

000 001 002 003 004 005 TIPS: A TEXT-IMAGE PAIRS SYNTHESIS FRAME- 006 WORK FOR ROBUST TEXT-BASED PERSON RETRIEVAL 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Text-based Person Retrieval (TPR) faces critical challenges in practical applications, including zero-shot adaptation, few-shot adaptation, and robustness issues. To address these challenges, we propose a Text-Image Pairs Synthesis (TIPS) framework, which is capable of generating high-fidelity and diverse pedestrian text-image pairs in various real-world scenarios. Firstly, two efficient diffusion-model fine-tuning strategies are proposed to develop a Seed Person Image Generator (SPG) and an Identity Preservation Generator (IDPG), thus generating person image sets that preserve the same identity. Secondly, a general TIPS approach utilizing LLM-driven text prompt synthesis is constructed to produce person images in conjunction with SPG and IDPG. Meanwhile, a Multi-modal Large Language Model (MLLM) is employed to filter images to ensure data quality and generate diverse captions. Furthermore, a Test-Time Augmentation (TTA) strategy is introduced, which combines textual and visual features via dual-encoder inference to consistently improve performance without architectural modifications. Extensive experiments conducted on TPR datasets demonstrate consistent performance improvements of three representative TPR methods across zero-shot, few-shot, and generalization settings.

1 INTRODUCTION

Text-based Person Retrieval (TPR) Li et al. (2017) aims to precisely locate individuals in image galleries using natural language descriptions and addresses identity recognition challenges in vision-limited scenarios through cross-modal alignment. Although feature learning frameworks Jiang & Ye (2023); Qin et al. (2024); Bai et al. (2023) have advanced and improved retrieval accuracy on benchmark datasets Li et al. (2017); Ding et al. (2021); Zhu et al. (2021), two critical challenges remain unresolved: rapid adaptation to new domains and enhancing robustness in practical applications.

As shown in Figure 1a, some existing methods Yang et al. (2023); Shao et al. (2023); Tan et al. (2024) have attempted data-level solutions, but fundamental limitations persist. Unlike methods relying on labor-intensive manually labeled datasets, these methods focus on automatically synthesizing large-scale datasets to enhance retrieval adaptability in novel scenarios. However, these approaches usually [incorporate collected real person images into the final datasets](#), limiting their extensibility and scenario diversity. Meanwhile, methods that combine real texts with generative models Goodfellow et al. (2020); Rombach et al. (2022) often yield low-quality outputs that are inconsistent with target distributions. Recent studies based on Stable Diffusion Rombach et al. (2022) for dataset construction, such as MALS Yang et al. (2023), suffer from poor image quality and text-image alignment. Although newer models like Flux Labs (2024) enhance generative fidelity, their emphasis on high-definition and aesthetic outputs still fails to align with the multi-resolution distributions commonly observed in real-world scenarios (see Figure 1b). Additionally, these methods do not consider scenarios with limited labeled data in the target domain, thus resulting in fixed and independent data expansion processes.

To address these challenges, we first focus on the visual style of generated images and propose a parameter-efficient diffusion-model fine-tuning approach for generating clarity-controllable person images. Traditional few-shot multi-resolution fine-tuning often fails to achieve multi-scale generative capabilities. In comparison, our innovation lies in conditioning on image width and height parameters during fixed-resolution training, enabling dynamic control of image clarity at a fixed physical resolution during inference. Accordingly, we develop a Seed Person Image Generator (SPG),

Figure 1: Ten data groups with an MLLM identity-consistency score of 8. For each group, the left image shows the seed person image generated by SPG, and the right image shows the extended person image generated by IDPG.

as shown in Figure 1b, which accurately adjusts blur levels while maintaining batch-generation capability. Furthermore, when limited target-domain annotations are available, SPG can utilize them to generate person images that are better aligned with the target-domain distribution. However, person images generated multiple times using the same prompt, similar to the pretrained Flux, may exhibit inconsistencies in appearance and identity. To preserve person identity, we design an Identity Preservation Generator (IDPG), which leverages efficient LoRA-based fine-tuning to enhance the contextual identity-preserving capability. Consequently, IDPG expands multiple images of the same identity by taking reference images and textual variations as inputs. By combining SPG and IDPG, we achieve for the first time in the field the ability to generate identity-consistent image sets solely from textual descriptions. As shown in Figure 1b, this method significantly surpasses existing methods, and can be comparable to real images in terms of fidelity and diversity.

Secondly, we construct a Text-Image Pairs Synthesis (TIPS) framework that integrates Large Language Model (LLM) Yang et al. (2025) with SPG and IDPG to automatically synthesize diverse person images. Moreover, a Multimodal Large Language Model (MLLM) Bai et al. (2025) is further employed to score generated images across multiple dimensions, ensuring high-quality output. Subsequently, MLLM will generate captions for the filtered images and create the image-text pairs needed for training. Finally, we introduce a test-time augmentation (TTA) strategy to improve retrieval accuracy by fusing text queries and synthesized visual features through dual-encoder inference without altering the TPR model architecture.

Comprehensive experiments conducted on CUHK-PEDES (CUHK) Li et al. (2017), ICFG-PEDES (ICFG) Ding et al. (2021), and RSTPReid (RSTP) Zhu et al. (2021) datasets across zero-shot, few-shot, and generalization settings consistently demonstrate performance improvements for three representative methods Jiang & Ye (2023); Qin et al. (2024); Bai et al. (2023). In low-data scenarios (as low as 1% labeled data), the TIPS framework achieves over 85% average performance gains. Moreover, in zero-shot scenarios, it also maintains significant advantages compared to large-scale synthetic datasets based on real images. Our main contributions are summarized as follows:

- Two generators, namely SPG and IDPG, are proposed based on novel parameter-efficient fine-tuning methods, achieving the first text-only generation of identity-consistent image sets in the field of TPR.
- By integrating LLM, MLLM, SPG, and IDPG, a novel TIPS framework is constructed to automate the generation of fully synthetic TPR datasets, where high-fidelity and diverse person images are aligned with real-world scenarios.

108

- A universally applicable TTA strategy is introduced to enhance retrieval accuracy without

109 requiring structural modifications.

110

- Extensive experiments on three benchmark datasets demonstrate consistent and compre-

111 hensive performance improvements.

112

113

2 RELATED WORK

114

115

2.1 TEXT-BASED PERSON RETRIEVAL

116

117 Recent advances leverage vision-language pretrained (VLP) models Radford et al. (2021); Li et al.

118 (2021; 2022) through two main strategies: cross-modal attention interaction Bai et al. (2023); Yang

119 et al. (2023); Ergasti et al. (2024) and cross-modal-free approaches Jiang & Ye (2023); Liu et al.

120 (2025). Interaction methods improve modality alignment by computing feature attention scores

121 during inference, but increase computational complexity. Additionally, some studies have aimed at

122 improving TPR methods through synthetic data. Specifically, LUPerson-T Shao et al. (2023) and

123 LUPerson-M Tan et al. (2024) focus on generating synthetic textual descriptions based on the large-

124 scale person dataset LUPerson Fu et al. (2021) to construct pre-training datasets. In contrast, MALS

125 Yang et al. (2023) attempts to directly generate person images and texts for pre-training dataset

126 construction. However, it still requires original annotation texts to guide the diffusion models, and

127 more crucially, the generated person images are of low quality and identity information is lost. All

128 these methods rely on [incorporating original real data into the final pre-training datasets](#), leading to

129 privacy-sensitive and insufficient diversity issues. Moreover, they focus primarily on pre-training

130 scenarios, instead, we propose a fully synthetic TPR data synthesis paradigm aiming to enhance the

131 practical utility of TPR methods in various scenarios.

132

133

2.2 DIFFUSION MODELS

134

135 Diffusion models Ho et al. (2020) have become the dominant framework for image generation, ex-

136 ceelling in tasks such as text-to-image synthesis Saharia et al. (2022b); Podell et al. (2023); Ramesh

137 et al. (2022), image-to-image translation Saharia et al. (2022a); Huang et al. (2025); Xie et al. (2023),

138 and controllable generation Zhang et al. (2023); Ye et al. (2023); Qin et al. (2023). The introduction

139 of Latent Diffusion Models (LDM) Rombach et al. (2022) has significantly improved text-image

140 alignment and reduced computational costs through latent space operations. This advancement

141 enables parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA) Hu et al.

142 (2022) and Adapter Houlsby et al. (2019), to be applied effectively for domain adaptation while pre-

143 serving generation quality. Recently, combining diffusion models with transformer (DiT) Peebles &

144 Xie (2023a) architectures has further enhanced scalability, leading to advanced models such as Sta-

145 ble Diffusion 3 Esser et al. (2024), PixArt Chen et al. (2024), and Flux Labs (2024). These models

146 utilize flow matching Lipman et al. (2022) objectives to achieve state-of-the-art (SOTA) generation

147 quality and exhibit strong multi-subgraph Hui et al. (2025) and contextual generation capabilities

148 Tan et al. (2025). Inspired by these advancements, we first propose the SPG for high-fidelity person

149 image generation, which efficiently embeds the LoRA into Flux, and then the IDPG is constructed

150 to achieve identity preservation.

151

152

3 METHOD

153

154 As shown in Figure 2, the fully automated synthesis of TPR data consists of three interrelated com-

155 ponents: LLM-driven text generation, person image generation, and image quality filtering with

156 caption generation. We first describe the design and training of the person image generators SPG

157 and IDPG in Section 3.1. Section 3.2 introduces the TIPS data synthesis framework. Additionally,

158 an optional TTA module (see Section 3.3) is introduced during inference to integrate textual and

159 visual cues to enhance the retrieval accuracy.

160

161

3.1 SPG AND IDPG

162

Parametric Resolution Control via SPG. Low-resolution data is prevalent in TPR, yet traditional

163 fine-tuning methods struggle to generate domain-adaptive person images. [Standard bucket-based](#)

Figure 2: Overview of the TIPS framework pipeline with five stages. **Stage 0:** preparing data for different scenarios to train person-image generators, including image-text pairs for SPG and triplets for IDPG. **Stage 1:** separately training SPG and IDPG. **Stage 2:** generating diversified seed-person prompts via LLM. **Stage 3:** synthesizing seed-person images using SPG, then expanding these images using IDPG to create identity-consistent image sets. **Stage 4:** obtaining high-quality data through MLLM-based image filtering and caption generation.

training Peebles & Xie (2023b); Labs (2024) faces two limitations: firstly, it requires numerous samples for each resolution bucket (impractical for few-shot TPR), and secondly, it is constrained by the 32-pixel grid alignment in mainstream DiT-based models Peebles & Xie (2023a) such as standard Flux. To overcome these issues, our proposed SPG **employs a parametric resolution control strategy**. It is trained at a fixed physical resolution, conditioned on **resolution parameters** (w_r, h_r) via the text encoder, enabling **continuous resolution control** during inference without architectural constraints.

Identity Preservation via IDPG. Although SPG can generate person images that are consistent with the target-domain distribution, due to the stochastic nature of diffusion models, different initial noises may produce images with differing identities even when the same prompt is used. To achieve identity-preserving person image generation, inspired by dual-image generative models Hui et al. (2025); Tan et al. (2025), we design the IDPG, which concatenates reference person image features with noisy target person images at the latent level, effectively introducing image conditions without modifying the model structure. Guided by difference prompts, the model can predict the target person images, thus can achieve text-based expansion of images with consistent identities once a reference image is given.

To adapt to different application scenarios, we construct different training data. Specifically, without any labeled data in the target domain, based on a small set of collected real-person images, we first utilize an MLLM to generate captions for training the SPG, and also generate differential captions for pairs of images of the same identity to train the IDPG. Secondly, when labeled data from the target domain is available, the existing image-text pairs can directly train the SPG to generate images more aligned with the target domain distribution.

Preliminaries. Both SPG and IDPG are constructed upon the Flux architecture, a Diffusion Transformer (DiT) model. In the standard formulation, the model takes a noisy target latent Z_{tgt} (derived from the input image via VAE) and a condition embedding as inputs. The core mechanism involves cross-attention layers where the latent features interact with the conditional embeddings. Specifi-

216 cally, the Query (Q), Key (K), and Value (V) are projected as follows:
 217

$$218 \quad Q = \mathbf{W}_Q \cdot \phi(Z), \quad K = \mathbf{W}_K \cdot \tau(P), \quad V = \mathbf{W}_V \cdot \tau(P) \quad (1)$$

219 where $\mathbf{W}_{\{Q, K, V\}}$ are learnable projection matrices, $\phi(\cdot)$ denotes the patchification of image latents,
 220 and $\tau(\cdot)$ represents the pre-trained text encoder. P denotes the input prompt tokens. To enhance
 221 robustness and controllability without sacrificing pre-trained capabilities, we modify the inputs for
 222 SPG and IDPG as detailed below.

223 **Seed Person Image Generator.** Standard fine-tuning at fixed resolutions limits the diversity of generated aspect ratios. To address this, SPG conditions the generation on both textual descriptions and explicit resolution parameters (w_r, h_r). Crucially, rather than initializing a new encoder, we reuse the pre-trained text encoder $\tau(\cdot)$ to process these resolution constraints. We formulate the resolution parameters as textual tokens P_{size} (e.g., strings representing width and height) and concatenate them with the content prompt P_{txt} . As shown in Eq. 2, the composite condition C_{spg} is derived as:
 224

$$225 \quad C_{\text{spg}} = [\tau(P_{\text{size}}); \tau(P_{\text{txt}})] \quad (2)$$

226 where $[\cdot; \cdot]$ denotes concatenation along the sequence dimension. By feeding C_{spg} into the Key
 227 and Value projections in Eq. 1, SPG effectively leverages the model’s pre-trained semantic space
 228 to dynamically control the clarity and aspect ratio of the generated person images (Z_{tgt}), ensuring
 229 high-fidelity outputs even when the model acts on fixed-size tensors.

230 **Identity Preservation Generator.** To ensure identity consistency across generated samples, IDPG
 231 requires a reference signal in addition to the text prompt. We adopt a dual-latent strategy that modi-
 232 fies the query input Z .
 233

234 Given a reference person image I_{ref} , we encode it into a reference latent Z_{ref} using the fixed VAE.
 235 Instead of altering the model architecture, we explicitly expand the visual context by concatenating
 236 the reference latent with the noisy target latent in the spatial dimension:
 237

$$238 \quad Z_{\text{idpg}} = [Z_{\text{ref}}; Z_{\text{tgt}}] \quad (3)$$

239 Consequently, the input to the attention mechanism in Eq. 1 becomes $Z = Z_{\text{idpg}}$. This allows the
 240 self-attention layers to directly attend to fine-grained identity features in Z_{ref} while denoising Z_{tgt} .
 241

242 **LoRA Fine-tuning.** To efficiently adapt to these distributions, we employ Low-Rank Adaptation
 243 (LoRA) Hu et al. (2022). We freeze the pre-trained weights \mathbf{W} and inject trainable low-rank matrices
 244 B and A . The forward pass is updated as $\mathbf{W}'x = (\mathbf{W} + \beta\gamma BA)x$, where β is a hyperparameter
 245 controlling the adaptation strength and γ is a learnable layer-specific scaling factor. For IDPG, the
 246 flow-matching objective Lipman et al. (2022) is calculated exclusively on the target person region
 247 (Z_{tgt}), ensuring the reference features act purely as stable conditions.
 248

249 After training, SPG generates person images of desired distributions and adjustable clarity by com-
 250 bining text prompts with specified resolution conditions (w_r, h_r). Then, these seed images from
 251 the SPG are fed into the IDPG together with differential prompts to generate additional images that
 252 preserve the same identity.
 253

254 3.2 THE TIPS FRAMEWORK

255 As previously discussed, high-quality TPR datasets are both scarce and essential, while existing
 256 synthetic methods fail to adequately meet practical requirements. To overcome these limitations,
 257 we propose an automated TIPS framework (illustrated in Figure 2; See Appendix A for details),
 258 structured into three stages: S1) diversified prompt generation driven by LLM, S2) high-quality
 259 person image synthesis, and S3) image quality filtering and caption generation.
 260

261 In S1, we focus on ensuring textual diversity and domain relevance. When target-domain data is
 262 absent, input instructions for the LLM randomly combine descriptive elements from predefined
 263 candidate lists and supplement these with three randomly selected examples from SPG’s training
 264 captions, ensuring both output stability and maximized diversity. In scenarios with limited target-
 265 domain data, we enhance domain consistency by extracting three sentences from available texts and
 266 recombining selected elements into stylistically coherent new sentences.
 267

268 In S2, we leverage the trained SPG and IDPG to synthesize person images based on generated
 269 prompts. Initially, SPG creates a seed person image, which, upon passing quality criteria, serves as

270 input to IDPG. IDPG then expands the seed image by generating additional images that maintain the
 271 identity across varied perspectives, contexts, and states. This two-step generation process addresses
 272 the critical issue of identity consistency and enables extensive diversity. **It is important to note that**
 273 **the diversity of the synthesized dataset is driven by the rich semantic variations in the generated**
 274 **prompts, rather than the small set of real images. Since LoRA fine-tuning preserves the pre-trained**
 275 **base model’s generalization capabilities, the generators can translate diverse textual descriptions into**
 276 **varied visual content while maintaining the learned surveillance style.**

277 The final stage (S3) addresses the necessity of maintaining high data quality and textual alignment.
 278 All generated images undergo rigorous quality evaluation via an MLLM. Specifically, seed images
 279 are assessed on their prompt-image alignment and overall naturalness and fidelity. Images not meet-
 280 ing standards are regenerated until they pass. IDPG-generated images are further evaluated for
 281 identity and outfit consistency with the seed image, as well as required attribute variation, ensuring
 282 high-quality, identity-consistent image sets. Subsequently, retained images receive diverse textual
 283 descriptions through the MLLM, utilizing a varied set of long and short sentence templates to enrich
 284 caption style and ensure output stability.

285 **3.3 TEST-TIME AUGMENTATION**

286 To comprehensively achieve the goal of robust TPR, it is essential to address challenges not only
 287 through data-driven enhancements at the training stage but also via optimization at the inference
 288 stage. Complementing the TIPS framework, we introduce a general-purpose TTA strategy that
 289 leverages the generative priors of SPG to bridge the cross-modal gap during testing. Specifically, the
 290 **SPG enables TTA by synthesizing candidate images from text queries.** Conventional TPR methods
 291 employ dual encoders trained with identity-aware contrastive loss Zhang & Lu (2018); Jiang & Ye
 292 (2023) to optimize cross-modal alignment and intra-modal consistency. As shown in Figure 3a,
 293 standard TPR inference processes query text t_q and gallery images $\mathbf{I} = (i_1, \dots, i_N)$ through dual
 294 encoders to extract text features f_t and image features $\mathbf{F}_i = (f_{i1}, \dots, f_{iN})$. Global representations
 295 f_t^g (text) and $\mathbf{F}_i^g = (f_{i1}^g, \dots, f_{iN}^g)$ (images) compute similarity scores:
 296

$$S_j = \frac{f_t^g \cdot f_{ij}^g}{\|f_t^g\| \|f_{ij}^g\|}, \quad j = 1, \dots, N. \quad (4)$$

300 To refine initial rankings, some
 301 methods Bai et al. (2023); Yang
 302 et al. (2023) apply transformer-based
 303 reranking to obtain top-K candidates.
 304 However, in these methods, the intra-
 305 modal consistency cannot be fully
 306 utilized during inference. To allevi-
 307 ate this issue, we design a feature fu-
 308 sion method with a TTA strategy. As
 309 shown in Figure 3b, our TTA exten-
 310 sion includes three phases: 1) Gen-
 311 erate preview image i_p from t_q using
 312 SPG; 2) Extract i_p ’s visual feature f_p^g
 313 and compute hybrid query:
 314

$$f_q^g = \alpha f_t^g + (1 - \alpha) f_p^g, \quad (5)$$

315 where α is a hyperparameter con-
 316 trolling the synthesized image’s re-
 317 trieval weight, with larger values re-
 318 ducing the contribution of i_p ; 3) Re-
 319 compute similarities using f_q^g , and
 320 optionally rerank to get updated top-
 321 K candidates. Therefore, our method
 322 enhances the intra-modal consistency
 323 by leveraging the dual encoders’ latent alignment from contrastive training without architectural
 324 changes. Through empirical calibration ($\alpha \in [0, 1]$), we balance cross-modal matching and visual
 325 consistency for attaining robust performance.

Figure 3: Inference pipelines (a) without and (b) with TTA.

324

4 EXPERIMENTS

325

326 4.1 EXPERIMENTAL SETTINGS

327 **Implementation Details.** We evaluate three practical settings for TPR: (i) zero-shot—no paired
 328 annotations in the target domain; (ii) few-shot—only a small set of labeled samples; and (iii) cross-
 329 domain generalization—training annotations come from a different domain.

330 For the zero-shot setting, where models are trained exclusively on synthesized data and directly evaluated
 331 on target benchmarks without accessing any domain-specific training samples, we uniformly
 332 select 100 IDs from five datasets (CUHK03 Li et al. (2014), CUHK02 Li & Wang (2013), Market-
 333 1501 Zheng et al. (2015), MSMT17 Wei et al. (2018), and VIPER Gray & Tao (2008)), ensuring
 334 that these IDs do not overlap with the image sources in the TPR artificial dataset. For each selected
 335 ID, three images are randomly chosen, totaling 300 images. Each image is captioned by the MLLM
 336 with two distinct captions, which are used to train the SPG. Additionally, image pairs from the same
 337 ID (but different images) are used to train the IDPG, utilizing their differential captions. In cases
 338 where annotated data is available, SPG training leverages the provided image-text pairs.

339 All experiments are performed on two H800 GPUs, using Qwen3-32B Yang et al. (2025) as the
 340 LLM and Qwen2.5VL-32B Bai et al. (2025) as the MLLM. Both the SPG and IDPG are based
 341 on FLUX.1-dev Labs (2024), with a LoRA rank set to $r=32$. The input images are resized to
 342 192×384 . During SPG training, 20% of the samples have width-height conditions randomly
 343 dropped to enhance robustness. Similarly, for IDPG training, 10% of the differential captions are
 344 randomly omitted to improve the model’s ability to generate identity-preserving images with diverse
 345 representations. Each experiment generates 40k independent seed prompts, each paired with reso-
 346 lution parameters learned by the SPG. The SPG generates one image of size 192×384 per seed
 347 prompt through 28 sampling steps. These images are then processed by the IDPG, which generates
 348 four additional images of the same identity using random difference prompts. All generated images
 349 undergo a filtering step by the MLLM, which checks for consistency between the seed and expanded
 350 images through binary classification. Other dimensions are scored on a 1–10 scale, with a minimum
 351 required score of 9. Images that do not meet these criteria are regenerated. Subsequently, the filtered
 352 images are paired with two captions generated by MLLM using randomly selected templates. In
 353 total, this process yields 40k IDs, 200k images, and 400k image-text pairs.

354 For evaluation, three representative TPR methods (IRRA Jiang & Ye (2023), RDE Qin
 355 et al. (2024), Rasa Bai et al. (2023)) are evaluated on CUHK, ICFG, and RSTP datasets,
 356 following their original config-
 357urations. Training in the
 358 few-shot scenario comprises
 359 two phases: 1) synthetic data
 360 training with original hy-
 361 perparameters, 2) fine-tuning
 362 with real data, with epochs
 363 and learning rates halved. In
 364 TTA, the value of α is set to
 365 0.6. (Further details are pro-
 366 vided in Appendix C.3.)

367 **Evaluation Metrics.** Retrieval performance is mea-
 368 sured by Rank-k (R@k) ac-
 369 curacy and mean average pre-
 370 cision (mAP), where R@k
 371 indicates the proportion of
 372 queries with correct matches
 373 in the top-k results, and mAP
 374 averages precision over all
 375 queries. Fréchet Inception
 376 Distance (FID) Heusel et al.
 377 (2017) assesses the distributional similarity between training and testing images.

378 Table 1: Zero-shot retrieval performance of different methods under
 379 various pre-training data configurations.

Method	Pre-training Data	Scale	CUHK		ICFG		RSTP	
			R@1	mAP	R@1	mAP	R@1	mAP
CLIP	–	–	12.65	11.15	6.67	2.51	13.45	10.31
IRRA	MALS	1.5M	19.21	18.72	7.88	3.49	22.50	16.94
	LUperson-T	400K	20.06	19.24	10.46	4.11	22.10	16.79
	1M	22.03	21.64	12.31	4.98	22.95	17.23	
	LUperson-M	400K	48.07	44.12	27.35	13.95	42.95	32.46
	4M	53.23	47.66	33.27	17.33	48.50	38.96	
	Ours	400K	52.89	47.81	33.16	17.15	48.65	39.04
RaSa	MALS	1.5M	21.66	21.02	9.72	3.95	26.20	20.39
	LUperson-T	400K	22.41	21.49	12.22	5.80	25.65	20.17
	1M	24.33	23.79	14.04	6.59	26.40	20.46	
	LUperson-M	400K	50.72	46.67	29.34	15.86	46.95	36.29
	4M	55.73	50.06	35.15	19.13	52.25	41.56	
	Ours	400K	55.44	49.89	35.07	19.27	52.50	41.61

378 4.2 QUANTITATIVE RESULTS
379

380

381 In this section, we comprehensively evaluate the proposed framework’s capability in addressing
382 realistic TPR applications through three simulated settings, and validate the effectiveness of the
383 proposed TTA.

384

385 **Zero-shot Scenario.** In the
386 zero-shot scenario, we select
387 IRRA (without reranking) and
388 RaSa (with reranking) as the
389 baseline models. By default,
390 no target-domain data is used in
391 this scenario. Each model is
392 trained using data expanded by
393 the corresponding TIPS frame-
394 work and then directly evaluated
395 on all three test sets. The per-
396 formance results are presented
397 in Table 1, where both methods
398 demonstrate consistent trends.
399 Compared with models such as
400 CLIP, which are not pretrained
401 on pedestrian data, our pre-
402 trained models exhibit signifi-
403 cant improvements. Addi-
404 tionally, to illustrate the high quality of data generated by our TIPS framework, we also compare it
405 against the synthetic pedestrian image dataset MALS Yang et al. (2023) and the real-image-based
406 textual synthetic datasets LUperson-T Shao et al. (2023) and LUperson-M Tan et al. (2024). Due to
407 the low quality of synthetic images and the lack of consideration for diverse resolutions and identity
408 characteristics, MALS yields the poorest results. For the datasets utilizing real images, LUperson-
409 T and LUperson-M, limited variation in images of the same identity sourced from the same video
410 significantly hampers their performance relative to our method at the same scale. Even when train-
411 ing with the complete dataset, our method achieves comparable performance to the best-performing
412 LUperson-M model, while using only 10% of the data volume.

413

414 **Few-shot Scenario.** We simulate scenarios with limited annotations by subsampling 1% of training
415 IDs from the full datasets to validate the effectiveness of the TIPS framework under extremely
416 limited samples. Each group of experiments utilizes identical subsampled data to ensure a fair
417 comparison. Table 2 summarizes comparative results using three methods across three datasets,
418 demonstrating that the expanded data
419 using the TIPS framework achieves
420 the best results in few-shot con-
421 ditions. Compared with base-
422 line models without pretraining, the
423 Rank-1 performance of IRRA, RDE,
424 and RaSa methods on the three
425 datasets improves on average by
426 90.51%, 101.07%, and 74.16%, re-
427 spectively, reaching practical usabil-
428 ity. Compared to other full-scale pre-
429 trained datasets, the TIPS framework
430 achieves the best performance using
431 the least data. The results indicate
432 that the proposed SPG can ensure that
433 the generated TPR data align well
434 with the current domain distribution,
435 thus obtaining the optimal performance. This aspect holds substantial practical value, as annotat-
436 ing just 1% of the data (e.g., 31 IDs for ICFG, 37 IDs for RSTP) is easily achievable in real-world
437 scenarios.380 Table 2: Few-shot retrieval performance of different methods un-
381 der various pre-training data configurations.

	Pre-training Data	CUHK		ICFG		RSTP	
		R@1	mAP	R@1	mAP	R@1	mAP
IRRA	–	34.44	32.57	19.73	10.20	30.70	24.65
	MALS	38.61	35.66	22.18	12.27	34.70	27.16
	LUperson-M	53.84	47.92	39.78	21.24	50.90	39.50
	Ours	55.73	49.72	45.94	24.75	54.30	42.00
RDE	–	34.73	32.89	19.12	10.61	30.40	23.41
	MALS	39.38	36.27	23.56	12.53	35.80	29.90
	LUperson-M	55.70	49.67	41.96	22.69	52.40	39.91
	Ours	58.90	52.62	47.15	25.77	56.85	41.45
RaSa	–	45.92	38.54	21.16	5.21	38.85	24.27
	MALS	47.43	42.44	24.19	12.94	41.20	32.98
	LUperson-M	57.50	51.02	42.97	22.19	56.05	44.41
	Ours	60.95	53.89	49.11	26.67	61.25	48.24

415 Additionally, to illustrate the high quality of data generated by our TIPS framework, we also compare it
416 against the synthetic pedestrian image dataset MALS Yang et al. (2023) and the real-image-based
417 textual synthetic datasets LUperson-T Shao et al. (2023) and LUperson-M Tan et al. (2024). Due to
418 the low quality of synthetic images and the lack of consideration for diverse resolutions and identity
419 characteristics, MALS yields the poorest results. For the datasets utilizing real images, LUperson-
420 T and LUperson-M, limited variation in images of the same identity sourced from the same video
421 significantly hampers their performance relative to our method at the same scale. Even when train-
422 ing with the complete dataset, our method achieves comparable performance to the best-performing
423 LUperson-M model, while using only 10% of the data volume.414 Table 3: Retrieval performance using different source and
415 target domain data before and after data expansion.

Training Data	Source	Target					
		CUHK		ICFG		RSTP	
		R@1	mAP	R@1	mAP	R@1	mAP
Raw	CUHK	73.42	65.97	42.42	21.77	53.30	39.64
	ICFG	33.46	31.56	63.45	38.04	45.30	36.83
	RSTP	32.80	30.29	32.30	20.54	60.40	48.11
Ours	CUHK	75.80	68.55	47.80	25.60	57.85	42.89
	ICFG	47.17	42.73	65.98	40.16	53.70	41.08
	RSTP	45.83	42.09	45.51	27.74	64.90	50.32

416 *Note: “Raw” indicates training on source dataset only; “Ours”
417 indicates training on source dataset + TIPS-expanded data.*418 This aspect holds substantial practical value, as annotat-
419 ing just 1% of the data (e.g., 31 IDs for ICFG, 37 IDs for RSTP) is easily achievable in real-world
420 scenarios.

432 **Generalization Scenario.** Generally speaking, diversified training data can enhance model robustness by improving feature learning and the ability to handle out-of-distribution samples. Moreover, 433 our framework indeed achieves controllable diversity through high-quality samples. For example, 434 using IRRA as the TPR method, and training with complete source-domain data, cross-domain 435 evaluation results (Table 3) demonstrate that our expanded data significantly improves the performance 436 of all experiments. The results also indicate that even with full data, expanded training can 437 significantly improve non-cross-domain performance, with an average Rank-1 increase of 3.14%. 438 Improvements are even greater for cross-domain performance, with an average Rank-1 increase of 439 9.71%. 440

441 **Effectiveness of TTA.** Under 442 the same few-shot settings, ex- 443 periments are conducted on 444 IRRA and RaSa to validate the 445 effectiveness of the TTA strat- 446 egy, and the results are shown 447 in Table 4. The results demon- 448 strate that TTA significantly im- 449 proves performance across vari- 450 ous settings without modifying 451 the model structure. Note that 452 TTA is an optional module, and 453 combining data expansion with 454 TTA can yield maximum im- 455 provements. Specifically, IRRA 456 achieves Rank-1 improvements of 457 23.49%, 28.44%, and 25.70% on CUHK, ICFG, and RSTP, re- 458 spectively, while RaSa improves by 17.09%, 29.68%, and 23.55%, respectively. TTA can be dis- 459 abled if maximal inference efficiency is desired. 460

4.3 QUALITATIVE RESULTS

461 Section 4.2 thoroughly discusses the substantial improvements achieved by the data ex- 462 panded through the TIPS framework. In fact, to a large extent, these enhancements 463 are attributed to the powerful person-image generation capabilities of the SPG and IDPG. 464 Notably, by LoRA-based efficient 465 tuning, our SPG and IDPG ob- 466 tain zero-shot generation capabili- 467 ties while effectively adapting to 468 pedestrian image styles. As illus- 469 trated in Figure 4, by utilizing dif- 470 ferent prompts, the SPG generates 471 comprehensive and highly realistic 472 person images. In certain aspects 473 such as diverse scenarios, varying 474 weather conditions, and lighting sit- 475 uations, it even surpasses the level 476 achievable in existing manually 477 annotated datasets. When combined 478 with the IDPG, the framework gen- 479 erates diverse images of the same 480 identity. Thus, through appropri- 481 ate LLM instruction design within 482 the TIPS framework and leverag- 483 ing MLLM’s filtering and annota- 484 tion mechanisms, these generators 485 are capable of automatically produc- 486 ing high-quality data, consequently 487 enhancing retrieval performance. 488

Table 4: Performance with and without data expansion (Data) and TTA. A ✓ indicates the component is enabled.

	Setting		CUHK		ICFG		RSTP	
	Data	TTA	R@1	mAP	R@1	mAP	R@1	mAP
IRRA			34.44	32.57	19.73	10.20	30.70	24.65
	✓	✓	41.78	38.01	27.75	13.17	36.55	28.51
	✓	✓	55.73	49.72	45.94	24.75	54.30	42.00
RaSa			57.93	51.54	48.17	26.06	56.40	43.61
	✓	✓	45.92	38.54	21.16	5.21	38.85	24.27
	✓	✓	50.13	45.44	28.64	13.42	44.30	35.83
	✓	✓	60.95	53.89	49.11	26.67	61.25	48.24
	✓	✓	63.01	55.64	50.84	28.15	62.40	49.72

Figure 4: Zero-shot generation capability visualization.

486
487

488 4.4 ABLATION STUDIES

489 **Impact of Image Distribution.** Under the few-shot scenario, we employ IRRA on the CUHK
 490 dataset as the benchmark and compare six configurations of pre-training data to analyze how im-
 491 age distribution alignment influences retrieval performance: 1) no pre-training, 2) MALS dataset,
 492 3) data generated by pretrained Flux, 4) LUPerson-M dataset, 5) data generated by SPG, and 6)
 493 data generated jointly by SPG and IDPG. Among these, configurations No.2, No.5, and No.6 con-
 494 tain an equal number of images; No.2 and No.5 cannot preserve identity, as each prompt generates
 495 only one image. The results in Table 5 reveal three key insights. Firstly, as long as the align-
 496 ment between images and texts is ensured, any form of pre-training improves retrieval performance
 497 in low-data scenarios. Secondly, comparing configurations from No.2 to No.5 shows that, given
 498 high-quality generated pairs, better
 499 alignment with the target-domain dis-
 500 tribution consistently leads to im-
 501 proved retrieval performance (See
 502 Appendix B for the theoretical anal-
 503 ysis). Thanks to the SPG’s abil-
 504 ity to simulate target-domain data
 505 distribution with limited data, its
 506 performance even surpasses that of
 507 the larger-scale and real-image-based
 508 LUPerson-M dataset. Finally, com-
 509 paring No.5 and No.6 demonstrates the effectiveness of incorporating identity-preserving generation
 510 in improving performance.

511

512 5 CONCLUSION

513

514 In this paper, we propose the TIPS framework, a novel pipeline that automatically synthesizes high-
 515 quality text-image pairs to address core TPR challenges, including zero-shot and few-shot domain
 516 adaptation and robustness in practical scenarios. At its core are two efficient generators, SPG and
 517 IDPG, which create realistic, identity-consistent pedestrian images using minimal domain-specific
 518 data. Coupled with effective LLM-driven prompts and MLLM-based filtering, TIPS substantially
 519 enhances retrieval performance across various scenarios. Additionally, the proposed TTA method
 520 further improves retrieval accuracy without structural modifications. Extensive experiments on mul-
 521 tiple benchmarks confirm TIPS’s superiority, robustness, and practical applicability.

522

523

524 ETHICS STATEMENT

525

526

527 The SPG and IDPG presented in this work have shown remarkable capabilities in generating high-
 528 fidelity, diverse, and identity-consistent images from textual descriptions. However, as with any gen-
 529 erative model, there are inherent risks that must be carefully managed. Misuse of these technologies
 530 could lead to the creation of misleading or harmful content, infringing upon privacy, misrepresent-
 531 ing individuals, or enabling identity manipulation. To mitigate such risks, it is essential to adhere to
 532 ethical guidelines and exercise caution in their applications. All training data for the SPG and IDPG
 533 models have been sourced from publicly available datasets that have undergone rigorous checks to
 534 ensure they do not contain sensitive or private information. The datasets, including pedestrian im-
 535 age sets, have been carefully curated with fairness and privacy in mind. Furthermore, users of these
 536 models are encouraged to apply similar ethical considerations when using their own data to ensure
 537 that no sensitive or harmful content is generated. In light of potential misuse, we recommend the
 538 integration of digital watermarks in generated images, especially when models are made publicly
 539 available or open-sourced. Watermarking ensures traceability and accountability, helping to prevent
 540 the spread of deceptive images. If the generated data from this work is made open-source, digital wa-
 541 termarks will also be embedded to maintain the integrity and traceability of the content. Ultimately,
 542 we advocate for the responsible use of AI technologies, emphasizing the importance of transparency,
 543 privacy, and consent. By following ethical standards, we can contribute to the advancement of AI in
 544 a manner that promotes safety, trust, and societal well-being.

Table 5: Performance with different pre-training data.

No.	Pre-training Data	FID ↓	R@1	R@5	R@10	mAP
1	—	—	34.44	58.35	68.41	32.57
2	MALS	105.69	38.61	61.62	72.30	35.66
3	Pre-trained Flux	116.74	42.40	65.51	75.18	39.04
4	LUPerson-M	82.64	53.84	72.96	80.21	47.92
5	SPG	66.82	54.29	73.64	80.93	48.37
6	SPG+IDPG	68.07	55.73	75.04	82.84	49.72

540 REPRODUCIBILITY STATEMENT
541542 In this study, to ensure the reproducibility of our approach, we provide the following key information
543 from the main text and appendices:
544

- 545 **Algorithm.** We provide the architecture and core methods of TIPS in Figure 2 and Section
546 3. Additionally, we offer a more detailed practical implementation of TIPS in Appendix
547 A and Figure A1, including the specific instructions used in all experiments. For further
548 hyperparameter details, please refer to Appendix C.3.
- 549 **Source Code.** To enable complete reproduction of our work, we will release all relevant
550 code as open-source after the review process is completed.
- 551 **Hyperparameters and Extended Analysis.** In Appendix D, we provide detailed exper-
552 imental hyperparameters and conduct comprehensive ablation studies to validate the ef-
553 fectiveness of our proposed modules and strategies. Furthermore, Appendix E presents
554 objective quantitative analyses and visual examples to substantiate the quality and diversity
555 of the synthesized data.
- 556 **Theoretical Proofs.** We provide the core theoretical proofs supporting the effectiveness of
557 the TIPS method in Appendix B.

559 REFERENCES
560561 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
562 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*,
563 2025.564 Yang Bai, Min Cao, Daming Gao, Ziqiang Cao, Chen Chen, Zhenfeng Fan, Liqiang Nie, and Min
565 Zhang. Rasa: relation and sensitivity aware representation learning for text-based person search.
566 In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence*, pp.
567 555–563, 2023.569 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James T Kwok,
570 Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer for
571 photorealistic text-to-image synthesis. In *ICLR*, 2024.573 Weihua Chen, Xianzhe Xu, Jian Jia, Hao Luo, Yaohua Wang, Fan Wang, Rong Jin, and Xiuyu
574 Sun. Beyond appearance: a semantic controllable self-supervised learning framework for human-
575 centric visual tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
576 *recognition*, pp. 15050–15061, 2023.577 Zefeng Ding, Changxing Ding, Zhiyin Shao, and Dacheng Tao. Semantically self-aligned network
578 for text-to-image part-aware person re-identification. *arXiv preprint arXiv:2107.12666*, 2021.580 Alex Ergasti, Tomaso Fontanini, Claudio Ferrari, Massimo Bertozzi, and Andrea Prati. Mars: Paying
581 more attention to visual attributes for text-based person search. *arXiv preprint arXiv:2407.04287*,
582 2024.584 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
585 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
586 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
587 2024.588 Dengpan Fu, Dongdong Chen, Jianmin Bao, Hao Yang, Lu Yuan, Lei Zhang, Houqiang Li, and Dong
589 Chen. Unsupervised pre-training for person re-identification. In *Proceedings of the IEEE/CVF*
590 *conference on computer vision and pattern recognition*, pp. 14750–14759, 2021.592 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
593 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
594 *ACM*, 63(11):139–144, 2020.

594 Douglas Gray and Hai Tao. Viewpoint invariant pedestrian recognition with an ensemble of localized
 595 features. In *Computer Vision–ECCV 2008: 10th European Conference on Computer Vision,*
 596 *Marseille, France, October 12–18, 2008, Proceedings, Part I 10*, pp. 262–275. Springer, 2008.

597

598 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 599 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 600 *neural information processing systems*, 30, 2017.

601

602 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 603 *neural information processing systems*, 33:6840–6851, 2020.

604

605 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 606 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 607 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

608

609 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 610 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

611

612 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong,
 613 He Zhang, Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey.
 614 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

615

616 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Cihang Xie, and
 617 Yuyin Zhou. Hq-edit: A high-quality dataset for instruction-based image editing. In *ICLR*, 2025.

618

619 Ding Jiang and Mang Ye. Cross-modal implicit relation reasoning and aligning for text-to-image
 620 person retrieval. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 621 *Recognition*, pp. 2787–2797, 2023.

622

623 Black Forest Labs. Flux: Official inference repository for flux.1 models. <https://github.com/black-forest-labs/flux>, 2024. Accessed: 2024-11-12.

624

625 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 626 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 627 distillation. *Advances in neural information processing systems*, 34:9694–9705, 2021.

628

629 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 630 training for unified vision-language understanding and generation. In *International Conference*
 631 *on Machine Learning*, pp. 12888–12900. PMLR, 2022.

632

633 Shuang Li, Tong Xiao, Hongsheng Li, Bolei Zhou, Dayu Yue, and Xiaogang Wang. Person search
 634 with natural language description. In *Proceedings of the IEEE conference on computer vision and*
 635 *pattern recognition*, pp. 1970–1979, 2017.

636

637 Wei Li and Xiaogang Wang. Locally aligned feature transforms across views. In *Proceedings of the*
 638 *IEEE conference on computer vision and pattern recognition*, pp. 3594–3601, 2013.

639

640 Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deepreid: Deep filter pairing neural network for
 641 person re-identification. In *Proceedings of the IEEE conference on computer vision and pattern*
 642 *recognition*, pp. 152–159, 2014.

643

644 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 645 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

646

647 Delong Liu, Haiwen Li, Zhicheng Zhao, and Yuan Dong. Text-guided image restoration and se-
 648 mantic enhancement for text-to-image person retrieval. *Neural Networks*, 184:107028, 2025.
 649 ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2024.107028>. URL <https://www.sciencedirect.com/science/article/pii/S0893608024009572>.

650

651 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 652 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 653 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

648 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 649 *arXiv:1711.05101*, 2017.

650

651 Camillo Lugaesi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Ubweja, Michael Hays,
 652 Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
 653 for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019.

654 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 655 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023a.

656

657 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 658 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023b.

659 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 660 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 661 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

662

663 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Car-
 664 los Niebles, Caiming Xiong, Silvio Savarese, et al. Unicontrol: A unified diffusion model for
 665 controllable visual generation in the wild. *arXiv preprint arXiv:2305.11147*, 2023.

666

667 Yang Qin, Yingke Chen, Dezhong Peng, Xi Peng, Joey Tianyi Zhou, and Peng Hu. Noisy-
 668 correspondence learning for text-to-image person re-identification. In *Proceedings of the*
 669 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 27197–27206, 2024.

670

671 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 672 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 673 models from natural language supervision. In *International conference on machine learning*, pp.
 674 8748–8763. PMLR, 2021.

675

676 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 677 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

678

679 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 680 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 681 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

682

683 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 684 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH*
 685 *2022 conference proceedings*, pp. 1–10, 2022a.

686

687 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 688 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 689 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 690 tion processing systems*, 35:36479–36494, 2022b.

691

692 Zhiyin Shao, Xinyu Zhang, Changxing Ding, Jian Wang, and Jingdong Wang. Unified pre-training
 693 with pseudo texts for text-to-image person re-identification. In *Proceedings of the IEEE/CVF*
 694 *international conference on computer vision*, pp. 11174–11184, 2023.

695

696 Zeyi Sun, Ye Fang, Tong Wu, Pan Zhang, Yuhang Zang, Shu Kong, Yuanjun Xiong, Dahua Lin,
 697 and Jiaqi Wang. Alpha-clip: A clip model focusing on wherever you want. In *Proceedings of the*
 698 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 13019–13029, 2024.

699

700 Wentan Tan, Changxing Ding, Jiayu Jiang, Fei Wang, Yibing Zhan, and Dapeng Tao. Harnessing
 701 the power of mllms for transferable text-to-image person reid. In *Proceedings of the IEEE/CVF*
 702 *Conference on Computer Vision and Pattern Recognition*, pp. 17127–17137, 2024.

703

704 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Min-
 705 imal and universal control for diffusion transformer. 2025.

706

707 Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge domain gap for
 708 person re-identification. In *Proceedings of the IEEE conference on computer vision and pattern*
 709 *recognition*, pp. 79–88, 2018.

702 Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. Smartbrush: Text and shape
 703 guided object inpainting with diffusion model. In *Proceedings of the IEEE/CVF conference on*
 704 *computer vision and pattern recognition*, pp. 22428–22437, 2023.

705 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 706 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 707 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 708 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 709 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 710 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 711 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 712 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 713 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

714 Shuyu Yang, Yinan Zhou, Zhedong Zheng, Yaxiong Wang, Li Zhu, and Yujiao Wu. Towards unified
 715 text-based person retrieval: A large-scale multi-attribute and language search benchmark. In
 716 *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 4492–4501, 2023.

717 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 718 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

719 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 720 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 721 pp. 3836–3847, 2023.

722 Ying Zhang and Huchuan Lu. Deep cross-modal projection learning for image-text matching. In
 723 *Proceedings of the European conference on computer vision (ECCV)*, pp. 686–701, 2018.

724 Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person
 725 re-identification: A benchmark. In *Proceedings of the IEEE international conference on computer*
 726 *vision*, pp. 1116–1124, 2015.

727 Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Mingliang Xu, and Yi-Dong Shen. Dual-
 728 path convolutional image-text embeddings with instance loss. *ACM Transactions on Multimedia*
 729 *Computing, Communications, and Applications (TOMM)*, 16(2):1–23, 2020.

730 Aichun Zhu, Zijie Wang, Yifeng Li, Xili Wan, Jing Jin, Tian Wang, Fangqiang Hu, and Gang Hua.
 731 Dssl: Deep surroundings-person separation learning for text-based person retrieval. In *Proceed-
 732 ings of the 29th ACM international conference on multimedia*, pp. 209–217, 2021.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ADDITIONAL DETAILS OF DATA SYNTHESIS
757758 A.1 DETAILS OF DATA PREPARATION
759760 To generate person images that are both realistic and aligned with expectations, we train the Seed
761 Person Image Generator (SPG) and the Identity Preservation Generator (IDPG). Essential data
762 preparation precedes this training.763 Under the zero-shot setting, no usable person image–text pairs are available, so we construct such
764 data entirely from scratch for SPG and build image–text–image triplets for IDPG. Specifically, we
765 uniformly select 100 identities from five datasets (CUHK03 Li et al. (2014), CUHK02 Li & Wang
766 (2013), Market-1501 Zheng et al. (2015), MSMT17 Wei et al. (2018), and VIPER Gray & Tao
767 (2008)); these identities have no overlap with the manually annotated TPR datasets. Three images
768 are randomly chosen for each identity, giving 300 images in total. An Multi-modal Large Language
769 Model (MLLM) Bai et al. (2025) then applies the captioning instruction shown in Figure A1 to each
770 image and produces two captions, thereby forming the image–text pairs used to train SPG.771 In the few-shot or generalization setting, person image–text pairs are available and can be directly
772 employed to train SPG. Because these pairs closely match the distribution of the test domain, the
773 seed images generated by SPG in the few-shot scenario also move toward this distribution, which in
774 turn improves the effectiveness of subsequent retrieval training.775 For IDPG, identical training data are used across all settings, and each sample comprises a reference
776 image, a relative description, and a target image. The image source remains the same 300 images
777 collected from the five datasets. As each identity has three images, any two images of the same
778 identity form three possible pairs. Each pair is passed to the MLLM, which follows the instruction
779 below to generate the relative description.780 You will be provided with two images of the same person. Your task is to generate two **relative**
781 **descriptions** that focus only on the differences in lighting, viewpoint, background scene, human
782 status (pose, expression, etc.), and carried items. Do not describe any similarities and do not
783 include explanations, reasoning, or preambles such as “Compared to the other image.” Just
784 output the differences. Use the following strict format:785 [1] (*Differences observed when using Image1 as reference to describe Image2.*)786 [2] (*Differences observed when using Image2 as reference to describe Image1.*)

787 Output only the two lines above and nothing else.

788 Consequently, each image pair yields two triplet annotations, resulting in 600 triplets that are used
789 to train IDPG.790 A.2 DETAILS OF THE TIPS FRAMEWORK
791792 The complete workflow and detailed instructions of our automated Text-Image Pairs Synthesis
793 (TIPS) framework are illustrated in Figure A1, consisting of three stages: diversified prompt
794 generation driven by Large Language Model (LLM) Yang et al. (2025), identity-preserving person image
795 generation, and image quality filtering with caption generation. Each component is described in
796 detail in the following subsections.797 DIVERSIFIED PROMPT GENERATION
798801 In zero-shot scenarios, we strive to generate person prompts with sufficient diversity and minimal
802 repetition. Therefore, we design the instructions as depicted in Figure A1, containing three critical
803 random elements: the suggested character, color, and clothing. These elements are randomly
804 selected from pre-defined lists, and the resulting sentences are explicitly required to include the
805 recommended descriptive elements to enhance the coverage and diversity of the generated prompts.
806 However, extensive generation inevitably leads to identical combinations, causing similar prompt
807 outputs. To mitigate this, the instructions also incorporate three randomly selected examples from
808 SPG’s training data, ensuring output stability and maximizing textual diversity simultaneously.809 In few-shot and generalization scenarios, to better approximate the style of manual annotations, we
810 redesign the prompt generation instructions. Three reference sentences are randomly selected from

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure A1: Pipeline of TIPS framework with detailed instruction design.

Figure A2: Representative examples of samples filtered out during the data selection process. From left to right, each panel corresponds respectively to two evaluation dimensions for SPG and three for IDPG. Samples shown here are excluded due to low scores in their corresponding evaluation dimensions. Red boxes highlight issues related to image naturalness and fidelity.

existing texts to guide sentence length and style. The LLM is then tasked to form new sentences using elements appearing in these three reference sentences. This design not only helps the language style approximate manual annotations but also stabilizes SPG’s generation and aligns the outputs closely with the training domain distribution since all elements provided to the LLM have previously appeared during SPG training. With the above strategies, we can automatically generate a large quantity of qualified textual prompts suitable for various scenarios.

IDENTITY-PRESERVING PERSON IMAGE SYNTHESIS

After generating prompts, the corresponding SPG and IDPG trained for each scenario are used to synthesize person images. Initially, SPG generates a seed person image for each prompt. Although the physical resolution of generated images is fixed at 192×384 , we simulate real-world multi-resolution scenarios by adjusting the image size conditions, thereby achieving “multi-resolution” seed person image generation with varying clarity levels. The resolution conditions used for image generation are randomly selected from a pre-defined size list employed during SPG training, ensuring stable and consistent image quality. All seed images undergo MLLM filtering after generation, and any images failing the filtering criteria are regenerated.

After seed image generation, a single image corresponding to a new identity is obtained. The responsibility of IDPG is to expand this single image into an image set of the same identity. Through training, IDPG acquires the ability to generate identity-preserving target images, where a reference image and relative textual differences serve as inputs, and the generated outputs match both the identity of the reference image and the provided textual differences. Therefore, the seed person image serves as the reference image, and four relative textual differences are randomly generated for each seed image from multiple pre-defined lists, using the difference-text template illustrated in Figure A1. These relative texts and the reference seed image are then fed into IDPG to produce four expanded images. These images must also pass MLLM filtering criteria, and any images failing to meet these conditions are regenerated. Thus, we ultimately obtain five person images sharing the same identity.

FILTER AND CAPTION

After obtaining five images of the same identity, corresponding textual annotations are generated to form image-text pairs suitable for training Text-based Person Retrieval (TPR) models. We next detail the MLLM-based filtering criteria. The filtering of seed person images generated by SPG relies on two dimensions, as illustrated in Figure A1. The first evaluates the alignment between the generated seed images and their textual prompts; higher alignment scores indicate that the generated content faithfully reflects the intended description. The second dimension assesses intrinsic image quality, ensuring that the generated person images exhibit high fidelity, natural realism, and minimal artifacts. Both dimensions are scored on a 1–10 scale, and only images achieving scores of 9 or above in both criteria pass the filtering step, thereby guaranteeing high-quality seed images. [Under](#)

918 the zero-shot setting, the overall rejection rate is 19.6% (15.5% low-fidelity images, 4.6% text–image
 919 misalignment, and 0.5% both), compared with 17.5% under the few-shot setting (14.3% low-fidelity,
 920 3.6% misalignment, 0.4% both) and 14.6% under the generalization setting (11.9% low-fidelity,
 921 3.1% misalignment, 0.4% both).

922 For expanded images generated by IDPG, three filtering criteria are applied to each image. The
 923 inputs include the seed image and its corresponding expanded version. The first criterion again
 924 evaluates image quality, consistent with the SPG filtering step. The second checks identity con-
 925 sistency between the expanded and reference images, ensuring that crucial identity information is
 926 retained. The third criterion assesses variability, requiring the expanded image to exhibit noticeable
 927 differences from the seed image. The first two dimensions use the same 1–10 scoring scale, with
 928 scores required to reach at least 9. The third employs binary classification, where the MLLM de-
 929 termines whether the expanded image displays sufficient distinction. Images failing this requirement
 930 are discarded. The rejection rate for expanded images remains relatively stable across scenarios,
 931 averaging 36.2%, with 23.0% attributed to low-fidelity images, 10.5% to identity inconsistency, and
 932 3.9% to insufficient variation. This strict multi-dimensional filtering significantly suppresses iden-
 933 tity drift in the final dataset. Figure A2 provides visual examples of SPG- and IDPG-generated
 934 person images rejected under different criteria, illustrating the effectiveness of the filtering strategy.
 935 Figure A8 shows additional IDPG-generated images that were rejected despite closely approaching
 936 the identity-consistency threshold, further highlighting the strictness of the filtering process.

937 After filtering, two distinct captions are generated for each of the five retained images belonging
 938 to the same identity. As illustrated in Figure A1, this process involves randomly selecting two
 939 templates from a predefined set of 120. Each template is independently inserted into an instruction
 940 and provided to the MLLM, resulting in two distinct captions for each image. The template set
 941 ensures structural diversity in the final captions, thereby improving the robustness of retrieval models
 942 trained on the textual modality.

943 B THEORETICAL FEASIBILITY ANALYSIS

944 **Proposition.** Let \mathcal{H} be a hypothesis space for a dual-encoder retrieval model that embeds an image
 945 x and a text y into a common metric space and returns a similarity score $h(x, y)$. Denote by P_s the
 946 joint distribution of *synthetic* image-text pairs used for pre-training and by P_t the joint distribution
 947 of *target-domain* pairs on which the model is evaluated. Assuming each pair $(x, y) \sim P_s \cup P_t$ is
 948 *aligned* (the text truly describes the image), the smaller the divergence $D(P_s, P_t)$ between the two
 949 distributions, the lower the expected retrieval error on the target domain.

950 **Proof.** Define the *binary retrieval loss*:

$$951 \ell_h(x, y, x', y') = \mathbb{1}[h(x, y) < h(x', y')], \quad (6)$$

952 which equals 1 when a negative pair (x, y) is scored higher than a positive pair (x', y') , and 0
 953 otherwise. Writing

$$954 \epsilon_s(h) = \mathbb{E}_{P_s^+ \times P_s^-} [\ell_h], \quad \epsilon_t(h) = \mathbb{E}_{P_t^+ \times P_t^-} [\ell_h], \quad (7)$$

955 where P^+ and P^- denote positive and negative pair distributions under P , we invoke the standard
 956 domain-adaptation decomposition:

$$957 \epsilon_t(h) \leq \epsilon_s(h) + D(P_s, P_t) + \lambda_*, \quad (8)$$

958 where $D(\cdot, \cdot)$ is any symmetric discrepancy measure (e.g., Wasserstein, total variation, or $\mathcal{H}\Delta\mathcal{H}$ -
 959 divergence), and $\lambda_* = \min_{h' \in \mathcal{H}} [\epsilon_s(h') + \epsilon_t(h')]$ is an irreducible error term determined solely by
 960 the hypothesis class.

961 The alignment assumption guarantees that, for every h , the source risk $\epsilon_s(h)$ can be driven arbitrarily
 962 close to ϵ_{bayes} (the Bayes error) through sufficient training, since misleading image-text mismatches
 963 are absent. Consequently, we have:

$$964 \epsilon_s(h) = \epsilon_{\text{bayes}} + \delta_s, \quad 0 \leq \delta_s \ll 1. \quad (9)$$

965 Similarly, since both domains share the same label semantics, λ_* is lower-bounded by the same
 966 ϵ_{bayes} and thus behaves as a constant with respect to $D(P_s, P_t)$. Substituting into equation 8 yields:

$$967 \epsilon_t(h) \leq \epsilon_{\text{bayes}} + \delta_s + D(P_s, P_t) + \lambda_* - \epsilon_{\text{bayes}}. \quad (10)$$

972 Collecting constants results in the bound:
 973

$$\epsilon_t(h) \leq C + D(P_s, P_t), \quad (11)$$

975 where $C = \delta_s + \lambda_* - \epsilon_{\text{bayes}}$ is independent of $D(P_s, P_t)$. Inequality equation 11 demonstrates
 976 that the target retrieval error increases at most linearly with the distribution discrepancy. Therefore,
 977 under fixed image-text alignment, *reducing $D(P_s, P_t)$* , i.e., making the synthetic image distribution
 978 more similar to the target-domain distribution, *strictly tightens* the generalization bound and thus
 979 improves expected retrieval performance.
 980

981 **Application.** The above theoretical proof serves as the starting point and a critical objective for
 982 synthetic data generation in this paper. Initially, we utilize advanced generative models along with
 983 MLLM-based filtering and captioning to ensure a high degree of alignment between generated im-
 984 ages and their corresponding texts. On this basis, we further fine-tune the person image generators,
 985 enabling the generated images to closely approximate the target-domain distribution, thereby achiev-
 986 ing superior retrieval performance.
 987

988 C ADDITIONAL DETAILS

989 C.1 DATASETS DETAILS

990 **CUHK-PEDES** Li et al. (2017) (CUHK) serves as a foundational benchmark for text-to-person re-
 991 trieval, containing 40,206 images and 80,412 manually annotated textual descriptions across 13,003
 992 unique identities. The dataset is formally partitioned into three subsets: a training set with 34,504
 993 images and 68,126 descriptions covering 11,003 identities, a validation set comprising 3,078 im-
 994 ages and 6,158 descriptions for 1,000 identities, and a test set of 3,074 images paired with 6,156
 995 descriptions representing another 1,000 identities. Each image is associated with two independent
 996 textual annotations, with an average description length exceeding 23 words to ensure comprehensive
 997 semantic coverage.
 998

1000 **ICFG-PEDES** Ding et al. (2021) (ICFG) offers 54,522 precisely aligned image-text pairs spanning
 1001 4,102 identities, distinguished by its single-description-per-image annotation strategy. The textual
 1002 component demonstrates lexical richness through 5,554 unique vocabulary terms, with descriptions
 1003 averaging 37 words for detailed attribute specification. Dataset division yields 34,674 training pairs
 1004 across 3,102 identities and 19,848 test pairs for the remaining 1,000 identities, emphasizing granular
 1005 identity representation through text-visual correspondence.
 1006

1007 **RSTPReid** Zhu et al. (2021) (RSTP) addresses practical surveillance challenges through multi-
 1008 camera acquisition, containing 20,505 images and 41,010 textual descriptions for 4,101 identities
 1009 captured across 15 viewpoints. Each identity features five cross-view images accompanied by dual
 1010 descriptions, all maintaining a minimum length of 23 words. The dataset follows a structured par-
 1011 titioning scheme with 3,701 identities for training, while both validation and test sets contain 200
 1012 identities each, facilitating rigorous evaluation under real-world deployment conditions.
 1013

1014 C.2 METHOD EFFICIENCY

1015 Our proposed method, which can be adapted to virtually all existing TPR methods, introduces addi-
 1016 tional time overhead primarily in two aspects. The first overhead is associated with data preparation,
 1017 a one-time cost per scenario, after which the generated data can be repeatedly utilized for training
 1018 multiple feasible models. The second overhead occurs during inference when optionally enabling
 1019 Test-Time Augmentation (TTA) for performance enhancement. Using the hardware configuration
 1020 of two H800 GPUs with 80GB memory each and the settings described in Section 4.1, the training
 1021 of the SPG requires approximately 4 hours and 19 minutes per scenario, while training the general
 1022 IDPG takes approximately 6 hours and 43 minutes. After generator training, the TIPS data expan-
 1023 sion framework generates 400,000 image-text pairs per scenario within 134 hours and 58 minutes,
 1024 averaging 2.43 seconds per sample (single GPU), significantly improving efficiency compared to
 1025 manual annotation.

1026 For the TPR task, inference efficiency of the model is of greater importance. When TTA is disabled,
 1027 our approach maintains the original inference efficiency of the baseline models while improving

Figure A3: Impact of the Amount of Data Expansion via the TIPS Framework on Zero-shot and Few-shot TPR Performance. The top three plots correspond to the zero-shot setting, while the bottom three correspond to the few-shot setting. From left to right, the three columns show performance variation curves on the CUHK-PEDES, ICFG-PEDES, and RSTPRReid datasets, respectively. In each subplot, the X-axis indicates the number of text prompts generated by the TIPS framework, with the corresponding number of image-text pairs being ten times that value.

retrieval performance since modifications are restricted solely to training data. With TTA enabled, an additional average text-processing time of 2.75 seconds per query is required to generate preview images. After completing preview generation, we perform multiple single-GPU inference evaluations for three representative methods (IRRA Jiang & Ye (2023), RDE Qin et al. (2024), and RaSa Bai et al. (2023)) on the full CUHK-PEDES test set (consisting of 6,156 textual queries and 3,074 candidate images) to minimize the impact of random variance on inference time measurement. For methods without re-ranking, TTA significantly impacts efficiency due to additional visual feature computation and fusion processes: inference time increases from 5.34 seconds to 11.18 seconds for IRRA, and from 11.22 seconds to 21.45 seconds for RDE. For the re-ranking-based RaSa method, whose computational overhead primarily concentrates in the re-ranking stage, enabling TTA increases inference time only marginally from 510.37 seconds to 516.61 seconds, representing a modest overhead of approximately 1.22%. This indicates that users can flexibly activate TTA according to their specific trade-off requirements between performance and efficiency.

C.3 IMPLEMENTATION DETAILS.

In the experiments, we simulate three realistic scenarios. The first one is the zero-shot scenario, where no corresponding image-text pair annotations exist for the new domain. The second one is the few-shot scenario, in which only a minimal number of samples are available. The last one is the generalization scenario, where the annotated data used do not correspond directly to the current domain.

To handle the zero-shot scenario, we uniformly select 100 IDs from five datasets (CUHK03 Li et al. (2014), CUHK02 Li & Wang (2013), Market-1501 Zheng et al. (2015), MSMT17 Wei et al. (2018), and VIPER Gray & Tao (2008)), and these IDs do not overlap with the image sources of the TPR artificial dataset. From each ID, we randomly select three images, amounting to 300 images in total, and then employ MLLM to generate two captions for each image so as to train the SPG. Image pairs from the same ID but different images are used as reference images, and their differential captions are used to train the IDPG. Note that in scenarios where annotated data is available, SPG’s training utilizes the provided image-text pairs.

All experiments are conducted using two H800 GPUs. We select Qwen3-32B Yang et al. (2025) as our LLM and Qwen2.5VL-32B Bai et al. (2025) as the MLLM. Both SPG and IDPG are based on FLUX.1-dev Labs (2024), and the LoRA rank is set to $r = 32$. During training, each GPU employs a batch size of 1, with a 2-step gradient accumulation, using the AdamW optimizer Loshchilov & Hutter (2017) (learning rate 1×10^{-5} , 10-step warmup, weight decay of 0.01) for a total of 20,000 steps. All input images are resized to 192×384 . During SPG training, width-height resolution

1080 conditions are randomly dropped in 20% of samples to enhance the robustness. For IDPG training,
 1081 difference captions are dropped with a probability of 10% to strengthen the model’s ability to generate
 1082 different images of the same identity by default. For each experiment in each scenario, the LLM
 1083 generates 40,000 independent seed prompts. Each text is paired with randomly sampled resolution
 1084 parameters trained by the SPG to generate one image of size 192×384 through 28 sampling steps.
 1085 These images are then fed into the IDPG, generating four additional images of the same identity
 1086 using four random difference prompts. The generated images and their seed image share the same
 1087 ID. All images undergo MLLM filtering, where the scoring rules for each evaluation dimension re-
 1088 quire a binary classification to determine whether the differences exist between seed and expanded
 1089 images, and scores from 1 to 10 for all other dimensions, requiring a minimum score of 9. Images
 1090 failing to meet these criteria are regenerated. Subsequently, all filtered images are provided two
 1091 captions generated by MLLM using randomly selected templates. Therefore, each experiment will
 1092 yield 40,000 IDs, 200,000 images, and 400,000 image-text pairs for retrieval model training.
 1093

1094 Three representative TPR methods (IRRA Jiang & Ye (2023), RDE Qin et al. (2024), Rasa Bai et al.
 1095 (2023)) are evaluated on CUHK, ICFG, and RSTP datasets, following their original configurations.
 1096 Training in the few-shot scenario comprises two phases: 1) synthetic data training with original
 1097 hyperparameters, 2) fine-tuning with real data, with epochs and learning rates halved. In TTA, the
 1098 value of α is set to 0.6. For IRRA, the ID loss Zheng et al. (2020) layer parameters from *Phase 1*
 1099 are excluded in *Phase 2*, but other parameters are retained.
 1100

D ADDITIONAL RESULTS

D.1 ADDITIONAL ABLATION STUDIES

IMPACT OF EXPANDED DATA QUANTITY IN TIPS

1105 Figure A3 illustrates how varying
 1106 the quantity of expanded data influences
 1107 retrieval performance under both zero-shot and few-shot settings.
 1108 Under both scenarios and across each
 1109 dataset, a consistent trend is ob-
 1110 served: as the number of text prompts
 1111 expanded by TIPS increases, the
 1112 retrieval performance improves gradu-
 1113 ally, with the rate of improvement
 1114 diminishing as the quantity contin-
 1115 ues to increase. Specifically, retrieval
 1116 performance rises rapidly until the
 1117 number of expanded prompts reaches
 1118 approximately 20,000. Beyond this
 1119 threshold, the performance continues
 1120 to improve, albeit at a significantly reduced pace. Ultimately, to balance performance and efficiency,
 1121 we choose to expand 40,000 prompts for each scenario using the TIPS framework, resulting in a
 1122 total of 400,000 trainable image-text pair samples.
 1123

TTA HYPERPARAMETER α

1125 Figure A4 analyzes the impact of the TTA hyperparameter α on retrieval performance under the
 1126 few-shot setting using the CUHK dataset. When $\alpha = 0$, retrieval is conducted solely based on pre-
 1127 view images generated from the textual queries in the test set. It is evident that even in this scenario,
 1128 the model achieves reasonable performance without specific optimization, establishing a princi-
 1129 ples condition for the effectiveness of TTA. To fully leverage the capability of TTA, it is necessary to
 1130 identify the optimal balance between textual retrieval and preview-image-based retrieval. As demon-
 1131 strated in the figure, the optimal hyperparameter under the current experimental setup is found to
 1132 be $\alpha = 0.6$, which is consequently adopted as a general parameter setting in the few-shot scenario.
 1133 In practical applications, regardless of the specific scenario, since TTA does not require any modi-
 1134 fication to the training procedure, the optimal value of α can be rapidly determined through a grid

Figure A4: Retrieval performance of different methods with TTA using varying α values under the few-shot scenario on the CUHK dataset. Optimal α values are highlighted in red boxes.

Figure A6: Examples generated by SPG using different resolution conditions and textual inputs. Each column presents two sample groups from each dataset. Within each group, the first row shows images generated by the model trained with 1% of the data, and the second row shows images generated by the model trained with the full dataset. Each case includes three subsets generated with the same textual input but under different resolution conditions, from left to right: a resolution seen during training, a randomly sampled untrained resolution, and no resolution condition.

search on a validation set. Thus, TTA can be effectively activated to achieve stable performance improvements when ultimate retrieval performance is desired.

IMPACT OF LORA RANK CONFIGURATIONS

To determine the optimal rank values of LoRA utilized in the SPG and IDPG, we evaluate their performance under various rank settings on the CUHK-PEDES dataset within a few-shot scenario. Here, the Fréchet Inception Distance (FID) metric quantifies the distributional divergence between expanded images and the CUHK-PEDES test set. Conducting a direct binary search jointly on the rank values of SPG and IDPG would require substantial computational resources, as each evaluation involves generating 400,000 image-text pairs. Therefore, we first optimize the rank value for the SPG individually and subsequently determine the optimal rank for the IDPG based on this result. In the scenario involving only SPG, the TIPS framework directly employs the SPG to generate five images per prompt, representing images of the same identity. Figure A5a illustrates that as the rank increases, SPG's number of learnable parameters grows, enhancing its fitting ability to the training-domain distribution, and thus steadily reducing FID scores, signifying improved alignment with the target domain. However, this improvement at the distributional level does not linearly translate into better retrieval performance. Specifically, retrieval metrics improve when the rank is below 32, yet the

Figure A5: SPG and IDPG LoRA rank impact on retrieval performance and expanded data distribution. (a) effect of SPG rank settings on performance; (b) effect of IDPG rank settings on performance with SPG rank fixed at 32.

1188
1189
1190 Table A1: Performance comparison of different resolution control strategies in SPG.
1191
1192
1193
1194
1195
1196

Method	Zero-Shot		Few-Shot	
	R@1	mAP	R@1	mAP
Baseline	—	—	34.44	32.57
w/o size	51.23	46.85	54.04	48.79
Low	51.93	47.22	54.90	49.36
High	50.18	45.92	53.15	47.64
Ours	52.89	47.81	55.73	49.72

1197
1198 benefits diminish beyond this point. Notably, a slight performance degradation is observed when
1199 the rank surpasses 64, likely due to overfitting, wherein an excessive number of parameters captures
1200 domain-specific artifacts, consequently reducing generation diversity. Conversely, insufficient
1201 ranks (e.g., ranks below 32) limit the model’s capacity to adequately learn domain characteristics.
1202 Balancing efficacy and efficiency, we thus select rank $r = 32$ for SPG as the final configuration.
1203

1204 Based on this setting, we incorporate IDPG to expand person images, with the performance under
1205 different ranks illustrated in Figure A5b. Observing the trends, we find a similar phenomenon to
1206 SPG: increasing rank values progressively reduce FID scores between generated images and the test
1207 domain. Nevertheless, when the rank exceeds 32, the introduction of additional trainable parameters
1208 leads to a decrease in retrieval performance. This occurs because the abundance of parameters
1209 encourages the IDPG to preserve not only the original person characteristics but also excessive back-
1210 ground details. Given that SPG has been trained on limited samples from the current domain, ex-
1211 cessive imitation of backgrounds effectively reduces FID but results in more monotonous expanded
1212 images, thereby negatively affecting retrieval performance. Considering these factors comprehen-
1213 sively, we similarly adopt rank $r = 32$ for IDPG as the final configuration.

1214 RESOLUTION CONTROL AND IMAGE QUALITY

1215 To provide a comprehensive assessment of how pixel-level resolution control influences retrieval
1216 performance, we conduct systematic experiments evaluating several resolution conditioning strate-
1217 gies within our TIPS framework. Using IRRA as the baseline model on the CUHK dataset under
1218 both zero-shot and few-shot settings, we compare four distinct resolution control variants to validate
1219 the effectiveness of our design.
1220

1221 The experimental settings are defined as follows: **w/o size** removes all resolution conditioning during
1222 SPG inference, yielding images without explicit size guidance; **Low** uniformly applies the lowest
1223 resolution used during training; **High** enforces the highest training-time resolution; and **Ours** adopts
1224 our strategy of sampling resolution conditions randomly from the empirical training distribution
1225 during inference.
1226

1227 As shown in Table A1, our random resolution conditioning strategy achieves the best performance
1228 across both evaluation regimes, obtaining 52.89% zero-shot R@1 and 55.73% few-shot R@1. Im-
1229 portantly, the **Low** setting consistently outperforms the **High** setting in both zero-shot and few-
1230 shot scenarios by 1.75% in R@1. This suggests that high-resolution conditioning may steer the
1231 generator toward overly clean synthetic distributions, thereby reducing generalization when tested
1232 on real-world data exhibiting diverse and often degraded resolutions. Conversely, low-resolution
1233 conditioning imposes a more challenging generation objective, preventing over-specialization and
1234 enhancing robustness.
1235

1236 Furthermore, our method demonstrates clear improvements over the no-conditioning baseline (**w/o**
1237 **size**), with gains of 1.66% in zero-shot R@1 and 1.69% in few-shot R@1. These results highlight
1238 the importance of explicit resolution modeling in synthetic data generation. By sampling resolutions
1239 from the training distribution, our approach effectively balances learning difficulty and generaliza-
1240 tion capacity, faithfully capturing the multi-resolution characteristics commonly found in practical
1241 TPR scenarios while maintaining controlled generation behavior.

1242 Overall, these findings confirm that pixel-level resolution control is a critical component of the
1243 SPG design, substantially contributing to its ability to generate domain-adaptive person images and
1244 improving retrieval performance across diverse real-world conditions.
1245

1242 Table A2: Performance comparison between data reuse and regeneration strategies in few-shot sce-
1243 narios.

Pre-training Data	CUHK		ICFG		RSTP	
	R@1	mAP	R@1	mAP	R@1	mAP
No Pre-training	34.44	32.57	19.73	10.20	30.70	24.65
Ours (Reuse)	53.28	46.98	40.59	21.73	51.15	40.03
Ours (Regeneration)	55.73	49.72	45.94	24.75	54.30	42.00

1250 Table A3: Performance comparison across different LLM scales for prompt generation.

LLM	Zero-Shot		Few-Shot	
	R@1	mAP	R@1	mAP
Baseline	—	—	34.44	32.57
Qwen3-8B	51.95	47.29	54.99	48.32
Qwen3-14B	52.53	47.76	55.60	49.18
Ours (Qwen3-32B)	52.89	47.81	55.73	49.72

1261 COMPUTATIONAL EFFICIENCY AND DATA REUSABILITY

1262 Data reusability offers a practical pathway toward improved computational efficiency. As shown
1263 in Table A2, directly reusing the zero-shot expanded dataset without regeneration (**Ours (Reuse)**)
1264 already provides substantial performance gains across all few-shot benchmarks, achieving 53.28%
1265 R@1 on CUHK, 40.59% on ICFG, and 51.15% on RSTP. This corresponds to an average improve-
1266 ment of 18.84% R@1 over the no pre-training baseline, while entirely avoiding the computational
1267 overhead associated with data regeneration.

1268 For applications requiring peak performance, regeneration (**Ours (Regeneration)**) leads to addi-
1269 tional improvements of 2.45% on CUHK, 5.35% on ICFG, and 3.15% on RSTP. These gains arise
1270 because retraining the generators allows the synthetic data distribution to better align with the target
1271 domain.

1272 These findings indicate that although the initial data synthesis stage requires computational invest-
1273 ment, the resulting synthetic datasets possess long-term reusability and scalability.

1274 LLM SCALE AND ROBUSTNESS ANALYSIS

1275 To further investigate the influence of language model capacity on our TIPS framework, we conduct
1276 systematic experiments examining how different LLM scales affect downstream retrieval perfor-
1277 mance when generating textual prompts. Using IRRA as the baseline model on the CUHK dataset
1278 under both zero-shot and few-shot settings, we compare three variants of the Qwen3 Yang et al.
1279 (2025) model family with varying parameter counts.

1280 As shown in Table A3, replacing our default LLM with smaller variants leads to only marginal
1281 reductions in retrieval performance. The Qwen3-8B model achieves 51.95% zero-shot R@1 com-
1282 pared with 52.89% obtained using Qwen3-32B, representing a negligible decrease of 0.94%. A
1283 similar trend is observed in few-shot settings, where Qwen3-8B yields 54.99% R@1 versus 55.73%
1284 with the full-scale model. These results indicate that the LLM’s primary role within our framework
1285 is to produce semantically coherent and stylistically diverse prompts—a task that smaller models
1286 can accomplish effectively.

1287 The observed robustness arises from two key design aspects. First, the diversity in prompt genera-
1288 tion is primarily driven by our template-based and randomized instruction design rather than by the
1289 inherent generative capacity of the LLM. The incorporation of high-quality exemplars in the instruc-
1290 tion prompts ensures that even smaller LLMs produce well-formed and structurally sound outputs
1291 suitable for image generation. Second, the subsequent MLLM-based filtering stage effectively miti-
1292 gates limitations of weaker LLMs by removing low-quality or misaligned prompts, preventing errors
1293 from propagating to later stages of the pipeline.

1296 Table A4: Comprehensive ablation study on MLLM filtering and captioning strategies. “Similarity”
 1297 measures stylistic similarity (lower is better, scale 1–10).

No.	Method	Zero-Shot			Few-Shot		
		R@1	mAP	Similarity ↓	R@1	mAP	Similarity ↓
1	Baseline	—	—	—	34.44	32.57	—
2	w/o Filtering	49.45	45.26	4.75	52.13	47.75	5.01
3	Simple Filtering	50.73	46.23	4.79	53.54	48.31	5.09
4	w/o Template	47.55	43.88	6.59	51.80	47.09	6.93
5	30 templates	50.67	46.31	5.46	53.35	47.93	5.59
6	Ours (Full)	52.89	47.81	4.82	55.73	49.72	5.03

1308 These experiments collectively demonstrate that our framework exhibits strong robustness to variations
 1309 in LLM scale, with differences across model sizes generally remaining within 1%. The method
 1310 does not rely heavily on large-scale language models or their raw generative capabilities, as stylistic
 1311 variation at the prompt level is reliably regulated by template-based diversification and downstream
 1312 quality control. This property has practical implications for resource-constrained deployments,
 1313 in which smaller LLMs can be adopted without incurring meaningful performance degradation,
 1314 thereby substantially reducing computational costs.

1315 MLLM FILTERING AND CAPTIONING STRATEGIES

1317 To comprehensively evaluate the impact of MLLM-based filtering and captioning strategies on
 1318 downstream TPR performance, we conduct extensive ablation studies using IRRA as the baseline
 1319 model on the CUHK dataset under both zero-shot and few-shot settings. The experimental results,
 1320 presented in Table A4, systematically analyze the effects of different filtering strictness levels and
 1321 the influence of template diversity in caption generation.

1322 The ablation settings are defined as follows: **w/o Filtering** removes all MLLM-based quality assessment,
 1323 retaining all generated images; **Simple Filtering** replaces our full multi-dimensional evaluation
 1324 criteria with drastically simplified binary classification prompts, using the following instructions
 1325 strictly without modification: “*Prompt: ‘{Seed Prompt}’ Evaluate the person image considering
 1326 Alignment (image-text similarity) and Fidelity (visual quality of the person image). Output only
 1327 ‘yes’ or ‘no’ as the final overall result.*” for SPG, and “*Evaluate Image2 for Fidelity (visual quality
 1328 of the person image), Consistency (identity and outfit consistency with Image1), and Difference
 1329 (whether there’s a meaningful variation while preserving identity). Output only ‘yes’ or ‘no’ based
 1330 on the overall assessment.*” for IDPG. **w/o Template** removes template guidance during captioning,
 1331 allowing free-form MLLM descriptions; **30 templates** uses a reduced template set; and **Ours** de-
 1332 notes the complete TIPS framework with 120 templates and full multi-dimensional filtering, using
 1333 strict acceptance thresholds where all 10-point scoring dimensions must score ≥ 9 and all binary
 1334 criteria must pass.

1335 Our results show that MLLM filtering is essential for ensuring synthetic data quality, yielding more
 1336 than 3% Rank-1 improvement in both zero-shot and few-shot settings relative to unfiltered data.
 1337 Replacing our detailed multi-dimensional filtering with simple binary classification leads to a 2.16%
 1338 drop in zero-shot R@1, confirming that our stringent filtering criteria effectively constrain MLLM
 1339 bias and prevent noisy samples from degrading the training set.

1340 To quantify stylistic similarity, we employ Qwen2.5-VL-32B Bai et al. (2025) with strictly preserved
 1341 instructions: “*Given two sentences, evaluate the stylistic similarity between them. Focus on factors
 1342 like sentence length, complexity, use of formal or informal language, word choice, and overall flow.
 1343 Do not focus on the semantic content, but rather on how similar the style and structure are between
 1344 the two sentences. Provide a score between 1 and 10.*” This evaluator focuses exclusively on stylistic
 1345 rather than semantic attributes. Scores are averaged over 5000 randomly sampled sentence pairs
 1346 for each condition, ensuring statistical reliability. Identical image sets are used across captioning
 1347 variants to isolate the impact of textual changes.

1348 Template-free captioning results in substantially higher stylistic similarity (6.59 in zero-shot), indi-
 1349 cating more homogeneous writing patterns that weaken model robustness. Increasing template diver-
 1350 sity consistently improves performance, with our 120-template setup achieving the lowest stylistic

1350 similarity (4.82) and the highest retrieval accuracy. This result demonstrates that template-guided
 1351 captioning effectively mitigates MLLM stylistic bias while enhancing linguistic diversity consistent
 1352 with real-world human annotations.

1353 Overall, these comprehensive ablations confirm that both our multi-stage filtering mechanism and
 1354 template-based captioning strategy are indispensable components of the framework. They work syn-
 1355 ergistically to produce high-quality synthetic data, suppress potential MLLM biases, and maximize
 1356 downstream TPR performance.

1358 D.2 QUALITATIVE RESULTS

1360 MULTI-RESOLUTION GENERATION OF SPG

1362 Figure A6 visually demonstrates how
 1363 the SPG, trained under different data
 1364 scales, effectively preserves the in-
 1365 herent characteristics of each dataset
 1366 while generating multi-resolution im-
 1367 ages. By examining these images,
 1368 we observe that synthetic samples
 1369 (highlighted in blue) accurately re-
 1370 produce the resolution distributions
 1371 and stylistic attributes of the original
 1372 images across various data scenarios.
 1373 Specifically, the expanded samples
 1374 from CUHK retain its broad resolu-
 1375 tion distribution, including very low-
 1376 resolution images, whereas the ICFG
 1377 and RSTP datasets maintain their in-
 1378 trinsic clarity characteristics. Under
 1379 conditions involving resolutions that
 1380 were not seen during training (high-
 1381 lighted in orange), SPG trained on ex-
 1382 tensive data still effectively generates
 1383 results of varying clarity based on dif-
 1384 ferent resolution conditions. Con-
 1385 versely, models trained on limited
 1386 data fail to demonstrate robust zero-
 1387 shot resolution adaptability, resulting
 1388 in generated images that inadequately
 1389 reflect the intended resolution inputs
 1390 due to insufficient training across a
 1391 wide range of resolutions. Therefore,
 1392 within the TIPS framework, to en-
 1393 sure stable resolution control during
 1394 seed person image generation, res-
 1395 olutions are consistently sampled from
 1396 a list of resolutions encountered dur-
 1397 ing training. Additionally, in cases
 1398 without explicit resolution conditions
 1399 (highlighted in green), generated images
 1400 default to a preferred degree of blur
 1401 specific to each model. Moreover, the
 1402 trained SPG successfully retains in-
 1403 herent dataset-specific attributes, such
 1404 as the characteristic pixelation of fa-
 1405 cial regions in the ICFG dataset,
 1406 allowing rapid expansion of additional
 1407 images conforming to the original data-
 1408 set distribution even under low-data
 1409 scenarios. Figure A7 further illus-
 1410 trates the precise control offered by
 1411 SPG’s resolution conditioning, which
 1412 accurately modulates image clarity and
 1413 aspect ratios at fixed physical
 1414 resolutions.

1402 In particular, the textual inputs shown in Figure A6 are also generated by the LLM under a few-shot
 1403 scenario. Observations confirm that the generated texts successfully emulate the unique linguistic
 1404 styles of each dataset, including complete sentence descriptions typical of CUHK and age-prefixed,

Figure A7: Images generated by SPG with identical prompts but different resolution conditions under a fixed physical resolution setting. Within each group, image clarity decreases from left to right as the resolution lowers, while the aspect ratio increases from top to bottom.

(highlighted in green), generated images default to a preferred degree of blur specific to each model. Moreover, the trained SPG successfully retains inherent dataset-specific attributes, such as the characteristic pixelation of facial regions in the ICFG dataset, allowing rapid expansion of additional images conforming to the original dataset distribution even under low-data scenarios. Figure A7 further illustrates the precise control offered by SPG’s resolution conditioning, which accurately modulates image clarity and aspect ratios at fixed physical resolutions.

Figure A8: **Ten data groups with an MLLM identity-consistency score of 8.** For each group, the left image shows the seed character generated by SPG, and the right image shows the extended character generated by IDPG.

long-form annotations seen in ICFG. More importantly, the LLM introduces entirely new scenarios and clothing combinations absent from the original data, significantly enhancing data diversity during the seed image generation phase of the TIPS framework. When further combined with IDPG, image filtering, and caption generation, this approach enables the creation of higher-quality and more diverse training data for TPR.

E EXPANDED DATA DETAILS

This section provides a comprehensive analysis and visualization of the data expanded by our TIPS framework, encompassing statistical evaluation of textual diversity, quantitative assessment of visual consistency and variation, and representative visual demonstrations across different experimental settings.

E.1 STATISTICAL ANALYSIS OF GENERATED CAPTIONS

Quantitative analysis of the generated captions demonstrates superior linguistic diversity compared with manually annotated TPR datasets. The zero-shot expanded dataset achieves a vocabulary size of 10,432 unique words and an average sentence length of 35.84 words, substantially exceeding the corresponding statistics for CUHK (7,147 words, 23.82 words), ICFG (3,005 words, 35.58 words), and RSTP (2,903 words, 26.53 words). This lexical richness is further reflected in the number of unique words per sentence, with an average of 30.09 for the zero-shot dataset versus 19.07–26.17 in real-world datasets, indicating that our template-guided MLLM captioning produces more diverse textual descriptions than human annotations.

In the few-shot scenario, textual diversity is moderately reduced, with a vocabulary size of 7,768 words and an average sentence length of 30.71 words. This decrease results from the closer distributional alignment between generated seed person images and the target domain, which limits visual variability and consequently reduces lexical diversity in the MLLM-generated captions. Despite this domain-adaptive specialization, the few-shot captions still maintain greater linguistic richness than manually annotated datasets, confirming the robustness and effectiveness of our template-based captioning strategy across diverse application contexts.

E.2 QUANTITATIVE ANALYSIS OF DATASET DIVERSITY AND IDENTITY CONSISTENCY

To comprehensively evaluate the diversity and identity consistency of our generated dataset, we conduct rigorous quantitative analyses using specialized metrics and established models. For identity consistency assessment, we employ SOLIDER Chen et al. (2023) (Swin-Base Liu et al. (2021)) trained on Market1501 Zheng et al. (2015) to extract global embeddings and compute cosine similarity between image pairs, as traditional face recognition methods are unreliable for TPR datasets due to frequent facial occlusions and blurring. The results show that the IDPG effectively preserves identity, achieving a similarity score of 0.919, closely matching real-data baselines of 0.924 on ICFG and 0.916 on RSTP test sets. This substantially outperforms SPG-only generation (0.886 similar-

Figure A9: Representative examples of the data expanded by the TIPS framework. Each row corresponds to five images and ten image–text pairs belonging to the same identity. The leftmost image with a green border denotes the seed person image, while the four images to its right with blue borders are person images generated by the IDPG. From top to bottom, the four rows respectively illustrate: (1) typical examples of expanded data in the zero-shot setting, (2) examples of expanded data from the CUHK dataset in the few-shot setting, (3) examples from the ICFG dataset in the few-shot setting, and (4) examples from the RSTP dataset in the few-shot setting.

Table A5: Quantitative comparison of background and pose diversity between generated and real data. Background similarity is computed using Alpha-CLIP visual encoders on background masks obtained via MediaPipe segmentation; pose metrics are derived from MediaPipe Pose keypoints with center alignment and normalization.

Data	Background Similarity ↓	Pose Distance ↑	Pose Similarity ↓
CUHK (Real)	0.915	0.326	0.701
Ours (Generated)	0.881	0.323	0.714

ity), where images generated from the same seed prompt diverge under different variation prompts, confirming IDPG’s essential role in maintaining identity across expanded images.

For diversity assessment, we employ dedicated computational frameworks to evaluate background and pose variations. Background similarity is measured by first applying MediaPipe Lugaresi et al. (2019) for person segmentation, followed by Alpha-CLIP Sun et al. (2024) visual encoders on the isolated background regions, with cosine similarity computed between the embeddings. Pose diversity is evaluated using MediaPipe Pose to extract body keypoints, with two complementary metrics: mean Euclidean distance between normalized keypoints (pose distance) and angular similarity between flattened keypoint vectors (pose similarity).

1512 As shown in Table A5, our generated dataset achieves greater background diversity, reflected by a
 1513 substantially lower similarity score (0.881) compared with real CUHK data (0.915). Pose diversity
 1514 remains highly comparable to real data, with pose distances of 0.323 (vs. 0.326) and pose similarities
 1515 of 0.714 (vs. 0.701), computed over 1,000 randomly sampled identity pairs.

1516 These quantitative findings confirm that our framework avoids repetitive background or pose patterns
 1517 while maintaining realistic variation essential for robust TPR training. The MLLM filtering stage
 1518 further reinforces this outcome by explicitly rejecting images lacking sufficient diversity in these
 1519 dimensions.

1520

1521

1522 E.3 VISUAL DEMONSTRATION OF EXPANDED DATA

1523

1524 Figure A9 presents representative examples generated by the TIPS data expansion framework across
 1525 different experimental scenarios. Visual inspection shows that all generated images maintain high
 1526 visual fidelity without exhibiting the common artifacts frequently observed in prior pedestrian image
 1527 generation approaches such as MALS Yang et al. (2023), including facial distortions, disproportional-
 1528 ate body structures, or generally unnatural appearances. This improvement is largely attributed to
 1529 the strict threshold-based filtering enforced by the MLLM.

1530 Moreover, the five images corresponding to each identity display highly reliable identity consistency
 1531 across the TIPS-generated samples. Key appearance characteristics are well preserved across all im-
 1532 ages, while visual quality remains comparable to that of real-world datasets. At the same time, these
 1533 generated images exhibit rich variations in scene context, lighting conditions, poses, and clothing
 1534 attributes, achieving a level of diversity that matches—if not exceeds—manually annotated TPR
 1535 datasets in several aspects.

1536 Comparisons between zero-shot and few-shot expanded datasets show that zero-shot generations
 1537 tend to exhibit greater appearance diversity. This emerges because, in few-shot scenarios, the SPG
 1538 becomes further aligned to the target domain distribution through training, and the LLM-generated
 1539 prompts for seed person creation become more target-domain-specific. As a result, the gener-
 1540 ated images demonstrate stronger stylistic and content alignment with the target domain, leading
 1541 to slightly reduced overall diversity.

1542 This effect is also reflected in the appearance characteristics produced by the SPG. For example,
 1543 in the CUHK few-shot setting, the SPG generates seed person images with a wider spectrum of
 1544 resolutions, including both blurrier and sharper outputs. When the LLM-generated seed prompts
 1545 do not explicitly specify environmental details, the SPG automatically produces backgrounds that
 1546 are naturally consistent with dominant target-domain environments—such as academic building sur-
 1547 roundings in CUHK and parking-lot environments in ICFG and RSTP. Remarkably, after few-shot
 1548 training, the SPG even learns to reproduce domain-specific traits, such as the mosaic face occlusion
 1549 characteristic of ICFG.

1550 During the expansion stage, the IDPG maintains high identity fidelity and facial consistency while
 1551 simultaneously preserving domain characteristics. It also avoids generating backgrounds or poses
 1552 overly similar to those in the seed images, thereby preventing pattern repetition and ensuring natural
 1553 diversity throughout the expanded dataset.

1554 Collectively, these visual examples clearly illustrate why the TIPS-expanded data consistently yields
 1555 stable and significant improvements in retrieval performance across diverse scenarios.

1556

1557

1558 DECLARATION OF THE USE OF LARGE LANGUAGE MODELS (LLMs)

1559

1560 The use of LLMs serves as a general-purpose assist tool throughout the research and writing process.
 1561 Specifically, LLMs are used to generate diverse text prompts for the synthesis of person image
 1562 datasets in the proposed Text-Image Pairs Synthesis (TIPS) framework. These models facilitate the
 1563 creation of textual descriptions, ensuring high diversity and alignment with various datasets, as well
 1564 as helping to filter and refine generated images. However, it is important to note that LLMs do not
 1565 contribute to the ideation, structuring, or overall writing of the research paper. They are not used to
 assist with the formulation of the main concepts, methodology, or results discussed in this paper.

1566 This usage complies with the guidelines set for the responsible use of LLMs, ensuring that the
1567 model's role is clearly outlined and transparent without contributing directly to the core research
1568 ideation or academic writing process.
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619