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ABSTRACT

We focus on learning adversarially robust classifiers under a cost-sensitive sce-
nario, where the potential harm of different classwise adversarial transformations
is encoded in a binary cost matrix. Existing methods are either empirical that
cannot certify robustness or suffer from inherent scalability issues. In this work, we
study whether randomized smoothing, a scalable certification framework, can be
leveraged to certify cost-sensitive robustness. Built upon a notion of cost-sensitive
certified radius, we show how to adapt the standard randomized smoothing certifi-
cation pipeline to produce tight robustness guarantees for any given cost matrix.
In addition, with fine-grained certified radius optimization schemes designed for
different data subgroups, we propose an algorithm to train smoothed classifiers
that are optimized for cost-sensitive robustness. Extensive experiments on image
benchmarks and a real-world medical dataset demonstrate the superiority of our
method in achieving significantly improved performance of certified cost-sensitive
robustness while having a negligible impact on overall accuracy.

1 INTRODUCTION

Recent studies have revealed that deep learning models are highly vulnerable to adversarial exam-
ples (Szegedy et al., 2013; Goodfellow et al., 2014). To improve model robustness in the presence of
adversarial examples, various defensive mechanisms have been proposed, primarily falling into two
categories: empirical defenses (Goodfellow et al., 2014; Papernot et al., 2016; Kurakin et al., 2016;
Madry et al., 2017; Zhang et al., 2019) and certifiable methods (Raghunathan et al., 2018; Wong &
Kolter, 2018; Gowal et al., 2018; Cohen et al., 2019; Lecuyer et al., 2019; Jia et al., 2019; Li et al.,
2019). In particular, certifiable methods can produce a robustness certificate for the model prediction
to remain unchanged within some specific norm-bounded perturbation ball of any testing input and
train models to be provably robust with respect to the certificate.

Most existing defenses aim to improve the overall robustness of a classification model, assuming the
same penalty is imposed on all kinds of adversarial misclassifications. For real-world applications,
however, it is likely that some specific misclassifications are more consequential than others (Domin-
gos, 1999; Elkan, 2001). For instance, misclassifying a malignant tumor as benign in the application
of medical diagnosis is much more detrimental to a patient than the reverse. Therefore, instead of
solely focusing on enhancing overall robustness, the development of defenses should also account
for the difference in costs induced by different adversarial examples. In line with existing works
on cost-sensitive robust learning (Domingos, 1999; Asif et al., 2015; Zhang & Evans, 2019; Chen
et al., 2021), we aim to develop models that are robust to cost-sensitive adversarial misclassifications,
while maintaining the standard overall classification accuracy. However, existing defenses are either
hindered by their foundational reliance on heuristics, which often fall short of providing a robustness
guarantee (Domingos, 1999; Asif et al., 2015; Chen et al., 2021), or suffer from inherent scalability
issues (Zhang & Evans, 2019) (see detailed discussions of related works in Appendix A).

To achieve the best of both worlds, we propose to learn provably cost-sensitive robust classifiers
by leveraging randomized smoothing (Liu et al., 2018; Cohen et al., 2019; Salman et al., 2019), an
emerging robustness certification framework that has attracted a lot of attention due to its simplicity
and scalability. However, optimizing smoothed classifiers for cost-sensitive robustness is intractable,
primarily due to the inherent complexity introduced by the discrete Gaussian sampling process when
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transforming base classifiers into smoothed classifiers. In addition, different designs of cost matrix
necessitate a more flexible and targeted optimization scheme than optimizing for overall robustness.

Contributions. We are the first to adapt the randomized smoothing framework to certify and train
for cost-sensitive robustness. In particular, for any binary cost matrix (Section 2), we introduce the
notion of cost-sensitive certified radius (Definition 3.1), which captures the maximum allowable
ℓ2 perturbation with respect to the smoothed classifier for each sensitive seed input (Theorem
3.2). We show that compared with standard certified radius typically adopted in the literature, our
proposed definition is more suitable for certifying cost-sensitive robustness, as it theoretically defines
a larger certified radius specifically for a wide range of cost matrices (Theorem 3.3). Built upon
the definition of cost-sensitive certified radius, we further propose a practical certification algorithm
using Monte Carlo samples (Algorithm 1), which provides two different methods for computing the
probabilistic bound on certified radius such that the tighter bound can always be returned (Section
3.2). Moreover, to train for cost-sensitive robust smoothed classifiers, we attempt to adapt the
commonly-used reweighting method in standard cost-sensitive learning literature (Elkan, 2001; Khan
et al., 2017). However, we discover that the naive reweighting scheme does not adapt well when
training a smoothed classifier, owing to the indirect optimization of the base classifier and the non-
optimal trade-off between sensitive and non-sensitive examples (Section 4.1). Therefore, we take the
distinctive properties of different data subgroups into account and design an advanced cost-sensitive
robust training method based on MACER (Zhai et al., 2020) to directly optimize the certified radius
with respect to the smoothed classifier (Section 4.2). Experiments on typical image benchmarks and
a real-world medical dataset illustrate the superiority of our method in achieving consistently and
significantly improved certified cost-sensitive robustness while maintaining a similar performance of
overall accuracy under a variety of cost matrix settings (Section 5).

2 PRELIMINARIES

Randomized Smoothing. Cohen et al. (2019) proposed a probabilistic certification framework,
named as randomized smoothing (RS), which is able to certify robustness for large-scale models.
In particular, randomized smoothing is based on the following construction of smoothed classifiers,
which first augments normal inputs with randomly sampled Gaussian noise, then passes the noisy
inputs through a base classifier and aggregate their predictions using majority voting:
Definition 2.1. Let X ⊆ Rd be the input space and [m] := {1, 2, . . . ,m} be the label space. For any
base classifier fθ : X → [m] and σ > 0, the corresponding smoothed classifier gθ is defined as:

gθ(x) = argmax
k∈[m]

Pδ∼N (0,σ2I)

[
fθ(x+ δ) = k

]
, ∀x ∈ X .

Let hθ : X → [0, 1]m be the function that maps any input x to the prediction probabilities of gθ(x):

[hθ(x)]k = Pδ∼N (0,σ2I)

[
fθ(x+ δ) = k

]
, ∀x ∈ X and k ∈ [m].

The following lemma, proven in Cohen et al. (2019), characterizes the maximum allowable ℓ2-
perturbation for any input x such that the prediction of gθ at x remains the same within the radius.
Lemma 2.2 (Cohen et al. (2019)). Let x ∈ X be any input and y ∈ [m] be its ground-truth label. If
gθ classifies x correctly, i.e., y = argmaxk∈[m] Pδ∼N (0,σ2I)

[
fθ(x+ δ) = k

]
, then the prediction of

g at x is both accurate and provably robust with certified ℓ2-norm radius R(x), which is defined as:

R(x) =
σ

2

[
Φ−1

(
[hθ(x)]y

)
− Φ−1

(
max
k ̸=y

[hθ(x)]k
)]
, (1)

where Φ is the CDF of standard Gaussian N (0, 1) and Φ−1 denotes its inverse.

We remark that our method is built upon this randomized smoothing framework, which is designed
for l2 perturbations. Recent studies have adapted the standard framework to certify robustness against
other ℓp-norm bounded perturbations (Mohapatra et al., 2020; Yang et al., 2020). We believe our
method is applicable to those ℓp-norms, whereas studying how to certify cost-sensitive robustness
against general perturbations defined in metrics beyond ℓp-norm would be an interesting future work.
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Cost-Sensitive Robustness. We consider robust classification tasks under cost-sensitive scenarios,
where the goal is to learn a classifier with both high overall accuracy and cost-sensitive robustness.
Suppose C ∈ {0, 1}m×m is a predefined cost matrix that encodes the potential harm of different
classwise adversarial transformations.1 In particular, the most studied overall robustness corresponds
to having a cost matrix, where all the entries are 1 except for the diagonal ones. For any j ∈ [m]
and k ∈ [m], Cjk = 1 means any misclassification from seed class j to target class k will induce
a cost, whereas Cjk = 0 suggests that there is no incentive for an attacker to trick the model to
misclassify inputs from class j to class k. Therefore, the goal of cost-sensitive robust learning is
to reduce the number of adversarial misclassifications that will induce a cost defined by C. For the
ease of presentation, we also introduce the following notations. For any seed class j ∈ [m], we
let Ωj = {k ∈ [m] : Cjk = 1} be the set of cost-sensitive target classes. If Ωj is an empty set,
then all the examples from seed class j is non-sensitive. Otherwise, any class j with |Ωj | ≥ 1 is a
sensitive seed class. Given a dataset S = {(xi, yi)}i∈[n], we define the set of cost-sensitive examples
as Ss = {(x, y) ∈ S : |Ωy| ≥ 1}, while the remaining examples are regarded as non-sensitive.

3 CERTIFYING COST-SENSITIVE ROBUSTNESS

This section explains how to certify cost-sensitive robustness using randomized smoothing. We first
introduce the formal definition of cost-sensitive certified radius and the corresponding evaluation
metrics then discuss its connection to the standard certified radius (Section 3.1). Finally, based on the
proposed definition, we design a practical certification algorithm using finite samples (Section 3.2).

3.1 COST-SENSITIVE CERTIFIED RADIUS

Recall that for any example (x, y) ∈ Ss, only misclassifying x to a target class in Ωy incurs a
cost, whereas misclassifications to any class from [m]\Ωy is tolerable. Below, we formally define
cost-sensitive certified radius, which adapts the standard certified radius to cost-sensitive scenarios:
Definition 3.1 (Cost-Sensitive Certified Radius). Consider the same setting as in Theorem 2.2. Let
C be an m×m cost matrix. For any example (x, y) ∈ X × [m] where y is a sensitive seed class, the
cost-sensitive certified radius at (x, y) with respect to C is defined as:

Rc-s(x; Ωy) =
σ

2

[
Φ−1

(
max
k∈[m]

[
hθ(x)

]
k

)
− Φ−1

(
max
k∈Ωy

[
hθ(x)

]
k

)]
,

where Ωy = {k ∈ [m] : Cyk = 1}, and Φ−1 is the inverse CDF of standard Gaussian N (0, 1).

Based on Definition 3.1, the following theorem extends Lemma 2.2, which shows how to produce a
certificate for cost-sensitive robustness of a smoothed classifier with respect to any given input.
Theorem 3.2. Consider the same setting as in Definition 3.1. For any example (x, y), if the predicted
class of the smoothed classifier gθ at x does not incur a cost, i.e., argmaxk∈[m][hθ(x)]k /∈ Ωy , then
gθ is provably robust at x with certified radius Rc-s(x; Ωy) measured in ℓ2-norm.

Theorem 3.2 can be applied to certify cost-sensitive robustness for any binary-valued cost matrix. Note
that maxk∈[m][hθ(x)]k, the first term on the right hand side of Definition 3.1, denotes the maximum
predicted probability across all classes with respect to hθ, while the second term maxk∈Ωy

[hθ(x)]k
is the maximum predicted probability across all sensitive target classes within Ωy , which are different
from the corresponding terms used in standard certified radius (Equation 1). We remark that these
modifications are necessary for providing tight certification results for cost-sensitive settings, since it
is possible for the prediction g(x) to be incorrect but cost-sensitive robust under certain scenarios, as
long as the incorrect prediction does not fall into the set of sensitive target classes Ωy .

More specifically, the following theorem, proven in Appendix B, characterizes the connection between
the cost-sensitive certified radius and the standard notion of certified radius for any cost matrix.
Theorem 3.3. For any cost-sensitive scenario, if the prediction gθ(x) does not incur a cost, then
Rc-s(x; Ωy) ≥ R(x), where the equality holds when Ωy = {k ∈ [m] : k ̸= y}.

1Although we only consider binary-valued cost matrices in this work, our method can be easily adapted to
provide cost-sensitive robustness guarantees for real-valued cost matrices (Zhang & Evans, 2019).
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Algorithm 1 Certification for Cost-Sensitive Robustness
1: function CERTIFY(f, σ,x, n0, n, α,Ωy)
2: count0 ← SAMPLEUNDERNOISE(f,x, n0, σ)
3: ĉA ← top index in count0
4: count← SAMPLEUNDERNOISE(f,x, n, σ)
5: pA ← LowerConfBnd(count[ĉA], n, 1− α)

6: R1 = σΦ−1(pA)
7: ĉB ← top index in count[Ωy]
8: pA ← LowerConfBnd(count[ĉA], n, 1− α/2)
9: pB ← UpperConfBnd(count[ĉB ], n, 1− α/(2|Ωy|))

10: R2 = σ
2 (Φ

−1(pA)− Φ−1(pB))
11: if max(R1, R2) > 0
12: return prediction ĉA and max(R1, R2)
13: else
14: return ABSTAIN
15: end function

Theorem 3.3 suggests that using Rc-s(x; Ωy) can always yield a cost-sensitive robustness certificate
not inferior to that using the standard certified radius R(x). In particular, for input x with |Ωy| ≠
m− 1, the improvement of cost-sensitive robustness certification based on Rc-s(x; Ωy) is likely to be
more significant. As will be shown in Figures 1(a) and 1(b), the empirically estimated robustness
certificate with Rc-s(x; Ωy) consistently surpasses that with R(x) across various cost matrix settings.

Evaluation Metrics. We formally define our evaluations metrics, certified cost-sensitive robustness
and overall accuracy, which will be used to measure a classifier’s performance under a cost-sensitive
setting. For any binary cost matrix, we define certified cost-sensitive robustness as the ratio of
cost-sensitive examples that are provably robust with gθ against ℓ2 perturbations with strength ϵ > 0:

Robc-s(gθ) =
1

|Ss|
∑

(x,y)∈Ss

1
{
Rc-s(x; Ωy) > ϵ

}
, provided |Ss| > 0, (2)

where Ss denotes the set of cost-sensitive examples. In addition, the overall accuracy of gθ is defined
as the fraction of correctly classified samples with respect to the whole training dataset:

Acc(gθ) =
1

|S|
∑

(x,y)∈S

1
{
R(x) > 0

}
. (3)

We use the standard certified radius R(x) in Equation 3, since the computation of overall accuracy
does not rely on the cost matrix C. As will be discussed next, we are going to replace Robc-s(gθ) and
R(x) with their empirical counterparts for practical implementations of the two metrics.

3.2 PRACTICAL CERTIFICATION ALGORITHM

By definition, the construction of hθ requires access to an infinite number of Gaussian samples to
compute the cost-sensitive certified radius. However, it is computationally infeasible in practice
to obtain the exact value of Rc-s(x; Ωy) even for a single example (x, y). The difference between
Rc-s(x; Ωy) and standard certified radius R(x) necessitates a new certification procedure. In this
section, we put forward a new Monte Carlo algorithm for certifying cost-sensitive robustness by
adapting Cohen et al. (2019)’s standard algorithm, which is applicable to any binary cost matrix.

Algorithm 1 depicts the pseudocode of our certification method, which involves two ways to compute
the confidence bound for cost-sensitive certified radius Rc-s(x; Ωy) (see Appendix C for more details
about the sampling scheme). The first approach is based on R1, which is computed using a lower
1 − α confidence bound on the ground-truth probability pA with respect to the top class, same as
the bound for standard radius used in Cohen et al. (2019) for certifying overall robustness. Note
that according to Definition 3.1, the standard certified radius is guaranteed to be less than or equal
to the corresponding cost-sensitive certified radius, suggesting that R1 also severs as a valid 1− α
confidence bound for cost-sensitive radius. On the other hand, R2 is computed using both a lower
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Figure 1: Comparisons of certified cost-sensitive robustness computed using R1 and R2 with respect
to (a) Cohen and (b) MACER. Figure 1(c) visualizes the trade-off between overall accuracy and
cost-sensitive robustness with respect to our method and Cohen-R. We fix the CIFAR-10 class “cat”
as the only sensitive seed class and vary the corresponding cost-sensitive target classes.

1−α/2 confidence bound of pA and an upper 1−α/2|Ωy| bound of pB , the ground-truth probability
of the top class within Ωy. The following theorem, proven in Appendix C by union bound, shows
that the confidence for R2 being a cost-sensitive certified radius is guaranteed to be at least 1− α.
Theorem 3.4. For any example (x, y), the second radius R2 specified by Algorithm 1 is a certified
cost-sensitive robust radius with at least 1−α confidence over the randomness of Gaussian sampling.

Theorem 3.4 suggests that the prediction of gθ at (x, y) will not incur any undesirable cost with high
probability as long as the ℓ2 perturbation is within radius max(R1, R2). By definition, the output
max(R1, R2) of Algorithm 1 is always better than R1 solely for certifying cost-sensitive robustness.

Comparison between R1 and R2. Note that R2 is specifically designed for certifying cost-sensitive
robustness, whereas R1 works for both overall and cost-sensitive scenarios. To further illustrate the
superiority of our proposed practical certification algorithm to Cohen et al. (2019)’s, we specify the
scenarios where R2 is superior to R1 by definition and provide empirical evidence in Figures 1(a)
and 1(b). By definition, there are two scenarios where R2 is likely to be larger than R1:

1. Ωy does not contain the second highest probability class, which is likely to happen when the
number of cost-sensitive target classes is small, i.e., |Ωy| = 1.

2. Even when |Ωy| = m − 1, it is still possible for R2 > R1, especially if the ground-truth
probability of the second highest class pB is far below 1− pA.

In summary, if pB , the ground-truth probability of the top class in Ωy , is far below pA, then R2 will be
much higher than R1, thus producing a much tighter cost-sensitive robust certificate. To further study
the relationship between R1 and R2, we conduct experiments to compare the cost-sensitive robustness
computed based on R1 and R2 across different cost matrix scenarios, as shown in Figures 1(a) and
1(b). We fix a single seed class “cat” as sensitive and vary the size of its corresponding cost-sensitive
target classes, randomly selecting |Ωy| ∈ {1, 3, 5, 7, 9} of all the possible target classes. We then
evaluate the performance of the models produced by two baseline training methods for randomized
smoothing, Cohen (Cohen et al., 2019) and MACER (Zhai et al., 2020). Figures 1(a) and 1(b) show
that cost-sensitive robustness measured by R2 outperforms that of R1 across most of the settings. As
the size of Ωy decreases, the performance gap between R1 and R2 is more pronounced, underscoring
the superior efficacy of R2 and confirming the superiority of Algorithm 1 over Cohen et al. (2019)’s.

4 TRAINING FOR COST-SENSITIVE ROBUSTNESS

A popular training scheme for cost-sensitive learning is reweighting (Elkan, 2001), which assigns
larger weights to cost-sensitive inputs during model training. Thus, a natural question is whether
the reweighting scheme can be incorporated in randomized smoothing to train for cost-sensitive
robustness. In this section, we first study the effectiveness of reweighting methods combined with the
method of Cohen et al. (2019) (Section 4.1), then provide a new training method by leveraging the
design insight of MACER (Zhai et al., 2020) to achieve better performance (Section 4.2).
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4.1 REWEIGHTING METHOD

We consider the base classifier training method introduced in Cohen et al. (2019), which proposes to
inject Gaussian noise to all inputs during the training process of fθ. Given a binary cost matrix, D is
the underlying data distribution, let Ds be the distribution of all sensitive examples which incur costs
if misclassified and let Dn represent the distribution of the remaining normal examples. Intuitively,
the training pipeline of randomized smoothing can be adapted to cost-sensitive settings using a simple
reweighting scheme by increasing the weights assigned to the loss function of sensitive examples,
denoted as Cohen-R. More concretely, the training objective of Cohen-R is defined as follows:

min
θ∈Θ

[
E(x,y)∼Dn

LCE

(
fθ(x+ δ), y

)
+ α · E(x,y)∼Ds

LCE

(
fθ(x+ δ), y

)]
,

where Θ denotes the set of model parameters, LCE represents the cross-entropy loss, and α ≥ 1 is
a trade-off parameter that controls the performance between sensitive and non-sensitive examples.
When α = 1, the above objective function is equivalent to the training loss used in standard
randomized smoothing (Cohen et al., 2019). However, due to the indirect optimization of the
smoothed classifier, Cohen-R tends to sacrifice overall accuracy to a large degree when trying to
achieve high cost-sensitive robustness (see Figure 1(c) for empirical evidence about this statement).

4.2 OUR METHOD

In this section, we propose a more direct optimization scheme based on the proposed notion of
certified cost-sensitive radius, leveraging a similar insight of MACER (Zhai et al., 2020) to better
trade off cost-sensitive robustness and overall accuracy. To simplify notations, we first introduce a
general class of margin-based losses. Given l ≤ u denoting the thresholding parameters, we define
the following class of margin losses: for any r ∈ R representing the certified radius, let

LM

(
r; l, u

)
= max{u− r, 0} · 1(l ≤ r ≤ u).

Here, the indicator function selects data points whose certified radius falls into the range of [l, u]. For
any binary cost matrix C, the total training loss function of our method is defined as:

min
θ∈Θ

I1 + λ · I2 + λ · I3, (4)

where I1 = E(x,y)∼D LCE

(
hθ(x

)
, y),

I2 = E(x,y)∼D LM

(
Rc-s(x; Ωy, hθ); 0, γ1

)
,

I3 = E(x,y)∼Ds
LM

(
Rc-s(x; Ωy, hθ);−γ2, γ2

)
,

where λ, γ1, γ2 > 0 are hyperparameters, Rc-s(x; Ωy, hθ) is the cost-sensitive certified radius with
respect to hθ, and D, Ds denote the underlying distributions of all and cost-sensitive examples,
respectively. In particular, Equation 4 consists of three terms: I1 represents the cross-entropy loss
with respect to hθ overD, which controls the overall accuracy; I2 and I3 control the robustness with a
shared trade-off parameter λ.2 The range of the interval [l, r] represents which data subpopulation we
want to optimize. A larger thresholding parameter such as γ1 and γ2 lead to a higher data coverage,
whereas the range with a smaller threshold includes fewer data points. We set γ2 > γ1 to have a
wider adjustment range for sensitive seed examples. As shown in Wang et al. (2020), optimizing
misclassified samples can help adversarial robustness, thus, we intend to include sensitive seed
examples with a negative radius in [−γ2, 0) in the design of I3 for a better performance.

Intuitively speaking, by imposing different threshold restrictions [l, u] on the certified radius of
sensitive seed classes and normal seed classes, the optimization process can prioritize making
adjustments to data subpopulations of specific classes rather than considering all data points belonging
to those classes. This is also a key advantage of our method over the naive reweighting method. As
will be shown in our experiments, such fine-grained optimization enables our method to improve
certified cost-sensitive robustness to a large extent without sacrificing overall accuracy. Figure 1(c)
provide empirical evidence of the non-optimal trade-off for the reweighting method Cohen-R on
CIFAR-10 under a specific cost matrix of “cat” being the only sensitive seed class, compared with

2When |Ωy| < m− 1, we optimize the data distribution D in I2 to counteract I3’s potential adverse effects.
However, for |Ωy| = m− 1, we utilize Dn since I2 and I3 have no optimization conflicts.
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Table 1: Certification results for seedwise cost matrices. The noise level σ is 0.5 for both CIFAR-
10 and Imagenette. Acc stands for overall accuracy. Robc-s is certified cost-sensitive robustness
estimated by max(R1, R2), Robstd is certified cost-sensitive robustness estimated by R1, Robnon
is certified robustness of non-sensitive samples, all measured at ϵ = 0.5. The best statistics are
highlighted in bold.

Dataset Type Method Acc Robc-s Robstd Robnon

CIFAR-10

Single (3)
Cohen 0.654 0.223 0.193 0.466
MACER 0.659 0.273 0.259 0.499
Cohen-R 0.642 0.506 0.466 0.437
Ours 0.661 0.628 0.598 0.455

Multi (2, 4)
Cohen 0.659 0.293 0.257 0.463
MACER 0.659 0.291 0.262 0.527
Cohen-R 0.662 0.348 0.308 0.413
Ours 0.669 0.461 0.441 0.504

Imagenette

Single (7)
Cohen 0.803 0.646 0.637 0.744
MACER 0.782 0.638 0.638 0.739
Cohen-R 0.746 0.733 0.733 0.671
Ours 0.791 0.811 0.795 0.725

Multi (3, 7)
Cohen 0.804 0.589 0.579 0.771
MACER 0.782 0.578 0.578 0.774
Cohen-R 0.740 0.617 0.613 0.843
Ours 0.791 0.715 0.713 0.738

the performance of models produced by our proposed method. Each (Robc-s,Acc) point is derived
from a unique set of model tuning hyperparameters. Notably, the points corresponding to our method
predominantly occupy the upper-right quadrant compared to those of Cohen-R illustrating that our
proposed approach offers a superior trade-off between cost-sensitive robustness and overall accuracy.

5 EXPERIMENTS

We evaluate the performance of our method on two image benchmarks: CIFAR-10 (Krizhevsky
et al., 2009) and Imagenette, a 10-class subset of ImageNet.3 In addition, we test our method on the
medical dataset HAM10k (Ghosh et al., 2023) to further examine its generalizability for real-world
scenarios, where cost-sensitive misclassifications have more severe consequences. For CIFAR-10 and
HAM10k, we use the same ResNet (He et al., 2016) architecture as employed in (Cohen et al., 2019).
Specifically, we choose ResNet-56 network, since it attains comparable performance to ResNet-110
with a shorter computation time. For Imagenette, we use ResNet18 following (Pethick et al., 2023).

Baselines. We primarily compare our method with two prevalent randomized smoothing methods:
Cohen (Cohen et al., 2019) and MACER (Zhai et al., 2020). We also consider Cohen-R, a variant
of Cohen adapted for cost-sensitive scenarios using reweighting technique described in Section 4.1.
We select Cohen for comparisons with standard randomized smoothing and MACER for comparing
with methods that optimize for certified radius. Both of these baselines are optimized for overall
robustness. Cohen-R is optimized for cost-sensitive performance by tuning the weight parameter α
for a fair comparison. In addition, our experiments are mainly conducted for two categories of cost
matrices: seedwise and pairwise, as their corresponding training procedures are slightly different.

Experimental Details. Tuning the hyperparameters plays a critical role. For Cohen-R, the weight
parameters α are carefully tuned to ensure the best possible trade-off between overall accuracy and
cost-sensitive robustness, where we enumerate all values from {1.0, 1.1, . . . , 2.0} and find that nearly
in all cases of cost matrices, α = 1.2 achieves the best result. For our method, we follow Zhai et al.
(2020)’s settings for training. The main difference between our method and MACER is the choice of

3This dataset can be downloaded from https://github.com/fastai/imagenette.
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Table 2: Certification results for pairwise cost matrices. ϵ = 0.5 and σ = 0.5 for both CIFAR-10 and
Imagenette. Acc stands for overall accuracy and Robc-s refers to certified cost-sensitive robustness,
Robnon is certified robustness of non-sensitive samples. The best statistics are highlighted in bold.

Dataset Type Methods Acc Robc-s Robnon

CIFAR-10

Single (3→ 5)
Cohen 0.654 0.504 0.443
MACER 0.647 0.543 0.533
Cohen-R 0.642 0.723 0.437
Ours 0.673 0.924 0.472

Multi (3→ 2, 4, 5)
Cohen 0.654 0.336 0.446
MACER 0.647 0.385 0.533
Cohen-R 0.642 0.643 0.437
Ours 0.643 0.822 0.474

Imagenette

Single (7→ 2)
Cohen 0.803 0.885 0.744
MACER 0.782 0.899 0.749
Cohen-R 0.754 0.911 0.679
Ours 0.792 0.938 0.731

Multi (7→ 2, 4, 6)
Cohen 0.803 0.756 0.744
MACER 0.781 0.780 0.749
Cohen-R 0.754 0.830 0.678
Ours 0.796 0.863 0.730

γ. MACER uses γ = 8 to enhance the overall robustness for all classes, whereas we set γ1 = 4 for
normal classes and γ2 = 16 for sensitive classes based on our analysis in Section 4.2. The effect of
different combinations of hyperparameters is discussed in Appendix E. In addition, we compare our
method with an alternative convex relaxation-based approach (Zhang & Evans, 2019) in Appendix D.

5.1 CERTIFICATION RESULTS FOR DIFFERENT COST MATRICES

Seedwise Cost Matrix. For any (x, y) ∈ Ss, Ωy = {j ∈ [m] : j ̸= y} or |Ωy| = m− 1, meaning
that any possible classwise adversarial transformation for (x, y) will incur a cost. Table 1 reports the
performance in terms of overall accuracy and certified cost-sensitive robustness of our method and
the three baselines with respect to different seedwise cost matrices. In particular, we consider two
types of seedwise cost matrices in our experiments: (2) Single: a randomly-selected sensitive seed
class from all available classes, where we report the performance on the third class “cat” (label 3) for
CIFAR-10 and “gas pump”(label 7) for Imagenette. (3) Multi: multiple sensitive seed classes, where
“bird” (label 2) and “deer” (label 4) are considered as the sensitive seed classes for CIFAR-10, while
we choose “chain saw”(label 3) and “gas pump”(label 7) for Imagenette.

We observe in Table 1 that our cost-sensitive robust training method achieves a significant improve-
ment in terms of certified cost-sensitive robustness compared with baselines. In certain cost-sensitive
scenarios, our method achieves comparable or even slightly better performance than the baselines in
terms of overall accuracy. The certified robustness of our method for non-sensitive examples is not as
high as MACER’s, indicating a desirable shift of robustness from normal to sensitive examples.

Pairwise Cost Matrix. For any (x, y) ∈ Ss, Ωy ⊆ {j ∈ [m] : j ̸= y} with |Ωy| < m − 1,
meaning that misclassification to any target class in [m]\Ωy is acceptable. Note that [m]\Ωy may
include target classes other than the ground-truth class y. Similar to the previous setting, we consider
two types of pairwise cost matrices: (1) Single: a randomly-selected sensitive seed class with one
sensitive target class. (2) Multi: a single sensitive seed class with multiple sensitive target classes.
Table 2 compares the performance of our method with baselines for the aforementioned pairwise
cost matrices on CIFAR-10 and Imagenette datasets. Similar to results in seedwise cost matrix, our
methods always yeilds the optimal cost-sensitive certified robustness without sacrificing too much
overall accuracy. The superiority of our approach in preserving overall accuracy becomes even more
pronounced when contrasted with the reweighting method Cohen-R.
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Figure 2: The curves of certified accuracy with respect to different training methods on the CIFAR-10
dataset for varying ϵ under different cost-sensitive settings.

5.2 MEDICAL DATASET

Table 3: Comparisons of different
methods on HAM10k dataset.

Method Acc Robc-s

Cohen 0.829 0.118
Cohen-R-I 0.805 0.197
Cohen-R-II 0.784 0.437
MACER 0.828 0.250
Ours 0.831 0.413

We report the results of our method on a real-world medical
dataset: HAM10k, which is an imbalanced skin cancer dataset
with 7 classes. The noise level here is set as σ = 0.5 and the
cost-sensitive robustness Robc-s is measured for ϵ = 0.5 in
ℓ2-norm. Due to the small sample size for several classes, we
group all images from the benign classes into a single category
and all images from the malignant classes into another, which
formulates a binary classification task. Since misclassifying
a malignant tumor as benign can have severe consequences
and resulting in high costs for this medical application, we set
any misclassiciation from malignant to benign as cost-sensitive,
while regarding the cost of the other type of misclassifications as
0. Table 3 demonstrates the overall accuracy and certified cost-
sensitive robustness of the model produced by our cost-sensitive robust training method, compared
with other alternatives. Cohen-R-I and Cohen-R-II represent two specific instantiations of Cohen-R
with the weight parameter α selected as 1.1 and 1.2, respectively. As we increase the weight parameter
α, there is a noticeable enhancement in cost-sensitive robustness. However, this comes at the expense
of a marked decline in overall accuracy, confirming the non-optimal trade-off phenomenon discussed
in Section 4. Notably, our approach achieves a more desirable trade-off between the two metrics,
underscoring its effectiveness for real-world applications.

5.3 CERTIFICATION RESULTS UNDER VARYING ϵ

To further visualize the consistency of our improvement, we compare the certified accuracy curves of
cost-sensitive examples with varying l2 perturbation for the aforementioned methods in Figure 2. It
is evident that our method consistently outperforms the baseline in terms of certified cost-sensitive
accuracy across different ϵ. In particular, we observe a significant improvement at ϵ = 0.5 of our
method compared with other baselines, which again confirms our findings in Section 5.1.

6 CONCLUSION

We developed a generic randomized smoothing framework to certify and train for cost-sensitive
robustness. At the core of our framework is a new notion of cost-sensitive certified radius, which is
applicable to any binary cost matrix. Built upon fine-grained thresholding techniques for optimizing
the certified radius with respect to different subpopulations, our method significantly improves the
certified robustness performance for cost-sensitive transformations. Compared with naive reweighting
approaches, our method achieves a much more desirable trade-off between overall accuracy and
certified cost-sensitive robustness. Experiments on image benchmarks demonstrate the superior
performance of our approach compared to various baselines. Our work opens up new possibilities for
building certified robust models based on randomized smoothing for cost-sensitive applications.
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A RELATED WORK

Cohen et al. (2019) proposed randomized smoothing, which first converts any base neural network
into a smoothed classifier by injecting Gaussian noises to inputs followed by majority voting, then
provides a robust certificate that can guarantee the prediction of the resulting smoothed classifier is
constant within some ℓ2-norm ball for any given input. Compared with other certification methods, a
biggest advantage of the randomized smoothing framework is its scalability to large neural networks
and large-scale datasets. In particular, Cohen et al. (2019) provided a tight robustness guarantee for
randomized smoothing with ℓ2 perturbations. Later on, SmoothADV (Shafahi et al., 2019) improved
the proposed training method in Cohen et al. (2019) by designing an adaptive attack on the smoothed
classifier using adversarial training and first-order approximations. In addition, MACER (Zhai et al.,
2020) developed a more direct way which directly optimizes the smoothed classifiers’ certified radius
with respect to correctly-classified samples using margin based loss and achieves better robustness
and accuracy trade-off than previous methods. More recently, several research studies (Carlini et al.,
2022; Xiao et al., 2022; Zhang et al., 2023) proposed to improve the base classifier training pipeline
by adapting pretrained diffusion models to denoise the Gaussian augmented samples.

Cost-sensitive learning deals with the situation where different misclassifications will induce different
costs (Domingos, 1999; Elkan, 2001). For example, misclassifying a malicious tumor to benign (Khan
et al., 2017) will bring more harmful consequences to the patient than the reverse. For empirical
methods such as adversarial training, it is also valuable to make the classifier adapt to cost-sensitive
settings so that adversarial transformations with high costs will be less likely to happen. Most of the
cost-sensitive robust training methods are applicable to either simple linear classifiers or empirical
training methods that cannot produce robust certificate (Khan et al., 2017; Chen et al., 2021). Zhang
& Evans (2019) proposed a method to train cost-sensitive certifiable classifiers using certified methods
based on convex optimization, however, it can not scale to large neural network or large datasets such
as ImageNet. Our work combines randomized smoothing and cost-sensitive learning to provide more
scalable classifiers with good certifiable robustness guarantees under cost-sensitive scenarios.

B COMPARISONS WITH STANDARD CERTIFIED RADIUS

The main distinction between our cost-sensitive certified radius Rc-s(x; Ωy) and Cohen et al. (2019)’s
standard certified radius R(x) lies in the case when |Ωy| < m− 1. In the following, we provide the
detailed proof of Theorem 3.3.

Proof of Theorem 3.3. Recall Cohen’s certified radius is:

R(x) =
σ

2

[
Φ−1

(
[hθ(x)]y

)
− Φ−1

(
max
k ̸=y

[hθ(x)]k
)]
, (5)

note the prerequisite in the definition of R(x) guarantees that x is correctly classified, which means
y is both the ground-truth class and top-1 class. our cost-sensitive certified radius is:

Rc-s(x; Ωy) =
σ

2

[
Φ−1

(
max
k∈[m]

[
hθ(x)

]
k

)
− Φ−1

(
max
k∈Ωy

[
hθ(x)

]
k

)]
,

If |Ωy| = m− 1, Rc-s(x; Ωy) and R(x) are equivalent as the set of target classes in both definitions
are identical, while if |Ωy| < m − 1, the second term in cost-sensitive certified radius will be no
bigger than that of Cohen’s certified radius, leading to Rc-s(x; Ωy) ≥ R(x).

To be more specific, we have the following observations:

1. When |Ωy| = m− 1, Rc-s(x; Ωy)⇔ R(x). Since Ωy = {j|j ̸= y, j ∈ [m]} encompasses
all incorrect classes, the two probability terms are fully matched for both radius.

2. When |Ωy| < m − 1, Rc-s(x; Ωy) ≥ R(x). This is because the class index scope in the
second term of Rc-s(x; Ωy) is narrower than that in R(x). Since Ωy ⊆ {j ̸= y, j ∈ [m]},
the highest probability w.r.t |Ωy| will be no bigger than the highest probability related to all
incorrect classes in R(x). Consequently, Rc-s(x; Ωy) ≥ R(x).

Therefore, we complete the proof of Theorem 3.3.
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Figure 3: Illustration of the relationship between the top-class sampling ratio p̂B = nB/n and its
corresponding probabilistic upper confidence bound. Here, nB represents the number of samples that
is predicted as the top class in Ωy , and n represents total sampling number.

C ADDITIONAL DETAILS FOR SECTION 3.2

This section provides more details about Algorithm 1 and the proof of Theorem 3.4.

Details of Algorithm 1. We follow the same sampling procedure of Cohen et al. (Cohen et al., 2019).
To be more specific, the sampling function SAMPLEUNDERNOISE(f, x, n, σ) is defined as:

1. Draw n i.i.d. samples of Gaussian noises δ1 . . . δn ∼ N (0, σ2I).
2. Obtain the predictions f(x+ δ1), . . . , f(x+ δn) with base classifier f on noisy images.
3. Return the counts for each class, where the count for class c is

∑
i∈[n] 1[f(x+ δi) = c].

Proof of Theorem 3.4. We provide the proof of Theorem 3.4 presented in Section 3.2, where we
make use of the union bound to prove the validity the upper confidence bound pB with respect to Ωy .

Proof of Theorem 3.4. Our goal is to show that R2 specified in Algorithm 1 is a cost-sensitive
certified radius with at least 1 − α confidence over the randomness of the Gaussian sampling.
Let m be the number of total label classes, and let (p1, . . . , pm) be the ground-truth probability
distribution of the smoothed classifier gθ for a given example (x, y). Denote by pA, pB the maximum
probabilities in [m] and in Ωy , respectively. According to the design of Algorithm 1, we can compute
the empirical estimate of pk for any k ∈ [m] based on n Gaussian samples and the base classifier fθ.
Let (p̂1, . . . , p̂m) be the corresponding empirical estimates, then we immediately know

p̂k ∼ Binomial(n, pk), for any k ∈ [m].

For R1, we follow the same procedure as in Cohen et al. (2019) to compute the 1−α lower confidence
bound on pA, which is guaranteed by the fact that pB ≤ 1− pA. However, for the computation of R2,
we need compute both a lower confidence bound on pA and a upper confidence bound on pB , which
requires additional care to make the computation rigorous. In particular, we adapt the definition of
standard certified radius (Theorem 1 in Cohen et al. (2019)) to cost-sensitive scenarios for deriving
R2. According to the construction of pA = LowerConfBnd(count[ĉA], n, 1− α/2], we have

Pr
[
pA ≤ pA

]
≥ 1− α

2
.

Therefore, the remaining task is to prove

Pr
[
pB ≥ pB

]
≥ 1− α

2
, (6)

where pB = UpperConfBnd(count[ĉB ], n, 1−α/(2|Ωy|)], and Ωy denotes the set of cost-sensitive
target classes. Note that pB = maxk∈Ωy

{pk} is used to define Rc-s(x,Ωy). If the above inequality
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holds true, we immediately know that by union bound,

Pr
[
R2 ≤ Rc-s(x; Ωy)

]
= Pr

[
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)]
≥ 1−

(
Pr

[
pA ≥ pA

]
+ Pr

[
pB ≤ pB

])
≥ 1− α.

The challenge for proving Equation 6 lies in the that we do not know the top class within Ωy which
is different from the case of pA. Therefore, we resort to upper bound the maximum over all the
ground-truth class probabilities within Ωy . Based on the distribution of p̂k, we know for any k ∈ Ωy ,

Pr
[
pk ≥ pk

]
≥ 1− α/(2|Ωy|),

where pk is defined as the 1−α/(2|Ωy|) upper confidence bound using p̂k similar to the construction
of pB . We remark that the choice of 1− α/(2|Ωy|) can in fact be varied for each k ∈ Ωy and even
optimized for obtaining tighter bounds, as long as the summation of the probabilities of bad event
happening is at most α/2. We set 1 − α/(2|Ωy|) to be the same accross different k for simplicity.
According to union bound, we have

Pr

[
max
k∈Ωy

pk ≥ pB

]
= Pr

[
max
k∈Ωy

pk ≥ max
k∈Ωy

pk

]
≥ 1−

∑
k∈Ωy

Pr
[
pk ≤ pk

]
≥ 1− |Ωy| · α/(2|Ωy|) = 1− α

2
,

where the first inequality holds because of union bound. Finally, since the upper confidence bound is
monotonically increasing with respect to the value of p̂ within [0, 1] (see Figure 3 for a visualization
of such relationship), we know pB = UpperConfBnd(count[ĉB ], n, 1 − α/(2|Ωy|)] will the be
largest upper bound if count[ĉB ] is the maximum. Therefore, we complete the proof.

D COMPARISONS WITH ZHANG & EVANS (2019)

Zhang & Evans (2019) proposed a method to certify cost-sensitive robustness of any classifier based
on convex relaxation (Wong & Kolter, 2018), which provides a robustness guarantee for a given
input via minimizing the worst-case loss within the relaxed convex outer polytype. Also, Zhang &
Evans (2019) developed a training method for training provably cost-senstive robust classifiers. In
particular, their method incorporates different types of cost matrices into the convex optimization
process to train cost-sensitive robust classifiers. However, the initial work of Wong & Kolter (2018)
only focuses on ℓ∞-norm bounded perturbations and does not consider perturbations in ℓ2-norm.
As a result, the proposed method in Zhang & Evans (2019) also did not address the cost-sensitive
robustness for ℓ2 perturbations. We note that in a follow-up work of Wong et al. (2018), they extend
the developed certification techinques to ℓ2 perturbations. For fair comparisons with our method, we
further extend the cost-senstive robust learning method of Zhang & Evans (2019) to handle ℓ2-norm
perturbations using the method of Wong et al. (2018). We report their comparisons in Table 4, the
certified cost-sensitive robustness for the convex-relaxation method is computed as the cost-sensitive
robust error defined in Zhang & Evans (2019), which represents the fraction of test samples that are
guaranteed to be robust to certain ℓ2 perturbations.

Table 4: Comparisons of our method with convex relaxation based method (Zhang & Evans, 2019)
for ℓ2-norm on CIFAR-10, where a single pairwise transformation (3→ 5) is considered sensitive.

Method ℓ2 Perturbations Cost-Sensitive Robustness Overall Accuracy

Zhang & Evans (2019) ϵ = 0.25 0.944 0.480
Ours ϵ = 0.5 0.924 0.673

Table 4 shows that our method achieves much higher overall accuracy even against larger ℓ2 perturba-
tions, suggesting a better cost-sensitive robustness and overall accuracy trade-off. Also, we find in our
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Figure 4: Visualizations of our method with γ1 ∈ {4, 6, 8} and fixed γ2 = 10 with comparisons
to baseline methods with: (a) overall performance and (b) cost-sensitive performance. Here, we
consider a single cost-sensitive seed class “Cat” for the cost matrix.

implementation that convex relaxation-based methods is not applicable to large ℓ2 perturbations (e.g.,
ϵ = 0.5), due to memory issues. We also remark that randomized smoothing techniques proposed
in existing works (Cohen et al., 2019; Li et al., 2019; Jia et al., 2019) primarily focus on defending
against ℓ2-perturbations. As a result, our methods excel in achieving good cost-sensitive performance
under ℓ2-norm bounded perturbations. There are limitations when it comes to certifying cost-sensitive
robustness using our method under other types of perturbations, such as perturbations with ℓ1-norm,
ℓ∞-norm and even beyond ℓp-norm.

E HYPERPARAMETER TUNING

In this section, we study the effect of hyperparameters γ1 and γ2 used in our method proposed in
Section 4.2 on the two evaluation metrics, certified overall accuracy and cost-sensitive robustness.
Note that our goal is to improve cost-sensitive robustness without sacrificing overall accuracy, where
γ1 controls the margin of normal classes and γ2 controls the margin of sensitive classes. In particular,
we report the parameter tuning results on CIFAR-10. Here, the cost matrix is selected as a seedwise
cost matrix with a sensitive seed class “cat”. We choose the specific “cat” class only for the purpose
of illustration, as we observe similar trends in our experiments for other cost matrices, similar to the
results shown in Table 1.

In addition, we consider two comparison baselines:

1. MACER (Zhai et al., 2020) with γ = 8, restricting only on correctly classified examples.
2. Our method with γ1 = 8 and γ2 = 8, the only difference with MACER is that our method

contains misclassified examples for sensitive classes.

Below, we show the effect of γ1 and γ2 on the performance of our method, respectively.

Effect of γ1. Note that γ1 is used to restrict the certified radius with respect to normal data points.
Figure 4 illustrates the influence of varying γ1 ∈ {4, 6, 8} and fixed γ2 = 10 for our method, with
comparisons to the two baselines, on both overall accuracy and cost-sensitive robustness.

For the original implementation of MACER, γ is selected as 8 for the best overall performance.
Although it achieves good overall robustness, it does not work for cost-sensitive settings, which
suggests the possibility of a trade-off space, where different classes can be balanced to achieve
our desired goal of cost-sensitive robustness. The second baseline is our method with γ1 = 8
and γ2 = 8. By incorporating misclassified samples for sensitive seed class, the cost-sensitive
performance substantially improvemes. This results shows the significance of including misclassified
sensitive samples during the optimization process of the certified radius.
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Table 5: Performance of our method for different combinations of γ1 and γ2. Here, the cost-sensitive
scenario is captured by the seedwise cost matrix with a single sensitive seed class “Cat” for CIFAR-10.

Method γ1 γ2 Acc Robc-s

MACER - - 0.647 0.189
Ours 8 8 0.660 0.338

Ours

2 8 0.654 0.633
2 10 0.634 0.687
2 12 0.637 0.691
2 16 0.630 0.705

Ours

4 8 0.670 0.507
4 10 0.653 0.597
4 12 0.659 0.576
4 16 0.661 0.583

Ours

6 8 0.673 0.396
6 10 0.660 0.493
6 12 0.655 0.544
6 16 0.649 0.552

Ours

8 8 0.660 0.338
8 10 0.650 0.432
8 12 0.641 0.474
8 16 0.645 0.463

Moreover, we can observe from Figure 4(b) that as we reduce the value of γ1, the robustness
performance of the cost-sensitive seed class increases. This again confirms that by limiting the
certified radius of normal classes to a small threshold in our method, the model can prioritize sensitive
classes and enhance cost-sensitive robustness.

Effect of γ2. Figure 5 illustrates the influence of varying γ2 ∈ {8, 12, 16} with fixed γ1 = 4 or
fixed γ1 = 8 for our method, with comparisons to the two baselines, on both overall accuracy
and cost-sensitive robustness. Moreover, we can observe from Figure 5(b) and Figure 5(d) that as
we increase the value of γ2, the robustness performance of the cost-sensitive seed class increases.
This confirms that by optimizing the certified radius of sensitive classes to a large threshold in
our method, the model can focus more on sensitive classes and enhance cost-sensitive robustness.
Additionally, there is a slight increase in the overall certified accuracy. This can be attributed to the
fact that the overall accuracy takes into account both the accuracy of sensitive samples and normal
samples. As the certified accuracy of sensitive samples increases, it dominates the overall accuracy
and leads to its overall improvement. Table 5 demonstrates the impact of different combinations
of hyperparameters of (γ1, γ2) on both the overall accuracy and cost-sensitive performance. The
choice of γ1 and γ2 is crucial and requires careful consideration. For γ2, setting a value that is
too small can greatly undermine the overall accuracy, even though it may improve cost-sensitive
robustness. This is because the performance of normal classes deteriorates, resulting in a degradation
of overall performance. Otherwise, if the value is too large (i.e., γ2 = 8), it has a negative impact on
cost-sensitive performance.

Regarding γ1, it is evident that increasing its value while keeping γ2 fixed leads to a significant
improvement in cost-sensitive robustness. It is worth noting that even though the cost-sensitive
seed class represents only a single seed, accounting for only 10% of the total classes, enhancing
its robustness has a positive effect on overall accuracy as well. For instance, let’s compare the
combination (γ1 = 8, γ2 = 4) to (γ1 = 8, γ2 = 8). We observe that the former, which exhibits
better cost-sensitive robustness, outperforms the latter in terms of both overall accuracy and cost-
sensitive robustness. It achieves an approximate improvement of 1.52% in overall accuracy and a
significant improvement of approximately 50% in cost-sensitive robustness. This finding highlights
the effectiveness of our sub-population-based methods. It demonstrates that by fine-tuning the
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Figure 5: Visualizations of our method for two groups comparisons to baseline methods in terms of
(a)(c) overall performance and (b)(d) cost-sensitive performance. The first with γ2 ∈ {8, 12, 16} and
fixed γ1 = 4, the second with γ2 ∈ {8, 12, 16} and fixed γ1 = 8. The cost matrix is set as the matrix
representing a single cost-sensitive seed class “Cat”.

optimization thresholds for the certified radius of sensitive classes and normal classes separately, we
can achieve a better trade-off between overall accuracy and cost-sensitive robustness.

F VARYING NOISE

We also tested our method’s performance when the injecting noise σ = 0.25. The results are
demonstrated in Table 6 and Table 7 for seedwise and pairwise cost matrices, which show that
our method consistently outperforms the two baseline randomized smoothing methods and the
reweighting method of Cohen-R.
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Table 7: Certification results for pairwise cost matrices. The noise level σ is 0.25 for both CIFAR-
10 and Imagenette. Acc stands for overall accuracy and Robc-s refers to certified cost-sensitive
robustness with ϵ = 0.25, Robnon denotes the certified robustness of non-sensitive samples with
ϵ = 0.25. The best results are highlighted in bold.

Dataset Type Method Acc Robc-s Robnon

CIFAR-10

Single (3→ 5)

Cohen 0.793 0.674 0.679
MACER 0.808 0.709 0.730
Cohen-R 0.778 0.811 0.642
Ours 0.809 0.836 0.691

Multi (3→ 2, 4, 5)

Cohen 0.793 0.515 0.679
MACER 0.808 0.582 0.785
Cohen-R 0.778 0.685 0.642
Ours 0.807 0.689 0.692

Imagenette

Single (7→ 2)

Cohen 0.803 0.880 0.775
MACER 0.796 0.837 0.786
Cohen-R 0.764 0.921 0.691
Ours 0.830 0.942 0.809

Multi (7→ 2, 4, 6)

Cohen 0.803 0.730 0.775
MACER 0.796 0.780 0.786
Cohen-R 0.764 0.831 0.691
Ours 0.832 0.842 0.799

Table 6: Certification results of different randomized smoothing based training methods for various
seedwise cost matrices. The noise level σ is 0.25 for both CIFAR-10 and Imagenette. Acc stands
for overall accuracy, Robc-s is certified cost-sensitive robustness with ϵ = 0.25, Robnon is certified
robustness of non-sensitive samples with ϵ = 0.25. Best statistics are highlighted in bold.

Dataset Type Method Acc Robc-s Robstd Robnon

CIFAR-10

Single (3)
Cohen 0.793 0.407 0.387 0.679
MACER 0.808 0.475 0.454 0.730
Cohen-R 0.778 0.583 0.568 0.642
Ours 0.804 0.602 0.570 0.684

Multi (2, 4)

Cohen 0.793 0.588 0.556 0.728
MACER 0.808 0.653 0.629 0.785
Cohen-R 0.784 0.635 0.605 0.702
Ours 0.807 0.717 0.685 0.719

Imagenette

Single (7)

Cohen 0.803 0.656 0.656 0.775
MACER 0.796 0.701 0.699 0.786
Cohen-R 0.738 0.742 0.742 0.691
Ours 0.836 0.756 0.756 0.799

Multi (3, 7)

Cohen 0.803 0.612 0.612 0.801
MACER 0.796 0.662 0.653 0.777
Cohen-R 0.764 0.656 0.656 0.736
Ours 0.830 0.702 0.702 0.802
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