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ABSTRACT

Multi-view clustering achieves outstanding performance but relies on the assump-
tion of complete multi-view samples. However, certain views may be partially
unavailable due to failures during acquisition or storage, resulting in distribution
shifts across views. Although some incomplete multi-view clustering (IMVC)
methods have been proposed, they still confront the following limitations: 1)
Missing-view data imputation methods increase the unnecessary computational
complexity; 2) Consensus representation imputation methods always ignore the
inter-view distribution bias due to missing views. To tackle these issues, we pro-
pose a novel IMVC based on Debiased and Denoised Projection (DDP-IMVC)
learning. Specifically, it utilizes the unbiased projection learned from complete
views to refine the biased projection learned from data with missing views. Ad-
ditionally, we introduce a robust contrastive learning for consensus projection to
mitigate cluster collapse risk induced by misalignment noise. Comprehensive ex-
periments demonstrate that DDP-IMVC achieves superior performance compared
with state-of-the-art methods.

1 INTRODUCTION

Multi-view clustering (MVC) has achieved significant breakthroughs in the field of unsupervised
learning (Fang et al., 2023; Yan et al., 2024b; Zhang et al., 2024a). Unfortunately, the superior
performance of existing MVC methods largely relies on the assumption of complete cross-view
samples. However, due to failures during data acquisition or storage, partial data in some views may
be unavailable, leading to distributional shifts across views. As a result, existing MVC methods
are inapplicable for incomplete multi-view data. Therefore, the problem of incomplete multi-view
clustering (IMVC) has attracted increasing attention (Xu et al., 2024; Dong et al., 2024; Wan et al.,
2024). The goal of IMVC is to uncover the common clustering patterns hidden in incomplete multi-
view data and to group unlabeled instances into distinct clusters.

Existing IMVC methods can be categorized into two types: traditional methods and deep methods.
Many traditional IMVC methods have achieved notable advances. They typically impute the miss-
ing data and then adopt machine learning techniques to explore cluster information. These methods
can be further divided into three subcategories: kernel-based methods (Liu et al., 2019; 2020), ma-
trix factorization-based methods (Hu & Chen, 2019; Chao et al., 2022), and graph learning-based
methods (Wen et al., 2019; Li et al., 2022). However, the performance of traditional IMVC methods
largely depends on the quality of features. Although they are more interpretable than deep methods,
their representational capacity is often weaker.

Owing to the powerful generalization and representation capabilities of deep neural networks, deep
IMVC methods have achieved outstanding performance. Some prototype-matching-based methods
(Liu et al., 2022; Jin et al., 2023) learn a certain number of prototypes from the available data and
then establish correspondences to recover missing data. However, due to cross-view data hetero-
geneity, networks may produce inconsistent cluster centers, leading to mismatches between samples
and prototypes. Other methods attempt to complete missing views by leveraging the latent features
of cross-view neighbors (Chao et al., 2024; 2025). Nevertheless, these approaches overlook the
global information of samples, which introduces substantial cross-view misalignment noise when
the missing rate is high. Some studies even simply fill in the missing data using the learned consen-
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sus representations (Lin et al., 2022; Yin et al., 2025). Such incorrect correspondences may further
exacerbate distribution shifts and result in erroneous clustering structures.

It can be observed that deep IMVC still encounters two major challenges: 1) Existing methods of-
ten ignore the complementary role of the available views in incomplete samples when learning their
consensus representation. Unfortunately, although a few approaches have considered this issue, they
usually lack effective strategies to mitigate the distribution shifts induced by missing views. 2) Ex-
isting methods tend to simply restore or complete data using the learned consensus representation.
While the consensus representation captures certain cross-view consistencies, the absence of nec-
essary structural consistency constraints inevitably introduces misalignment noise. This, in turn,
exacerbates the risk of clustering collapse.

To address the above issues, we propose a novel strategy based on debiased and denoised projection
learning for incomplete multi-view clustering. The proposed framework is illustrated in Figure 1.
Notably, our consensus learning paradigm is not merely restricted to intra-view or inter-view inter-
actions, but instead enables concurrent interactions across all instances. Specifically, to bridge the
semantic gaps across views, DDP-IMVC optimizes the projections of the common embedding space
by maximizing the mutual information between the consensus projections and the view-specific
embeddings. In practice, we design adaptive projection matrices based on cluster separability to
collaboratively integrate detailed information from all views and to accommodate the influence of
varying degrees of missing instances. In this space, an unbiased projection is introduced through a
refinement strategy to correct biased projections, thereby constructing robust consensus projections.
Furthermore, to overcome the heterogeneity in IMVC and inconsistencies of consensus projections,
DDP-IMVC employs a denoised contrastive strategy to reduce the risk of clustering collapse. Fi-
nally, the data are recovered through the matched consensus projections. Our main contributions
can be summarized as follows:

• We propose an innovative incomplete multi-view clustering framework, i.e., DDP-IMVC,
which employs unbiased projection to correct and refine the distribution shifts of the biased
projection.

• To alleviate the cluster collapse problem induced by misalignment noise, we adopt a ro-
bust contrastive constraint based on consensus projections. This approach facilitates the
generation of common embedding projections.

• We analyze the robustness of DDP-IMVC from both theoretical and experimental perspec-
tives. Extensive experiments demonstrate that under varying missing rates, DDP-IMVC
significantly outperforms state-of-the-art methods across four datasets.

2 RELATED WORK

2.1 MULTI-VIEW CLUSTERING

MVC groups samples with similar feature patterns into the same cluster by integrating feature in-
formation from different views (Yang & Wang, 2018; Zhou et al., 2024). Deep autoencoders, as
powerful feature extraction tools, have been widely applied in MVC. To address the inconsistency
between discrete clustering information and continuous visual information, Xu et al. (2021) employs
a variational autoencoder to learn disentangled representations. MFLVC relies on an autoencoder to
learn latent features at different levels to mine common semantics (Xu et al., 2022b). However, these
methods struggle to eliminate the interference of private information and noise during consistent in-
formation extraction. Yan et al. (2024a) proposes a novel variational autoencoder under information
bottleneck theory to preserve clustering information. Unlike the above approaches that optimize
reconstruction loss to learn latent features, Xie et al. (2020) constructs a multi-view joint cluster-
ing network using stacked autoencoders, convolutional autoencoders, and variational autoencoders
to capture precise multi-view features. Trosten et al. (2021); Tang & Liu (2022) employ encoding
networks to extract view-specific features while maintaining cluster compactness through clustering
constraints. Moreover, for real-world multi-view data with missing views, the above methods often
struggle to uncover accurate data representations. Therefore, uncovering accurate clustering patterns
in incomplete multi-view data has become an important research direction.
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2.2 INCOMPLETE MULTI-VIEW CLUSTERING

In recent years, IMVC has achieved significant breakthroughs. Generally, deep IMVC methods
can be divided into four categories: 1)Prediction-based methods. Lin et al. (2021; 2022) predict
the missing data with the predictor to leverage the available data across views, with the goal of
minimizing the conditional entropy. 2) Adversarial network-based methods. Wang et al. (2021) ex-
plicitly generates missing view data through generative adversarial networks (GANs) and integrates
multi-view information to achieve efficient clustering. Wang et al. (2023) proposes a self-supervised
framework that combines GANs with dual contrastive learning, exploiting the hidden information
in incomplete data. 3)Prototype-based methods. Dai et al. (2025) proposes an IMVC framework
in a common semantic space based on consensus semantics without data completion or alignment.
Yuan et al. (2025) introduces a robust prototype contrastive strategy to handle overfitting caused by
prototype misalignment. 4)Neighborhood-based methods. Tang & Liu (2022) dynamically updates
neighbors based on learned semantic features, avoiding the interference of low-quality samples dur-
ing data completion. Chao et al. (2024) constructs a neighbor-sample adjacency matrix and adopts
graph neural networks (GNNS) to complete missing samples. Pu et al. (2024) constructs a latent
graph to preserve topological information for the dynamic imputation of missing embedded features.
Chao et al. (2025) adaptively completes missing representations by integrating intra-view local re-
lationships and cross-view global relationships through GCNs. Despite their effectiveness, most
IMVC methods ignore the potential inter-view distribution bias due to missing views.

3 METHODOLOGY

3.1 NOTATIONS

Given a multi-view dataset X = {Xv ∈ RN×Dv}Vv=1, consisting of N samples, each represented by
V views of dimensionality Dv . There are Nu complete samples with all views and Nb samples with
missing values. Let the complete samples be denoted as {Xv

C}Vv=1, and the samples with missing
views be denoted as {Xv

I }Vv=1. A complete view indicator matrix M ∈ {0, 1}N×V indicates the
positions of missing views. Miv is set to 1 if the i-th sample in the v-th view is observed; otherwise,
it indicates a missing view. It is assumed that no sample is missing in all views simultaneously, i.e.,
∀i ∈ {1, . . . , N},

∑V
v=1 Miv ≥ 1. The task is to cluster these N samples with potentially missing

views into K clusters.
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Figure 1: The architecture of our proposed DDP-IMVC framework. (a) Independent autoencoders
are employed for each view to extract deep features. (b) The deep features are adaptively projected
in a consensus embedding space to bridge the semantic gaps across views. (c) An attention-based
refinement strategy is employed to optimize the biased projection introduced by the incomplete
sample. (d) A denoised consensus projection contrastive strategy is adopted to alleviate the risk of
clustering collapse.
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3.2 VIEW-SPECIFIC RECONSTRUCTION

Considering that the data across different views are mostly heterogeneous and differently distributed,
we provide independent autoencoders for each view to alleviate clustering instability on the man-
ifold structure in high-dimensional space (Hinton & Salakhutdinov, 2006; Guo et al., 2017). An
autoencoder Ev

θ (·) is used to learn the embedding of the sample:

Zv = Ev
θ (X

v), (1)

where Zv ∈ RN×d denotes the embedding of the v-th view in the d-dimensional embedding space.
θ represents the learnable parameters of the autoencoder. Then, we reconstruct the embedding Zv

into X̂v ∈ RN×Dv with the decoder Dv
ϕ(·), as follows:

X̂v = Dv
ϕ(Z

v), (2)

where ϕ denotes the learnable parameters of the decoder. The reconstruction loss across all views
can be expressed as follows:

LREC =

V∑
v=1

||Xv − X̂v||22. (3)

3.3 UNBAISED REFINEMENT FOR DEBIASED PROJECTION

Multi-view complementary information can enhance cluster separability, making single-view insep-
arable clusters linearly separable (Zhang et al., 2024b; Dai et al., 2025). Moreover, in the common
embedding space, the view-specific projections share consistent semantics, allowing each sample to
be represented by the projection from any view. Accordingly, we extract common representations
through an adaptive projection matrix.

Variance reflects sample deviation from the mean along a certain dimension, with well-separated
clusters exhibiting high value (Xu et al., 2023). We leverage the variance to assess the separability
of clusters and compute an adaptive projection matrix W ∈ RN×V that preserves the clustering
information of views with well-defined cluster structures:

Wiv =
Var(Zv

C)∑V
v′=1 Miv′Var(Zv′

C )
, (4)

where Wiv denotes the projection weight of the i-th sample in the v-th view. Var(·) represents the
variance operator. The mask Miv′ allows the projection matrix to adapt to randomly missing data.
Zv = [Zv

I ;Z
v
C] denotes embedding representations of the complete samples and incomplete samples

in the v-th view. Based on the projection matrix W, the samples are mapped to the view-shared
common embeddings Z ∈ RN×d.

zi =

V∑
v=1

Wivz
v
i . (5)

where zi ∈ Z denotes the projection of the i-th sample from all views.

The random missing of sample views can cause distribution shifts and lower clustering separability.
To address this, we innovatively propose an attention-based complementarity refinement (Vaswani
et al., 2017). The core idea is to compute the similarity between the biased projections zbi and
unbiased projections zui as sample affinity attention weights A. It extracts the unbiased projection
most compatible with the missing samples to correct the distribution shifts.

Biased projections are defined as those corresponding to samples with missing views, while unbiased
projections correspond to samples with all views complete:

Zu = Z
[
{ i |

V∏
v=1

Miv = 1 }, :
]
, (6)

Zb = Z
[
{ i |

V∏
v=1

Miv = 0 }, :
]
. (7)
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Then, by comparing the biased projections with the high-quality unbiased projections, the corre-
sponding affinity attention weights are computed:

A(l) = Softmax

ZbW
(l)
Q

(
ZuW

(l)
K

)⊤

√
d/L

 , l = 1, 2, ..., L (8)

where WQ and WK denote learnable parameters. L denotes the number of attention heads. d
denotes the dimension of the projection Z. Based on the affinity attention weights, the unbiased
projections can be used to correct the data shifts present in the biased projections. Finally, the
results from all attention heads are concatenated to obtain the the corrective features in the common
embedding space:

B(l) = A(l)(ZuW
(l)
R ), (9)

B = [B(1), ...,B(L)], (10)
where WR denotes learnable parameters. Then we incorporate the information of corrective features
B into the biased projections to obtain shift-corrected consensus projections S ∈ RN×d:

S = [Zu;Zb] + [0;B], (11)

where 0 denotes an all-zero matrix with the same dimensions as Zu. Clearly, correcting the distribu-
tion shifts caused by missing data lies in the high-quality common projected embeddings. Accurate
projections of multi-view features require exploiting the correlation between the view-specific fea-
tures and the projected embeddings. A natural idea is to maximize the mutual information (Lin et al.,
2021) between unbiased projections and embeddings under each view. Specifically, we regard the
unbiased projections as the anchor of the embeddings under each view, and sequentially maximize
the mutual information between the anchor and a specific view with the following loss function:

LMMI = −
V∑

v=1

(I(Zu,Zv
C) + α (H(Zu) +H(Zv

C))) , (12)

where α serves as the entropy regularization coefficient. I(·) denotes mutual information, and H(·)
denotes information entropy, which can be computed as follows:

H(X) = −
∑
x

p(x) log p(x), (13)

I(X;Y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
. (14)

where p(x) denotes the probability distribution of the random variable X, and p(x, y) denotes the
joint distribution of the random variables X and Y.

Since the consensus projections capture both the inherent information of the incomplete samples and
the clustering information of the affiliated complete sample set, restoring embedding with consensus
projections can effectively ensure the integrity of the sample structure and the consistency of the
distribution. Therefore, we complete the missing-view embeddings from consensus projections by:

Sv = Zv + (1− M̃v)⊙ S, (15)

where ⊙ denotes the element-wise multiplication. Sv denotes the embeddings after completion in
the v-th view. We take the v-th column of matrix M ∈ RN×V as mv ∈ RN×1 that indicates
the missing samples in the v-th view and expand it into M̃v ∈ RN×d by replicating mv d times.
Finally, we project the completed embeddings Sv into S′ via the variance projection matrix, which
is constructed by leveraging the variance of the embeddings from each view.

3.4 DUAL CONTRASTIVE LEARNING FOR DENOISED PROJECTION

3.4.1 INTER-VIEW CONTRASTIVE LEARNING

To overcome the heterogeneity in incomplete multi-view learning, we construct positive pairs from
the same instance across views and negative pairs from different instances. Contrastive learning

5
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maximizes the positive-pair correlation while minimizing that of negative pairs. The contrastive
learning loss across all views is:

Lc = −
V∑

v=1

V∑
k=1,
v ̸=k

N∑
i=1

log
exp

(
sim

(
svi , s

k
i

)
/τ

)∑N
j=1,j ̸=i exp

(
sim

(
svi , s

k
j

)
/τ

) , (16)

where svi and skj denote the representations from v-th view and k-th view. sim(·) is cosine similarity.
τ represents the temperature coefficient.

3.4.2 ROBUST CONTRASTIVE LEARNING

To prevent cluster collapse after completing missing views with consensus projections, it is nec-
essary to impose constraints between the consensus projections and the recovered samples. A
conventional approach is to apply contrastive learning between them. Although consensus projec-
tions capture the consistency of the data distribution, the completion process inevitably introduces
potential noise. Conventional contrastive learning’s strong focus on hard samples can exacerbate
noise-induced overfitting. Inspired by Yuan et al. (2024), we employ a denoised contrastive learning
between consensus projection S and each view projection Sv to enhance the robustness of consensus
projections against noise.

Set f(si, sj) =
exp(sim(si,sj)/τ)∑N

n=1 exp(sim(si,sn)/τ)
, and thus

∑N
j=1 f(si, sj) = 1. For the general form of

InfoNCE, its power series expansion over the interval [0, 1] is:

LInfo = − 1

N

V∑
v=1

N∑
i=1

log
exp (sim(si, s

v
i )/τ)∑N

n=1 exp (sim(si, svn)/τ)

=
1

N

V∑
v=1

N∑
i=1

[
(1− f(si, s

v
i )) +

(1− f(si, s
v
i ))

2

2
+ ...+

(1− f(si, s
v
i ))

c

c
+ ...

]

=
1

N

V∑
v=1

N∑
i=1

[
1

2
(2− 2f(si, s

v
i )) +

(1− f(si, s
v
i ))

2

2
+ ...+

(1− f(si, s
v
i ))

c

c
+ ...

]

=
1

N

V∑
v=1

N∑
i=1

[
1

2
||ei − fi||1 +

(1− f(si, s
v
i ))

2

2
+ ...+

(1− f(si, s
v
i ))

c

c
+ ...

]

=
1

2N

V∑
v=1

N∑
i=1

||ei − fi||1 +
1

N

V∑
v=1

N∑
i=1

∞∑
c=1

(1− f(si, s
v
i ))

c

c

(17)

where ei denotes the one-hot encoding whose i-th element is 1; fi is a vector whose the j-th element
is f(si, s

v
i ). It can be seen that, after expanding InfoNCE into an infinite series, the first term

is exactly the Mean Absolute Error (MAE) loss, which is proven to be robust to noise (Ghosh
et al., 2015; 2017). However, MAE loss treats each sample equally. The infinite terms can provide
differentiated attention to samples but are sensitive to noise. Therefore, we can construct a robust
contrastive loss by truncating part of the infinite series to maintain a balance between MAE loss and
InfoNCE loss, which is adjusted by a truncation coefficient C. Specifically, we take the first C terms
of the infinite series and obtain the robust contrastive loss as follows:

Lr =
1

N

V∑
v=1

N∑
i=1

C∑
c=1

(1− f(si, s
v
i ))

c

c
, (18)

Its significance lies in that it transforms the unbounded amplification of − log f(si, s
v
i ) for hard sam-

ples into a bounded approximation, balancing positive sample discrimination and noise suppression.
Adjusting the truncation coefficient C allows tuning between cluster collapse and noise robustness.

Finally, the dual contrastive loss is:
LDCL = Lc + Lr. (19)
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Algorithm 1 DDP for Incomplete Multi-view Clustering

1: Input: Incomplete multi-view dataset X = {Xv}Vv=1 for all N samples, Training epoch E,
Hyper-parameter λ1, λ2, α, and C.

2: Construct the complete view indicator matrix M ∈ RN×V .
3: while Not reaching epochs E do
4: Calculate the embedding representation {Zv}Vv=1 by Eq.(1).
5: Calculate the projection embedding Z by Eq.(5).
6: Correct the shifts to obtain consensus projections S by Eq.(11).
7: Impute the each view embeddings Sv by Eq.(15).
8: Compute the clustering-friendly representation S′ with the imputed embeddings.
9: Optimize the total loss function Lall by Eq.(20).

10: end while
11: Perform k-means clustering algorithm on S′.
12: Output: K clusters for N samples.

3.5 THE OBJECTIVE FUNCTION

Overall, the total loss function of our method consists of three parts are formulated as:

Lall = LREC + λ1LMMI + λ2LDCL. (20)

λ1 and λ2 are trade-off parameters. LREC is the autoencoder reconstruction loss. LMMI is the maxi-
mum mutual information loss, used to enhance the common cluster information. LDCL is the robust
contrastive loss that mitigates heterogeneity in incomplete multi-view learning and prevents cluster
collapse. Finally, K-means is performed on S

′ ∈ RN×d to obtain K clusters.

4 EXPERIMENTS

4.1 DATASETS

We conducted experiments on four representative datasets. The datasets are: HandWritten (LeCun
et al., 1989) comprises 2,100 samples belonging to 10 categories corresponding to digits from 0 to
9. We employ three distinct features Pixel, Fourier and Profile for analysis. Scene-15 (Fei-Fei &
Perona, 2005) consists of 15 categories with a total of 4,485 samples. GIST, PHOG, and LBP are
selected as three views in our experiments. ALOI-100 (Geusebroek et al., 2005) contains 10,800
object images belonged to 100 categories. We extract HSB, RGB, Colorsim, and Haralick features
to construct multi-view data. LandUse-21 (Yang & Newsam, 2010) comprises 2,100 samples be-
longing to 21 categories corresponding to different land-use scene categories. GIST, PHOG and
LBP are used for analysis. To evaluate the performance of our approach, we employ three standard
metrics: Accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI).

4.2 COMPARE METHOD

DDP-IMVC is compared with nine SOTA methods. Fusion-kmeans clusters the mean-fused fea-
tures with k-means. Completer (Lin et al., 2021) predicts missing views by minimizing conditional
entropy. DIMVC (Xu et al., 2022a) proposes a no-imputation framework that maps data to reveal
linear separability. DSIMVC (Tang & Liu, 2022) completes views by dynamically mining seman-
tic features of neighbors. DCP (Lin et al., 2022) learns consistent representations via dual con-
trastive learning under the information-theoretic framework. ProImp (Li et al., 2023) recover data
by learning prototypes with dual attention layers. APADC (Xu et al., 2023) achieves imputation-
free stragedy through adaptive projection and distribution alignment. ICMVC (Chao et al., 2024)
completes missing views with GNNs and aligns distributions through high confidence guidance.
GHICMC (Chao et al., 2025) employs cascaded GNNs to enable global graph propagation and
hierarchical information transfer.
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Table 1: Clustering results of all methods on four datasets. The best and second-best results are
highlighted with bold and underline, respectively.

Missing rates 0.1 0.3 0.5 0.7
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

L
an

dU
se

-2
1

Fusion-kmeans 20.45 25.42 8.62 16.41 17.48 5.51 12.86 12.58 2.77 11.45 9.81 1.38
Completer(2021) 26.40 32.48 13.93 26.96 32.64 12.09 21.36 26.27 9.34 24.43 29.01 10.31
DIMVC(2022) 24.63 30.04 10.58 23.69 29.94 10.01 22.40 27.78 9.38 21.77 26.14 7.91

DSIMVC(2022) 18.47 19.34 5.58 17.95 18.47 5.16 18.13 18.53 5.26 17.90 17.97 5.11
DCP(2023) 26.78 30.87 13.80 27.08 30.69 13.80 23.07 27.00 11.31 25.18 28.04 12.00

ProImp(2023) 22.38 23.79 8.76 19.53 20.55 6.86 20.30 21.94 7.32 15.10 15.48 4.00
APADC(2023) 22.75 31.90 9.50 18.08 24.72 7.22 15.67 21.23 5.61 15.11 20.08 4.84
ICMVC(2024) 28.18 31.78 15.14 25.77 29.39 12.69 25.98 27.74 11.92 22.26 24.95 9.31

GHICMC(2025) 26.86 31.14 12.81 25.72 29.26 11.32 25.15 28.57 11.26 23.53 26.55 9.72
Ours 28.21 34.68 14.93 28.02 33.49 14.27 27.14 31.89 13.24 25.36 28.09 10.67

Sc
en

e-
15

Fusion-kmeans 34.20 34.84 20.93 22.39 23.60 12.80 17.54 17.31 7.88 14.90 13.54 4.29
Completer(2021) 40.28 42.50 23.13 40.12 42.93 23.96 39.12 41.79 22.98 38.05 40.22 21.84
DIMVC(2022) 32.95 27.41 15.61 33.51 29.42 16.75 30.65 25.21 13.64 29.58 24.11 12.85

DSIMVC(2022) 27.65 29.74 14.11 26.73 29.36 13.94 26.40 28.03 13.04 25.31 27.04 12.43
DCP(2023) 38.54 42.39 23.33 40.49 43.10 24.14 39.50 42.35 23.51 38.55 40.57 21.72

ProImp(2023) 40.74 42.14 24.00 41.69 43.03 25.28 40.28 41.80 23.89 39.96 40.35 22.92
APADC(2023) 43.70 44.20 26.00 41.80 43.10 24.30 39.90 42.40 23.80 38.50 41.10 22.80
ICMVC(2024) 38.78 36.62 21.84 37.40 34.94 20.60 31.35 27.91 14.98 25.31 23.88 11.33

GHICMC(2025) 41.26 43.21 24.95 40.98 43.13 25.05 40.91 42.29 24.64 38.79 40.94 22.92
Ours 46.16 47.62 28.69 45.53 45.99 28.05 44.35 43.67 26.79 42.12 41.20 24.73

H
an

dW
ri

tt
en

Fusion-kmeans 41.70 47.59 34.22 36.28 38.76 21.46 29.64 28.51 11.54 25.69 22.14 6.58
Completer(2021) 83.22 82.47 73.59 75.38 77.55 61.69 74.05 76.13 58.89 78.55 76.07 68.67
DIMVC(2022) 67.13 63.17 53.16 59.43 56.49 43.19 54.80 50.50 30.76 43.82 41.54 23.80

DSIMVC(2022) 84.35 80.32 74.38 85.64 80.71 75.94 84.73 78.82 74.13 82.71 75.35 69.85
DCP(2023) 53.35 65.72 35.60 51.96 63.88 31.49 59.06 65.07 36.51 60.97 60.53 29.90

ProImp(2023) 83.20 80.29 74.17 84.24 77.75 72.60 78.16 70.79 63.96 80.31 68.85 62.92
APADC(2023) 67.43 65.34 47.18 68.95 67.28 45.98 68.85 68.61 56.43 61.77 61.97 48.26
ICMVC(2024) 83.16 81.33 74.78 82.01 79.62 72.22 75.13 71.99 63.19 72.47 70.01 59.71

GHICMC(2025) 96.19 92.14 92.89 96.11 91.32 90.83 94.88 89.16 89.10 92.73 85.85 84.71
Ours 96.38 92.23 91.99 96.15 91.49 91.21 94.34 88.38 87.87 90.86 82.65 81.92

A
L

O
I-

10
0

Fusion-kmeans 52.37 72.31 40.79 30.63 55.28 16.10 22.48 47.33 7.46 17.39 41.82 4.94
Completer(2021) 48.19 77.96 44.25 43.03 72.43 36.73 36.16 66.89 26.52 34.55 64.06 24.97
DIMVC(2022) 71.86 84.99 61.79 68.52 82.15 58.31 64.80 78.53 51.36 61.64 75.33 47.25

DSIMVC(2022) 38.76 67.49 29.71 38.89 66.00 29.12 39.32 64.42 28.53 35.98 61.28 25.16
DCP(2023) 51.85 74.88 42.73 47.38 70.54 38.38 42.37 66.30 32.36 36.02 60.75 25.40

ProImp(2023) 68.39 83.47 62.08 45.98 73.01 38.53 32.71 65.74 24.76 29.23 62.08 19.46
APADC(2023) 47.40 68.92 35.02 38.95 62.27 26.10 32.78 58.16 20.10 26.02 53.91 14.11
ICMVC(2024) 68.02 80.78 56.64 68.14 80.40 55.94 67.68 78.92 53.92 49.15 70.50 38.45

GHICMC(2025) OOM OOM OOM OOM
Ours 76.02 88.35 67.82 73.18 85.82 64.36 69.87 82.34 58.09 66.94 78.60 53.20

Table 2: Ablation study results on LandUse21 and Scene-15 datasets with missing rate 0.3.

Datasets LandUse21 Scene-15
LREC LMMI FDCL ACC NMI ARI ACC NMI ARI
✓ ✓ 17.54 22.97 6.08 36.06 43.69 21.88
✓ ✓ 24.16 26.09 11.06 41.96 40.00 25.94
✓ 16.78 17.96 5.63 21.53 21.61 11.48
✓ ✓ ✓ 28.02 33.49 14.27 45.53 45.99 28.05

4.3 EXPERIMENTAL SETTINGS

We adopt Adam to optimize our framework DDP-IMVC and all the experiments are conducted in
PyTorch 1.13.1 on Windows with an NVIDIA 4070 SUPER GPU. The dimensions of encoders are
Dv–1024–1024–1024–128. The decoder is symmetric to its corresponding encoder. The number of
heads L in multi-head attention is set to 4. The entropy regularization coefficient α is set to 10, and
the truncation coefficient C is set to 9.

4.4 INCOMPLETE MULTI-VIEW CLUSTERING PERFORMANCE

Table 1 reports the incomplete multi-view clustering results of all methods under different missing
rates. It shows that DDP-IMVC can effectively handle high missing rates and large-scale issues in
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Figure 2: Parameter sensitivity analysis on Scene-15 with the missing rate 0.3.
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Figure 3: The convergence analysis on all datasets with the missing rate 0.3.

Fusion kmeans Completer DIMVC DSIMVC DCP

ProImp APADC ICMVC GHICMC Ours

Figure 4: The visualization results of HandWritten dataset in all methods with a missing rate of 0.5.

IMVC. From the perspective of effectiveness, our method significantly outperforms SOTA methods
across four datasets. For example, in Scene-15 dataset, ACC, NMI, and ARI outperform the second-
best method, APADC, by an average of 3.56%, 1.92%, and 2.86%, respectively. We notice that when
the missing rate is 0.5 and 0.7, DDP-IMVC performs slightly worse than GHICMC. We attribute
this to the simplicity of the HandWritten dataset, where inter-class features are singular. Under high
missing rates, it is suitable to use cascade graphs for data recovery. For other complex datasets,
GHICMC shows a significant performance drop. More critically, its high memory consumption
prevents it from handling large-scale datasets. From the perspective of robustness, DDP-IMVC can
still maintain a high level of performance under a high missing rate. Moreover, unlike some methods
whose performance drops sharply, DDP-IMVC remains stable even as the missing rate increases.

4.5 MODEL DISCUSSION

1) Ablation Study: To investigate the importance of each component, we conducted an ablation
study on our DDP-IMVC framework using LandUse21 and Scene-15 datasets under a missing rate
of 0.3. As shown in Table 2, removing the attention correction mechanism for the learned consensus
projection (LMMI) or the robust contrastive learning (LDCL) leads to suboptimal performance. When
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Figure 5: The variation trend of the loss and its gradient.

all strategies are applied together, we achieve the best results. The experimental findings demonstrate
that the attention correction mechanism can refine the distribution of biased projections, while the
robust contrastive learning enhances the consistency of consensus projections and alleviates the risk
of cluster collapse.

2) Parameter Analysis: Our objective loss mainly involves two trade-off parameters, λ1 and λ2. To
verify their effectiveness, we conducted a parameter analysis by setting both parameters in the range
from 10−4 to 10. As shown in Figure 2, excessively high or low parameter values are unfavorable
for clustering. Based on our parameter experiments, we recommend setting the parameter range
between 1 and 10.

3) Convergence Analysis: Meanwhile, to better verify the convergence and robustness of our model,
we observed the convergence performance of all datasets under a 0.3 missing rate. As shown in the
Figure 3, the total loss function involved in our training achieved excellent convergence. With the
increase in training epochs, various metrics for evaluating clustering also tended to converge.

4) Visualization Analysis: As shown in Figure 4, with a missing rate of 0.5, we visualized the
distribution of common embedding of all methods on the HandWritten dataset using t-SNE. Through
the correction of the distribution shift of missing samples during the imputation process by DDP-
IMVC, our method is facilitated to discover the common clustering patterns of all views in the
common embedding space.

5) Discussion of Robust Contrastive Loss: In Figure 5, we plot the InfoNCE loss and the loss
function in Equation (18), as well as their gradients. As described in Section 4.5, the single-sample
InfoNCE function is Lr = − log f , with gradient ∂Lr

∂f = − 1
f . The function in Equation (18)

is L =
∑C

c=1
(1−f)c

c , with gradient ∂Lr

∂f = −
∑C

c=1 (1− f)c−1. When C = 1, the gradient of
Equation (18) is −1, indicating that it treats all samples equally, equivalent to MAE. When C → ∞,
it degenerates to InfoNCE, giving excessively high attention to noisy samples. Our loss gradient
is smaller than MAE, which indicates that our loss can assign different attention levels to different
samples, improving training efficiency. It is larger than InfoNCE and has an upper bound, indicating
that our loss prioritizes clean samples, mitigating the issue of excessive attention to hard samples,
thereby enhancing robustness.

5 CONCLUSION

In this work, we propose a consensus projection refinement strategy for IMVC to address data shift
and misalignment noise introduced by missing views. An adaptive feature projection constructs a
common embedding space. Within this space, unbiased projections correct the distribution of biased
projections through an attention mechanism to form robust consensus embeddings. In addition, we
employ a denoise contrastive strategy to prevent cluster collapse that may occur when completing
missing views in the consensus projections. The effective synergy of these two strategies enables
DDP-IMVC to achieve strong performance across most complex IMVC tasks.
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