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Abstract: We propose a decentralized learning framework for robots to trade,
price, and discover valuable machine learning (ML) training data. Today’s robotic
fleets, such as self-driving vehicles, can gather terabytes of rich video and LIDAR
data [1] in diverse, geo-distributed environments. Often, robots in one city or
home might observe training data that is commonplace for them but is actually
a valuable, out-of-distribution (OoD) dataset to train robust ML models at robots
elsewhere. However, simply sharing all this diverse data in cloud databases is
infeasible due to limits on privacy and network bandwidth. Inspired by decentral-
ized file-sharing protocols like BitTorrent, we propose a novel system where each
robot is provisioned with a learnable privacy filter and sharing model. Importantly,
this sharing model attempts to predict and prioritize which sensory percepts are of
high value to other robotic peers using a decentralized voting and feedback mech-
anism. Our scheme naturally raises timely questions on data privacy and valuation
as companies start to deploy robots in our homes, hospitals, and roads.
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1 Introduction

Imagine a fleet of robots that are deployed at diverse hospitals and nursing homes across the world.
These robots should seamlessly interact with nurses and patients that speak different languages, have
diverse preferences on human-robot interaction, and rapidly adapt to new hospital layouts and visual
appearances of medical equipment. To do so, these robots can continually re-train their perception,
natural language processing, and control policies using hundreds of gigabytes of rich video, audio,
and LIDAR sensory streams they observe locally. Moreover, these robots should ideally share their
rare, valuable training data with their peers in diverse locations in order to train more robust ML
models. However, how should we incentivize heterogeneous robots (often owned by different com-
panies) to share valuable training data while protecting human privacy and proprietary ML models?

Designing private, efficient data-sharing protocols is of prime importance today. Already, the Toyota
Research Institute is advocating large-scale fleet learning in homes [2], Diligent Robotics is deploy-
ing robot swarms to assist nurses with fighting COVID-19 [3], and platforms like SafetyPool allow
multiple self-driving car companies to crowd-source hazardous driving scenarios [4].

Despite this potential, our key observation is that today’s mechanisms for data sharing are largely
insufficient since they are centralized and data-agnostic. In other words, we typically share all data
with trusted cloud servers regardless of whether it is useful to other robots, a redundant concept
in our training dataset, or private. As such, today’s mechanisms can lead to privacy concerns and
waste valuable network bandwidth, cloud storage, and cloud training resources. In this paper, we
argue that individual robots should have sovereignty over their data and sharing should be selective,
private, and decentralized.
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Figure 1: We collected dashcam videos from 3 diverse rural and metropolitan areas thousands of
miles apart. For example, a car in a rural snowy area should have a specialized vision model for
snowy terrain. While it might find a new image of snow commonplace, that very same image could
be OoD and valuable to a peer thousands of miles away in a sunny environment to build a more
robust model. As such, our system would proactively share this data using a global utility (GU)
model (steps 1-3) and receive feedback from networked peers (steps 4-7).

The State-of-the-Art: Historically, robotic fleet learning has been addressed by related work in
cloud robotics [5, 6, 7, 8], active learning [9, 10, 11, 12], and crowd-sourced platforms such as
RoboTurk [13] and RoboEarth [14]. However, these mechanisms rely on trusted cloud servers to
aggregate data and do not address privacy or how to fairly assess the contribution of each training
example to overall model accuracy. Moreover, today’s approaches to privacy in ML, such as differ-
ential privacy (DP) [15, 16] and federated learning (FL) [17, 18], do not readily apply to robots that
operate amongst humans. For example, DP approaches would add excessive noise to anonymize
high-dimensional robotic visual data, which severely limits its utility for training ML models. Like-
wise, FL allows mobile devices to train ML models on local private data and simply share gradient
updates with a central cloud server. However, FL does not apply when a robot sees a novel image it
cannot classify locally and must share this image with a peer to receive a ground-truth label. Finally,
our proposal is inspired by classical work on consensus in multi-agent systems [19], which pre-dates
our focus on trading data for ML models.

Contributions: Given the shortcomings of today’s methods, our principal contribution is to propose
a communication-efficient, private, and proactive data sharing system. By proactive, we mean that
data sharing can potentially allow robots to improve their models on otherwise unseen data and thus
avoid failure before they actually encounter such scenarios. We now describe our proposal in detail.

2 System Architecture and Preliminary Results

Figure 1 depicts our modular system architecture. Each robot in a peer-to-peer network acts both
as a sender as well as a receiver of training data. For clarity, Figure 1 illustrates a simple sharing
scenario where a sender robot (left) shares presumably valuable data to receivers (right), which
in turn provide feedback to the sender to adjust the sharing process. Crucially, to limit network
bandwidth, training, and data annotation costs, each robot is limited to share only 1-5% of local data
with its peers. Data sharing and model re-training occur in periodic rounds, such as the end of a
day. While our architecture is broadly applicable to many ML models, we consider a scenario in the
self-driving domain. Here, a robot in a rural snowy area shares data with a vehicle in a sunny city to
build a robust ML model across multiple weather conditions. We now describe the information flow
in one round of data sharing by referencing the numbered blocks in Figure 1.

1. Local ML Model. Each robot starts with a generic ML model pre-trained on anonymized public
datasets like ImageNet. However, each robot can specialize this model based on its own local data
with assistance of trusted, local data annotators. In the context of robotic perception, the specialized
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vision model maps a new image observation X into a predicted class or object detection ŷ and
embedding vector e.

2. Global Utility (GU) Sharing Model. The crux of our approach is to provision each robot
with a global utility (GU) model which learns the value (e.g. utility) of a new image X to other
robotic peers. One example of a utility score is the proportion of other robots in a fleet that consider
image X to be out-of-distribution with respect to their current vision model, which could indicate
a valuable training scenario. To estimate the utility of a specific image X , the GU model naturally
takes in the vision model’s embedding e and predictions ŷ. Crucially, the GU model has learnable
parameters θshare that allow it to predict a utility score û per image. While the utility might be
uniform initially, our next steps show how to estimate the true utility for each image using prioritized
network feedback.

3-4. Cache, Privacy Filter, and Network Transmission. After images are ranked by their utility,
the next step is to prioritize them for sharing while respecting bandwidth limits. As such, each robot
only caches the top 1 − 10% of images with the highest utilities û in its local storage. Then, these
cached images can be blurred or altogether dropped to restrict sensitive human faces or other private
features. Finally, each sender can now relay the cached and anonymized images to other peers.

5-6. Network Feedback Based on Out-of-Distribution Detection. The next key step is to have
other robots evaluate the utility of shared data in order to eventually tune the GU model. Each shared
image X has a default true utility counter u, initialized to zero, to indicate how many robots found
image X interesting. Each robot then uses an OoD detector [20, 21, 22, 23, 24, 25] to determine
if shared image X displays novel features far from its local training distribution. If so, this robot
increments the utility u before relaying image X and the current utility to new robots. Finally, the
utility u is normalized to represent the fraction of peers that found the data interesting. This feedback
is then relayed back to the sender robot to re-train its GU model.

7. Closing the Loop: Re-training Sharing and Local ML Models. Crucially, each sender robot
has now been relayed a dataset of its original shared images X , their embeddings and predictions
e, ŷ, estimated utility û, and true utility u from peers. As such, we can re-train the GU model to
update parameters θ′share to improve the sharing process. Moreover, each robot can re-train its vision
model with new data it received with possible help from trusted local data annotators. Ideally, this
process will converge when each local vision model is more robust to previously OoD data.

Preliminary Evaluation We now describe a simple toy illustrative example of data sharing. We
consider a scenario with three networked ‘robots’, each of which has a pre-trained vision model to
detect handwritten digits from the benchmark MNIST dataset. Crucially, to simulate the presence of
rare, valuable training data, one robot also observes data from the KMNIST [26] variant of MNIST
while another observes data from FashionMNIST [27], which both exhibit distinct visual properties
from standard MNIST. Our goal is to train a GU model that learns to share KMNIST and Fash-
ionMNIST data between appropriate robots so that all robots have access to all classes of training
data. Our evaluation metric is the final accuracy of each robot’s vision model on all three variants of
MNIST to demonstrate robust performance on data each robot was not initially exposed to.

We implemented the data sharing protocol illustrated in Figure 1. First, each robot passes a new
image into its local vision model, whose embedding and predictions are passed to the GU sharing
model. Since the GU sharing model is initially un-trained, it first randomly caches images to share
with other peers. Importantly, each robot can only share 10% of its training data per round due to
network bandwidth limits. As data is shared, each peer provides a utility score u based on whether
a shared image was valuable (e.g. OoD). Concretely, this OoD detector uses recently-developed
Bayesian uncertainty estimates to provide a scalar OoD signal to indicate if a new image is from the
local vision model’s training distribution. After the utility score for shared images is relayed back
to the sender, the sender re-trains its GU sharing model to prioritize relevant content.

Results: Figure 2 illustrates strong experimental results for our toy example of data sharing. We
compare our protocol based on a GU sharing model (green) with upper and lower bounds of oracle
and random sampling in blue and red respectively. In particular, the un-realizable oracle approach
has a perfect GU model that shares OoD data with perfect accuracy. In stark contrast, the random
policy is a lower-bound that wastes precious network bandwidth by randomly sharing images as
opposed to prioritizing them based on network feedback. Our key evaluation metric is the overall
multi-class accuracy (y-axis) across data sharing and training rounds on the x-axis.
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Figure 2: Toy Experiment Results: Initially, a robot’s local vision model does not have access
to KMNIST and FashionMNIST data and hence performs poorly on these OoD concepts in round
0. Clearly, our learned sharing model (green) allows a robot to quickly accrue valuable training
data from its peers, which allows the local vision model to efficiently be re-trained to match the
upper-bound accuracy of an oracle data collection strategy (blue).

Clearly, our decentralized sharing protocol (green) significantly improves each robot’s vision model
by sharing previously OoD training data with peers that need it most. Moreover, our scheme is
efficient and adaptive – the GU model learns to correctly cache 88.18 % of rare KMNIST data and
88.96% of rare FashionMNIST data, which is significantly higher than random sharing.

3 Future Research Questions on Data Valuation and Privacy

We now describe open research questions that cross-cut ML, privacy research, and cloud robotics.

Game-Theoretic Approaches to Data Valuation In order to incentivize data sharing, each robot
should be paid a fair price for the data it shares. To do so, we can adapt the recently-proposed Data
Shapley [28] metric, which is inspired by cooperative game theory. Specifically, this metric consid-
ers each training example to be a player in a cooperative game, which is to collectively train a large
ML model. The payout or value to each player (i.e., data point) is calculated based on the marginal
accuracy gain when that specific data example is used for training as opposed to when it is omit-
ted, averaged over all possible subsets of training data where a specific example can appear. While
promising, today’s Data Shapley metric only scales to small, centralized datasets and a homogenous
ML model. However, our network feedback scheme is a natural approach to value data based on
the collective score assigned by peer robots’ OoD detectors. Future research can reconcile our data
valuation metric and extend Data Shapley to decentralized, heterogenous ML models.

Privacy-Utility Trade-offs in Robotics Today’s federated learning [18] approaches make a strong
assumption that ground-truth labels are present on mobile clients, which allows them to train models
locally on private data and simply share anonymized gradient updates. However, such a restrictive
assumption is infeasible in robotics - if a robot sees a novel scene it cannot classify locally, it must
necessarily share the raw training data to ask for a label. Future research should investigate how to
blur sensitive information before sharing, such as in Google Street View [29], but for a broad set of
private classes. Moreover, we believe (but must certify) that our system guards against malicious
actors that falsify their utility for data, since this will cause them to see less relevant data over time.

Formal Convergence Analysis Future work should establish whether our data sharing protocol
converges to a steady state where rare training data is evenly distributed across robotic peers. Our
preliminary theoretical analysis estimates the number of rare images cached by each robot based on
the precision and recall of the GU model and OoD detectors for each round of data sharing.

A Data-Addressable Network? Inspired by internet protocols, we propose a Data Discovery Ser-
vice where robots can quickly identify new peers joining the network that are likely to have valuable
training data for a task of interest. Likewise, future research should explore whether OoD detectors
and our voting scheme can scalably run on commodity networks and resource-constrained robots.

Overall, robots are poised to leave the confines of the factory floor to enter our homes, hospitals,
and airspace. Given the diversity of data owners and interactions with humans, it is increasingly
important to consider privacy and data valuation as key desiderata in robotic fleet learning.
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