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Abstract

Large-scale multilingual pretrained encoders,
such as mBERT and XLM-R, have demon-
strated impressive zero-shot cross-lingual trans-
fer capability across multiple NLP tasks. How-
ever, as we show in this paper, these models
suffer from two major problems: (1) degra-
dation in zero-shot cross-lingual performance
after fine-tuning on a single language, and (2)
cross-lingual performance sensitivity to fine-
tuning hyperparameters. In order to address
these issues, we evaluate two techniques during
fine-tuning, namely, Elastic Weight Consolida-
tion (EWC) and L2-distance regularization to
assist the multilingual models in retaining their
cross-lingual ability after being fine-tuned on a
single language. We compare zero-shot cross-
lingual performance of mBERT with/without
regularization on four different tasks: XNLI,
PANX, UDPOS and PAWSX and demonstrate
that the model fine-tuned with L2-distance reg-
ularization performs better than its vanilla fine-
tuned counterpart in zero-shot setting across all
the tasks by up to 1.64%. Moreover, by fine-
tuning mBERT with different hyperparameter
settings on the specified tasks, we demonstrate
that L2-distance regularization also makes fine-
tuning more robust, reducing standard devia-
tion of zero-shot results by up to 87%. Based
on our experiments, EWC does not provide con-
sistent improvements across languages. More-
over, to test if additional constraint on the en-
coder parameters would improve the results
further, we compared L2-distance regulariza-
tion with techniques that freeze most of the
encoder parameters during fine-tuning, such as
bitfit, soft prompting, and adapter-based meth-
ods. However, we observe that L2-distance
regularization still performs the best.

1 Introduction

In recent years, we have seen multilingual
transformer-based encoders, such as mBERT (De-
vlin et al., 2019), XLM (Conneau and Lample,

2019), XLM-R(Conneau et al., 2019) support-
ing 100+ languages, could achieve state-of-the-art
zero-shot cross-lingual performance across mul-
tiple Natural Language Processing (NLP) tasks
outperforming almost all previously developed
techniques (Hu et al., 2020). Major efforts have
been made to make these models stronger by
changing the pretraining objectives, adding parallel
data (Conneau and Lample, 2019), and pretraining
on a larger corpus (Conneau et al., 2019).

Despite their unprecedented success, when these
models are fine-tuned on a downstream task on a
single language (e.g., English), it is highly likely
that the weights which are important for languages
other than the source language are overwritten, es-
pecially languages which are quite different from
the source language (e.g., Japanese, Chinese, and
Hindi). One way to avoid this is by having a con-
straint on the weights of the encoder so that during
fine-tuning the weights do not change drastically
(a.k.a. catastrophic forgetting). We evaluate two
techniques to overcome this issue: (1) L2-distance
regularization, which constrains new fine-tuned
weights to remain close to the original weights us-
ing L2-distance (Daumé III, 2007), and (2) Elastic
Weight Consolidation (EWC) which imposes the
same L.2-distance constraints but weight them us-
ing the Fisher information matrix (F) (Kirkpatrick
et al., 2017) which acts as an indicator of the im-
portance of different model weights.

We extensively evaluate the specified techniques
(by performing 500+ experiments) on four differ-
ent NLP tasks including natural language inference
(XNLI dataset), name entity recognition (Wikiann
dataset), part of speech tagging (UDPOS dataset),
and paraphrase detection (PAWSX dataset). We
demonstrate that L2-distance regularization can
improve cross-lingual zero-shot performance by
up to 1.64%. EWC also improves zero-shot cross-
lingual performance for some languages but overall
it under-performs when compared to vanilla fine-



tuning. Nevertheless, we show that the Fréchet
distance between the Fisher estimates of different
languages (needed for EWC) can be a good indica-
tor of an encoder’s cross-lingual capability. In par-
ticular, the Fréchet distance between English and
other languages shows a significant negative cor-
relation with the downstream tasks’ performance
suggesting that languages which are quite different
from English would have lower zero-shot scores
and vice-versa.

Motivated by the performance improvement us-
ing L2 distance regularization, we decided to exper-
iment with techniques that go one step further and
either freeze most of the encoder parameters during
fine-tuning, such as bitfit (Zaken et al., 2021), or
only train some of the additional parameters, such
as soft prompts in the encoder embeddings (Lester
et al., 2021) or adapter layers in the existing trans-
former layers (Houlsby et al., 2019). We tested all
three techniques on XNLI and UDPOS tasks. For
XNLI, adapter-based model outperformed vanilla
fine-tuning but not L2-distance regularization when
averaged over three runs. For UDPOS, all three
techniques achieved sub-par performance as com-
pared to vanilla fine-tuning and L2-distance regu-
larization.

Another issue with BERT-style encoders is their
instability and sensitivity to the initial seed as well
as fine-tuning hyperparameters when tuned for dif-
ferent downstream tasks (Zhang et al., 2020; Dodge
et al., 2020; Mosbach et al., 2020). In this work, we
show that the zero-shot cross-lingual performance
of multilingual models on languages other than
the source language is quite sensitive to the fine-
tuning hyperparameters. So much so that the same
validation score on the source language results
in very different zero-shot test scores on a target
language. For example, when mBERT is trained
on Wikiann English training data with vanilla fine-
tuning using five different hyperparameter settings,
we observe a low standard deviation on English test
set F1 score (85.29 4 0.20). However, the average
zero-shot performance on other languages exhibits
6 times higher standard deviation (60.99 + 1.26).
We demonstrate that L2-distance regularization is
effective in overcoming this instability issue. In par-
ticular, it reduces standard deviation in zero-shot
performance by at least 60% compared to vanilla
fine-tuning. In summary, our main contributions
are as follows:

* We compare L2-distance regularization and

EWC during fine-tuning multilingual en-
coders and demonstrate that fine-tuning with
L2-distance regularization consistently outper-
forms the vanilla fine-tuning for multiple NLP
tasks (especially for zero-shot performance).

* We show that the zero-shot cross-lingual per-
formance of multilingual models are quite
sensitive to the fine-tuning hyperparameters.
However, we demonstrate that L2-distance
regularization makes cross-lingual models
more robust to hyperparameter changes dur-
ing fine-tuning and makes them more effi-
cient.

* We show that L2-distance regularization
achieves better zero-shot cross-lingual perfor-
mance as compared to even more constraint
techniques that freeze most of the encoder pa-
rameters, such as bitfit, soft prompting, and
adapters.

2 Related Works

There has been a major improvement in unsuper-
vised cross-lingual transfer learning methods in
the recent years thanks to introduction of large-
scale multilingual transformer encoders such as
mBERT (Devlin et al., 2019), XLLM (Conneau and
Lample, 2019) and XLM-R (Conneau et al., 2019).
These models are able to achieve state-of-the-art
zero-shot cross-lingual performance across mul-
tiple NLP tasks (Hu et al., 2020), such as cross-
lingual dialogue systems (Lin et al., 2020), part of
speech tagging (Zeman et al., 2018) and natural
language inference (Conneau et al., 2018).

BERT-style encoders have been demonstrated to
be very sensitive to hyperparameters and the ran-
dom seed during fine-tuning (Dodge et al., 2020;
Zhang et al., 2020). These studies focus mainly on
the sensitivity of monolingual models. Hence, such
sensitivity analysis has not been done for cross-
lingual models and in particular in zero-shot set-
tings. Several efforts have been made to improve
cross-lingual capability of multilingual encoders
by using parallel-data (Conneau and Lample, 2019)
and larger corpora (Conneau et al., 2019) and to in-
vestigate their effectiveness in cross lingual settings
(Pires et al., 2019; Kudugunta et al., 2019). How-
ever, no significant efforts have been made towards
improving the fine-tuning process of these encoders
for better zero-shot performance and more robust
fine-tuning.



Catasrophic forgetting has been widely studied
before for continual learning. These studies sug-
gest multiple approaches to prevent such a for-
getting including L.2-distance (Daumé III, 2007),
EWC (Kirkpatrick et al., 2017), Variational Contin-
ual Learning (Nguyen et al., 2018), and Gradient
Episodic Memory (GEM) (Lopez-Paz and Ranzato,
2017). L2-distance and EWC use regularization
over weights during training of the second task
to retain the knowledge required for good perfor-
mance on the previous task. GEM on the other
hand poses continual learning as a constrained ob-
jective function on the previous task’s loss to make
sure that it does not increase while learning a new
task. Variational Continual Learning tries to re-
tain the distribution over model parameters but this
approach becomes computationally expensive for
large models.

Despite extensive use of these methods in con-
tinual learning context, their application in cross-
lingual transfer learning has not been explored be-
fore. In this work, we mainly focus on EWC and
L2-distance since other methods such as GEM re-
quire extra model parameters and increase the com-
putational complexity of fine-tuning by a signifi-
cant amount.

3 Background

Multilingual transformer-based language models
(LM) such as mBERT and XLLM-R are trained via
unsupervised training objectives such as Masked
Language Modeling (MLM) on the mix of data
extracted from Wikipedia (or other resources) for
multiple languages. We refer to the dataset used
for each language as D;, where /g denotes the lan-
guage. The model weights after pretraining are
denoted by 6*. The task-specific loss during fine-
tuning is denoted by ¢;. We describe the proposed
regularization techniques in the following subsec-
tions.

3.1 L2-distance Regularization (L2)

In L2-distance regularization, the total loss (Ly2)
is computed as the summation of the task loss (¢;)
and L2-distance between the model’s weights ()
during fine-tuning and the initial pretrained weights
(6*), as can be seen in Eq. 1. The L2 distance helps
constraining the model’s weights to not change
drastically during the fine-tuning to potentially
maintain cross-lingual capability of the encoder.
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3.2 Elastic Weight Consolidation (EWC)

Elastic Weight Consolidation (EWC) penalty is
similar to L2-distance penalty with the difference
that each of the model’s weights has an “impor-
tance" factor for a particular language that needs
to be determined prior to fine-tuning. In particu-
lar, the importance of the i*" parameter is given
by Fj,; where Fy,; is the ith element in the di-
agonal Fisher information matrix calculated for a
particular language (Ig). The total loss is therefore
computed as:

A *
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EWC utilizes the Laplacian approximation to esti-
mate the posterior distribution of # given data of
a downstream task for the source language and
the unlabeled data of the target language used dur-
ing pretraining. In our setup, this translates into
log P(0| Dy, Dy) o< log P(Dy|0) + log P(6| D)
where D, refers to the data of language [g which is
used for pretraining the model and Dy refers to the
downstream task’s data. The first term corresponds
to ¢; in Eq. 2 and the second term is the EWC
penalty. Intuitively, the term log P(6|D;,) denotes
information about the weights # in the context of
the unlabeled data of a particular language (D).
Kirkpatrick et al. (2017) remarks that the Fisher
information refers to the importance of a particular
model weights for the previous task, which is the
unsupervised pretraining on the target language in
our setup.

In (Kirkpatrick et al., 2017), log P(0|Dy,) is ap-
proximated using Laplace approximation (MacKay,
1992). In particular, log P(0|D,,) is approximated
by a Gaussian distribution with mean #* and diago-
nal precision Fj,. In this work, we use Wikipedia
corpus of a target language to estimate the Fisher
information matrix associated with that language.

4 Experimentation Setup

In this section, we describe the experimental setup
as well as the downstream tasks used to test the effi-
cacy of different regularization methods described
in the previous section. For our experiments, we
mainly use mBERT. We also performed our experi-
ments on XLM-R Large for which the results are
provided in Appendix H.



4.1 Downstream Tasks

We pick four different tasks from XTREME bench-
mark (Hu et al., 2020) to evaluate the zero-shot
cross-lingual performance across both sequence
and token-level classification tasks.

XNLI: The Cross-lingual Natural Language In-
ference corpus (Conneau et al., 2018) is a quite
famous NLP task which asks for the relationship
between a premise statement and a hypothesis state-
ment which could be entailment, contradiction or
neutral. For XNLI, the crowdsourced English data
is translated to ten other languages with the help of
professional translators and is used for evaluation.
For training, the original English data of MultiNLI
(Williams et al., 2017) is used.

Wikiann: The named entity recognition (NER)
dataset consists of automatically tagged LOC, PER,
and ORG tags. These tags were automatically
tagged using a combination of knowledge base
properties, cross- lingual and anchor links, self-
training, and data selection. In adherence to the
XTREME benchmark, we also used the balanced
train, dev, and test splits (Rahimi et al., 2019) pro-
vided in the IOB2 format.

UDPOS: The POS tagging dataset from Universal
Dependencies v2.5 treebanks (Nivre, 2018). For
each word in a provided sentence, one of the 17
universal POS tags are provided. Similar to other
datasets, the model is trained on English training
data and is evaluated on the test set of the target
languages.

PAWS-X: The Cross-lingual Paraphrase Adver-
saries from Word Scrambling dataset (Yang et al.,
2019). Two sentences are provided and the model
has to sepcify whether the sentences are para-
phrases or not. A subset of the PAWS (Zhang et al.,
2019) dev and test set is translated into six other
languages with the help of professional translators
and is used for evaluation. The original training set
of PAWS (Zhang et al., 2019) is used for training.

4.2 Experimental Setup for Zero-shot
Performance Comparison

To assess the zero-shot performance of mBERT on
each of the above described downstream tasks, the
model is trained on English training data and is
then evaluated on other languages’ test sets. For
fine-tuning, three different setups are used: (1)
Vanilla with no regularization on model’s weights,
(2) L2-distance regularization (see Eq. 1), and (3)

EWC (see Eq. 2).

For EWC, the Fisher matrix is computed using
the Wikipedia corpus of the target language and
used during fine-tuning of the model (for each lan-
guage separately). For example, for testing the
zero-shot performance of the model on fr, we fine-
tune the model on en data with Fisher weights com-
puted using fr Wikipedia corpus. Hence, to evalu-
ate zero-shot performance of the model with EWC,
we fine-tune the model for each target language sep-
arately (with a different loss function). Appendix F
provides other ways of computing Fisher weight
penalties for EWC fine-tuning (none of the vari-
ants performed better that our approach explained
here). An illustration of the complete fine-tuning
procedure with EWC is illustrated in Appendix A.

For each setup, the model is trained with three
different seeds using the best hyperparameters.
Their performance averaged over these three runs
is then compared against each other. We selected a
set of 14 languages for which the zero-shot perfor-
mance of the models is compared. Out of these 14
languages: fr, bg, hi, ja, and zh are selected by the
authors and de, es, sw, vi, ar, el, ru, ur, and tr are
randomly selected. The first set of five languages
was handpicked to have a diverse set where some
languages share some of the language structure
with English (en) and some which do not.

4.3 Experimental Setup to Assess
Cross-lingual Sensitivity

Transformer based language models, such as BERT
have shown great performance on multiple NLP
tasks and have set new state-of-the-art scores. How-
ever, it has been demonstrated that these models’
performance are sensitive to the change in fine-
tuning hyperparameters for different downstream
tasks (Zhang et al., 2020; Dodge et al., 2020) (in
monolingual settings).

Here, we similarly demonstrate the sensitivity of
multilingual models (e.g., mBERT) to fine-tuning
hyperparameters and in particular in zero-shot
cross-lingual performance. To assess if L2-distance
regularization can help stabilizing the zero-shot
cross-lingual performance of multilingual models,
we setup an experiment where each model is run
with multiple set of hyperparameters with/without
regularization and then compare their average zero-
shot performance and their standard deviation over
all the languages. In the experiments, learning
rate, training epochs, and training warmup steps



Model Fine-tuning XNLI Wikiann UDPOS PAWSX
(Acc.) (F1) (F1) (Acc.)
Cross-lingual zero-shot transfer
Vanilla 64.39 61.72 70.13 82.26
mBERT | w/ EWC 63.16 (-1.23)  59.84 (-1.88) 67.80 (-2.33) 78.84 (-3.42)
w/ L2 66.03 (+1.64) 62.85 (+1.13) 70.53 (+0.40) 82.55 (+0.29)

Table 1: Average zero-shot cross-lingual performance using different fine-tuning setups. In all cases, the model is
fine-tuned only on the English training data. Each task performance is averaged over the selected 14 languages over
3 runs with different seeds. XNLI test set does not include Japanese. Therefore, the average zero-shot performance
is over 13 languages for XNLI. Similarly, average zero-shot performance is calculated for other tasks.

Fine-tuning | en ar de el es fr

vanilla 81.51 63.46 66.89 69.18 6522 73.67 7243
mBERT | w/ EWC 8145 6254 6488 67.87 64.16 71.83 74.18

w/ L2 82.36 65.20 68.81 70.82 6682 74.60 74.25

Fine-tuning hi ru tr ur vi zh Avg.

vanilla 58.73 67.76 4723 5825 56.67 69.90 67.64 64.39
mBERT | w/ EWC 56.41 64.33 48.09 59.79 5472 65.70 66.61 63.16

w/ L2 60.30 68.77 50.55 61.39 58.09 70.25 68.59 66.03

Table 2: Zero-shot cross-lingual Performance for XNLI task on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups. XNLI test set does not include Japanese.

are changed. We performed the sensitivity exper-
iments over all available languages for each task.
The five different fine-tuning hyperparameter set-
tings used in these experiments are provided in
Appendix C.

5 Experimental Results

In this section, we present the key findings from
the experiments described in the previous section.

5.1 L2-Distance Regularization Improves
Cross-lingual Zero-shot Performance

As discussed in Section 4.2, for each task the model
is trained on the English data and is evaluated on
the selected 14 languages test sets (i.e., zero-shot).
The overall zero-shot performance of each model
is calculated by averaging the zero-shot scores over
all languages. For each task, the performance is
averaged over three runs with the best hyperparam-
eters setting. The results are provided in Table 1.

XNLI Given that this is a classification task, the
accuracy metric is used for the models. As can
be seen in Table 1, fine-tuning with L2-distance
regularization performs the best overall and im-

proves vanilla fine-tuning by 1.6% whereas when
fine-tuned with EWC the model performance de-
teriorated as compared to the vanilla training tech-
nique. Language specific zero-shot performances
are shown in Table 2. Fine-tuning w/ EWC helped
in improving the performance for certain languages
such as fr, tr and sw whereas fine-tuning w/ L2 con-
sistently performs better for all the languages than
vanilla fine-tuning and w/ EWC.

Wikiann For this task, the '1 metric is used since
it is an entity recognition task. As observed in Ta-
ble 1, for Wikiann also fine-tuning w/ L2 performs
better than other fine-tuning techniques. Fine-
tuning w/ L2 improves over vanilla training by
1.1%. If we look at language specific performances
(Appendix B), fine-tuning w/ EWC performs the
best for fr and performs marginally better than
vanilla fine-tuning for ar and el. Fine-tuning w/
L2 performs the best for all languages, except fr.

UDPOS For this task, as well, F1 metric is used for
performance comparison. The performance with
L2-distance regularization improves the zero-shot
cross-lingual performance of the model by 0.40%.
Vanilla fine-tuning is still better than fine-tuning



with EWC. We can observe from language specific
zero-shot performances (refer Appendix B) that
fine-tuning w/ L2-distance regularization performs
the best for majority of the languages but for some
languages, such as ki, ja and ur, vanilla fine-tuning
performs better. Fine-tuning w/ EWC is consis-
tently outperformed by other two techniques.

PAWSX For this task, accuracy is used as an
evaluation metric. As observed in Table 1, fine-
tuning with L2-distance regularization improves
the zero-shot cross-lingual performance of the
model by 0.3% whereas when fine-tuned with
EWC the model performance decreases by 4.0%
compared to the vanilla fine-tuning. The zero-shot
performance for each language in provided in Ap-
pendix B. The model fine-tuned w/ L2-distance
regularization performed better than vanilla for all
languages except es and fr.

Overall, fine-tuning with L2-distance regulariza-
tion outperforms vanilla fine-tuning across all four
tasks. EWC performs better than vanilla for some
languages but generally deteriorates the overall
performance. As described in Section 4.2, EWC
regularization requires the model to be fine-tuned
for each target language separately. Whereas, fine-
tuning with L2-distance regularization is required
only once, which is another advantage of using
L2-distance regularization over EWC. Language-
specific results for Wikiann, UDPOS and PAWSX
tasks are provided in Appendix B. We also ex-
perimented with an extreme hyperparameter set-
ting, where we increased the learning rate sig-
nificantly, and L2-distance regularization outper-
formed vanilla finetuning on zero-shot performance
by at least 10% for each task, task-specific results
are provided in Appendix E.

We repeated the experiments using XLM-R
Large model (Conneau et al., 2019) and observed
similar performance gains when using L2-distance
regularization. When fine-tuned with L2-distance
regularization, the model outperformed vanilla fine-
tuning and the reported state-of-the-art results (Hu
et al., 2020). All the results for XLM-R Large are
provided in Appendix H.

We also studied the relationship between the
zero-shot performance and the L2-distance penalty
(Ain Eq. 1) which is presented in Fig. 1. We trained
mBERT using different L2-distance penalty over
6 different seeds and plotted the average zero-shot
performance improvement over vanilla fine-tuning
along with the performance on English test set. The

figure suggests that fine-tuning multilingual models
can benefit from L2-distance regularization as long
as it provides the model some flexibility to learn
the downstream task while constraining it enough
to retain the language information learnt during the
pretraining. Even the performance for English test
set is better with lower L2-distance regularization.

3
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Figure 1: The relationship between the average zero-
shot performance (percentage improvement over vanilla
fine-tuning denoted by A Avg) and the L2-distance
penalty weight for the XNLI task.

5.2 L2-distance Regularization Improves
Cross Lingual Sensitivity

As discussed in Section 4.3, to study the models
sensitivity to hyperparameters, we fine-tune them
with five different hyperparameter settings and eval-
uate them on all available languages for each task.
On the basis of results from our zero-shot exper-
iments (Section 5.1), we focus the sensitivity ex-
periments on vanilla fine-tuning and fine-tuning w/
L2-distance regularization. Results are provided in
Table 3.

Comparing vanilla fine-tuning performance on
English to zero-shot shows that in case of multi-
lingual encoders even though the performance on
English might be consistent (small standard devia-
tion), the few-shot performance varies a lot (higher
standard deviation) with the change in hyperparam-
eters. This demonstrates that the issue of sensitivity
to hyperparameters is even more critical in the case
of multilingual encoders. However, as can be seen
in Table 3, L2-distance regularization is effective
in improving this instability issue in zero-shot per-
formance as well.

XNLI When fine-tuned with L2-distance regular-
ization, the performance both on English as well as
overall zero-shot performance improves while the
standard deviation is significantly dropped. The
overall zero-shot performance improved by 2%



Model | Fine-tuning. | Test XNLI Wikiann UDPOS PAWSX
(Acc. £Std)  (F1 £ Std) (F1 £Std)  (Acc. £+ Std)
Vanilla en 81.60 £0.64 85.29+0.20 95.58+0.06 94.15=+0.59
mBERT w/ L2 en 82.36 +£0.13 84.72£0.13 9540+ 0.02 94.25£0.19
Vanilla zero-shot | 63.22 £ 1.58 60.99£1.26 71.26+0.27 82.92+1.42
w/ L2 zero-shot | 65.13 £0.20 61.87£0.51 72.524+0.11 83.11£0.86

Table 3: Average performance over different fine-tuning hyperparamters. For zero-shot performance, scores on each
task is the average over all available languages and the standard deviation is computed over average zero-shot scores

over five runs.

en ar bg de el
mMBERT Vanilla | 81.6+£0.64 63.54+1.34 66.92+0.86 69.29+1.7 6547+ 1.68
w/L2 | 82.36+£0.13 65.08+0.54 68.55+0.39 71.19+£0.32 66.88+0.44
es fr hi ru SW
mBERT Vanilla | 73.39+£1.29 72884139 58.62+1.06 67.72+1.2 47.8 £2.29
w/ L2 74.7+£0.29 7428+061 6044+0.5 68.754+0.31 50.9+0.88
th tr ur vi zh Average
MBERT Vanilla | 47.65 £4.64 58.244+2.12 56.46+1.11 69.24+1.01 67.81+1.22 63.22+£1.58
w/L2 | 53.27+£0.98 60.92+0.66 58.07+£0.61 69.93+0.62 68.78+0.25 65.13+£0.2

Table 4: Average performance and its standard deviation for each language for XNLI task over five different

hyperparameter settings.

while its standard deviation decreased by 87% com-
pared to vanilla fine-tuning. Table 4 provides the
mean and standard deviations of the zero-shot per-
formances on all languages for XNLI task. It can
be seen that the standard deviation for all languages
is reduced when the model is fine-tuned with L2-
distance regularization.

Wikiann We observe that the standard deviation
for overall zero-shot performance is almost 6 times
the standard deviation of test performance on En-
glish for vanilla fine-tuning. L2-distance regulariza-
tion helps improving the overall zero-shot perfor-
mance while reducing the standard deviation. The
overall zero-shot performance is improved by 1%
while fine-tuning with L2-distance regularization.
The standard deviation on English reduces by 35%
while the standard deviation on overall zero-shot
performance reduced by 60%.

UDPOS Similar to other tasks, not only the zero-
shot performance is improved with L2-distance
regularization but also the standard deviation is
reduced by a significant margin. The overall zero-
shot performance improved by 1.26% while reduc-
ing the standard deviation for English test perfor-
mance by one-third and reducing the standard devi-
ation for overall zero-shot performance by 59%.

PAWSX When using L2-distance regularization,
the zero-shot performance improves by 0.2% while
its standard deviation is reduced by 40% compared
to vanilla fine-tuning. The performance on English
also improves slightly while its standard deviation
is reduced by 67%.

Overall, L2-distance regularization makes the
model more robust to fine-tuning hyperparame-
ters. It improves the overall performance while
significantly reducing the standard deviation of the
results for both source language and target lan-
guages in zero-shot setting by as much as 87%.
This makes L2-distance regularization an ideal
choice for fine-tuning multi-lingual models for
downstream tasks. Detailed language-specific re-
sults for Wikiann, UDPOS and PAWSX tasks are
provided in Appendix D.

5.3 Fréchet Distance as an Indicator of
Encoder’s Zero-shot Capability

Fréchet distance (Kirkpatrick et al., 2017), as de-
fined in Eq. 3, can be used to calculate the distance
between Fisher matrices of en (F¢,) and another
target language (Fj,). Where F;n and Flg are the
normalized versions of the Fisher matrices.

N o 1 N N N A 1
d*(Fen, Fig) = S(Fen + Fig = 2(Fen, Fig)?) - (3)



For each task, we calculated the correlation be-
tween the Fréchet distance of target languages (Ig)
from en and their zero-shot performance. For each
language, we calculated two set of Fisher matrices
using the Wikipedia corpora and XNLI test set.

Corpus | XNLI ~ Wikiann UDPOS ~PAWSX

Correlation b/w Fréchet distance and Task perf.

Wiki
XNLI

-0.541
-0.953

-0.677
-0.814

-0.248
-0.811

0.190
-0.305

Table 5: The correlation between Fréchet distances of
the source (en) and target (Ig) language’s Fisher matrices
and zero-shot performance using mBERT.

The negative correlations, shown in Table 5, sug-
gest that larger the Fréchet distance between en and
lg, weaker the zero-shot performance on /g when
the model is fine-tuned on English training data
for a specific task. Hence, Fréchet distance can be
used as an approximate indicator of a multi-lingual
encoder’s cross lingual capability.

6 Comparison with Frozen Encoder
Techniques

Motivated by the performance improvement ob-
served by using L2 distance regularization, we de-
cided to experiment with techniques that go even
further and freeze most of the encoder parame-
ters during downstream fine-tuning, such as bitfit
(Zaken et al., 2021), soft prompting (Lester et al.,
2021) and adapters (Houlsby et al., 2019). We
tested these techniques on XNLI and UDPOS. For
our experiments, we implemented common adapter
layers (Houlsby et al., 2019) for all languages as
compared to MAD-X (Pfeiffer et al., 2020) which
requires language specific adapter layers and is
more suited for zero-shot performance when the
languages are unseen by the encoder during pre-
training.

The performance of different fine-tuning tech-
niques on English test set and overall zero-shot
performance, averaged over three runs, is pro-
vided in Table 6. For XNLI task, bitfit and soft-
prompts based method resulted in sub-par overall
zero-short performance as compared to vanilla and
L2-distance based fine-tuning. Adapter based fine-
tuning outperformed vanilla but not L2-distance
regularization. For UDPOS, all three techniques
under-performed when compared to vanilla and
L2-distance based fine-tuning. All three fine-
tuning techniques consistently achieved lower per-

‘ en (test set) ‘ zero-shot
Fine-tuning XNLI UDPOS | XNLI UDPOS
(Acc.) (F1) (Acc.) (F1)

Vanilla 81.51 95.43 64.39 70.13
w/ L2 82.36 95.39 66.03 70.53
Frozen Encoder Techniques

w/ soft prompts | 73.2 92.45 60.52 65.37
w/ bitfit 76.33 94.80 64.03 69.26
w/ adapter 80.65 95.20 64.96 68.37

Table 6: Performance on en test set and average zero-
shot cross-lingual performance using different frozen
encoder fine-tuning techniques.

formance on the English test set. This suggests that
freezing most of the encoder parameters can re-
sult in better zero-shot performance in some cases
compared to Vanilla. However, it performs slightly
worse on English test set, which is expected given
the extreme constraints. Hence, it seems like L2-
distance regularization provides the best of both
worlds. All the language specific zero-shot per-
formances for both XNLI and UDPOS and the
best-hyperparameters for soft-prompts, bitfit and
adapter are provided in Appendix G.

7 Conclusion

In this paper, we rigorously compared L.2-distance
regularization and EWC during multilingual mod-
els’ fine-tuning and demonstrated that L.2-distance
regularization outperforms EWC across multiple
tasks and languages in improving zero-shot cross-
lingual performance. We showed that Fisher in-
formation matrices can be used to approximately
indicate the cross-lingual capability of a multilin-
gual encoder before fine-tuning it for downstream
tasks. We also show that L2-distance regularization
outperforms techniques that tend to freeze most of
their encoder parameters during training, such as
bitfit, soft-prompting and adapters based methods.

Moreover, we demonstrated that the zero-shot
cross-lingual performance of multilingual models
is quite sensitive to the fine-tuning hyperparameters.
However, we showed that using L.2-distance regu-
larization during fine-tuning not only improves the
zero-shot cross-lingual performance of the model,
but also makes it more robust to hyperparameter
choices. Based on the results of this paper, we
recommend the use of L2-distance regularization
during fine-tuning of multilingual models to obtain
the best and most robust performance.



References

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsuper-
vised cross-lingual representation learning at scale.
arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Proc.
NeurIPS’19, pages 7059-7069.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating
cross-lingual sentence representations. In Proc.
EMNLP’18, pages 2475-2485.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proc. ACL’07, pages 256-263.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. NAACL’19, pages 4171-4186.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. arXiv:2002.06305.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. arXiv:2003.11080.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Overcom-
ing catastrophic forgetting in neural networks. Proc.
of the National Academy of Sciences, 114(13):3521—
3526.

Sneha Kudugunta, Ankur Bapna, Isaac Caswell, and
Orhan Firat. 2019. Investigating multilingual
nmt representations at scale. In Proc. EMNLP-
IJCNLP’19, pages 1565—-1575.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Zhaojiang Lin, Zihan Liu, Genta Indra Winata, Samuel
Cahyawijaya, Andrea Madotto, Yejin Bang, Et-
suko Ishii, and Pascale Fung. 2020. Xper-
sona: Evaluating multilingual personalized chatbot.
arXiv:2003.07568.

David Lopez-Paz and Marc’ Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Proc. NeurIPS’17, pages 6467-6476.

David JC MacKay. 1992. A practical bayesian frame-
work for backpropagation networks. Neural compu-
tation, 4(3):448-472.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and
Richard E Turner. 2018. Variational continual learn-
ing. In Proc. ICLR’18.

Abrams M. Agic Z. Ahrenberg L. Antonsen L. Aranz-
abe M. J. Arutie G. Asahara M. Ateyah L. Attia M.
et al. Nivre, J. 2018. Universal dependencies 2.2.
arXiv:1902.00193.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv
preprint arXiv:2005.00052.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proc.
ACL’19, pages 4996-5001.

Afshin Rahimi, Yuan Li, and Trevor Cohn.
2019. Massively multilingual transfer for ner.
arXiv:1902.00193.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge cor-

pus for sentence understanding through inference.
arXiv:1704.05426.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. Paws-x: A cross-lingual adver-
sarial dataset for paraphrase identification. In Proc.
EMNLP’19, pages 3678-3683.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Daniel Zeman, Jan Hajic, Martin Popel, Martin Potthast,
Milan Straka, Filip Ginter, Joakim Nivre, and Slav
Petrov. 2018. Conll 2018 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proc. CoNLL’18, pages 1-21.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. arXiv:2006.05987.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
Paws: Paraphrase adversaries from word scrambling.
In Proc. NAACL’19, pages 1298-1308.



A TIllustration of Fine-tuning using EWC

S EWC
fr-wiki L Fisher !
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Figure 2: Steps for fine-tuning mBERT with EWC loss. For example, in XNLI task the model is trained on English
NLI data with additional EWC loss with Fisher weights estimated from French Wikipedia corpus (see Eq. 2). The
model is then evaluated in zero-shot settings on French NLI test data.

B Per Language Zero-shot Results

Language specific zero-shot performances using different fine-tuning setups for Wikiann, UDPOS, and
PAWS-X are provided in Tables 7, 8, and 9, respectively.

‘ Training Tech. ‘ en fr bg de es swW hi vi
Vanilla 8430 79.10 76.87 7821 73.68 69.43 63.78 71.34
mBERT | w/ EWC 83.96 7993 7593 77.85 7320 6580 6230 67.58
w/ L2 84.78 79.64 78.06 78.60 74.50 70.67 65.93 72.32
Training Tech. ‘ ja zh ar el ru ur tr Avg.
Vanilla 2729 41.65 39.82 7096 6500 3484 72.10 61.72
mBERT | w/EWC 2140 3977 3990 71.09 6451 2648 72.04 59.84
w/ L2 28.08 4320 41.03 7239 6587 3610 7347 6285

Table 7: Zero-shot cross-lingual Performance for Wikiann on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.

‘ Fine-tuning ‘ en fr bg de es hi vi
mBERT | vanilla 9543 8296 8523 8545 86.40 65.05 53.67
ewc 9536 82.68 8450 8446 8522 60.67 52.40
12 9539 8539 8595 86.03 8741 6338 5445
Fine-tuning ja zh ar el ru ur tr Avg.
mBERT | vanilla 4547 61.63 5292 8123 8578 56.87 6898 70.13
ewc 43.07 60.28 5255 79.08 8346 4690 66.10 67.80
12 4327 6249 5348 82776 86.43 5572 70.17 70.53

Table 8: Zero-shot cross-lingual Performance for UDPOS on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.

‘ Fine-tuning ‘ en de es fr ja zh Avg.

Vanilla 93.68 8549 8796 87.56 7276 77.54 82.26

mBERT | w/EWC 93.02 80.99 84.07 8587 6935 7396 78.85
w/ L2 94.00 86.24 87.77 8737 7356 7779 82.55

Table 9: Zero-shot cross-lingual Performance for PAWS-X on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.
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C Hyper-parameters for Sensitivity Experiments

Different fine-tuning hyper-parameter settings used for sensitivity analysis in Section 5.2 for all 4 tasks
are provided in Table 10.

Wikiann | UDPOS

Fine—tuning‘ LR Warmup steps  Epochs ‘ Fine-tuning | LR~ Warmup steps  Epochs

3e-5 0 15 2e-5 0 10
2e-5 200 15 2e-5 200 15
Vanilla 3e-3 0 10 Vanilla 3e-3 0 10
4e-5 500 15 4e-5 500 15
4e-5 0 10 4e-5 0 10
3e-5 0 15 2e-5 0 15
2e-5 200 15 2e-5 200 15
W/ o 3e-5 0 0| 3e-5 0 10
4e-5 500 15 4e-5 500 15
4e-5 0 10 4e-5 0 10
XNLI | PANX

Fine-tuning | LR Warmup steps  Epochs ‘ Fine-tuning | LR~ Warmup steps  Epochs

5e-5 3600 3 2e-5 0 5
4e-5 5000 3 2e-5 200 8
Vanilla 2e-3 2000 4 Vanilla 3e-3 0 >
Te-5 1500 3 4e-5 500 8
5e-5 0 3 4e-5 0 5
5e-5 4000 3 2e-5 0 5
4e-5 5000 3 2e-5 200 8
W/ Lo 2e-5 5000 4 W/ 3e-5 0 5
Te-5 1500 3 4e-5 500 8
5e-5 0 3 4e-5 0 5

Table 10: Different fine-tuning hyper-parameter settings for Wikiann, UDPOS, XNLI and PANX use for sensitivity
analysis.

D Per Language Sensitivity Results

Language specific sensitivity experiments comparing vanilla fine-tuning to fine-tuning with L2-distance
regularization for Wikiann, UDPOS, and PAWSX are provided in Tables 11, 12, and 13, respectively.

E Extreme Hyperparameter Sensitivity Results

We also experimented with an extreme hyperparameter setting where we set the learning rate to le-4
for all four tasks during fine-tuning. This extreme hyperparameter setting was selected to be quite
different from the best set of hyperparameters. The models fine-tuned with L2-distance regularization
significantly outperformed the vanilla fine-tuned models. This further demonstrates that fine-tuning with
L2-distance regularization is more stable and helps the model to learn the downstream task even in extreme
hyperparameter settings.

F EWC Variants

We evaluated two more ways of applying EWC regularization during fine-tuning: (1) Applying multiple
EWC penalties along with the task loss, and (2) applying the EWC penalty using the Fisher estimates from
a mixed corpus of source and target language. For the first approach, we considered fr and en penalties
together which did not improve the zero-shot performance on French test set compared to using just fr
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ar he vi id jv ms
mMBERT Vanilla | 40.2+1.92 55.04+1.18 70.9+£1.12 63.2£5.85 62.4+£5.35 71.58+1.14
w/L2 | 4233+£1.96 56.42+0.25 72.19+0.46 61.63£3.13 65.75+1.55 69.98+1.27
tl eu ml ta te af
mBERT Vanilla | 75.7+£0.56 62.85+2.18 48.41+2.43 52.16+246 46.32+2.02 76.05=£0.97
w/ L2 74.53+£1.31 64.31+3.52 54.47+1.18 55.07+0.21 48.82+0.88 77.26+0.18
nl en de el bn hi
mMBERT Vanilla | 81.7 £ 0.62 85.29+0.2 77.75+£0.46 70.88+1.63 70.14+1.41 63.244+1.43
w/L2 | 82.35+£0.28 84.724+0.13 78.28+0.24 71.6+0.82 71.6 £0.82 65.75£0.74
mr ur fa fr it pt
mMBERT Vanilla | 54.84 £2.25 35.38+4.27 41.17+3.68 79.42+0.81 80.94+0.32 80.39+0.8
w/L2 | 57.96 £0.55 31.99+1.76 40.27+£3.16 79.96+04 81.64+0.27 80.3+0.46
es bg ru ja ka ko
mBERT Vanilla | 74.71£2.98 78.07+0.87 65.38+£0.56 27.58+0.94 63.82+1.57 59.14+1.3
w/ L2 74.6 £ 2.6 79 £+ 0.46 66.32 £+ 0.51 27.5+0.6 66.24 £0.82 60.56 +0.94
th SW yo my zh kk
MBERT Vanilla | 0.55+0.25 67.86 +0.67 39.48+6.47 49.23+2.4 41.8+1.6 47.82 + 3.44
w/ L2 0.37£0.11 68.38+£2.82 4256+149 50.6+245 40.68+0.76 46.13+1.99
tr et fi hu Average
mBERT Vanilla | 73.4£1.34 75.57+1.1 76.83+£0.74 76.67+1.25 60.99+1.26
w/ L2 74.33+£0.65 77.32+£0.52 77.64+£0.16 76.28+0.83 61.87+0.51

Table 11: Average Zero-shot performance and its standard deviation on each language for Wikiann over five different

hyperparameter settings.

af ar bg de el en
mMBERT Vanilla | 85.27+0.15 45.934+0.45 84.33+0.27 85.49+0.35 79.43+0.28 95.58 £0.06
w/L2 | 87.06+£0.34 46.26+£0.3 86.15+0.24 86.31+0.35 82.36=+0.73 95.440.02
es et eu fa fi fr
mBERT Vanilla | 86.37£0.25 80.13+0.63 59.77+0.39 64.49+£0.33 76.67+0.54 84.63£0.85
w/L2 | 88.01+£0.15 82.31+0.12 61.8+0.7 67.49+0.35 785£0.24 86.53+0.32
he hi hu id it ja
MBERT Vanilla | 58.77£0.81 63.59+£1.61 76.7+0.33 80.01+0.33 87.37+0.76 45.46+1.14
w/L2 | 59.77£0.43 60.72+0.62 77.92+0.28 80.54+£0.33 88.96+0.33 45.93+£1.01
ko mr nl pt ru ta
mMBERT Vanilla | 48.39+£0.36 66.31 +1.32 89.28+0.25 87.37+042 85.4+£0.11 64.03£0.67
w/L2 | 49.26 £0.12 68.47+0.29 89.88+0.11 88.51+0.38 86.71+0.49 64.68=+0.51
te tr ur vi zh Average
mBERT Vanilla | 77.67£1.42 67.82+0.88 55.06+1.36 51.8+048 57.68+0.34 71.26=£0.27
w/L2 | 80.53+£0.76 69.36 £0.1 54.33+£0.96 52.75+£0.1 59.57+0.43 72.52+£0.11

Table 12: Average Zero-shot performance and its standard deviation on each language for UDPOS over five different

hyperparameter settings.
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‘ en de es fr ja

mBERT Vanilla | 94.15+0.59 86.1£1.06 88.33+£1.04 87.73£0.81 74.28+241
w/ L2 94.25+£0.19 86.38+£0.62 88.65+£0.7 87.82+0.97 74.31+1.82
‘ ‘ zh Avg.
Vanilla | 78.14 £1.97 82.92+1.42
mBERT ‘ w/ L2 78.39£1 83.11 £ 0.86

Table 13: Average Zero-shot performance and its standard deviation on each language for PAWSX over five different
hyperparameter settings.

\ | XNLI  Wikiann UDPOS ~ PAWSX

Cross-lingual zero shot performance

Vanilla
w/ L2

33.33 44.36 59.56 55.21
43.78 60.05 70.8 78.92

mBERT

Table 14: Average zero-shot performance on each task when the model is fine-tuned using extremely different
hyperparameters compared to the best hyperparameter setting.

penalty during EWC fine-tuning. For the second approach, we mixed English and French Wikipedia
data and estimated the Fisher matrix using the mixed corpus. This approach also did not perform better
than using EWC with just fr Fisher estimates. The results using both of these approaches are provided in
Table 15.

Model ‘ Fine-tuning ‘ en fr
Vanilla 81.51 7243
w/ EWC (fr) 8145 74.18

mBERT | w/ EWC (fr+en) 82.25 73.65
w/ EWC (mix fr-en) | 82.21 73.13
w/ L2 82.36 74.25

Table 15: Zero-shot cross-lingual performance for XNLI using vanilla fine-tuning, with L2-distance regularization,
and different EWC regularization variants.

G Other Frozen Encoder Techniques

The best hyper-parameters for all three techniques are provided in Table 16. The results for zero-shot
cross lingual performance for the XNLI task are provided in Table 17 and UDPOS in Table 18.

‘ ‘ # Prompts LR Epochs  Size Seeds

soft prompts 20 0.01 3 - 42,10,20
XNLI bitfit 0.001 3 - 42,10,20
adapter 0.001 3 64  42,10,20

# Prompts LR Epochs  Size Seeds
soft prompts 20 0.001 15 - 42,10,20
UDPOS | bitfit - 0.001 15 - 42,10,20
adapter - 0.001 15 64  42,10,20

Table 16: Best hyperparameters for bitfit, soft prompting and adapters for XNLI and UDPOS.
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‘ ‘ en ar bg de el es fr

soft prompts (Lester et al., 2021) | 73.2  59.75 63.62 62.89 61 65.55 66.47
mBERT | bitfit (Zaken et al., 2021) 76.33 63.13 66.28 68.07 63.98 71.58 69.87
adapter (Houlsby et al., 2019) 80.65 64.28 6745 69.59 6632 72.84 72.24

‘ ‘ hi ru SW tr ur vi zh Avg.
soft prompts (Lester et al., 2021) | 56.18 62 48 59.31 54.76  64.3 62.97 60.52
mBERT | bitfit (Zaken et al., 2021) 59.36 66 49.43 6144 57.87 6781 67.52 64.03

adapter (Houlsby et al., 2019) 58.84 6724 49.74 6139 579 68.83 67.87 64.96

Table 17: Zero-shot cross lingual performance for XNLI task on the selected languages when the model is fine-tuned
using soft prompting, bitfit technique and using adapters.

‘ Fine-tuning ‘ en fr bg de es hi vi
soft prompts (Lester et al., 2021) | 92.45 7336 79.08 80.44 79.66 61.59 50.75
bitfit (Zaken et al., 2021) 94.80 85.66 86.60 8522 8725 56.85 5197

mBERT | adapter (Houlsby et al., 2019) 9520 80.40 84.04 84.60 84.15 64.02 50.05

Fine-tuning ‘ ja zh ar el ru ur tr Avg.

soft prompts (Lester et al., 2021) | 49.74 57.68 5631 7293 7946 4951 59.25 65.37
bitfit (Zaken et al., 2021) 43.10 6258 5395 8426 87.39 4852 67.06 69.26
mBERT | adapter (Houlsby et al., 2019) 46.39 60.73 5293 7848 85.09 54.66 6327 68.37

Table 18: Zero-shot cross lingual performance for UDPOS task on the selected languages when the model is
fine-tuned using soft prompting, bitfit technique and using adapters.

H Experimental Results using XLLM-R Large

We repeated the L2-distance regularization experiments with XLLM-R Large since it provides the best
zero-shot cross-lingual performance as reported by (Hu et al., 2020). These experiments were run on a
single seed. The results for XNLI, Wikiann, UDPOS, and PAWS are provided in Tables 19, 20, 21, and 22,
respectively. The results are consistent with our earlier findings indicating fine-tuning with L2-distance
regularization performs better than the vanilla fine-tuning. For UDPOS, however, the average zero-shot
performance for vanilla and L2-distance regularized fine-tuning are quite close to each other.

‘ ‘ en ar bg de el es fr

(Huetal., 2020) | 88.70 77.20 83 82.5 80.8 83.7 82.2

XLM-Rrarge | Vanilla 86.21 73.77 80.56 78.08 77.52 80.86  80.06
w/ L2 88.34 78.20 83.01 82.18 81.78 84.13 83.05
hi ru SW tr ur vi zh Avg.

(Hu et al., 2020) | 75.6 79.1 71.2 7800 71.7 79.30 78.2 78.65
XLM-Rrarge | Vanilla 71.46 77.33 5749 7096 66.71 76.85 76.73  74.49
w/ L2 75.87 7956 7126 786 71.78 79.16 7884 79.03

Table 19: Zero-shot cross-lingual performance on XNLI using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020)
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‘ ‘ en fr bg de es SW hi vi

(Huetal., 2020) | 84.70 80.5 81.4 78.8 79.60 705 73.00 794

XLM-Rparge | Vanilla 84.55 79.88  81.91 79.3 70.85  71.06 71.1 78.97
w/ L2 84.09 80.36 84.97 7946 71.01 71.21 7206 76.86
‘ ‘ ja zh ar el ru ur tr Avg.

(Huetal,, 2020) | 23.20 33.10 53.00 79.5 69.1 56.4 76.1 66.69
XLM-Rrarge | Vanilla 20.23 28,93 4947 7879 70.39 53.97 T7.98 65.2
w/ L2 20.63 28.18 57.69 8039 73.65 69.18 80.29 67.57

Table 20: Zero-shot cross-lingual performance on Wikiann using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020).

‘ ‘ en fr bg de es hi vi
(Hu et al., 2020) | 96.10 45.1 88.1 88.5 88.3 76.40 56.8
XLM-Rparge | Vanilla 96.16 45.18 88.64 88.59 89.29 74.00 57.25
w/ L2 96.13 4543  88.2 88.58 89.65 73.9 56.28
‘ ‘ ja zh ar el ru ur tr Avg.

(Hu et al., 2020) 15.9 25.7  67.50 86.3 89.5 70.30 76.3 67.28
XLM-Rrarge | Vanilla 36.54 46.64 67.14 86.62 89.74 65.43 7585 70.07
w/ L2 31.13 38.62 67.01 86.96 89.99 70.00 76.74 69.42

Table 21: Zero-shot cross-lingual performance on UDPOS using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020)

‘ ‘ en de es fr ja zh Avg.

(Hu et al., 2020) | 94.7 89.7 90.1 90.4 78.7 82.3 86.24

XLM-Rrarge | Vanilla 95.45 89.99 89.64 91.85 81.49 8349 87.29
w/ L2 95.10 90.65 90.65 91.60 81.29 83.69 87.57

Table 22: Zero-shot cross-lingual performance on PAWSX using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020).
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