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Abstract

Large-scale multilingual pretrained encoders,001
such as mBERT and XLM-R, have demon-002
strated impressive zero-shot cross-lingual trans-003
fer capability across multiple NLP tasks. How-004
ever, as we show in this paper, these models005
suffer from two major problems: (1) degra-006
dation in zero-shot cross-lingual performance007
after fine-tuning on a single language, and (2)008
cross-lingual performance sensitivity to fine-009
tuning hyperparameters. In order to address010
these issues, we evaluate two techniques during011
fine-tuning, namely, Elastic Weight Consolida-012
tion (EWC) and L2-distance regularization to013
assist the multilingual models in retaining their014
cross-lingual ability after being fine-tuned on a015
single language. We compare zero-shot cross-016
lingual performance of mBERT with/without017
regularization on four different tasks: XNLI,018
PANX, UDPOS and PAWSX and demonstrate019
that the model fine-tuned with L2-distance reg-020
ularization performs better than its vanilla fine-021
tuned counterpart in zero-shot setting across all022
the tasks by up to 1.64%. Moreover, by fine-023
tuning mBERT with different hyperparameter024
settings on the specified tasks, we demonstrate025
that L2-distance regularization also makes fine-026
tuning more robust, reducing standard devia-027
tion of zero-shot results by up to 87%. Based028
on our experiments, EWC does not provide con-029
sistent improvements across languages. More-030
over, to test if additional constraint on the en-031
coder parameters would improve the results032
further, we compared L2-distance regulariza-033
tion with techniques that freeze most of the034
encoder parameters during fine-tuning, such as035
bitfit, soft prompting, and adapter-based meth-036
ods. However, we observe that L2-distance037
regularization still performs the best.038

1 Introduction039

In recent years, we have seen multilingual040

transformer-based encoders, such as mBERT (De-041

vlin et al., 2019), XLM (Conneau and Lample,042

2019), XLM-R(Conneau et al., 2019) support- 043

ing 100+ languages, could achieve state-of-the-art 044

zero-shot cross-lingual performance across mul- 045

tiple Natural Language Processing (NLP) tasks 046

outperforming almost all previously developed 047

techniques (Hu et al., 2020). Major efforts have 048

been made to make these models stronger by 049

changing the pretraining objectives, adding parallel 050

data (Conneau and Lample, 2019), and pretraining 051

on a larger corpus (Conneau et al., 2019). 052

Despite their unprecedented success, when these 053

models are fine-tuned on a downstream task on a 054

single language (e.g., English), it is highly likely 055

that the weights which are important for languages 056

other than the source language are overwritten, es- 057

pecially languages which are quite different from 058

the source language (e.g., Japanese, Chinese, and 059

Hindi). One way to avoid this is by having a con- 060

straint on the weights of the encoder so that during 061

fine-tuning the weights do not change drastically 062

(a.k.a. catastrophic forgetting). We evaluate two 063

techniques to overcome this issue: (1) L2-distance 064

regularization, which constrains new fine-tuned 065

weights to remain close to the original weights us- 066

ing L2-distance (Daumé III, 2007), and (2) Elastic 067

Weight Consolidation (EWC) which imposes the 068

same L2-distance constraints but weight them us- 069

ing the Fisher information matrix (F) (Kirkpatrick 070

et al., 2017) which acts as an indicator of the im- 071

portance of different model weights. 072

We extensively evaluate the specified techniques 073

(by performing 500+ experiments) on four differ- 074

ent NLP tasks including natural language inference 075

(XNLI dataset), name entity recognition (Wikiann 076

dataset), part of speech tagging (UDPOS dataset), 077

and paraphrase detection (PAWSX dataset). We 078

demonstrate that L2-distance regularization can 079

improve cross-lingual zero-shot performance by 080

up to 1.64%. EWC also improves zero-shot cross- 081

lingual performance for some languages but overall 082

it under-performs when compared to vanilla fine- 083

1



tuning. Nevertheless, we show that the Fréchet084

distance between the Fisher estimates of different085

languages (needed for EWC) can be a good indica-086

tor of an encoder’s cross-lingual capability. In par-087

ticular, the Fréchet distance between English and088

other languages shows a significant negative cor-089

relation with the downstream tasks’ performance090

suggesting that languages which are quite different091

from English would have lower zero-shot scores092

and vice-versa.093

Motivated by the performance improvement us-094

ing L2 distance regularization, we decided to exper-095

iment with techniques that go one step further and096

either freeze most of the encoder parameters during097

fine-tuning, such as bitfit (Zaken et al., 2021), or098

only train some of the additional parameters, such099

as soft prompts in the encoder embeddings (Lester100

et al., 2021) or adapter layers in the existing trans-101

former layers (Houlsby et al., 2019). We tested all102

three techniques on XNLI and UDPOS tasks. For103

XNLI, adapter-based model outperformed vanilla104

fine-tuning but not L2-distance regularization when105

averaged over three runs. For UDPOS, all three106

techniques achieved sub-par performance as com-107

pared to vanilla fine-tuning and L2-distance regu-108

larization.109

Another issue with BERT-style encoders is their110

instability and sensitivity to the initial seed as well111

as fine-tuning hyperparameters when tuned for dif-112

ferent downstream tasks (Zhang et al., 2020; Dodge113

et al., 2020; Mosbach et al., 2020). In this work, we114

show that the zero-shot cross-lingual performance115

of multilingual models on languages other than116

the source language is quite sensitive to the fine-117

tuning hyperparameters. So much so that the same118

validation score on the source language results119

in very different zero-shot test scores on a target120

language. For example, when mBERT is trained121

on Wikiann English training data with vanilla fine-122

tuning using five different hyperparameter settings,123

we observe a low standard deviation on English test124

set F1 score (85.29± 0.20). However, the average125

zero-shot performance on other languages exhibits126

6 times higher standard deviation (60.99 ± 1.26).127

We demonstrate that L2-distance regularization is128

effective in overcoming this instability issue. In par-129

ticular, it reduces standard deviation in zero-shot130

performance by at least 60% compared to vanilla131

fine-tuning. In summary, our main contributions132

are as follows:133

• We compare L2-distance regularization and134

EWC during fine-tuning multilingual en- 135

coders and demonstrate that fine-tuning with 136

L2-distance regularization consistently outper- 137

forms the vanilla fine-tuning for multiple NLP 138

tasks (especially for zero-shot performance). 139

• We show that the zero-shot cross-lingual per- 140

formance of multilingual models are quite 141

sensitive to the fine-tuning hyperparameters. 142

However, we demonstrate that L2-distance 143

regularization makes cross-lingual models 144

more robust to hyperparameter changes dur- 145

ing fine-tuning and makes them more effi- 146

cient. 147

• We show that L2-distance regularization 148

achieves better zero-shot cross-lingual perfor- 149

mance as compared to even more constraint 150

techniques that freeze most of the encoder pa- 151

rameters, such as bitfit, soft prompting, and 152

adapters. 153

2 Related Works 154

There has been a major improvement in unsuper- 155

vised cross-lingual transfer learning methods in 156

the recent years thanks to introduction of large- 157

scale multilingual transformer encoders such as 158

mBERT (Devlin et al., 2019), XLM (Conneau and 159

Lample, 2019) and XLM-R (Conneau et al., 2019). 160

These models are able to achieve state-of-the-art 161

zero-shot cross-lingual performance across mul- 162

tiple NLP tasks (Hu et al., 2020), such as cross- 163

lingual dialogue systems (Lin et al., 2020), part of 164

speech tagging (Zeman et al., 2018) and natural 165

language inference (Conneau et al., 2018). 166

BERT-style encoders have been demonstrated to 167

be very sensitive to hyperparameters and the ran- 168

dom seed during fine-tuning (Dodge et al., 2020; 169

Zhang et al., 2020). These studies focus mainly on 170

the sensitivity of monolingual models. Hence, such 171

sensitivity analysis has not been done for cross- 172

lingual models and in particular in zero-shot set- 173

tings. Several efforts have been made to improve 174

cross-lingual capability of multilingual encoders 175

by using parallel-data (Conneau and Lample, 2019) 176

and larger corpora (Conneau et al., 2019) and to in- 177

vestigate their effectiveness in cross lingual settings 178

(Pires et al., 2019; Kudugunta et al., 2019). How- 179

ever, no significant efforts have been made towards 180

improving the fine-tuning process of these encoders 181

for better zero-shot performance and more robust 182

fine-tuning. 183
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Catasrophic forgetting has been widely studied184

before for continual learning. These studies sug-185

gest multiple approaches to prevent such a for-186

getting including L2-distance (Daumé III, 2007),187

EWC (Kirkpatrick et al., 2017), Variational Contin-188

ual Learning (Nguyen et al., 2018), and Gradient189

Episodic Memory (GEM) (Lopez-Paz and Ranzato,190

2017). L2-distance and EWC use regularization191

over weights during training of the second task192

to retain the knowledge required for good perfor-193

mance on the previous task. GEM on the other194

hand poses continual learning as a constrained ob-195

jective function on the previous task’s loss to make196

sure that it does not increase while learning a new197

task. Variational Continual Learning tries to re-198

tain the distribution over model parameters but this199

approach becomes computationally expensive for200

large models.201

Despite extensive use of these methods in con-202

tinual learning context, their application in cross-203

lingual transfer learning has not been explored be-204

fore. In this work, we mainly focus on EWC and205

L2-distance since other methods such as GEM re-206

quire extra model parameters and increase the com-207

putational complexity of fine-tuning by a signifi-208

cant amount.209

3 Background210

Multilingual transformer-based language models211

(LM) such as mBERT and XLM-R are trained via212

unsupervised training objectives such as Masked213

Language Modeling (MLM) on the mix of data214

extracted from Wikipedia (or other resources) for215

multiple languages. We refer to the dataset used216

for each language as Dlg where lg denotes the lan-217

guage. The model weights after pretraining are218

denoted by θ∗. The task-specific loss during fine-219

tuning is denoted by ℓt. We describe the proposed220

regularization techniques in the following subsec-221

tions.222

3.1 L2-distance Regularization (L2)223

In L2-distance regularization, the total loss (LL2)224

is computed as the summation of the task loss (ℓt)225

and L2-distance between the model’s weights (θ)226

during fine-tuning and the initial pretrained weights227

(θ∗), as can be seen in Eq. 1. The L2 distance helps228

constraining the model’s weights to not change229

drastically during the fine-tuning to potentially230

maintain cross-lingual capability of the encoder.231

LL2 = ℓt +
λ

2

∑
i

(θi − θ∗i )
2 (1) 232

3.2 Elastic Weight Consolidation (EWC) 233

Elastic Weight Consolidation (EWC) penalty is 234

similar to L2-distance penalty with the difference 235

that each of the model’s weights has an “impor- 236

tance" factor for a particular language that needs 237

to be determined prior to fine-tuning. In particu- 238

lar, the importance of the ith parameter is given 239

by Flg,i where Flg,i is the ith element in the di- 240

agonal Fisher information matrix calculated for a 241

particular language (lg). The total loss is therefore 242

computed as: 243

LEWC = ℓt +
λ

2

∑
i

Flg,i(θi − θ∗i )
2 (2) 244

EWC utilizes the Laplacian approximation to esti- 245

mate the posterior distribution of θ given data of 246

a downstream task for the source language and 247

the unlabeled data of the target language used dur- 248

ing pretraining. In our setup, this translates into 249

logP (θ|Dlg, Dt) ∝ logP (Dt|θ) + logP (θ|Dlg) 250

where Dlg refers to the data of language lg which is 251

used for pretraining the model and Dt refers to the 252

downstream task’s data. The first term corresponds 253

to ℓt in Eq. 2 and the second term is the EWC 254

penalty. Intuitively, the term logP (θ|Dlg) denotes 255

information about the weights θ in the context of 256

the unlabeled data of a particular language (Dlg). 257

Kirkpatrick et al. (2017) remarks that the Fisher 258

information refers to the importance of a particular 259

model weights for the previous task, which is the 260

unsupervised pretraining on the target language in 261

our setup. 262

In (Kirkpatrick et al., 2017), logP (θ|Dlg) is ap- 263

proximated using Laplace approximation (MacKay, 264

1992). In particular, logP (θ|Dlg) is approximated 265

by a Gaussian distribution with mean θ∗ and diago- 266

nal precision Flg. In this work, we use Wikipedia 267

corpus of a target language to estimate the Fisher 268

information matrix associated with that language. 269

4 Experimentation Setup 270

In this section, we describe the experimental setup 271

as well as the downstream tasks used to test the effi- 272

cacy of different regularization methods described 273

in the previous section. For our experiments, we 274

mainly use mBERT. We also performed our experi- 275

ments on XLM-R Large for which the results are 276

provided in Appendix H. 277
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4.1 Downstream Tasks278

We pick four different tasks from XTREME bench-279

mark (Hu et al., 2020) to evaluate the zero-shot280

cross-lingual performance across both sequence281

and token-level classification tasks.282

XNLI: The Cross-lingual Natural Language In-283

ference corpus (Conneau et al., 2018) is a quite284

famous NLP task which asks for the relationship285

between a premise statement and a hypothesis state-286

ment which could be entailment, contradiction or287

neutral. For XNLI, the crowdsourced English data288

is translated to ten other languages with the help of289

professional translators and is used for evaluation.290

For training, the original English data of MultiNLI291

(Williams et al., 2017) is used.292

Wikiann: The named entity recognition (NER)293

dataset consists of automatically tagged LOC, PER,294

and ORG tags. These tags were automatically295

tagged using a combination of knowledge base296

properties, cross- lingual and anchor links, self-297

training, and data selection. In adherence to the298

XTREME benchmark, we also used the balanced299

train, dev, and test splits (Rahimi et al., 2019) pro-300

vided in the IOB2 format.301

UDPOS: The POS tagging dataset from Universal302

Dependencies v2.5 treebanks (Nivre, 2018). For303

each word in a provided sentence, one of the 17304

universal POS tags are provided. Similar to other305

datasets, the model is trained on English training306

data and is evaluated on the test set of the target307

languages.308

PAWS-X: The Cross-lingual Paraphrase Adver-309

saries from Word Scrambling dataset (Yang et al.,310

2019). Two sentences are provided and the model311

has to sepcify whether the sentences are para-312

phrases or not. A subset of the PAWS (Zhang et al.,313

2019) dev and test set is translated into six other314

languages with the help of professional translators315

and is used for evaluation. The original training set316

of PAWS (Zhang et al., 2019) is used for training.317

4.2 Experimental Setup for Zero-shot318

Performance Comparison319

To assess the zero-shot performance of mBERT on320

each of the above described downstream tasks, the321

model is trained on English training data and is322

then evaluated on other languages’ test sets. For323

fine-tuning, three different setups are used: (1)324

Vanilla with no regularization on model’s weights,325

(2) L2-distance regularization (see Eq. 1), and (3)326

EWC (see Eq. 2). 327

For EWC, the Fisher matrix is computed using 328

the Wikipedia corpus of the target language and 329

used during fine-tuning of the model (for each lan- 330

guage separately). For example, for testing the 331

zero-shot performance of the model on fr, we fine- 332

tune the model on en data with Fisher weights com- 333

puted using fr Wikipedia corpus. Hence, to evalu- 334

ate zero-shot performance of the model with EWC, 335

we fine-tune the model for each target language sep- 336

arately (with a different loss function). Appendix F 337

provides other ways of computing Fisher weight 338

penalties for EWC fine-tuning (none of the vari- 339

ants performed better that our approach explained 340

here). An illustration of the complete fine-tuning 341

procedure with EWC is illustrated in Appendix A. 342

For each setup, the model is trained with three 343

different seeds using the best hyperparameters. 344

Their performance averaged over these three runs 345

is then compared against each other. We selected a 346

set of 14 languages for which the zero-shot perfor- 347

mance of the models is compared. Out of these 14 348

languages: fr, bg, hi, ja, and zh are selected by the 349

authors and de, es, sw, vi, ar, el, ru, ur, and tr are 350

randomly selected. The first set of five languages 351

was handpicked to have a diverse set where some 352

languages share some of the language structure 353

with English (en) and some which do not. 354

4.3 Experimental Setup to Assess 355

Cross-lingual Sensitivity 356

Transformer based language models, such as BERT 357

have shown great performance on multiple NLP 358

tasks and have set new state-of-the-art scores. How- 359

ever, it has been demonstrated that these models’ 360

performance are sensitive to the change in fine- 361

tuning hyperparameters for different downstream 362

tasks (Zhang et al., 2020; Dodge et al., 2020) (in 363

monolingual settings). 364

Here, we similarly demonstrate the sensitivity of 365

multilingual models (e.g., mBERT) to fine-tuning 366

hyperparameters and in particular in zero-shot 367

cross-lingual performance. To assess if L2-distance 368

regularization can help stabilizing the zero-shot 369

cross-lingual performance of multilingual models, 370

we setup an experiment where each model is run 371

with multiple set of hyperparameters with/without 372

regularization and then compare their average zero- 373

shot performance and their standard deviation over 374

all the languages. In the experiments, learning 375

rate, training epochs, and training warmup steps 376
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Model Fine-tuning XNLI Wikiann UDPOS PAWSX
(Acc.) (F1) (F1) (Acc.)

Cross-lingual zero-shot transfer

mBERT
Vanilla 64.39 61.72 70.13 82.26
w/ EWC 63.16 (-1.23) 59.84 (-1.88) 67.80 (-2.33) 78.84 (-3.42)
w/ L2 66.03 (+1.64) 62.85 (+1.13) 70.53 (+0.40) 82.55 (+0.29)

Table 1: Average zero-shot cross-lingual performance using different fine-tuning setups. In all cases, the model is
fine-tuned only on the English training data. Each task performance is averaged over the selected 14 languages over
3 runs with different seeds. XNLI test set does not include Japanese. Therefore, the average zero-shot performance
is over 13 languages for XNLI. Similarly, average zero-shot performance is calculated for other tasks.

Fine-tuning en ar bg de el es fr

mBERT
vanilla 81.51 63.46 66.89 69.18 65.22 73.67 72.43
w/ EWC 81.45 62.54 64.88 67.87 64.16 71.83 74.18
w/ L2 82.36 65.20 68.81 70.82 66.82 74.60 74.25

Fine-tuning hi ru sw tr ur vi zh Avg.

mBERT
vanilla 58.73 67.76 47.23 58.25 56.67 69.90 67.64 64.39
w/ EWC 56.41 64.33 48.09 59.79 54.72 65.70 66.61 63.16
w/ L2 60.30 68.77 50.55 61.39 58.09 70.25 68.59 66.03

Table 2: Zero-shot cross-lingual Performance for XNLI task on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups. XNLI test set does not include Japanese.

are changed. We performed the sensitivity exper-377

iments over all available languages for each task.378

The five different fine-tuning hyperparameter set-379

tings used in these experiments are provided in380

Appendix C.381

5 Experimental Results382

In this section, we present the key findings from383

the experiments described in the previous section.384

5.1 L2-Distance Regularization Improves385

Cross-lingual Zero-shot Performance386

As discussed in Section 4.2, for each task the model387

is trained on the English data and is evaluated on388

the selected 14 languages test sets (i.e., zero-shot).389

The overall zero-shot performance of each model390

is calculated by averaging the zero-shot scores over391

all languages. For each task, the performance is392

averaged over three runs with the best hyperparam-393

eters setting. The results are provided in Table 1.394

XNLI Given that this is a classification task, the395

accuracy metric is used for the models. As can396

be seen in Table 1, fine-tuning with L2-distance397

regularization performs the best overall and im-398

proves vanilla fine-tuning by 1.6% whereas when 399

fine-tuned with EWC the model performance de- 400

teriorated as compared to the vanilla training tech- 401

nique. Language specific zero-shot performances 402

are shown in Table 2. Fine-tuning w/ EWC helped 403

in improving the performance for certain languages 404

such as fr, tr and sw whereas fine-tuning w/ L2 con- 405

sistently performs better for all the languages than 406

vanilla fine-tuning and w/ EWC. 407

Wikiann For this task, the F1 metric is used since 408

it is an entity recognition task. As observed in Ta- 409

ble 1, for Wikiann also fine-tuning w/ L2 performs 410

better than other fine-tuning techniques. Fine- 411

tuning w/ L2 improves over vanilla training by 412

1.1%. If we look at language specific performances 413

(Appendix B), fine-tuning w/ EWC performs the 414

best for fr and performs marginally better than 415

vanilla fine-tuning for ar and el. Fine-tuning w/ 416

L2 performs the best for all languages, except fr. 417

UDPOS For this task, as well, F1 metric is used for 418

performance comparison. The performance with 419

L2-distance regularization improves the zero-shot 420

cross-lingual performance of the model by 0.40%. 421

Vanilla fine-tuning is still better than fine-tuning 422
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with EWC. We can observe from language specific423

zero-shot performances (refer Appendix B) that424

fine-tuning w/ L2-distance regularization performs425

the best for majority of the languages but for some426

languages, such as hi, ja and ur, vanilla fine-tuning427

performs better. Fine-tuning w/ EWC is consis-428

tently outperformed by other two techniques.429

PAWSX For this task, accuracy is used as an430

evaluation metric. As observed in Table 1, fine-431

tuning with L2-distance regularization improves432

the zero-shot cross-lingual performance of the433

model by 0.3% whereas when fine-tuned with434

EWC the model performance decreases by 4.0%435

compared to the vanilla fine-tuning. The zero-shot436

performance for each language in provided in Ap-437

pendix B. The model fine-tuned w/ L2-distance438

regularization performed better than vanilla for all439

languages except es and fr.440

Overall, fine-tuning with L2-distance regulariza-441

tion outperforms vanilla fine-tuning across all four442

tasks. EWC performs better than vanilla for some443

languages but generally deteriorates the overall444

performance. As described in Section 4.2, EWC445

regularization requires the model to be fine-tuned446

for each target language separately. Whereas, fine-447

tuning with L2-distance regularization is required448

only once, which is another advantage of using449

L2-distance regularization over EWC. Language-450

specific results for Wikiann, UDPOS and PAWSX451

tasks are provided in Appendix B. We also ex-452

perimented with an extreme hyperparameter set-453

ting, where we increased the learning rate sig-454

nificantly, and L2-distance regularization outper-455

formed vanilla finetuning on zero-shot performance456

by at least 10% for each task, task-specific results457

are provided in Appendix E.458

We repeated the experiments using XLM-R459

Large model (Conneau et al., 2019) and observed460

similar performance gains when using L2-distance461

regularization. When fine-tuned with L2-distance462

regularization, the model outperformed vanilla fine-463

tuning and the reported state-of-the-art results (Hu464

et al., 2020). All the results for XLM-R Large are465

provided in Appendix H.466

We also studied the relationship between the467

zero-shot performance and the L2-distance penalty468

(λ in Eq. 1) which is presented in Fig. 1. We trained469

mBERT using different L2-distance penalty over470

6 different seeds and plotted the average zero-shot471

performance improvement over vanilla fine-tuning472

along with the performance on English test set. The473

figure suggests that fine-tuning multilingual models 474

can benefit from L2-distance regularization as long 475

as it provides the model some flexibility to learn 476

the downstream task while constraining it enough 477

to retain the language information learnt during the 478

pretraining. Even the performance for English test 479

set is better with lower L2-distance regularization. 480
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Figure 1: The relationship between the average zero-
shot performance (percentage improvement over vanilla
fine-tuning denoted by ∆ Avg) and the L2-distance
penalty weight for the XNLI task.

5.2 L2-distance Regularization Improves 481

Cross Lingual Sensitivity 482

As discussed in Section 4.3, to study the models 483

sensitivity to hyperparameters, we fine-tune them 484

with five different hyperparameter settings and eval- 485

uate them on all available languages for each task. 486

On the basis of results from our zero-shot exper- 487

iments (Section 5.1), we focus the sensitivity ex- 488

periments on vanilla fine-tuning and fine-tuning w/ 489

L2-distance regularization. Results are provided in 490

Table 3. 491

Comparing vanilla fine-tuning performance on 492

English to zero-shot shows that in case of multi- 493

lingual encoders even though the performance on 494

English might be consistent (small standard devia- 495

tion), the few-shot performance varies a lot (higher 496

standard deviation) with the change in hyperparam- 497

eters. This demonstrates that the issue of sensitivity 498

to hyperparameters is even more critical in the case 499

of multilingual encoders. However, as can be seen 500

in Table 3, L2-distance regularization is effective 501

in improving this instability issue in zero-shot per- 502

formance as well. 503

XNLI When fine-tuned with L2-distance regular- 504

ization, the performance both on English as well as 505

overall zero-shot performance improves while the 506

standard deviation is significantly dropped. The 507

overall zero-shot performance improved by 2% 508
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Model Fine-tuning. Test XNLI Wikiann UDPOS PAWSX
(Acc. ± Std) (F1 ± Std) (F1 ± Std) (Acc. ± Std)

mBERT

Vanilla en 81.60± 0.64 85.29± 0.20 95.58± 0.06 94.15± 0.59

w/ L2 en 82.36± 0.13 84.72± 0.13 95.40± 0.02 94.25± 0.19

Vanilla zero-shot 63.22± 1.58 60.99± 1.26 71.26± 0.27 82.92± 1.42

w/ L2 zero-shot 65.13± 0.20 61.87± 0.51 72.52± 0.11 83.11± 0.86

Table 3: Average performance over different fine-tuning hyperparamters. For zero-shot performance, scores on each
task is the average over all available languages and the standard deviation is computed over average zero-shot scores
over five runs.

en ar bg de el

mBERT Vanilla 81.6± 0.64 63.54± 1.34 66.92± 0.86 69.29± 1.7 65.47± 1.68
w/ L2 82.36± 0.13 65.08± 0.54 68.55± 0.39 71.19± 0.32 66.88± 0.44

es fr hi ru sw

mBERT Vanilla 73.39± 1.29 72.88± 1.39 58.62± 1.06 67.72± 1.2 47.8± 2.29
w/ L2 74.7± 0.29 74.28± 0.61 60.44± 0.5 68.75± 0.31 50.9± 0.88

th tr ur vi zh Average

mBERT Vanilla 47.65± 4.64 58.24± 2.12 56.46± 1.11 69.2± 1.01 67.81± 1.22 63.22± 1.58
w/ L2 53.27± 0.98 60.92± 0.66 58.07± 0.61 69.93± 0.62 68.78± 0.25 65.13± 0.2

Table 4: Average performance and its standard deviation for each language for XNLI task over five different
hyperparameter settings.

while its standard deviation decreased by 87% com-509

pared to vanilla fine-tuning. Table 4 provides the510

mean and standard deviations of the zero-shot per-511

formances on all languages for XNLI task. It can512

be seen that the standard deviation for all languages513

is reduced when the model is fine-tuned with L2-514

distance regularization.515

Wikiann We observe that the standard deviation516

for overall zero-shot performance is almost 6 times517

the standard deviation of test performance on En-518

glish for vanilla fine-tuning. L2-distance regulariza-519

tion helps improving the overall zero-shot perfor-520

mance while reducing the standard deviation. The521

overall zero-shot performance is improved by 1%522

while fine-tuning with L2-distance regularization.523

The standard deviation on English reduces by 35%524

while the standard deviation on overall zero-shot525

performance reduced by 60%.526

UDPOS Similar to other tasks, not only the zero-527

shot performance is improved with L2-distance528

regularization but also the standard deviation is529

reduced by a significant margin. The overall zero-530

shot performance improved by 1.26% while reduc-531

ing the standard deviation for English test perfor-532

mance by one-third and reducing the standard devi-533

ation for overall zero-shot performance by 59%.534

PAWSX When using L2-distance regularization, 535

the zero-shot performance improves by 0.2% while 536

its standard deviation is reduced by 40% compared 537

to vanilla fine-tuning. The performance on English 538

also improves slightly while its standard deviation 539

is reduced by 67%. 540

Overall, L2-distance regularization makes the 541

model more robust to fine-tuning hyperparame- 542

ters. It improves the overall performance while 543

significantly reducing the standard deviation of the 544

results for both source language and target lan- 545

guages in zero-shot setting by as much as 87%. 546

This makes L2-distance regularization an ideal 547

choice for fine-tuning multi-lingual models for 548

downstream tasks. Detailed language-specific re- 549

sults for Wikiann, UDPOS and PAWSX tasks are 550

provided in Appendix D. 551

5.3 Fréchet Distance as an Indicator of 552

Encoder’s Zero-shot Capability 553

Fréchet distance (Kirkpatrick et al., 2017), as de- 554

fined in Eq. 3, can be used to calculate the distance 555

between Fisher matrices of en (Fen) and another 556

target language (Flg). Where F̂en and F̂lg are the 557

normalized versions of the Fisher matrices. 558

d2(F̂en, F̂lg) =
1

2
tr(F̂en + F̂lg − 2(F̂en, F̂lg)

1
2 ) (3) 559
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For each task, we calculated the correlation be-560

tween the Fréchet distance of target languages (lg)561

from en and their zero-shot performance. For each562

language, we calculated two set of Fisher matrices563

using the Wikipedia corpora and XNLI test set.

Corpus XNLI Wikiann UDPOS PAWSX

Correlation b/w Fréchet distance and Task perf.

Wiki -0.677 -0.248 0.190 -0.541
XNLI -0.814 -0.811 -0.305 -0.953

Table 5: The correlation between Fréchet distances of
the source (en) and target (lg) language’s Fisher matrices
and zero-shot performance using mBERT.

564
The negative correlations, shown in Table 5, sug-565

gest that larger the Fréchet distance between en and566

lg, weaker the zero-shot performance on lg when567

the model is fine-tuned on English training data568

for a specific task. Hence, Fréchet distance can be569

used as an approximate indicator of a multi-lingual570

encoder’s cross lingual capability.571

6 Comparison with Frozen Encoder572

Techniques573

Motivated by the performance improvement ob-574

served by using L2 distance regularization, we de-575

cided to experiment with techniques that go even576

further and freeze most of the encoder parame-577

ters during downstream fine-tuning, such as bitfit578

(Zaken et al., 2021), soft prompting (Lester et al.,579

2021) and adapters (Houlsby et al., 2019). We580

tested these techniques on XNLI and UDPOS. For581

our experiments, we implemented common adapter582

layers (Houlsby et al., 2019) for all languages as583

compared to MAD-X (Pfeiffer et al., 2020) which584

requires language specific adapter layers and is585

more suited for zero-shot performance when the586

languages are unseen by the encoder during pre-587

training.588

The performance of different fine-tuning tech-589

niques on English test set and overall zero-shot590

performance, averaged over three runs, is pro-591

vided in Table 6. For XNLI task, bitfit and soft-592

prompts based method resulted in sub-par overall593

zero-short performance as compared to vanilla and594

L2-distance based fine-tuning. Adapter based fine-595

tuning outperformed vanilla but not L2-distance596

regularization. For UDPOS, all three techniques597

under-performed when compared to vanilla and598

L2-distance based fine-tuning. All three fine-599

tuning techniques consistently achieved lower per-600

en (test set) zero-shot

Fine-tuning XNLI UDPOS XNLI UDPOS
(Acc.) (F1) (Acc.) (F1)

Vanilla 81.51 95.43 64.39 70.13

w/ L2 82.36 95.39 66.03 70.53

Frozen Encoder Techniques

w/ soft prompts 73.2 92.45 60.52 65.37

w/ bitfit 76.33 94.80 64.03 69.26

w/ adapter 80.65 95.20 64.96 68.37

Table 6: Performance on en test set and average zero-
shot cross-lingual performance using different frozen
encoder fine-tuning techniques.

formance on the English test set. This suggests that 601

freezing most of the encoder parameters can re- 602

sult in better zero-shot performance in some cases 603

compared to Vanilla. However, it performs slightly 604

worse on English test set, which is expected given 605

the extreme constraints. Hence, it seems like L2- 606

distance regularization provides the best of both 607

worlds. All the language specific zero-shot per- 608

formances for both XNLI and UDPOS and the 609

best-hyperparameters for soft-prompts, bitfit and 610

adapter are provided in Appendix G. 611

7 Conclusion 612

In this paper, we rigorously compared L2-distance 613

regularization and EWC during multilingual mod- 614

els’ fine-tuning and demonstrated that L2-distance 615

regularization outperforms EWC across multiple 616

tasks and languages in improving zero-shot cross- 617

lingual performance. We showed that Fisher in- 618

formation matrices can be used to approximately 619

indicate the cross-lingual capability of a multilin- 620

gual encoder before fine-tuning it for downstream 621

tasks. We also show that L2-distance regularization 622

outperforms techniques that tend to freeze most of 623

their encoder parameters during training, such as 624

bitfit, soft-prompting and adapters based methods. 625

Moreover, we demonstrated that the zero-shot 626

cross-lingual performance of multilingual models 627

is quite sensitive to the fine-tuning hyperparameters. 628

However, we showed that using L2-distance regu- 629

larization during fine-tuning not only improves the 630

zero-shot cross-lingual performance of the model, 631

but also makes it more robust to hyperparameter 632

choices. Based on the results of this paper, we 633

recommend the use of L2-distance regularization 634

during fine-tuning of multilingual models to obtain 635

the best and most robust performance. 636
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A Illustration of Fine-tuning using EWC743

NLI

en-NLI
data fr Testing

MLM

fr-wiki
corpus

Fisher
approximates

EWC

Regularization
during Fine-tuning

Zero-shot setting

Figure 2: Steps for fine-tuning mBERT with EWC loss. For example, in XNLI task the model is trained on English
NLI data with additional EWC loss with Fisher weights estimated from French Wikipedia corpus (see Eq. 2). The
model is then evaluated in zero-shot settings on French NLI test data.

B Per Language Zero-shot Results744

Language specific zero-shot performances using different fine-tuning setups for Wikiann, UDPOS, and745

PAWS-X are provided in Tables 7, 8, and 9, respectively.746

Training Tech. en fr bg de es sw hi vi

mBERT
Vanilla 84.30 79.10 76.87 78.21 73.68 69.43 63.78 71.34
w/ EWC 83.96 79.93 75.93 77.85 73.20 65.80 62.30 67.58
w/ L2 84.78 79.64 78.06 78.60 74.50 70.67 65.93 72.32

Training Tech. ja zh ar el ru ur tr Avg.

mBERT
Vanilla 27.29 41.65 39.82 70.96 65.00 34.84 72.10 61.72
w/ EWC 21.40 39.77 39.90 71.09 64.51 26.48 72.04 59.84
w/ L2 28.08 43.20 41.03 72.39 65.87 36.10 73.47 62.85

Table 7: Zero-shot cross-lingual Performance for Wikiann on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.

Fine-tuning en fr bg de es hi vi

mBERT vanilla 95.43 82.96 85.23 85.45 86.40 65.05 53.67
ewc 95.36 82.68 84.50 84.46 85.22 60.67 52.40
l2 95.39 85.39 85.95 86.03 87.41 63.38 54.45

Fine-tuning ja zh ar el ru ur tr Avg.

mBERT vanilla 45.47 61.63 52.92 81.23 85.78 56.87 68.98 70.13
ewc 43.07 60.28 52.55 79.08 83.46 46.90 66.10 67.80
l2 43.27 62.49 53.48 82.76 86.43 55.72 70.17 70.53

Table 8: Zero-shot cross-lingual Performance for UDPOS on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.

Fine-tuning en de es fr ja zh Avg.

mBERT
Vanilla 93.68 85.49 87.96 87.56 72.76 77.54 82.26
w/ EWC 93.02 80.99 84.07 85.87 69.35 73.96 78.85
w/ L2 94.00 86.24 87.77 87.37 73.56 77.79 82.55

Table 9: Zero-shot cross-lingual Performance for PAWS-X on the selected languages when the model is fine-tuned
on English training data using different fine-tuning setups.
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C Hyper-parameters for Sensitivity Experiments 747

Different fine-tuning hyper-parameter settings used for sensitivity analysis in Section 5.2 for all 4 tasks 748

are provided in Table 10. 749

Wikiann UDPOS

Fine-tuning LR Warmup steps Epochs Fine-tuning LR Warmup steps Epochs

Vanilla

3e-5 0 15

Vanilla

2e-5 0 10
2e-5 200 15 2e-5 200 15
3e-5 0 10 3e-5 0 10
4e-5 500 15 4e-5 500 15
4e-5 0 10 4e-5 0 10

w/ L2

3e-5 0 15

w/ L2

2e-5 0 15
2e-5 200 15 2e-5 200 15
3e-5 0 10 3e-5 0 10
4e-5 500 15 4e-5 500 15
4e-5 0 10 4e-5 0 10

XNLI PANX

Fine-tuning LR Warmup steps Epochs Fine-tuning LR Warmup steps Epochs

Vanilla

5e-5 3600 3

Vanilla

2e-5 0 5
4e-5 5000 3 2e-5 200 8
2e-5 5000 4 3e-5 0 5
7e-5 1500 3 4e-5 500 8
5e-5 0 3 4e-5 0 5

w/ L2

5e-5 4000 3

w/ L2

2e-5 0 5
4e-5 5000 3 2e-5 200 8
2e-5 5000 4 3e-5 0 5
7e-5 1500 3 4e-5 500 8
5e-5 0 3 4e-5 0 5

Table 10: Different fine-tuning hyper-parameter settings for Wikiann, UDPOS, XNLI and PANX use for sensitivity
analysis.

D Per Language Sensitivity Results 750

Language specific sensitivity experiments comparing vanilla fine-tuning to fine-tuning with L2-distance 751

regularization for Wikiann, UDPOS, and PAWSX are provided in Tables 11, 12, and 13, respectively. 752

E Extreme Hyperparameter Sensitivity Results 753

We also experimented with an extreme hyperparameter setting where we set the learning rate to 1e-4 754

for all four tasks during fine-tuning. This extreme hyperparameter setting was selected to be quite 755

different from the best set of hyperparameters. The models fine-tuned with L2-distance regularization 756

significantly outperformed the vanilla fine-tuned models. This further demonstrates that fine-tuning with 757

L2-distance regularization is more stable and helps the model to learn the downstream task even in extreme 758

hyperparameter settings. 759

F EWC Variants 760

We evaluated two more ways of applying EWC regularization during fine-tuning: (1) Applying multiple 761

EWC penalties along with the task loss, and (2) applying the EWC penalty using the Fisher estimates from 762

a mixed corpus of source and target language. For the first approach, we considered fr and en penalties 763

together which did not improve the zero-shot performance on French test set compared to using just fr 764
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ar he vi id jv ms

mBERT Vanilla 40.2± 1.92 55.04± 1.18 70.9± 1.12 63.2± 5.85 62.4± 5.35 71.58± 1.14
w/ L2 42.33± 1.96 56.42± 0.25 72.19± 0.46 61.63± 3.13 65.75± 1.55 69.98± 1.27

tl eu ml ta te af

mBERT Vanilla 75.7± 0.56 62.85± 2.18 48.41± 2.43 52.16± 2.46 46.32± 2.02 76.05± 0.97
w/ L2 74.53± 1.31 64.31± 3.52 54.47± 1.18 55.07± 0.21 48.82± 0.88 77.26± 0.18

nl en de el bn hi

mBERT Vanilla 81.7± 0.62 85.29± 0.2 77.75± 0.46 70.88± 1.63 70.14± 1.41 63.24± 1.43
w/ L2 82.35± 0.28 84.72± 0.13 78.28± 0.24 71.6± 0.82 71.6± 0.82 65.75± 0.74

mr ur fa fr it pt

mBERT Vanilla 54.84± 2.25 35.38± 4.27 41.17± 3.68 79.42± 0.81 80.94± 0.32 80.39± 0.8
w/ L2 57.96± 0.55 31.99± 1.76 40.27± 3.16 79.96± 0.4 81.64± 0.27 80.3± 0.46

es bg ru ja ka ko

mBERT Vanilla 74.71± 2.98 78.07± 0.87 65.38± 0.56 27.58± 0.94 63.82± 1.57 59.14± 1.3
w/ L2 74.6± 2.6 79± 0.46 66.32± 0.51 27.5± 0.6 66.24± 0.82 60.56± 0.94

th sw yo my zh kk

mBERT Vanilla 0.55± 0.25 67.86± 0.67 39.48± 6.47 49.23± 2.4 41.8± 1.6 47.82± 3.44
w/ L2 0.37± 0.11 68.38± 2.82 42.56± 1.49 50.6± 2.45 40.68± 0.76 46.13± 1.99

tr et fi hu Average

mBERT Vanilla 73.4± 1.34 75.57± 1.1 76.83± 0.74 76.67± 1.25 60.99± 1.26
w/ L2 74.33± 0.65 77.32± 0.52 77.64± 0.16 76.28± 0.83 61.87± 0.51

Table 11: Average Zero-shot performance and its standard deviation on each language for Wikiann over five different
hyperparameter settings.

af ar bg de el en

mBERT Vanilla 85.27± 0.15 45.93± 0.45 84.33± 0.27 85.49± 0.35 79.43± 0.28 95.58± 0.06
w/ L2 87.05± 0.34 46.26± 0.3 86.15± 0.24 86.31± 0.35 82.36± 0.73 95.4± 0.02

es et eu fa fi fr

mBERT Vanilla 86.37± 0.25 80.13± 0.63 59.77± 0.39 64.49± 0.33 76.67± 0.54 84.63± 0.85
w/ L2 88.01± 0.15 82.31± 0.12 61.8± 0.7 67.49± 0.35 78.5± 0.24 86.53± 0.32

he hi hu id it ja

mBERT Vanilla 58.77± 0.81 63.59± 1.61 76.7± 0.33 80.01± 0.33 87.37± 0.76 45.46± 1.14
w/ L2 59.77± 0.43 60.72± 0.62 77.92± 0.28 80.54± 0.33 88.96± 0.33 45.93± 1.01

ko mr nl pt ru ta

mBERT Vanilla 48.39± 0.36 66.31± 1.32 89.28± 0.25 87.37± 0.42 85.4± 0.11 64.03± 0.67
w/ L2 49.26± 0.12 68.47± 0.29 89.88± 0.11 88.51± 0.38 86.71± 0.49 64.68± 0.51

te tr ur vi zh Average

mBERT Vanilla 77.67± 1.42 67.82± 0.88 55.05± 1.36 51.8± 0.48 57.68± 0.34 71.26± 0.27
w/ L2 80.53± 0.76 69.36± 0.1 54.33± 0.96 52.75± 0.1 59.57± 0.43 72.52± 0.11

Table 12: Average Zero-shot performance and its standard deviation on each language for UDPOS over five different
hyperparameter settings.
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en de es fr ja

mBERT Vanilla 94.15± 0.59 86.1± 1.06 88.33± 1.04 87.73± 0.81 74.28± 2.41
w/ L2 94.25± 0.19 86.38± 0.62 88.65± 0.7 87.82± 0.97 74.31± 1.82

zh Avg.

mBERT Vanilla 78.14± 1.97 82.92± 1.42
w/ L2 78.39± 1 83.11± 0.86

Table 13: Average Zero-shot performance and its standard deviation on each language for PAWSX over five different
hyperparameter settings.

XNLI WIkiann UDPOS PAWSX

Cross-lingual zero shot performance

mBERT
Vanilla 33.33 44.36 59.56 55.21
w/ L2 43.78 60.05 70.8 78.92

Table 14: Average zero-shot performance on each task when the model is fine-tuned using extremely different
hyperparameters compared to the best hyperparameter setting.

penalty during EWC fine-tuning. For the second approach, we mixed English and French Wikipedia 765

data and estimated the Fisher matrix using the mixed corpus. This approach also did not perform better 766

than using EWC with just fr Fisher estimates. The results using both of these approaches are provided in 767

Table 15. 768

Model Fine-tuning en fr

mBERT

Vanilla 81.51 72.43
w/ EWC (fr) 81.45 74.18
w/ EWC (fr+en) 82.25 73.65
w/ EWC (mix fr-en) 82.21 73.13
w/ L2 82.36 74.25

Table 15: Zero-shot cross-lingual performance for XNLI using vanilla fine-tuning, with L2-distance regularization,
and different EWC regularization variants.

G Other Frozen Encoder Techniques 769

The best hyper-parameters for all three techniques are provided in Table 16. The results for zero-shot 770

cross lingual performance for the XNLI task are provided in Table 17 and UDPOS in Table 18. 771

# Prompts LR Epochs Size Seeds

XNLI
soft prompts 20 0.01 3 - 42,10,20
bitfit 0.001 3 - 42,10,20
adapter 0.001 3 64 42,10,20

# Prompts LR Epochs Size Seeds

UDPOS
soft prompts 20 0.001 15 - 42,10,20
bitfit - 0.001 15 - 42,10,20
adapter - 0.001 15 64 42,10,20

Table 16: Best hyperparameters for bitfit, soft prompting and adapters for XNLI and UDPOS.
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en ar bg de el es fr

mBERT
soft prompts (Lester et al., 2021) 73.2 59.75 63.62 62.89 61 65.55 66.47
bitfit (Zaken et al., 2021) 76.33 63.13 66.28 68.07 63.98 71.58 69.87
adapter (Houlsby et al., 2019) 80.65 64.28 67.45 69.59 66.32 72.84 72.24

hi ru sw tr ur vi zh Avg.

mBERT
soft prompts (Lester et al., 2021) 56.18 62 48 59.31 54.76 64.3 62.97 60.52
bitfit (Zaken et al., 2021) 59.36 66 49.43 61.44 57.87 67.81 67.52 64.03
adapter (Houlsby et al., 2019) 58.84 67.24 49.74 61.39 57.9 68.83 67.87 64.96

Table 17: Zero-shot cross lingual performance for XNLI task on the selected languages when the model is fine-tuned
using soft prompting, bitfit technique and using adapters.

Fine-tuning en fr bg de es hi vi

soft prompts (Lester et al., 2021) 92.45 73.36 79.08 80.44 79.66 61.59 50.75

mBERT
bitfit (Zaken et al., 2021) 94.80 85.66 86.60 85.22 87.25 56.85 51.97
adapter (Houlsby et al., 2019) 95.20 80.40 84.04 84.60 84.15 64.02 50.05

Fine-tuning ja zh ar el ru ur tr Avg.

soft prompts (Lester et al., 2021) 49.74 57.68 56.31 72.93 79.46 49.51 59.25 65.37

mBERT
bitfit (Zaken et al., 2021) 43.10 62.58 53.95 84.26 87.39 48.52 67.06 69.26
adapter (Houlsby et al., 2019) 46.39 60.73 52.93 78.48 85.09 54.66 63.27 68.37

Table 18: Zero-shot cross lingual performance for UDPOS task on the selected languages when the model is
fine-tuned using soft prompting, bitfit technique and using adapters.

H Experimental Results using XLM-R Large772

We repeated the L2-distance regularization experiments with XLM-R Large since it provides the best773

zero-shot cross-lingual performance as reported by (Hu et al., 2020). These experiments were run on a774

single seed. The results for XNLI, Wikiann, UDPOS, and PAWS are provided in Tables 19, 20, 21, and 22,775

respectively. The results are consistent with our earlier findings indicating fine-tuning with L2-distance776

regularization performs better than the vanilla fine-tuning. For UDPOS, however, the average zero-shot777

performance for vanilla and L2-distance regularized fine-tuning are quite close to each other.778

en ar bg de el es fr

XLM-RLarge

(Hu et al., 2020) 88.70 77.20 83 82.5 80.8 83.7 82.2

Vanilla 86.21 73.77 80.56 78.08 77.52 80.86 80.06

w/ L2 88.34 78.20 83.01 82.18 81.78 84.13 83.05

hi ru sw tr ur vi zh Avg.

XLM-RLarge

(Hu et al., 2020) 75.6 79.1 71.2 78.00 71.7 79.30 78.2 78.65

Vanilla 71.46 77.33 57.49 70.96 66.71 76.85 76.73 74.49

w/ L2 75.87 79.56 71.26 78.6 71.78 79.16 78.84 79.03

Table 19: Zero-shot cross-lingual performance on XNLI using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020)
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en fr bg de es sw hi vi

XLM-RLarge

(Hu et al., 2020) 84.70 80.5 81.4 78.8 79.60 70.5 73.00 79.4

Vanilla 84.55 79.88 81.91 79.3 70.85 71.06 71.1 78.97

w/ L2 84.09 80.36 84.97 79.46 71.01 71.21 72.06 76.86

ja zh ar el ru ur tr Avg.

XLM-RLarge

(Hu et al., 2020) 23.20 33.10 53.00 79.5 69.1 56.4 76.1 66.69

Vanilla 20.23 28.93 49.47 78.79 70.39 53.97 77.98 65.2

w/ L2 20.63 28.18 57.69 80.39 73.65 69.18 80.29 67.57

Table 20: Zero-shot cross-lingual performance on Wikiann using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020).

en fr bg de es hi vi

XLM-RLarge

(Hu et al., 2020) 96.10 45.1 88.1 88.5 88.3 76.40 56.8

Vanilla 96.16 45.18 88.64 88.59 89.29 74.00 57.25

w/ L2 96.13 45.43 88.2 88.58 89.65 73.9 56.28

ja zh ar el ru ur tr Avg.

XLM-RLarge

(Hu et al., 2020) 15.9 25.7 67.50 86.3 89.5 70.30 76.3 67.28

Vanilla 36.54 46.64 67.14 86.62 89.74 65.43 75.85 70.07

w/ L2 31.13 38.62 67.01 86.96 89.99 70.00 76.74 69.42

Table 21: Zero-shot cross-lingual performance on UDPOS using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020)

en de es fr ja zh Avg.

XLM-RLarge

(Hu et al., 2020) 94.7 89.7 90.1 90.4 78.7 82.3 86.24

Vanilla 95.45 89.99 89.64 91.85 81.49 83.49 87.29

w/ L2 95.10 90.65 90.65 91.60 81.29 83.69 87.57

Table 22: Zero-shot cross-lingual performance on PAWSX using vanilla fine-tuning, w/ L2-distance regularization,
and as reported by (Hu et al., 2020).
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