectors associated with the top d singular values of X . This,
together with Wedin’s Theorem (Wedin, 1972) and (28), yields∥∥∥ÛÛT −U⋆U⋆T

∥∥∥
F
=
∥∥∥ÛÛT − (U⋆UA)(U

⋆UA)
T
∥∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
N −

√
d− 1

.

This, together with absorbing 4 into c1, yields (13).

(ii) Suppose that N < d. According to Lemma 3 with ε = 1/(2c1), it holds with probability at least
1− 1/2d−N+1 − exp (−c2d) that

σmin(A) = σN (A) ≥
√
d−
√
N − 1

2c1
, (30)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies
rA = N and UA ∈ Od×N . This, together with the fact that A = UAΣAV

T
A is an SVD of A, yields

that U⋆A = (U⋆UA)ΣAV
T
A is an SVD of U⋆A with U⋆UA ∈ On×N . Note that rank(X) ≤ N .

Let X = UXΣXV T
X be an SVD of X , where UX ∈ On×N , VX ∈ ON , and ΣX ∈ RN×N . This,

together with Wedin’s Theorem (Wedin, 1972) and (30), yields∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
d−
√
N − 1

. (31)

Note that Problem (12) has infinite optimal solutions when N < d, which take the form of

Û =
[
UX ŪX

]
∈ On×d.

Now, we consider that ŪX ∈ On×(d−N) is an optimal solution of the following problem:

min
V ∈On×(d−N),UT

XV =0
∥V TU⋆(I −UAU

T
A )∥2F . (32)

Then, one can verify that the rank of the following matrix is at most d:

B :=
[
UX U⋆(I −UAU

T
A )
]

Then, if n ≥ 2d −N , it is easy to see that the optimal value of Problem (32) is 0. If n < 2d −N ,
the optima value is achieved at V ⋆ = [V ⋆

1 V ⋆
2 ] with V ⋆

1 ∈ Rn×(n−d) and V ⋆
2 ∈ Rn×(2d−N−n)

satisfying V ⋆T
1 B = 0, which implies

∥V ⋆TU⋆(I −UAU
T
A )∥2F = ∥V ⋆T

2 U⋆(I −UAU
T
A )∥2F ≤ 2d−N − n.

Consequently, the optimal value of Problem (32) is less than

max {0, 2d− (n+N)} (33)

Then, we obtain that∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
=
∥∥UXUT

X + ŪXŪT
X −U⋆UAU

T
AU⋆T −U⋆(I −UAU

T
A )U⋆T

∥∥
≥ ∥ŪXŪT

X −U⋆(I −UAU
T
A )U⋆T ∥F −

∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F

≥
√
2(d−N)− 2max {0, 2d− (n+N)} − 4c1∥E∥F√

d−
√
N − 1

≥
√
2min{d−N,n− d} − 4c1∥E∥F√

d−
√
N − 1

,

where the second inequality follows from ŪX = V ⋆ and (33). Then, we complete the proof.

⊔⊓
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B PROOFS IN SECTION 3.2

B.1 THEORETICAL JUSTIFICATION OF THE DAE (16)

Since xt = stx0 + γtϵ, we compute

Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t∥UT

k x0∥2 + γ2
t Eϵ[∥UT

k ϵ∥2] = s2t∥UT
k x0∥2 + γ2

t d,

where the first equality is due to ϵ ∼ N (0, In) and Eϵ[⟨UT
k x0,U

T
k ϵ⟩] = 0 for each k ∈ [K]. This

implies that when n is sufficiently large, we can approximate wk(θ;xt) in (9) well by

wk(θ;xt) ≈
exp

(
ϕt

(
s2t∥UT

k x0∥2 + γ2
t d
))∑K

l=1 exp
(
ϕt

(
s2t∥UT

l x0∥2 + γ2
t d
)) .

This soft-max function can be further approximated by the hard-max function. Therefore, we di-
rectly obtain (17).

B.2 PROOF OF THEOREM 3

Equipped with the above setup, we are ready to prove Theorem 3.

Proof of Theorem 3. Plugging (16) into the integrand of (6) yields

Eϵ

∥∥∥∥∥ st
s2t + γ2

t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k (stx

(i) + γtϵ)− x(i)

∥∥∥∥∥
2


=

∥∥∥∥∥ s2t
s2t + γ2

t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k x(i) − x(i)

∥∥∥∥∥
2

+
(stγt)

2

(s2t + γ2
t )

2
Eϵ

∥∥∥∥∥
K∑

k=1

ŵk(θ;x
(i))UkU

T
k ϵ

∥∥∥∥∥
2


=
s2t

s2t + γ2
t

K∑
k=1

(
s2t

s2t + γ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
∥UT

k x(i)∥2 + ∥x(i)∥2 + (stγt)
2d

(s2t + γ2
t )

2

K∑
k=1

ŵk(θ;x
(i)),

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any fixed x ∈ Rn due to ϵ ∼ N (0, In),
and the last equality uses Uk ∈ On×d and UT

k Ul = 0 for all k ̸= l. This, together with (6) and
γt = stσt, yields

ℓ(θ) =
1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2+

1

N

∫ 1

0

λtdt

N∑
i=1

∥x(i)∥2 +
(∫ 1

0

σ2
t λt

(1 + σ2
t )

2
dt

)
d

N

N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)).

According to (16), we can partition [N ] into {Ck(θ)}Kk=1, where Ck(θ) for each k ∈ [K] is defined
as follows:

Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
,∀k ∈ [K]. (34)

Then, we obtain
N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)) =

K∑
k=1

∑
i∈Ck(θ)

1 = N.

This, together with plugging (34) into the above loss function, yields minimizing ℓ(θ) is equivalent
to minimizing

1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2

=

(∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

− 2

)
dt

)
1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2.
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Since λt

1+σ2
t

(
1

1+σ2
t
− 2
)
< 0 for all t ∈ [0, 1], minimizing the above function is equivalent to

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1 . . . UK ] ∈ On×dK .

Then, we complete the proof. ⊔⊓

B.3 PROOF OF THEOREM 4

Proof of Theorem 4. For ease of exposition, let δ := max{∥ei∥ : i ∈ [N ]},

f(θ) :=

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2,

and for each k ∈ [K],

C⋆
k :=

{
i ∈ [N ] : x(i) = U⋆

kai + ei

}
.

Suppose that (51) and (52) hold with V = Ûk for all i ∈ [N ] and k ̸= l ∈ [K], which happens with
probability 1− 2K2N−1 according to Lemma 5. This implies that for all i ∈ [N ] and k ̸= l ∈ [K],

√
d− (2

√
logN + 2) ≤ ∥ai∥ ≤

√
d+ (2

√
logN + 2), (35)

∥ÛT
k U⋆

l ∥F − (2
√

logN + 2) ≤ ∥ÛT
k U⋆

l ai∥ ≤ ∥ÛT
k U⋆

l ∥F + (2
√

logN + 2). (36)

Recall that the underlying basis matrices are denoted by θ⋆ = {U⋆
k}Kk=1 and the optimal basis

matrices are denoted by θ̂ = {Ûk}Kk=1.

First, we claim that Ck(θ
⋆) = C⋆

k for each k ∈ [K]. Indeed, for each i ∈ C⋆
k , we compute

∥U⋆T
k x(i)∥ = ∥U⋆T

k (U⋆
kai + ei)∥ = ∥ai +U⋆T

k ei∥ ≥ ∥ai∥ − ∥ei∥, (37)

∥U⋆T
l x(i)∥ = ∥U⋆T

l (U⋆
kai + ei)∥ = ∥U⋆T

l ei∥ ≤ ∥ei∥, ∀l ̸= k. (38)

This, together with (35) and ∥ei∥ < (
√
d− 2

√
logN)/2, implies ∥U⋆T

k xi∥ ≥ ∥U⋆T
l xi∥ for all l ̸=

k. Therefore, we have i ∈ Ck(θ
⋆) due to (34). Therefore, we have C⋆

k ⊆ Ck(θ
⋆) for each k ∈ [K].

This, together with the fact that they respectively denote a partition of [N ], yields Ck(θ
⋆) = C⋆

k for
each k ∈ [K]. Now, we compute

f(θ⋆) =

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k x(i)∥2 =

K∑
k=1

∑
i∈C⋆

k

∥ai +U⋆T
k ei∥2

=

N∑
i=1

∥ai∥2 + 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩+

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2. (39)

Next, we compute

f(θ̂) =

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k x(i)∥2 =

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k (U⋆

l ai + ei))∥2

=

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

(
∥ÛT

k U⋆
l ai∥2 + 2⟨ai,U

⋆T
l ÛkÛ

T
k ei⟩

)
+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

This, together with f(θ̂) ≥ f(θ⋆) and (39), yields
N∑
i=1

∥ai∥2−
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k U⋆

l ai∥2 ≤
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

2⟨ai,U
⋆T
l ÛkÛ

T
k ei⟩+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2 − 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩ −

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2

≤ 4δ

N∑
i=1

∥ai∥+Nδ2 ≤ 6δN
√
d+Nδ2, (40)

where the second inequality follows from ∥ei∥ ≤ δ for all i ∈ [N ] and U⋆
k , Ûk ∈ On×d for all

k ∈ [K], and the last inequality uses (35).

For ease of exposition, let Nkl := |Ck(θ̂)∩C⋆
l |. According to the pigeonhole principle, there exists

a permutation π : [K] → [K] such that there exists k ∈ [K] such that Nπ(k)k ≥ N/K2. This,
together with (40), yields

6δN
√
d+Nδ2 ≥

∑
i∈Cπ(k)(θ̂)∩C⋆

k

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
kai∥2

)
= ⟨I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩. (41)

According to Lemma 6 and Nπ(k)k ≥ N/K2, it holds with probability at least 1− 2K4N−2 that∥∥∥∥∥∥ 1

Nπ(k)k

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i − I

∥∥∥∥∥∥ ≤ 9(
√
d+

√
log(Nπ(k)k)√

Nπ(k)k

.

This, together with the Weyl’s inequality, yields

λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

 ≥ Nπ(k)k − 9
√

Nπ(k)k

(√
d+

√
log(Nπ(k)k)

)

≥ N

K2
− 9
√
N

K

(√
d+

√
logN

)
≥ N

2K2
,

where the second inequality follows from N/K2 ≤ Nπ(k)k ≤ N and the last inequality is due to√
N ≥ 18K(

√
d+
√
logN). Using this and Lemma 7, we obtain

⟨I −U⋆T
k Ûπ(k)Û

T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩

≥ λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
≥ N

2K2
Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
.

This, together with (41), implies

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
≤ 2K2

(
6δ
√
d+ δ2

)
.

Using this and [U⋆
1 , . . . ,U

⋆
k ] ∈ On×dK , we obtain∑

l ̸=k

∥ÛT
π(k)U

⋆
l ∥2F = Tr

∑
l ̸=k

ÛT
π(k)U

⋆
l U

⋆T
l Ûπ(k)

 ≤ Tr
(
I − ÛT

π(k)U
⋆
kU

⋆T
k Ûπ(k)

)
≤ 2K2

(
6δ
√
d+ δ2

)
≤ 3d

4
, (42)
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where the last inequality follows δ ≤
√
d/(24K2). According to (40), we have

6δN
√
d+Nδ2 ≥

K∑
l ̸=k

∑
i∈Cπ(k)(θ̂)∩C⋆

l

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
l ai∥2

)

≥
K∑
l ̸=k

Nπ(k)l

(
(
√
d− α)2 −

(
∥ÛT

π(k)U
⋆
l ∥F + α

)2)
≥ d

8

K∑
l ̸=k

Nπ(k)l,

where the second inequality uses (35) and (36), and the last inequality follows from d ≳ logN .
Therefore, we have for each k ∈ [K],

K∑
l ̸=k

Nπ(k)l ≤
48δN

√
d+ 8δ2N

d
< 1,

where the last inequality uses δ ≲
√
d/N . This implies Nπ(l)k = 0 for all l ̸= k, and thus

Cπ(k)(θ̂) ⊆ C⋆
k . Using the same argument, we can show that Cπ(l)(θ̂) ⊆ C⋆

l for each l ̸= k.
Therefore, we have Cπ(k)(θ̂) = C⋆

k for each k ∈ [K]. In particular, using the union bound yields
event holds with probability at least 1− 2K2N−1. Based on the above optimal assignment, we can
further show:

(i) Suppose that Nk ≥ d for each k ∈ [K]. This, together with (i) in Theorem 2 and Nk ≥ d, yields
(19).

(ii) Suppose that there exists k ∈ [K] such that Nk < d. This, together with (ii) in Theorem 2 and
Nk ≥ d, yields (20).

Finally, applying the union bound yields the probability of these events. ⊔⊓

C EXPERIMENTAL SETUPS IN SECTION 2.2

In this section, we provide detailed setups for the experiments in Section 2.2. These experiments
aim to validate the assumptions that real-world image data satisfies a mixture of low-rank Gaussians
and that the DAE is parameterized according to (9). To begin, we show that ∇xt

E[x0|xt] is of low
rank when pdata follows a mixture of low-rank Gaussians and

∑K
k=1 dk ≤ n, where n is the ambient

dimension of training samples.

C.1 VERIFICATION OF MIXTURE OF LOW-RANK GAUSSIAN DATA DISTRIBUTION

In this subsection, we demonstrate that a mixture of low-rank Gaussians is a reasonable and in-
sightful model for approximating real-world image data distribution. To begin, we show that
∇xtE[x0|xt] is of low rank when pdata follows a mixture of low-rank Gaussians with

∑K
k=1 dk ≤ n,

where n is the dimension of training samples.

Lemma 2. Suppose that the data distribution pdata follows a mixture of low-rank Gaussian distri-
butions as defined in Definition 1. For all t ∈ [0, 1], it holds that

min
k∈[K]

dk ≤ rank (∇xt
E[x0|xt]) ≤

K∑
k=1

dk. (43)

Proof. For ease of exposition, let

hk(xt) := exp
(
ϕt∥U⋆T

k xt∥2
)
, ∀k ∈ [K].

Obviously, we have

∇hk(xt) := 2ϕt exp
(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt = 2ϕthk(xt)U

⋆
kU

⋆T
k xt. (44)
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According to Lemma 1, we have

E[x0|xt] =
st

s2t + γ2
t

f(xt), where f(xt) :=

∑K
k=1 πkhk(xt)U

⋆
kU

⋆T
k xt∑K

k=1 πkhk(xt)
.

Then, we compute

∇xtf(xt) =
1∑K

k=1 πkhk(xt)

(
2ϕt

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k xtx

T
t U

⋆
kU

⋆T
k +

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k

)

− 2ϕt(∑K
k=1 πkhk(xt)

)2
(

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k xt

)(
K∑

k=1

πkhk(xt)U
⋆
kU

⋆T
k xt

)T

=
1∑K

k=1 πkhk(xt)

K∑
k=1

πkhk(xt)
(
2ϕtU

⋆
kU

⋆T
k xtx

T
t + I

)
U⋆

kU
⋆T
k −

2ϕt(∑K
k=1 πkhk(xt)

)2
(

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k

)
xtx

T
t

(
K∑

k=1

πkhk(xt)U
⋆
kU

⋆T
k

)
.

This directly yields (43) for all t ∈ [0, 1]. ⊔⊓

Now, we conduct experiments to illustrate that diffusion models trained on real-world image datasets
exhibit similar low-rank properties to those described in the above proposition. Provided that the
DAE xθ(xt, t) is applied to estimate E[x0|xt], we estimate the rank of the Jacobian of the DAE,
i.e., ∇xt

xθ(xt, t), on the real-world data distribution, where θ denotes the parameters of U-Net
architecture trained on the real dataset. Also, this estimation is based on the findings in Luo (2022);
Zhang et al. (2023) that under the training loss in Equation (6), the DAE xθ(xt, t) converge to
E[x0|xt] as the number of training samples increases on the real data. We evaluate the numerical
rank of the Jacobian of the DAE on four different datasets: CIFAR-10 Krizhevsky et al. (2009),
CelebA Liu et al. (2015), FFHQ Kazemi & Sullivan (2014) and AFHQ Choi et al. (2020), where the
ambient dimension n = 3072 for all datasets.

Given a random initial noise x1 ∼ N (0, In), diffusion models generate a sequence of images {xt}
according to the reverse SDE in Eq. (4). Along the sampling trajectory {xt}, we calculate the
Jacobian∇xtxθ(xt, t) and compute its numerical rank via

rank (∇xt
xθ(xt, t)) := argmin

{
r ∈ [1, n] :

∑r
i=1 σ

2
i (∇xt

xθ(xt, t))∑n
i=1 σ

2
i (∇xt

xθ(xt, t))
> η2

}
. (45)

In our experiments, we set η = 0.99. In the implementation, we utilize the Elucidating Diffusion
Model (EDM) with the EDM noise scheduler Karras et al. (2022) and DDPM++ architecture Song
et al. (2020). Moreover, we employ an 18-step Heun’s solver for sampling and present the results
for 12 of these steps. For each dataset, we random sample 15 initial noise x1, calculate the mean of
rank(∇xt

xθ(xt, t)) along the trajectory {xt}, and plot ratio of the numerical rank over the ambient
dimension against the signal-noise-ratio (SNR) 1/σt in Figure 3, where σt is defined in Eq. (3).

C.2 VERIFICATION OF LOW-RANK NETWORK PARAMETERIZATION

In this subsection, we empirically investigate the properties of U-Net architectures in diffusion mod-
els and validate the simplification of the network architecture to Eq. (9). Based on the results in
Appendix C.1, we use a mixture of low-rank Gaussian distributions for experiments. Here, we set
K = 2, n = 48, d1 = d2 = 6, π1 = π2 = 0.5, and N = 1000 for the data model Definition 1.
Moreover, We use the EDM noise scheduler and 18-step Heun’s solver for both the U-Net and our
proposed parameterization (9). To adapt the structure of the U-Net, we reshape each training sample
into a 3D tensor with dimensions 4 × 4 × 3, treating it as an image. Here, we use DDPM++ based
diffusion models with a U-Net architecture. In each iteration, we randomly sampled a batch of im-
age {x(j)}bs

j=1 ⊆ {x(i)}Ni=1, along with a timestep t(j) and a noise ϵ(j) for each image in the batch
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(a) Numerical rank (b) Norm of gradient

Figure 6: (a) Numerical rank of ∇xt
xθ(xt, t) at all time of diffusion models. Problem (6) is

trained with the DAE xθ(·, t) parameterized according to (9) and U-Net on the training samples
generated by the mixture of low-rank Gaussian distribution. The x-axis is the SNR and the y-axis
is the numerical rank of ∇xt

xθ(xt, t) over the ambient dimension n, i.e., rank(∇xt
xθ(xt, t))/n.

Here, kimgs denotes the number of samples used for training, which equals to training iterations
times batch size of training samples. (b) Convergence of gradient norm of the training loss: The
x-axis is kimgs (see Eq. (46)), and the y-axis is the gradient norm of the training loss.

to optimize the training loss ℓ(θ). We define

kimgs = bs× training iterations
1000

(46)

to represent the total samples used for training. Here, we pick up the specific model trained under
500 kimgs, 1000 kimgs, 2000 kimgs, and 6000 kimgs for evaluation, as shown in Figure 6(a).

We plot the numerical ranks of ∇xtxθ(xt, t) for both our proposed parameterization in (9)
and for the U-Net architecture in Figure 3(b). According to Lemma 2, it holds that 6 ≤
rank(∇xt

xθ(xt, t)) ≤ 12. This corresponds to the blue curve in Figure 3(b). To supplement
our result in Figure 3(b), we further plot the numerical rank against SNR at different training itera-
tions in Figure 6(a) and gradient norm of the objective against training iterations in Figure 6(b). We
observe that with the training kimgs increases, the gradient for the U-Net ||∇θℓ||F decrease smaller
than 10−1 and the rank ratio of∇xt

xθ(xt, t) trained from U-Net gradually be close to the rank ratio
from the low-rank model in the middle of the SNR ([0.91, 10.0]).

D EXPERIMENTAL SETUPS IN SECTION 4

We use a CPU to optimize Problem (6) for the setting in Appendix D.1. For the settings in Ap-
pendix D.2 and Appendix D.3, we employ a single A40 GPU with 48 GB memory to optimize
Problem (6).

D.1 LEARNING THE MOLRG DISTRIBUTION WITH THE THEORETICAL PARAMETERZATION

Here, we present the stochastic gradient descent (SGD) algorithm for solving Problem (6) as follows:

Now, we specify how to choose the parameters of the SGD in our implementation. We divide the
time interval [0, 1] into 64 time steps. When K = 1, we set the learning rate η = 10−4, batch
size M = 128Nk, and number of iterations J = 104. When K = 2, we set the learning rate
η = 2× 10−5, batch size M = 1024, number of iterations J = 105. In particular, when K = 2, we
use the following tailor-designed initialization θ0 = {U0

k} to improve the convergence of the SGD:

U0
k = U⋆

k + 0.2∆, k ∈ {1, 2}, (47)
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Algorithm 1 SGD for optimizing the training loss (6)

Input: Training samples {x(i)}Ni=1
for j = 0, 1, 2, . . . , J do

Randomly select {(im, tm)}Mm=1, where im ∈ [N ] and tm ∈ (0, 1) and a noise ϵ ∼ N (0, I)
Take a gradient step

θj+1 ← θj − η

M

∑
m∈[M ]

∇θ

∥∥∥xθj (stmx(im) + γtmϵ, tm)− x(im)
∥∥∥2

end for

where ∆ ∼ N (0, In). We calculate the success rate as follows. If the returned subspace basis
matrices {Uk}Kk=1 satisfy

1

K

∑K

k=1
||UΠ(k)U

T
Π(k) −U⋆

kU
⋆T
k || ≤ 0.5

for some permutation Π : [K]→ [K], it is considered successful.

D.2 LEARNING THE MOLRG DISTRIBUTION WITH U-NET

we measure the generalization ability of U-Net via generalization (GL) score defined in Equa-
tion (48).

GL score =
D(x(i)

gen)

D(x(i)
MoLRG)

, D(x(i)) :=

N∑
j=1

min
j ̸=i
||x(i) − x(j)||, (48)

where {x(i)
MoLRG}Ni=1 are samples generated from the MoLRG distribution and {x(i)

gen}Ni=1 are new
samples generated by the trained U-Net. Intuitively, D(x(i)

gen) reflects the uniformity of samples in
the space: its value is small when the generated samples cluster around the training data, while the
value is large when generated samples disperse in the entire space. Therefore, the trained diffsion
model is in memorization regime when D(x

(i)
gen)≪ D(x(i)

MoLRG) and the GL score is close to 0, while
it is in generalization regime when D(x

(i)
gen) ≈ D(x(i)

MoLRG) and the GL score is close to 1.

In our implementation, we set the total dimension of MoLRG as n = 48 and the number of training
samples Neval = 1000. To train the U-Net, we use the stochastic gradient descent in Algorithm 1.
We use DDPM++ architecture Song et al. (2021) for the U-Net and EDM Karras et al. (2022) noise
scheduler. We set the learning rate 10−3, batch size 64, and number of iterations J = 104.

D.3 LEARNING REAL-WORLD IMAGE DATA DISTRIBUTIONS WITH U-NET

According to Zhang et al. (2023), we define the generalization (GL) score on real-world image
dataset as follows:

GL score := 1− P
(
max
i∈[N ]

[MSSCD(x,yi)] > 0.6

)
. (49)

Here, the SSCD similarity is first introduced in Pizzi et al. (2022) to measure the replication between
image pair (x1,x2), which is defined as follows:

MSSCD(x1,x2) =
SSCD(x1) · SSCD(x2)

||SSCD(x1)||2 · ||SSCD(x2)||2
where SSCD(·) represents a neural descriptor for copy detection of images. We empirically sam-
ple 10K initial noises to estimate the probability. Intuitively, GL score measures the dissimilarity
between the generated sample x and all N samples yi from the training dataset {yi}Ni=1.

To train diffusion models for real-world image datasets, we use the DDPM++ architecture Song
et al. (2021) for the U-Net and variance preserving (VP) Song et al. (2021) noise scheduler. The
U-Net is trained using the Adam optimizer Kingma & Ba (2014), a variant of SGD in Algorithm 1.
We set the learning rate η = 10−3, batch size M = 512, and the total number of iterations 105.
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(a) PCA (b) Diffusion model

Figure 7: Phase transition of learning the MoLRG distribution when K = 3. The x-axis is
the number of training samples and y-axis is the dimension of subspaces. We apply a subspace
clustering method and train diffusion models for solving Problems (18) and (6), visualizing the
results in (a) and (b), respectively.

D.4 CORRESPONDENCE BETWEEN LOW-DIMENSIONAL SUBSPACES AND IMAGE SEMANTICS

We denote the Jacobian of the DAE xθ(xt, t) by Jt := ∇xtxθ(xt, t) ∈ Rn×n and let Jt = UΣV T

be an singular value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r,
V = [v1, · · · ,vr] ∈ On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular
values. According to the results in Figure 3, it is observed that Jt is low rank, i.e., r ≪ n. Now, we
compute the first-order approximation of xθ(xt, t) along the direction of vi ∈ Rn, where vi is the
i-th right singular vector of Jt:

xθ(xt + αvi, t) ≈ xθ(xt, t) + αJtvi = xθ(xt, t) + ασiui,

where the last equality follows from Jtvi = UΣV Tvi = ασiui. To validate the semantic meaning
of the basis vi, we vary the value of α from negative to positive and visualize the resulting changes
in the generated images. Figures 2, 8 and 9(a, c) illustrate some real examples.

In the experiments, we use a pre-trained diffusion denoising probabilistic model (DDPM) Ho et al.
(2020) on the MetFaces dataset Karras et al. (2020). We randomly select an image x0 from this
dataset and use the reverse process of the diffusion denoising implicit model (DDIM) Song et al.
(2020) to generate xt at t = 0.7T (ablation studies for t = 0.1T and 0.9T are shown in Figure 9(b)),
where T denote the total number of time steps. We respectively choose the changed direction as the
leading right singular vectors v1,v3,v4,v5,v6 and use x̃t = xt+αvi to generate new images with
α ∈ [−6, 6] shown in Figures 2, 8 and 9(a, c).

E AUXILIARY RESULTS

First, we present a probabilistic result to prove Theorem 2, which provides an optimal estimate of
the small singular values of a matrix with i.i.d. Gaussian entries. This lemma is proved in (Rudelson
& Vershynin, 2009, Theorem 1.1).
Lemma 3. Let A be an m × n random matrix, where m ≥ n, whose elements are independent
copies of a subgaussian random variable with mean zero and unit variance. It holds for every ε > 0
that

P
(
σmin(A) ≥ ε(

√
m−

√
n− 1)

)
≥ 1− (c1ε)

m−n+1 − exp (−c2m) ,

where c1, c2 > 0 are constants depending polynomially only on the subgaussian moment.

Next, we present a probabilistic bound on the deviation of the norm of weighted sum of squared
Gaussian random variables from its mean. This is a direct extension of (Vershynin, 2018, Theorem
5.2.2).
Lemma 4. Let x ∼ N (0, Id) be a Gaussian random vector and λ1, . . . , λd > 0 be constants. It
holds for any t > 0 that

P

∣∣∣∣∣∣
√√√√ d∑

i=1

λ2
ix

2
i −

√√√√ d∑
i=1

λ2
i

∣∣∣∣∣∣ ≥ t+ 2λmax

 ≤ 2 exp

(
− t2

2λ2
max

)
, (50)
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Figure 8: Correspondence between the singular vectors of the Jacobian of the DAE and seman-
tic image attributes.
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(a) (b)

(c)

Figure 9: Correspondence between the singular vectors of the Jacobian of the DAE and se-
mantic image attributes. (a,c) Additional examples when t = 0.7T . (b) Ablation studies when
t = 0.1T and 0.9T .
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where λmax = max{λi : i ∈ [d]}.

Based on the above lemma, we can further show the following concentration inequalities to estimate
the norm of the standard norm Gaussian random vector.

Lemma 5. Suppose that ai
i.i.d.∼ N (0, Id) is a Gaussian random vector for each i ∈ [N ]. The

following statements hold:
(i) It holds for all i ∈ [N ] with probability at least 1−N−1 that∣∣∣∥ai∥ −

√
d
∣∣∣ ≤ 2

√
logN + 2. (51)

(ii) Let V ∈ On×d be given. For all i ∈ C⋆
k and all k ∈ [K], it holds with probability at least

1− 2N−1 that ∣∣∥V TU⋆
kai∥ − ∥V TU⋆

k∥F
∣∣ ≤ 2

√
logN + 2. (52)

Proof. (i) Applying Lemma 4 to ai ∼ N (0, Id), together with setting t = 2
√
logN and λj = 1 for

all j ∈ [d], yields

P
(∣∣∣∥ai∥ −

√
d
∣∣∣ ≥ 2

√
logN + 2

)
≤ 2N−2.

This, together with the union bound, yields that (51) holds with probability 1−N−1.

(ii) Let V TU⋆
k = PΣQT be a singular value decomposition of V TU⋆

k , where Σ ∈ Rd×d with the
diagonal elements 0 ≤ σd ≤ . . . σ1 ≤ 1 being the singular values of V TU⋆

k and P ,Q ∈ Od. This,
together with the orthogonal invariance of the Gaussian distribution, yields

∥V TU⋆
kai∥ = ∥ΣQTai∥

d
= ∥Σai∥ =

√√√√ d∑
j=1

σ2
ja

2
ij . (53)

Using Lemma 4 with setting t = 2σ1

√
logN and λj = σj ≤ 1 for all j yields

P
(∣∣∥V TU⋆

kai∥ − ∥V TU⋆
k∥F

∣∣ ≥ σ1α
)
= P

∣∣∣∣∣∣
√√√√ d∑

j=1

σ2
ja

2
ij −

√√√√ d∑
j=1

σ2
j

∣∣∣∣∣∣ ≥ σ1α

 ≤ 2N−2.

This, together with σ1 ≤ 1 and the union bound, yields (52). ⊔⊓

Next, We present a spectral bound on the covariance estimation for the random vectors generated by
the normal distribution.

Lemma 6. Suppose that a1, . . . ,aN ∈ Rd are i.i.d. standard normal random vectors, i.e., ai
i.i.d.∼

N (0, Id) for all i ∈ [N ]. Then, it holds with probability at least 1− 2N−2 that∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≤ 9(
√
d+
√
logN)√

N
, (54)

Proof. According to (Vershynin, 2018, Theorem 4.7.1), it holds that

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+ η)√
N

)
≤ 2 exp

(
−2η2

)
,

where η > 0. Plugging η =
√
logN into the above inequality yields

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+
√
logN)√

N

)
≤ 2N−2.

This directly implies (54). ⊔⊓
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Lemma 7. Let A,B ∈ Rn×n be positive semi-definite matrices. Then, it holds that

⟨A,B⟩ ≥ λmin(A)Tr(B). (55)

Proof. Let UΛUT = A be an eigenvalue decompositon of A, where U ∈ On and Σ =
diag(λ1, . . . , λn) is a diagonal matrix with diagonal entries λ1 ≥ · · · ≥ λn ≥ 0 being the eigenval-
ues. Then, we compute

⟨A,B⟩ = ⟨UΛUT ,B⟩ = ⟨Λ,UBUT ⟩ ≥ λmin(A)Tr(UBUT ) = λmin(A)Tr(B),

where the inequality follows from λi ≥ 0 for all i ∈ [N ] and B is a positive semidefinite matrix. ⊔⊓

30


	Introduction
	Our Contributions
	Related Works and Discussions

	Problem Setup
	Preliminaries on Score-Based Diffusion Models
	Low-Dimensional Data and Models

	Main Results
	A Warm-Up Study: A Single Low-rank Gaussian Case
	From Single Low-Rank Gaussian to Mixtures of Low-Rank Gaussians

	Experiments & Practical Implications
	Phase Transition in Learning Distributions
	Semantic Meanings of Low-Dimensional Subspaces

	Conclusion & Discussion
	Proofs in Section 2
	Relation between Score Matching Loss and Denoiser Autoencoder Loss
	Proof of in lem:E[x0]
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs in Section 3.2
	Theoretical Justification of the DAE (16)
	Proof of Theorem 3
	Proof of Theorem 4

	Experimental Setups in Section 2.2
	Verification of Mixture of Low-Rank Gaussian Data Distribution
	Verification of Low-Rank Network Parameterization

	Experimental Setups in Section 4
	Learning the MoLRG distribution with the theoretical parameterzation
	Learning the MoLRG distribution with U-Net
	Learning real-world image data distributions with U-Net
	Correspondence between low-dimensional subspaces and image semantics

	Auxiliary Results

