

# DEBIASED AND DENOISED PROJECTION LEARNING FOR INCOMPLETE MULTI-VIEW CLUSTERING

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
190

054       sus representations (Lin et al., 2022; Yin et al., 2025). Such incorrect correspondences may further  
 055       exacerbate distribution shifts and result in erroneous clustering structures.  
 056

057       It can be observed that deep IMVC still encounters two major challenges: 1) Existing methods of-  
 058       ten ignore the complementary role of the available views in incomplete samples when learning their  
 059       consensus representation. Unfortunately, although a few approaches have considered this issue, they  
 060       usually lack effective strategies to mitigate the distribution shifts induced by missing views. 2) Ex-  
 061       isting methods tend to simply restore or complete data using the learned consensus representation.  
 062       While the consensus representation captures certain cross-view consistencies, the absence of nec-  
 063       essary structural consistency constraints inevitably introduces misalignment noise. This, in turn,  
 064       exacerbates the risk of clustering collapse.

065       To address the above issues, we propose a novel strategy based on debiased and denoised projection  
 066       learning for incomplete multi-view clustering. The proposed framework is illustrated in Figure 1.  
 067       Notably, our consensus learning paradigm is not merely restricted to intra-view or inter-view inter-  
 068       actions, but instead enables concurrent interactions across all instances. Specifically, to bridge the  
 069       semantic gaps across views, DDP-IMVC optimizes the projections of the common embedding space  
 070       by maximizing the mutual information between the consensus projections and the view-specific  
 071       embeddings. In practice, we design adaptive projection matrices based on cluster separability to  
 072       collaboratively integrate detailed information from all views and to accommodate the influence of  
 073       varying degrees of missing instances. In this space, an unbiased projection is introduced through a  
 074       refinement strategy to correct biased projections, thereby constructing robust consensus projections.  
 075       Furthermore, to overcome the heterogeneity in IMVC and inconsistencies of consensus projections,  
 076       DDP-IMVC employs a denoised contrastive strategy to reduce the risk of clustering collapse. Fi-  
 077       nally, the data are recovered through the matched consensus projections. Our main contributions  
 078       can be summarized as follows:  
 079

- We propose an innovative incomplete multi-view clustering framework, i.e., DDP-IMVC, which employs unbiased projection to correct and refine the distribution shifts of the biased projection.
- To alleviate the cluster collapse problem induced by misalignment noise, we adopt a robust contrastive constraint based on consensus projections. This approach facilitates the generation of common embedding projections.
- We analyze the robustness of DDP-IMVC from both theoretical and experimental perspectives. Extensive experiments demonstrate that under varying missing rates, DDP-IMVC significantly outperforms state-of-the-art methods across four datasets.

## 090       2 RELATED WORK

### 092       2.1 MULTI-VIEW CLUSTERING

094       MVC groups samples with similar feature patterns into the same cluster by integrating feature in-  
 095       formation from different views (Yang & Wang, 2018; Zhou et al., 2024). Deep autoencoders, as  
 096       powerful feature extraction tools, have been widely applied in MVC. To address the inconsistency  
 097       between discrete clustering information and continuous visual information, Xu et al. (2021) employs  
 098       a variational autoencoder to learn disentangled representations. MFLVC relies on an autoencoder to  
 099       learn latent features at different levels to mine common semantics (Xu et al., 2022b). However, these  
 100       methods struggle to eliminate the interference of private information and noise during consistent in-  
 101       formation extraction. Yan et al. (2024a) proposes a novel variational autoencoder under information  
 102       bottleneck theory to preserve clustering information. Unlike the above approaches that optimize  
 103       reconstruction loss to learn latent features, Xie et al. (2020) constructs a multi-view joint cluster-  
 104       ing network using stacked autoencoders, convolutional autoencoders, and variational autoencoders  
 105       to capture precise multi-view features. Trosten et al. (2021); Tang & Liu (2022) employ encoding  
 106       networks to extract view-specific features while maintaining cluster compactness through clustering  
 107       constraints. Moreover, for real-world multi-view data with missing views, the above methods often  
 108       struggle to uncover accurate data representations. Therefore, uncovering accurate clustering patterns  
 109       in incomplete multi-view data has become an important research direction.

108  
109

## 2.2 INCOMPLETE MULTI-VIEW CLUSTERING

110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126

In recent years, IMVC has achieved significant breakthroughs. Generally, deep IMVC methods can be divided into four categories: 1) Prediction-based methods. Lin et al. (2021; 2022) predict the missing data with the predictor to leverage the available data across views, with the goal of minimizing the conditional entropy. 2) Adversarial network-based methods. Wang et al. (2021) explicitly generates missing view data through generative adversarial networks (GANs) and integrates multi-view information to achieve efficient clustering. Wang et al. (2023) proposes a self-supervised framework that combines GANs with dual contrastive learning, exploiting the hidden information in incomplete data. 3) Prototype-based methods. Dai et al. (2025) proposes an IMVC framework in a common semantic space based on consensus semantics without data completion or alignment. Yuan et al. (2025) introduces a robust prototype contrastive strategy to handle overfitting caused by prototype misalignment. 4) Neighborhood-based methods. Tang & Liu (2022) dynamically updates neighbors based on learned semantic features, avoiding the interference of low-quality samples during data completion. Chao et al. (2024) constructs a neighbor-sample adjacency matrix and adopts graph neural networks (GNNs) to complete missing samples. Pu et al. (2024) constructs a latent graph to preserve topological information for the dynamic imputation of missing embedded features. Chao et al. (2025) adaptively completes missing representations by integrating intra-view local relationships and cross-view global relationships through GCNs. Despite their effectiveness, most IMVC methods ignore the potential inter-view distribution bias due to missing views.

127

## 3 METHODOLOGY

128  
129  
130  
131

## 3.1 NOTATIONS

132  
133  
134  
135  
136  
137  
138  
139  
140

Given a multi-view dataset  $\mathcal{X} = \{\mathbf{X}^v \in \mathbb{R}^{N \times D_v}\}_{v=1}^V$ , consisting of  $N$  samples, each represented by  $V$  views of dimensionality  $D_v$ . There are  $N_u$  complete samples with all views and  $N_b$  samples with missing views. Let the complete samples be denoted as  $\{\mathbf{X}_C^v\}_{v=1}^V$ , and the samples with missing views be denoted as  $\{\mathbf{X}_I^v\}_{v=1}^V$ . A complete view indicator matrix  $\mathbf{M} \in \{0, 1\}^{N \times V}$  indicates the positions of missing views.  $\mathbf{M}_{iv}$  is set to 1 if the  $i$ -th sample in the  $v$ -th view is observed; otherwise, it indicates a missing view. It is assumed that no sample is missing in all views simultaneously, i.e.,  $\forall i \in \{1, \dots, N\}, \sum_{v=1}^V \mathbf{M}_{iv} \geq 1$ . The task is to cluster these  $N$  samples with potentially missing views into  $K$  clusters.

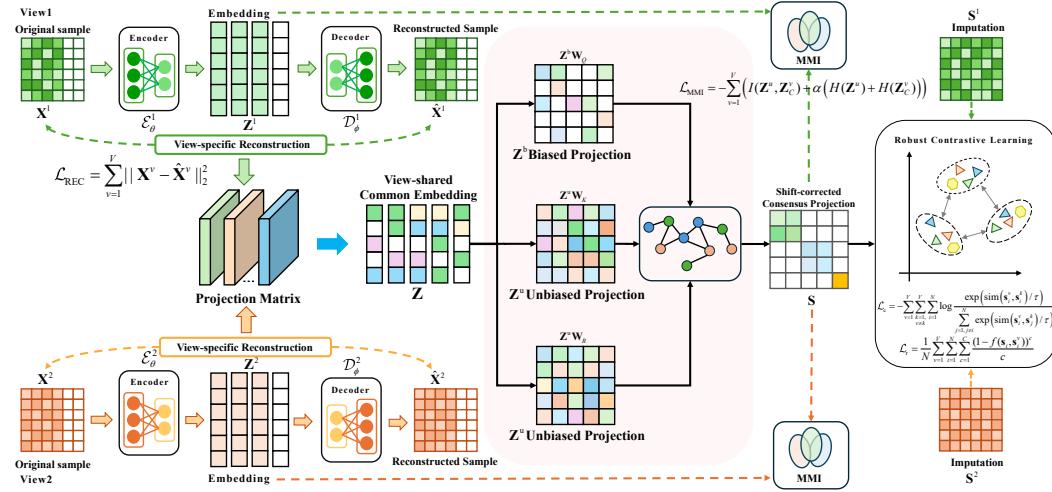
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156157  
158  
159  
160  
161

Figure 1: The architecture of our proposed DDP-IMVC framework. (a) Independent autoencoders are employed for each view to extract deep features. (b) The deep features are adaptively projected in a consensus embedding space to bridge the semantic gaps across views. (c) An attention-based refinement strategy is employed to optimize the biased projection introduced by the incomplete sample. (d) A denoised consensus projection contrastive strategy is adopted to alleviate the risk of clustering collapse.

162 3.2 VIEW-SPECIFIC RECONSTRUCTION  
163

164 Considering that the data across different views are mostly heterogeneous and differently distributed,  
165 we provide independent autoencoders for each view to alleviate clustering instability on the man-  
166 ifold structure in high-dimensional space (Hinton & Salakhutdinov, 2006; Guo et al., 2017). An  
167 autoencoder  $\mathcal{E}_\theta^v(\cdot)$  is used to learn the embedding of the sample:

$$168 \quad \mathbf{Z}^v = \mathcal{E}_\theta^v(\mathbf{X}^v), \quad (1)$$

170 where  $\mathbf{Z}^v \in \mathbb{R}^{N \times d}$  denotes the embedding of the  $v$ -th view in the  $d$ -dimensional embedding space.  
171  $\theta$  represents the learnable parameters of the autoencoder. Then, we reconstruct the embedding  $\mathbf{Z}^v$   
172 into  $\hat{\mathbf{X}}^v \in \mathbb{R}^{N \times D_v}$  with the decoder  $\mathcal{D}_\phi^v(\cdot)$ , as follows:

$$173 \quad \hat{\mathbf{X}}^v = \mathcal{D}_\phi^v(\mathbf{Z}^v), \quad (2)$$

175 where  $\phi$  denotes the learnable parameters of the decoder. The reconstruction loss across all views  
176 can be expressed as follows:

$$177 \quad \mathcal{L}_{\text{REC}} = \sum_{v=1}^V \|\mathbf{X}^v - \hat{\mathbf{X}}^v\|_2^2. \quad (3)$$

180 3.3 UNBAISED REFINEMENT FOR DEBIASED PROJECTION  
181

182 Multi-view complementary information can enhance cluster separability, making single-view insep-  
183 arable clusters linearly separable (Zhang et al., 2024b; Dai et al., 2025). Moreover, in the common  
184 embedding space, the view-specific projections share consistent semantics, allowing each sample to  
185 be represented by the projection from any view. Accordingly, we extract common representations  
186 through an adaptive projection matrix.

187 Variance reflects sample deviation from the mean along a certain dimension, with well-separated  
188 clusters exhibiting high value (Xu et al., 2023). We leverage the variance to assess the separability  
189 of clusters and compute an adaptive projection matrix  $\mathbf{W} \in \mathbb{R}^{N \times V}$  that preserves the clustering  
190 information of views with well-defined cluster structures:

$$192 \quad \mathbf{W}_{iv} = \frac{\text{Var}(\mathbf{Z}_C^v)}{\sum_{v'=1}^V \mathbf{M}_{iv'} \text{Var}(\mathbf{Z}_C^{v'})}, \quad (4)$$

194 where  $\mathbf{W}_{iv}$  denotes the projection weight of the  $i$ -th sample in the  $v$ -th view.  $\text{Var}(\cdot)$  represents the  
195 variance operator. The mask  $\mathbf{M}_{iv'}$  allows the projection matrix to adapt to randomly missing data.  
196  $\mathbf{Z}^v = [\mathbf{Z}_I^v; \mathbf{Z}_C^v]$  denotes embedding representations of the complete samples and incomplete samples  
197 in the  $v$ -th view. Based on the projection matrix  $\mathbf{W}$ , the samples are mapped to the view-shared  
198 common embeddings  $\mathbf{Z} \in \mathbb{R}^{N \times d}$ .

$$199 \quad \mathbf{z}_i = \sum_{v=1}^V \mathbf{W}_{iv} \mathbf{z}_i^v. \quad (5)$$

202 where  $\mathbf{z}_i \in \mathbf{Z}$  denotes the projection of the  $i$ -th sample from all views.

203 The random missing of sample views can cause distribution shifts and lower clustering separability.  
204 To address this, we innovatively propose an attention-based complementarity refinement (Vaswani  
205 et al., 2017). The core idea is to compute the similarity between the biased projections  $\mathbf{z}_i^b$  and  
206 unbiased projections  $\mathbf{z}_i^u$  as sample affinity attention weights  $\mathbf{A}$ . It extracts the unbiased projection  
207 most compatible with the missing samples to correct the distribution shifts.

208 Biased projections are defined as those corresponding to samples with missing views, while unbiased  
209 projections correspond to samples with all views complete:

$$211 \quad \mathbf{Z}^u = \mathbf{Z} \left[ \{ i \mid \prod_{v=1}^V \mathbf{M}_{iv} = 1 \} \right], \quad (6)$$

$$214 \quad \mathbf{Z}^b = \mathbf{Z} \left[ \{ i \mid \prod_{v=1}^V \mathbf{M}_{iv} = 0 \} \right]. \quad (7)$$

216 Then, by comparing the biased projections with the high-quality unbiased projections, the corre-  
 217 sponding affinity attention weights are computed:  
 218

$$219 \quad \mathbf{A}^{(l)} = \text{Softmax} \left( \frac{\mathbf{Z}^b \mathbf{W}_Q^{(l)} \left( \mathbf{Z}^u \mathbf{W}_K^{(l)} \right)^\top}{\sqrt{d/L}} \right), l = 1, 2, \dots, L \quad (8)$$

223 where  $\mathbf{W}_Q$  and  $\mathbf{W}_K$  denote learnable parameters.  $L$  denotes the number of attention heads.  $d$   
 224 denotes the dimension of the projection  $\mathbf{Z}$ . Based on the affinity attention weights, the unbiased  
 225 projections can be used to correct the data shifts present in the biased projections. Finally, the  
 226 results from all attention heads are concatenated to obtain the corrective features in the common  
 227 embedding space:  
 228

$$\mathbf{B}^{(l)} = \mathbf{A}^{(l)} (\mathbf{Z}^u \mathbf{W}_R^{(l)}), \quad (9)$$

$$\mathbf{B} = [\mathbf{B}^{(1)}, \dots, \mathbf{B}^{(L)}], \quad (10)$$

230 where  $\mathbf{W}_R$  denotes learnable parameters. Then we incorporate the information of corrective features  
 231  $\mathbf{B}$  into the biased projections to obtain shift-corrected consensus projections  $\mathbf{S} \in \mathbb{R}^{N \times d}$ :  
 232

$$\mathbf{S} = [\mathbf{Z}^u; \mathbf{Z}^b] + [\mathbf{0}; \mathbf{B}], \quad (11)$$

234 where  $\mathbf{0}$  denotes an all-zero matrix with the same dimensions as  $\mathbf{Z}^u$ . Clearly, correcting the distribu-  
 235 tion shifts caused by missing data lies in the high-quality common projected embeddings. Accurate  
 236 projections of multi-view features require exploiting the correlation between the view-specific fea-  
 237 tures and the projected embeddings. A natural idea is to maximize the mutual information (Lin et al.,  
 238 2021) between unbiased projections and embeddings under each view. Specifically, we regard the  
 239 unbiased projections as the anchor of the embeddings under each view, and sequentially maximize  
 240 the mutual information between the anchor and a specific view with the following loss function:  
 241

$$\mathcal{L}_{\text{MMI}} = - \sum_{v=1}^V (I(\mathbf{Z}^u, \mathbf{Z}_C^v) + \alpha (H(\mathbf{Z}^u) + H(\mathbf{Z}_C^v))), \quad (12)$$

244 where  $\alpha$  serves as the entropy regularization coefficient.  $I(\cdot)$  denotes mutual information, and  $H(\cdot)$   
 245 denotes information entropy, which can be computed as follows:  
 246

$$H(\mathbf{X}) = - \sum_x p(x) \log p(x), \quad (13)$$

$$I(\mathbf{X}; \mathbf{Y}) = \sum_x \sum_y p(x, y) \log \frac{p(x, y)}{p(x)p(y)}. \quad (14)$$

252 where  $p(x)$  denotes the probability distribution of the random variable  $\mathbf{X}$ , and  $p(x, y)$  denotes the  
 253 joint distribution of the random variables  $\mathbf{X}$  and  $\mathbf{Y}$ .  
 254

255 Since the consensus projections capture both the inherent information of the incomplete samples and  
 256 the clustering information of the affiliated complete sample set, restoring embedding with consensus  
 257 projections can effectively ensure the integrity of the sample structure and the consistency of the  
 258 distribution. Therefore, we complete the missing-view embeddings from consensus projections by:  
 259

$$\mathbf{S}^v = \mathbf{Z}^v + (1 - \tilde{\mathbf{M}}^v) \odot \mathbf{S}, \quad (15)$$

260 where  $\odot$  denotes the element-wise multiplication.  $\mathbf{S}^v$  denotes the embeddings after completion in  
 261 the  $v$ -th view. We take the  $v$ -th column of matrix  $\mathbf{M} \in \mathbb{R}^{N \times V}$  as  $\mathbf{m}^v \in \mathbb{R}^{N \times 1}$  that indicates  
 262 the missing samples in the  $v$ -th view and expand it into  $\tilde{\mathbf{M}}^v \in \mathbb{R}^{N \times d}$  by replicating  $\mathbf{m}^v$   $d$  times.  
 263 Finally, we project the completed embeddings  $\mathbf{S}^v$  into  $\mathbf{S}'$  via the variance projection matrix, which  
 264 is constructed by leveraging the variance of the embeddings from each view.  
 265

### 3.4 DUAL CONTRASTIVE LEARNING FOR DENOISED PROJECTION

#### 3.4.1 INTER-VIEW CONTRASTIVE LEARNING

266 To overcome the heterogeneity in incomplete multi-view learning, we construct positive pairs from  
 267 the same instance across views and negative pairs from different instances. Contrastive learning  
 268

270 maximizes the positive-pair correlation while minimizing that of negative pairs. The contrastive  
 271 learning loss across all views is:  
 272

$$273 \quad \mathcal{L}_c = - \sum_{v=1}^V \sum_{k=1}^V \sum_{\substack{i=1 \\ v \neq k}}^N \log \frac{\exp(\text{sim}(\mathbf{s}_i^v, \mathbf{s}_i^k) / \tau)}{\sum_{j=1, j \neq i}^N \exp(\text{sim}(\mathbf{s}_i^v, \mathbf{s}_j^k) / \tau)}, \quad (16)$$

277 where  $\mathbf{s}_i^v$  and  $\mathbf{s}_j^k$  denote the representations from  $v$ -th view and  $k$ -th view.  $\text{sim}(\cdot)$  is cosine similarity.  
 278  $\tau$  represents the temperature coefficient.  
 279

### 280 3.4.2 ROBUST CONTRASTIVE LEARNING 281

282 To prevent cluster collapse after completing missing views with consensus projections, it is nec-  
 283 essary to impose constraints between the consensus projections and the recovered samples. A  
 284 conventional approach is to apply contrastive learning between them. Although consensus projec-  
 285 tions capture the consistency of the data distribution, the completion process inevitably introduces  
 286 potential noise. Conventional contrastive learning’s strong focus on hard samples can exacerbate  
 287 noise-induced overfitting. Inspired by Yuan et al. (2024), we employ a denoised contrastive learning  
 288 between consensus projection  $\mathbf{S}$  and each view projection  $\mathbf{S}^v$  to enhance the robustness of consensus  
 289 projections against noise.  
 290

291 Set  $f(\mathbf{s}_i, \mathbf{s}_j) = \frac{\exp(\text{sim}(\mathbf{s}_i, \mathbf{s}_j) / \tau)}{\sum_{n=1}^N \exp(\text{sim}(\mathbf{s}_i, \mathbf{s}_n) / \tau)}$ , and thus  $\sum_{j=1}^N f(\mathbf{s}_i, \mathbf{s}_j) = 1$ . For the general form of  
 292 InfoNCE, its power series expansion over the interval  $[0, 1]$  is:  
 293

$$\begin{aligned} 294 \quad \mathcal{L}_{\text{Info}} &= - \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \log \frac{\exp(\text{sim}(\mathbf{s}_i, \mathbf{s}_i^v) / \tau)}{\sum_{n=1}^N \exp(\text{sim}(\mathbf{s}_i, \mathbf{s}_n^v) / \tau)} \\ 295 \\ 296 &= \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \left[ (1 - f(\mathbf{s}_i, \mathbf{s}_i^v)) + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^2}{2} + \dots + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^c}{c} + \dots \right] \\ 297 \\ 298 &= \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \left[ \frac{1}{2} (2 - 2f(\mathbf{s}_i, \mathbf{s}_i^v)) + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^2}{2} + \dots + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^c}{c} + \dots \right] \quad (17) \\ 299 \\ 300 &= \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \left[ \frac{1}{2} \|\mathbf{e}_i - \mathbf{f}_i\|_1 + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^2}{2} + \dots + \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^c}{c} + \dots \right] \\ 301 \\ 302 &= \frac{1}{2N} \sum_{v=1}^V \sum_{i=1}^N \|\mathbf{e}_i - \mathbf{f}_i\|_1 + \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \sum_{c=1}^{\infty} \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^c}{c} \end{aligned}$$

308 where  $\mathbf{e}_i$  denotes the one-hot encoding whose  $i$ -th element is 1;  $\mathbf{f}_i$  is a vector whose the  $j$ -th element  
 309 is  $f(\mathbf{s}_i, \mathbf{s}_i^v)$ . It can be seen that, after expanding InfoNCE into an infinite series, the first term  
 310 is exactly the Mean Absolute Error (MAE) loss, which is proven to be robust to noise (Ghosh  
 311 et al., 2015; 2017). However, MAE loss treats each sample equally. The infinite terms can provide  
 312 differentiated attention to samples but are sensitive to noise. Therefore, we can construct a robust  
 313 contrastive loss by truncating part of the infinite series to maintain a balance between MAE loss and  
 314 InfoNCE loss, which is adjusted by a truncation coefficient  $C$ . Specifically, we take the first  $C$  terms  
 315 of the infinite series and obtain the robust contrastive loss as follows:  
 316

$$\mathcal{L}_r = \frac{1}{N} \sum_{v=1}^V \sum_{i=1}^N \sum_{c=1}^C \frac{(1 - f(\mathbf{s}_i, \mathbf{s}_i^v))^c}{c}, \quad (18)$$

319 Its significance lies in that it transforms the unbounded amplification of  $-\log f(\mathbf{s}_i, \mathbf{s}_i^v)$  for hard sam-  
 320 ples into a bounded approximation, balancing positive sample discrimination and noise suppression.  
 321 Adjusting the truncation coefficient  $C$  allows tuning between cluster collapse and noise robustness.

322 Finally, the dual contrastive loss is:  
 323

$$\mathcal{L}_{\text{DCL}} = \mathcal{L}_c + \mathcal{L}_r. \quad (19)$$

---

324 **Algorithm 1** DDP for Incomplete Multi-view Clustering

325

326 1: **Input:** Incomplete multi-view dataset  $\mathcal{X} = \{\mathbf{X}^v\}_{v=1}^V$  for all  $N$  samples, Training epoch  $E$ ,  
327 Hyper-parameter  $\lambda_1, \lambda_2, \alpha$ , and  $C$ .

328 2: Construct the complete view indicator matrix  $\mathbf{M} \in \mathbb{R}^{N \times V}$ .

329 3: **while** Not reaching epochs  $E$  **do**

330 4: Calculate the embedding representation  $\{\mathbf{Z}^v\}_{v=1}^V$  by Eq.(1).

331 5: Calculate the projection embedding  $\mathbf{Z}$  by Eq.(5).

332 6: Correct the shifts to obtain consensus projections  $\mathbf{S}$  by Eq.(11).

333 7: Impute the each view embeddings  $\mathbf{S}^v$  by Eq.(15).

334 8: Compute the clustering-friendly representation  $\mathbf{S}'$  with the imputed embeddings.

335 9: Optimize the total loss function  $\mathcal{L}_{all}$  by Eq.(20).

336 10: **end while**

337 11: Perform k-means clustering algorithm on  $\mathbf{S}'$ .

338 12: **Output:**  $K$  clusters for  $N$  samples.

---

340 3.5 THE OBJECTIVE FUNCTION

341

342 Overall, the total loss function of our method consists of three parts are formulated as:

343

344 
$$\mathcal{L}_{all} = \mathcal{L}_{REC} + \lambda_1 \mathcal{L}_{MMI} + \lambda_2 \mathcal{L}_{DCL}. \quad (20)$$

345

346  $\lambda_1$  and  $\lambda_2$  are trade-off parameters.  $\mathcal{L}_{REC}$  is the autoencoder reconstruction loss.  $\mathcal{L}_{MMI}$  is the maximum mutual information loss, used to enhance the common cluster information.  $\mathcal{L}_{DCL}$  is the robust contrastive loss that mitigates heterogeneity in incomplete multi-view learning and prevents cluster collapse. Finally, K-means is performed on  $\mathbf{S}' \in \mathbb{R}^{N \times d}$  to obtain  $K$  clusters.

350

351 4 EXPERIMENTS

352

353 4.1 DATASETS

354

355 We conducted experiments on four representative datasets. The datasets are: **HandWritten** (LeCun  
356 et al., 1989) comprises 2,100 samples belonging to 10 categories corresponding to digits from 0 to  
357 9. We employ three distinct features Pixel, Fourier and Profile for analysis. **Scene-15** (Fei-Fei &  
358 Perona, 2005) consists of 15 categories with a total of 4,485 samples. GIST, PHOG, and LBP are  
359 selected as three views in our experiments. **ALOI-100** (Geusebroek et al., 2005) contains 10,800  
360 object images belonged to 100 categories. We extract HSB, RGB, Colorsim, and Haralick features  
361 to construct multi-view data. **LandUse-21** (Yang & Newsam, 2010) comprises 2,100 samples be-  
362 longing to 21 categories corresponding to different land-use scene categories. GIST, PHOG and  
363 LBP are used for analysis. To evaluate the performance of our approach, we employ three standard  
364 metrics: Accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI).

365

366 4.2 COMPARE METHOD

367

368 DDP-IMVC is compared with nine SOTA methods. **Fusion-kmeans** clusters the mean-fused fea-  
369 tures with k-means. **Completer** (Lin et al., 2021) predicts missing views by minimizing conditional  
370 entropy. **DIMVC** (Xu et al., 2022a) proposes a no-imputation framework that maps data to reveal  
371 linear separability. **DSIMVC** (Tang & Liu, 2022) completes views by dynamically mining seman-  
372 tic features of neighbors. **DCP** (Lin et al., 2022) learns consistent representations via dual con-  
373 trastive learning under the information-theoretic framework. **ProImp** (Li et al., 2023) recover data  
374 by learning prototypes with dual attention layers. **APADC** (Xu et al., 2023) achieves imputation-  
375 free stragedy through adaptive projection and distribution alignment. **ICMVC** (Chao et al., 2024)  
376 completes missing views with GNNs and aligns distributions through high confidence guidance.  
377 **GHICMC** (Chao et al., 2025) employs cascaded GNNs to enable global graph propagation and  
hierarchical information transfer.

378  
379  
380  
Table 1: Clustering results of all methods on four datasets. The best and second-best results are  
highlighted with bold and underline, respectively.

|             | Missing_rates   | 0.1          |              |              | 0.3          |              |              | 0.5          |              |              | 0.7          |              |              |
|-------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|             |                 | Metrics      | ACC          | NMI          | ARI          | ACC          | NMI          | ARI          | ACC          | NMI          | ARI          | ACC          | NMI          |
| LandUse-21  | Fusion-kmeans   | 20.45        | 25.42        | 8.62         | 16.41        | 17.48        | 5.51         | 12.86        | 12.58        | 2.77         | 11.45        | 9.81         | 1.38         |
|             | Completer(2021) | 26.40        | <u>32.48</u> | 13.93        | 26.96        | <u>32.64</u> | 12.09        | 21.36        | 26.27        | 9.34         | 24.43        | <b>29.01</b> | 10.31        |
|             | DIMVC(2022)     | 24.63        | 30.04        | 10.58        | 23.69        | 29.94        | 10.01        | 22.40        | 27.78        | 9.38         | 21.77        | 26.14        | 7.91         |
|             | DSIMVC(2022)    | 18.47        | 19.34        | 5.58         | 17.95        | 18.47        | 5.16         | 18.13        | 18.53        | 5.26         | 17.90        | 17.97        | 5.11         |
|             | DCP(2023)       | 26.78        | 30.87        | 13.80        | <u>27.08</u> | 30.69        | <u>13.80</u> | 23.07        | 27.00        | 11.31        | <u>25.18</u> | 28.04        | <b>12.00</b> |
|             | ProImp(2023)    | 22.38        | 23.79        | 8.76         | 19.53        | 20.55        | 6.86         | 20.30        | 21.94        | 7.32         | 15.10        | 15.48        | 4.00         |
|             | APADC(2023)     | 22.75        | 31.90        | 9.50         | 18.08        | 24.72        | 7.22         | 15.67        | 21.23        | 5.61         | 15.11        | 20.08        | 4.84         |
|             | ICMVC(2024)     | <u>28.18</u> | 31.78        | <b>15.14</b> | 25.77        | 29.39        | 12.69        | <u>25.98</u> | 27.74        | <u>11.92</u> | 22.26        | 24.95        | 9.31         |
|             | GHICMC(2025)    | 26.86        | 31.14        | 12.81        | 25.72        | 29.26        | 11.32        | 25.15        | <u>28.57</u> | 11.26        | 23.53        | 26.55        | 9.72         |
| Scene-15    | <b>Ours</b>     | <b>28.21</b> | <b>34.68</b> | <u>14.93</u> | <b>28.02</b> | <b>33.49</b> | <b>14.27</b> | <b>27.14</b> | <b>31.89</b> | <b>13.24</b> | <b>25.36</b> | <u>28.09</u> | <u>10.67</u> |
|             | Fusion-kmeans   | 34.20        | 34.84        | 20.93        | 22.39        | 23.60        | 12.80        | 17.54        | 17.31        | 7.88         | 14.90        | 13.54        | 4.29         |
|             | Completer(2021) | 40.28        | 42.50        | 23.13        | 40.12        | 42.93        | 23.96        | 39.12        | 41.79        | 22.98        | 38.05        | 40.22        | 21.84        |
|             | DIMVC(2022)     | 32.95        | 27.41        | 15.61        | 33.51        | 29.42        | 16.75        | 30.65        | 25.21        | 13.64        | 29.58        | 24.11        | 12.85        |
|             | DSIMVC(2022)    | 27.65        | 29.74        | 14.11        | 26.73        | 29.36        | 13.94        | 26.40        | 28.03        | 13.04        | 25.31        | 27.04        | 12.43        |
|             | DCP(2023)       | 38.54        | 42.39        | 23.33        | 40.49        | 43.10        | 24.14        | 39.50        | 42.35        | 23.51        | 38.55        | 40.57        | 21.72        |
|             | ProImp(2023)    | 40.74        | 42.14        | 24.00        | 41.69        | 43.03        | <u>25.28</u> | 40.28        | 41.80        | 23.89        | <u>39.96</u> | 40.35        | <u>22.92</u> |
|             | APADC(2023)     | <u>43.70</u> | <b>44.20</b> | <u>26.00</u> | 41.80        | 43.10        | 24.30        | 39.90        | <u>42.40</u> | 23.80        | 38.50        | 41.10        | 22.80        |
|             | ICMVC(2024)     | 38.78        | 36.62        | 21.84        | 37.40        | 34.94        | 20.60        | 31.35        | 27.91        | 14.98        | 25.31        | 23.88        | 11.33        |
| HandWritten | GHICMC(2025)    | 41.26        | 43.21        | 24.95        | 40.98        | 43.13        | 25.05        | <u>40.91</u> | 42.29        | <u>24.64</u> | 38.79        | 40.94        | <u>22.92</u> |
|             | <b>Ours</b>     | <b>46.16</b> | <b>47.62</b> | <b>28.69</b> | <b>45.53</b> | <b>45.99</b> | <b>28.05</b> | <b>44.35</b> | <b>43.67</b> | <b>26.79</b> | <b>42.12</b> | <b>41.20</b> | <b>24.73</b> |
|             | Fusion-kmeans   | 41.70        | 47.59        | 34.22        | 36.28        | 38.76        | 21.46        | 29.64        | 28.51        | 11.54        | 25.69        | 22.14        | 6.58         |
|             | Completer(2021) | 83.22        | 82.47        | 73.59        | 75.38        | 77.55        | 61.69        | 74.05        | 76.13        | 58.89        | 78.55        | 76.07        | 68.67        |
|             | DIMVC(2022)     | 67.13        | 63.17        | 53.16        | 59.43        | 56.49        | 43.19        | 54.80        | 50.50        | 30.76        | 43.82        | 41.54        | 23.80        |
|             | DSIMVC(2022)    | 84.35        | 80.32        | 74.38        | 85.64        | 80.71        | 75.94        | 84.73        | 78.82        | 74.13        | 82.71        | 75.35        | 69.85        |
|             | DCP(2023)       | 53.35        | 65.72        | 35.60        | 51.96        | 63.88        | 31.49        | 59.06        | 65.07        | 36.51        | 60.97        | 60.53        | 29.90        |
|             | ProImp(2023)    | 83.20        | 80.29        | 74.17        | 84.24        | 77.75        | 72.60        | 78.16        | 70.79        | 63.96        | 80.31        | 68.85        | 62.92        |
|             | APADC(2023)     | 67.43        | 65.34        | 47.18        | 68.95        | 67.28        | 45.98        | 68.85        | 68.61        | 56.43        | 61.77        | 61.97        | 48.26        |
| ALOI-100    | ICMVC(2024)     | 83.16        | 81.33        | 74.78        | 82.01        | 79.62        | 72.22        | 75.13        | 71.99        | 63.19        | 72.47        | 70.01        | 59.71        |
|             | GHICMC(2025)    | <u>96.19</u> | <u>92.14</u> | <b>92.89</b> | <u>96.11</u> | <u>91.32</u> | <u>90.83</u> | <b>94.88</b> | <b>89.16</b> | <b>89.10</b> | <b>92.73</b> | <b>85.85</b> | <b>84.71</b> |
|             | <b>Ours</b>     | <b>96.38</b> | <b>92.23</b> | <u>91.99</u> | <b>96.15</b> | <b>91.49</b> | <b>91.21</b> | <u>94.34</u> | <u>88.38</u> | <u>87.87</u> | <u>90.86</u> | <u>82.65</u> | <u>81.92</u> |
|             | Fusion-kmeans   | 52.37        | 72.31        | 40.79        | 30.63        | 55.28        | 16.10        | 22.48        | 47.33        | 7.46         | 17.39        | 41.82        | 4.94         |
|             | Completer(2021) | 48.19        | 77.96        | 44.25        | 43.03        | 72.43        | 36.73        | 36.16        | 66.89        | 26.52        | 34.55        | 64.06        | 24.97        |
|             | DIMVC(2022)     | 71.86        | 84.99        | 61.79        | <u>68.52</u> | 82.15        | <u>58.31</u> | 64.80        | 78.53        | 51.36        | 61.64        | 75.33        | 47.25        |
|             | DSIMVC(2022)    | 38.76        | 67.49        | 29.71        | 38.89        | 66.00        | 29.12        | 39.32        | 64.42        | 28.53        | 35.98        | 61.28        | 25.16        |
|             | DCP(2023)       | 51.85        | 74.88        | 42.73        | 47.38        | 70.54        | 38.38        | 42.37        | 66.30        | 32.36        | 36.02        | 60.75        | 25.40        |
|             | ProImp(2023)    | 68.39        | 83.47        | <u>62.08</u> | 45.98        | 73.01        | 38.53        | 32.71        | 65.74        | 24.76        | 29.23        | 62.08        | 19.46        |
|             | APADC(2023)     | 47.40        | 68.92        | 35.02        | 38.95        | 62.27        | 26.10        | 32.78        | 58.16        | 20.10        | 26.02        | 53.91        | 14.11        |
| 411         | ICMVC(2024)     | 68.02        | 80.78        | 56.64        | 68.14        | 80.40        | 55.94        | <u>67.68</u> | <u>78.92</u> | <u>53.92</u> | 49.15        | 70.50        | 38.45        |
|             | GHICMC(2025)    | OOM          |              |              | OOM          |              |              | OOM          |              |              | OOM          |              |              |
|             | <b>Ours</b>     | <b>76.02</b> | <b>88.35</b> | <b>67.82</b> | <b>73.18</b> | <b>85.82</b> | <b>64.36</b> | <b>69.87</b> | <b>82.34</b> | <b>58.09</b> | <b>66.94</b> | <b>78.60</b> | <b>53.20</b> |

412  
413  
Table 2: Ablation study results on LandUse21 and Scene-15 datasets with missing rate 0.3.

| Datasets            |                     |                     | LandUse21    | Scene-15     |              |              |              |              |
|---------------------|---------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $\mathcal{L}_{REC}$ | $\mathcal{L}_{MMI}$ | $\mathcal{F}_{DCL}$ | ACC          | NMI          | ARI          | ACC          | NMI          | ARI          |
| ✓                   | ✓                   |                     | 17.54        | 22.97        | 6.08         | 36.06        | 43.69        | 21.88        |
| ✓                   | ✓                   |                     | 24.16        | 26.09        | 11.06        | 41.96        | 40.00        | 25.94        |
| ✓                   |                     |                     | 16.78        | 17.96        | 5.63         | 21.53        | 21.61        | 11.48        |
| ✓                   | ✓                   | ✓                   | <b>28.02</b> | <b>33.49</b> | <b>14.27</b> | <b>45.53</b> | <b>45.99</b> | <b>28.05</b> |

421  
422  
4.3 EXPERIMENTAL SETTINGS423  
424  
We adopt Adam to optimize our framework DDP-IMVC and all the experiments are conducted in  
425 PyTorch 1.13.1 on Windows with an NVIDIA 4070 SUPER GPU. The dimensions of encoders are  
426  $D_v$ -1024–1024–1024–128. The decoder is symmetric to its corresponding encoder. The number of  
427 heads  $L$  in multi-head attention is set to 4. The entropy regularization coefficient  $\alpha$  is set to 10, and  
428 the truncation coefficient  $C$  is set to 9.429  
430  
4.4 INCOMPLETE MULTI-VIEW CLUSTERING PERFORMANCE431  
Table 1 reports the incomplete multi-view clustering results of all methods under different missing  
432 rates. It shows that DDP-IMVC can effectively handle high missing rates and large-scale issues in

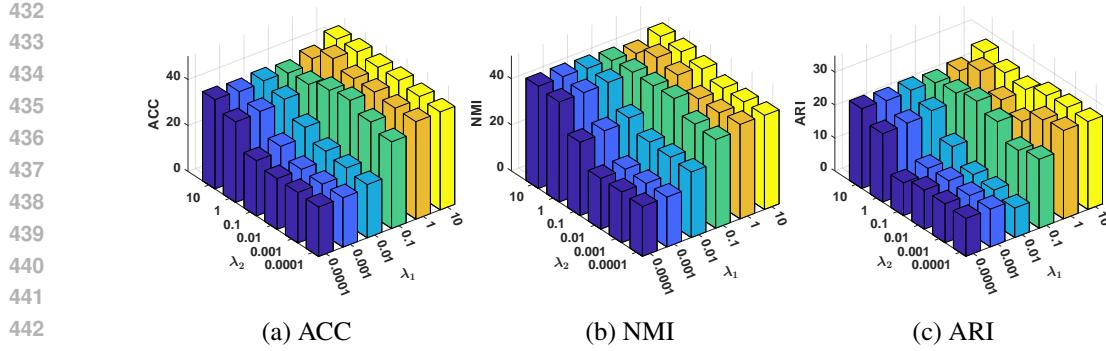


Figure 2: Parameter sensitivity analysis on Scene-15 with the missing rate 0.3.

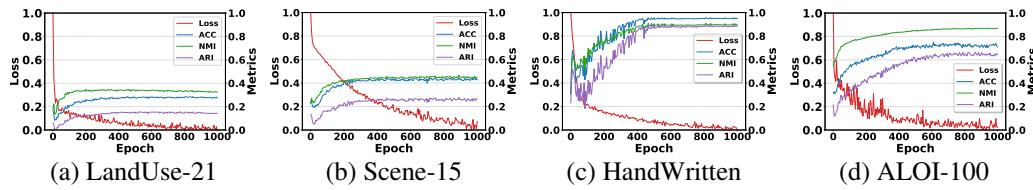


Figure 3: The convergence analysis on all datasets with the missing rate 0.3.

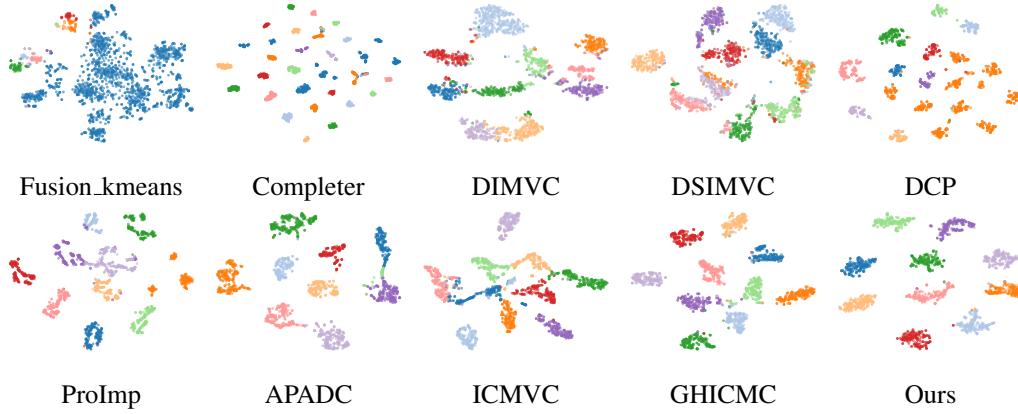


Figure 4: The visualization results of HandWritten dataset in all methods with a missing rate of 0.5.

471 IMVC. From the perspective of effectiveness, our method significantly outperforms SOTA methods  
472 across four datasets. For example, in Scene-15 dataset, ACC, NMI, and ARI outperform the second-  
473 best method, APADC, by an average of 3.56%, 1.92%, and 2.86%, respectively. We notice that when  
474 the missing rate is 0.5 and 0.7, DDP-IMVC performs slightly worse than GHICMC. We attribute  
475 this to the simplicity of the HandWritten dataset, where inter-class features are singular. Under high  
476 missing rates, it is suitable to use cascade graphs for data recovery. For other complex datasets,  
477 GHICMC shows a significant performance drop. More critically, its high memory consumption  
478 prevents it from handling large-scale datasets. From the perspective of robustness, DDP-IMVC can  
479 still maintain a high level of performance under a high missing rate. Moreover, unlike some methods  
480 whose performance drops sharply, DDP-IMVC remains stable even as the missing rate increases.

#### 4.5 MODEL DISCUSSION

481 *1) Ablation Study:* To investigate the importance of each component, we conducted an ablation  
482 study on our DDP-IMVC framework using LandUse21 and Scene-15 datasets under a missing rate  
483 of 0.3. As shown in Table 2, removing the attention correction mechanism for the learned consensus  
484 projection ( $\mathcal{L}_{MMI}$ ) or the robust contrastive learning ( $\mathcal{L}_{DCL}$ ) leads to suboptimal performance. When

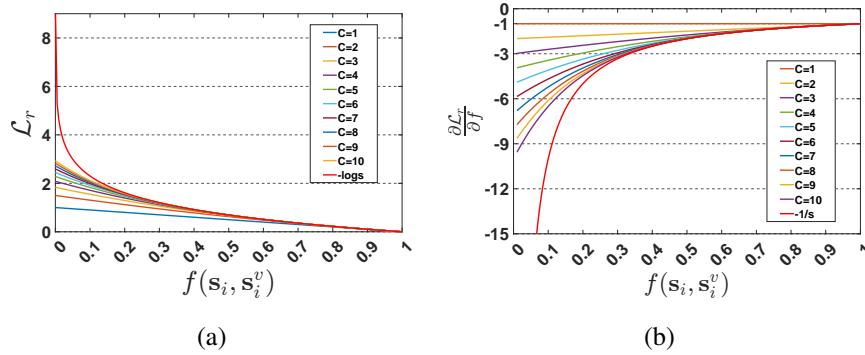


Figure 5: The variation trend of the loss and its gradient.

all strategies are applied together, we achieve the best results. The experimental findings demonstrate that the attention correction mechanism can refine the distribution of biased projections, while the robust contrastive learning enhances the consistency of consensus projections and alleviates the risk of cluster collapse.

2) *Parameter Analysis*: Our objective loss mainly involves two trade-off parameters,  $\lambda_1$  and  $\lambda_2$ . To verify their effectiveness, we conducted a parameter analysis by setting both parameters in the range from  $10^{-4}$  to 10. As shown in Figure 2, excessively high or low parameter values are unfavorable for clustering. Based on our parameter experiments, we recommend setting the parameter range between 1 and 10.

3) *Convergence Analysis*: Meanwhile, to better verify the convergence and robustness of our model, we observed the convergence performance of all datasets under a 0.3 missing rate. As shown in the Figure 3, the total loss function involved in our training achieved excellent convergence. With the increase in training epochs, various metrics for evaluating clustering also tended to converge.

4) *Visualization Analysis*: As shown in Figure 4, with a missing rate of 0.5, we visualized the distribution of common embedding of all methods on the HandWritten dataset using t-SNE. Through the correction of the distribution shift of missing samples during the imputation process by DDP-IMVC, our method is facilitated to discover the common clustering patterns of all views in the common embedding space.

5) *Discussion of Robust Contrastive Loss*: In Figure 5, we plot the InfoNCE loss and the loss function in Equation (18), as well as their gradients. As described in Section 4.5, the single-sample InfoNCE function is  $\mathcal{L}_r = -\log f$ , with gradient  $\frac{\partial \mathcal{L}_r}{\partial f} = -\frac{1}{f}$ . The function in Equation (18) is  $\mathcal{L} = \sum_{c=1}^C \frac{(1-f)^c}{c}$ , with gradient  $\frac{\partial \mathcal{L}_r}{\partial f} = -\sum_{c=1}^C (1-f)^{c-1}$ . When  $C = 1$ , the gradient of Equation (18) is  $-1$ , indicating that it treats all samples equally, equivalent to MAE. When  $C \rightarrow \infty$ , it degenerates to InfoNCE, giving excessively high attention to noisy samples. Our loss gradient is smaller than MAE, which indicates that our loss can assign different attention levels to different samples, improving training efficiency. It is larger than InfoNCE and has an upper bound, indicating that our loss prioritizes clean samples, mitigating the issue of excessive attention to hard samples, thereby enhancing robustness.

## 5 CONCLUSION

In this work, we propose a consensus projection refinement strategy for IMVC to address data shift and misalignment noise introduced by missing views. An adaptive feature projection constructs a common embedding space. Within this space, unbiased projections correct the distribution of biased projections through an attention mechanism to form robust consensus embeddings. In addition, we employ a denoise contrastive strategy to prevent cluster collapse that may occur when completing missing views in the consensus projections. The effective synergy of these two strategies enables DDP-IMVC to achieve strong performance across most complex IMVC tasks.

540 REFERENCES  
541

542 Guoqing Chao, Songtao Wang, Shiming Yang, Chunshan Li, and Dianhui Chu. Incomplete multi-  
543 view clustering with multiple imputation and ensemble clustering. *Applied Intelligence*, 52(13):  
544 14811–14821, 2022.

545 Guoqing Chao, Yi Jiang, and Dianhui Chu. Incomplete contrastive multi-view clustering with high-  
546 confidence guiding. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38,  
547 pp. 11221–11229, 2024.

548 Guoqing Chao, Kaixin Xu, Xijiong Xie, and Yongyong Chen. Global graph propagation with hier-  
549 archical information transfer for incomplete contrastive multi-view clustering. In *Proceedings of  
550 the AAAI Conference on Artificial Intelligence*, volume 39, pp. 15713–15721, 2025.

551 Yuzhuo Dai, Jiaqi Jin, Zhibin Dong, Siwei Wang, Xinwang Liu, En Zhu, Xihong Yang, Xinkiao  
552 Gan, and Yu Feng. Imputation-free and alignment-free: Incomplete multi-view clustering driven  
553 by consensus semantic learning. In *Proceedings of the Computer Vision and Pattern Recognition  
554 Conference*, pp. 5071–5081, 2025.

555 Zhibin Dong, Jiaqi Jin, Yuyang Xiao, Bin Xiao, Siwei Wang, Xinwang Liu, and En Zhu. Subgraph  
556 propagation and contrastive calibration for incomplete multiview data clustering. *IEEE Transac-  
557 tions on Neural Networks and Learning Systems*, 2024.

558 Uno Fang, Man Li, Jianxin Li, Longxiang Gao, Tao Jia, and Yanchun Zhang. A comprehensive  
559 survey on multi-view clustering. *IEEE Transactions on Knowledge and Data Engineering*, 35  
560 (12):12350–12368, 2023.

561 Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural scene categories. In  
562 *2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)*,  
563 volume 2, pp. 524–531. IEEE, 2005.

564 Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The amsterdam library of  
565 object images. *International Journal of Computer Vision*, 61(1):103–112, 2005.

566 Aritra Ghosh, Naresh Manwani, and PS Sastry. Making risk minimization tolerant to label noise.  
567 *Neurocomputing*, 160:93–107, 2015.

568 Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for  
569 deep neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31,  
570 2017.

571 Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with  
572 local structure preservation. In *Ijcai*, volume 17, pp. 1753–1759, 2017.

573 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural  
574 networks. *science*, 313(5786):504–507, 2006.

575 Menglei Hu and Songcan Chen. One-pass incomplete multi-view clustering. In *Proceedings of the  
576 AAAI conference on artificial intelligence*, volume 33, pp. 3838–3845, 2019.

577 Jiaqi Jin, Siwei Wang, Zhibin Dong, Xinwang Liu, and En Zhu. Deep incomplete multi-view clus-  
578 tering with cross-view partial sample and prototype alignment. In *Proceedings of the IEEE/CVF  
579 conference on computer vision and pattern recognition*, pp. 11600–11609, 2023.

580 Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-  
581 bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.  
582 *Neural computation*, 1(4):541–551, 1989.

583 Haobin Li, Yunfan Li, Mouxing Yang, Peng Hu, Dezhong Peng, and Xi Peng. Incomplete multi-  
584 view clustering via prototype-based imputation. *arXiv preprint arXiv:2301.11045*, 2023.

585 Zhenglai Li, Chang Tang, Xiao Zheng, Xinwang Liu, Wei Zhang, and En Zhu. High-order correla-  
586 tion preserved incomplete multi-view subspace clustering. *IEEE Transactions on Image Process-  
587 ing*, 31:2067–2080, 2022.

594 Yijie Lin, Yuanbiao Gou, Zitao Liu, Boyun Li, Jiancheng Lv, and Xi Peng. Completer: Incomplete  
 595 multi-view clustering via contrastive prediction. In *Proceedings of the IEEE/CVF conference on*  
 596 *computer vision and pattern recognition*, pp. 11174–11183, 2021.

597

598 Yijie Lin, Yuanbiao Gou, Xiaotian Liu, Jinfeng Bai, Jiancheng Lv, and Xi Peng. Dual contrastive  
 599 prediction for incomplete multi-view representation learning. *IEEE Transactions on Pattern Anal-*  
 600 *ysis and Machine Intelligence*, 45(4):4447–4461, 2022.

601

602 Suyuan Liu, Xinwang Liu, Siwei Wang, Xin Niu, and En Zhu. Fast incomplete multi-view clustering  
 603 with view-independent anchors. *IEEE Transactions on Neural Networks and Learning Systems*,  
 604 35(6):7740–7751, 2022.

605

606 Xinwang Liu, Xinzhou Zhu, Miaomiao Li, Chang Tang, En Zhu, Jianping Yin, and Wen Gao.  
 607 Efficient and effective incomplete multi-view clustering. In *Proceedings of the AAAI conference*  
 608 *on artificial intelligence*, volume 33, pp. 4392–4399, 2019.

609

610 Xinwang Liu, Miaomiao Li, Chang Tang, Jingyuan Xia, Jian Xiong, Li Liu, Marius Kloft, and  
 611 En Zhu. Efficient and effective regularized incomplete multi-view clustering. *IEEE transactions*  
 612 *on pattern analysis and machine intelligence*, 43(8):2634–2646, 2020.

613

614 Jingyu Pu, Chenhang Cui, Xinyue Chen, Yazhou Ren, Xiaorong Pu, Zhifeng Hao, Philip S Yu, and  
 615 Lifang He. Adaptive feature imputation with latent graph for deep incomplete multi-view clus-  
 616 tering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 14633–  
 617 14641, 2024.

618

619 Huayi Tang and Yong Liu. Deep safe multi-view clustering: Reducing the risk of clustering per-  
 620 formance degradation caused by view increase. In *Proceedings of the IEEE/CVF Conference on*  
 621 *Computer Vision and Pattern Recognition*, pp. 202–211, 2022.

622

623 Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kampffmeyer. Reconsidering repre-  
 624 sentation alignment for multi-view clustering. In *Proceedings of the IEEE/CVF conference on*  
 625 *computer vision and pattern recognition*, pp. 1255–1265, 2021.

626

627 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 628 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*  
 629 *tion processing systems*, 30, 2017.

630

631 Xinhang Wan, Bin Xiao, Xinwang Liu, Jiyuan Liu, Weixuan Liang, and En Zhu. Fast continual  
 632 multi-view clustering with incomplete views. *IEEE Transactions on Image Processing*, 33:2995–  
 633 3008, 2024.

634

635 Jiatai Wang, Zhiwei Xu, Xuewen Yang, Dongjin Guo, and Limin Liu. Self-supervised image clus-  
 636 tering from multiple incomplete views via contrastive complementary generation. *IET Computer*  
 637 *Vision*, 17(2):189–202, 2023.

638

639 Qianqian Wang, Zhengming Ding, Zhiqiang Tao, Quanxue Gao, and Yun Fu. Generative partial  
 640 multi-view clustering with adaptive fusion and cycle consistency. *IEEE Transactions on Image*  
 641 *Processing*, 30:1771–1783, 2021.

642

643 Jie Wen, Zheng Zhang, Yong Xu, Bob Zhang, Lunke Fei, and Hong Liu. Unified embedding align-  
 644 ment with missing views inferring for incomplete multi-view clustering. In *Proceedings of the*  
 645 *AAAI conference on artificial intelligence*, volume 33, pp. 5393–5400, 2019.

646

647 Yuan Xie, Bingqian Lin, Yanyun Qu, Cuihua Li, Wensheng Zhang, Lizhuang Ma, Yonggang Wen,  
 648 and Dacheng Tao. Joint deep multi-view learning for image clustering. *IEEE Transactions on*  
 649 *Knowledge and Data Engineering*, 33(11):3594–3606, 2020.

650

651 Gehui Xu, Jie Wen, Chengliang Liu, Bing Hu, Yicheng Liu, Lunke Fei, and Wei Wang. Deep vari-  
 652 ational incomplete multi-view clustering: Exploring shared clustering structures. In *Proceedings*  
 653 *of the AAAI conference on artificial intelligence*, volume 38, pp. 16147–16155, 2024.

648 Jie Xu, Yazhou Ren, Huayi Tang, Xiaorong Pu, Xiaofeng Zhu, Ming Zeng, and Lifang He. Multi-  
 649 vae: Learning disentangled view-common and view-peculiar visual representations for multi-  
 650 view clustering. In *Proceedings of the IEEE/CVF international conference on computer vision*,  
 651 pp. 9234–9243, 2021.

652 Jie Xu, Chao Li, Yazhou Ren, Liang Peng, Yujie Mo, Xiaoshuang Shi, and Xiaofeng Zhu. Deep  
 653 incomplete multi-view clustering via mining cluster complementarity. In *Proceedings of the AAAI*  
 654 *conference on artificial intelligence*, volume 36, pp. 8761–8769, 2022a.

655 Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature  
 656 learning for contrastive multi-view clustering. In *Proceedings of the IEEE/CVF conference on*  
 657 *computer vision and pattern recognition*, pp. 16051–16060, 2022b.

658 Jie Xu, Chao Li, Liang Peng, Yazhou Ren, Xiaoshuang Shi, Heng Tao Shen, and Xiaofeng Zhu.  
 659 Adaptive feature projection with distribution alignment for deep incomplete multi-view cluster-  
 660 ing. *IEEE Transactions on Image Processing*, 32:1354–1366, 2023.

661 Wenbiao Yan, Yiyang Zhou, Yifei Wang, Qinghai Zheng, and Jihua Zhu. Multi-view semantic  
 662 consistency based information bottleneck for clustering. *Knowledge-Based Systems*, 288:111448,  
 663 2024a.

664 Xiaoqiang Yan, Zhixiang Jin, Fengshou Han, and Yangdong Ye. Differentiable information bot-  
 665 tleneck for deterministic multi-view clustering. In *Proceedings of the IEEE/CVF conference on*  
 666 *computer vision and pattern recognition*, pp. 27435–27444, 2024b.

667 Yan Yang and Hao Wang. Multi-view clustering: A survey. *Big data mining and analytics*, 1(2):  
 668 83–107, 2018.

669 Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for land-use classification.  
 670 In *Proceedings of the 18th SIGSPATIAL international conference on advances in geographic*  
 671 *information systems*, pp. 270–279, 2010.

672 Jun Yin, Pei Wang, Shiliang Sun, and Zhonglong Zheng. Incomplete multi-view clustering via  
 673 multi-level contrastive learning. *IEEE Transactions on Knowledge and Data Engineering*, 2025.

674 Honglin Yuan, Shiyun Lai, Xingfeng Li, Jian Dai, Yuan Sun, and Zhenwen Ren. Robust prototype  
 675 completion for incomplete multi-view clustering. In *Proceedings of the 32nd ACM international*  
 676 *conference on multimedia*, pp. 10402–10411, 2024.

677 Honglin Yuan, Yuan Sun, Fei Zhou, Jing Wen, Shihua Yuan, Xiaojian You, and Zhenwen Ren.  
 678 Prototype matching learning for incomplete multi-view clustering. *IEEE Transactions on Image*  
 679 *Processing*, 2025.

680 Chao Zhang, Xiuyi Jia, Zechao Li, Chunlin Chen, and Huaxiong Li. Learning cluster-wise an-  
 681 chors for multi-view clustering. In *Proceedings of the AAAI conference on artificial intelligence*,  
 682 volume 38, pp. 16696–16704, 2024a.

683 Yi Zhang, Fengyu Tian, Chuan Ma, Miaomiao Li, Hengfu Yang, Zhe Liu, En Zhu, and Xinwang Liu.  
 684 Regularized instance weighting multiview clustering via late fusion alignment. *IEEE Transactions*  
 685 *on Neural Networks and Learning Systems*, 2024b.

686 Lihua Zhou, Guowang Du, Kevin Lue, Lizheng Wang, and Jingwei Du. A survey and an empirical  
 687 evaluation of multi-view clustering approaches. *ACM Computing Surveys*, 56(7):1–38, 2024.

688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701