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ABSTRACT

The brain lives in an ever-changing world and needs to infer the dynamic evolution
of latent states from noisy sensory inputs. Exploring how canonical recurrent
neural circuits in the brain realize dynamic inference is a fundamental question
in neuroscience. Nearly all existing studies on dynamic inference focus on de-
terministic algorithms, whereas cortical circuits are intrinsically stochastic, with
accumulating evidence suggesting that they employ stochastic Bayesian sampling
algorithms. Nevertheless, nearly all circuit sampling studies focused on static
inference with fixed posterior over time instead of dynamic inference, leaving
a gap between circuit sampling and dynamic inference. To bridge this gap, we
study the sampling-based dynamic inference in a canonical recurrent circuit model
with excitatory (E) neurons and two types of inhibitory interneurons: parvalbumin
(PV) and somatostatin (SOM) neurons. We find that the canonical circuit unifies
Langevin and Hamiltonian sampling to infer either static or dynamic latent states
with various moving speeds. Remarkably, switching sampling algorithms and ad-
justing model’s internal latent moving speed can be realized by modulating the gain
of SOM neurons without changing synaptic weights. Moreover, when the circuit
employs Hamiltonian sampling, its sampling trajectories oscillate around the true
latent moving state, resembling the decoded spatial trajectories from hippocampal
theta sequences. Our work provides overarching connections between the canonical
circuit with diverse interneurons and sampling-based dynamic inference, deepening
our understanding of the circuit implementation of Bayesian sampling.

1 INTRODUCTION

The brain is bombarded with a continuous stream of sensory inputs conveying noisy and ambiguous
information about the world. Since the world is dynamic, the brain must seamlessly track the dynamic
evolution of the world. In statistics, inferring time-varying latent states is often modeled via hidden
Markov models (HMMs), a process known as dynamic inference. How the canonical recurrent neural
circuits in the brain infers dynamic latent states is a fundamental question in neuroscience (Pouget
et al., 2013). Previous studies have investigated how neural circuits implement dynamic inference
through deterministic algorithms (Wu et al., 2003; Rao, 2004; Beck & Pouget, 2007; Deneve et al.,
2007; Wilson & Finkel, 2009; Pfister et al., 2009; 2010; Ujfalussy et al., 2015; Kutschireiter et al.,
2023), where the circuit is either deterministic or its internal noise is non-essential in their theory.

Accumulating evidence, however, suggests that the neural circuits in the brain employ stochastic
sampling-based algorithms to perform inference (Hoyer & Hyvärinen, 2003; Buesing et al., 2011;
Aitchison & Lengyel, 2016; Haefner et al., 2016; Orbán et al., 2016; Echeveste et al., 2020; Zhang
et al., 2023; Terada & Toyoizumi, 2024; Sale & Zhang, 2024). The stochastic sampling closely
matches the stochastic nature of neural dynamics, characterized by the large, structured neuronal
response variability (Shadlen & Newsome, 1998; Churchland et al., 2011; Orbán et al., 2016;
Echeveste et al., 2020; Zhang et al., 2023). Despite this, nearly all existing studies on neural circuit
sampling focused on static inference with fixed posterior over time (Hoyer & Hyvärinen, 2003;
Aitchison & Lengyel, 2016; Haefner et al., 2016; Orbán et al., 2016; Echeveste et al., 2020; Zhang
et al., 2023; Sale & Zhang, 2024). There is a gap in our understanding about neural circuit sampling
algorithms and dynamic inference. Therefore, we seek to unify neural circuit sampling and dynamic
inference by investigating how the canonical circuit can implement sampling-based dynamic inference.
Moreover, since the brain performs both static and dynamic inference contingent on the performed
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task, we further investigate how the same recurrent neural circuit can flexibly implement and switch
between both inference modes without modifying its synaptic weights.

In the brain, the canonical cortical circuit is a fundamental building block of the cerebral cortex,
and is consists of excitatory (E) neurons and diverse classes of inhibitory (I) interneurons including
parvalbumin (PV), somatostatin (SOM), and other types (Adesnik et al., 2012; Niell, 2015; Fishell &
Kepecs, 2020; Niell & Scanziani, 2021; Campagnola et al., 2022). Different interneuron classes have
unique intrinsic electrical properties and form specific connectivity patterns (Fig. 1A). The diverse
interneurons not only keep the stability of the circuit, but may also modulate the computations in E
neurons, e.g., switching the circuit’s sampling algorithms (Sale & Zhang, 2024). Building off the
previous model, it is reasonable to hypothesize that the diverse interneurons may enable circuits to
employ sampling to implement both dynamic and static inference and flexibly switch between them.

To investigate how the same neural circuit can realize both static and dynamic inference, we focus
on a canonical recurrent neural circuit model with E neurons and two types of interneurons: PV
and SOM neurons. Our circuit model is built upon the model in a recent study (Sale & Zhang,
2024) that is biologically plausible (reproducing tuning curves of different types of neurons) and
is also analytically tractable to identify the circuit algorithm. Briefly, the circuit model is based
on continuous attractor networks (CANs), a recurrent circuit model widely-used in neuroscience to
explain the continuous stimulus feature processing (Ben-Yishai et al., 1995; Zhang, 1996; Knierim
& Zhang, 2012; Khona & Fiete, 2022). And PV neurons provide divisive, unstructured global
inhibition to maintain the circuit’s stability, while SOM neurons contribute subtractive, structured
local inhibition to E neurons.

After theoretical analyses of the nonlinear circuit dynamics, we find the circuit implements a mixture
of Langevin and Hamiltonian sequential sampling to implement both dynamic and static inference of
the latent stimulus. We analytically identify how the internal model of the latent stimulus transition
is stored in the circuits (Fig. 2D&G, Fig. 3A). Remarkably, once circuit weights are set (but not
fine tuned) as one of optimal configurations, the same circuit with fixed weights can flexibly sample
both dynamic and static stimulus posteriors under different latent transition probabilities by only
changing the gain of SOM neurons (Fig. 3G). Specifically, we find that the SOM’s gain is composed
of two parts, each serving a specific role: one is a speed dependent gain whose increment enlarges
the moving speed of latent stimulus in circuit’s internal model, the other is an algorithmic “switching”
gain that determines the proportion of blending Langevin and Hamiltonian sampling. Moreover, once
the circuit can do dynamic inference, it is automatically backwards compatible with simpler static
sampling, without adjusting its weights. This non-trivial property arises because the parameter space
for dynamic inference is a subset of static inference. When increasing the Hamiltonian sequential
sampling component by increasing SOM’s gain and E weights, the circuit’s sampling trajectory
will oscillate around the true latent (moving) stimulus (Fig. 3F), resembling the decoded spatial
trajectories from hippocampal theta sequences (Wang et al., 2020), further supporting the biological
plausibility of the sequential sampling algorithms employed in the circuit.

Significance. This study reveals for the first time how the canonical circuit can flexibly implement
sequential sampling for both static and dynamic inference via the gain modulation of SOM neurons,
unifying the sampling algorithm, dynamic inference, and its own heterogeneous structure. Consider-
ing the canonical circuit is the building block of the cortex, the circuit model with clearly identified
algorithm has the potential inspire the building block of the next-generation deep networks.

2 BACKGROUND: THE CANONICAL RECURRENT CIRCUIT MODEL

We consider a canonical circuit model consisting of E neurons and two classes of interneurons (PV
and SOM) (Fig. 1A), whose dynamics is adopted from a recent circuit modeling study (Sale & Zhang,
2024). The model is biologically plausible by reproducing tuning curves of different types of neurons
(Fig. A1, B) and is analytically tractable, allowing us to directly identify the nonlinear circuit’s
algorithm. Briefly, each E neuron is tuned for a 1D stimulus z with preferred stimulus z = θ and the
preference of all NE E neurons, {θj}NE

j=1, tile the whole stimulus space. E neurons are recurrently
connected with a Gaussian kernel in the stimulus space (Eq. 1d). Both PV and SOM interneurons are
driven by E neurons, but differ in function: PV neurons deliver global, divisive normalization to E
neurons (Eq. 1b), whereas SOM neurons provide local, subtractive inhibition (Eq. 1c). The whole
circuit dynamics is (see Sec. B for a detailed explanation and construction rationale).
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Figure 1: The canonical recurrent circuit model and Bayesian sampling. (A) The canonical neural
circuit with E and three types of I neurons receives stochastic feedforward inputs evoked by changing
latent stimulus. (B) The recurrent circuit model considered in the present study consists of E and two
types of interneurons (PV and SOM). (C) Tuning curves of E neurons. (D-E) A schematic of spiking
feedforward input received by E neurons (D) that conveys the whole stimulus likelihood (E). Position
and spike count of feedforward input determine the likelihood mean and variance respectively. (F-G)
E and SOM population bump responses (F) and instantaneous bump positions (G) regarded as the
stimulus sample, zE , and auxiliary variable, zS , respectively. (H) Hamiltonian sampling in the circuit
for static stimulus. Panel B-E were adapted from Sale & Zhang (2024) with their permission.

E: τ u̇E(θ, t) = −uE(θ, t) + ρ
∑

X(WEX ∗ rX)(θ, t) +
√

τF[uE(θ, t)]+ξ(θ, t), (1a)

Div. norm. : rE(θ, t) = [uE(θ, t)]
2
+/(1 + ρwEP rP ); PV: rP =

∫
[uE(θ

′, t)]2+dθ
′, (1b)

SOM: τ u̇S(θ, t) = −uS(θ, t) + ρ(WSE ∗ rE)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+, (1c)

Rec. weight: WY X(θ − θ′) = wY X

(√
2πaXY

)−1
exp(−(θ − θ′)2/2a2XY ), (1d)

Feedfwd.: rF (θ, t) ∼ Poisson[λF (θ|zt)], λF (θ|zt) = RF exp[−(θ − zt)
2/2a2]. (1e)

where uX and rX represent the synaptic inputs and firing rates of neurons of type X respectively. In
Eq. (1a), the neuronal types X ∈ {E,F, S} representing inputs from E neurons, sensory feedforward
inputs (Eq. 1e), and SOM neurons (Eq. 1c) respectively. [x]+ = max(x, 0) is the negative
rectification. E neurons receive internal Poisson variability with Fano factor F, mimicking stochastic
spike generation that can provide appropriate internal variability for circuit sampling (Zhang et al.,
2023). In particular, gS is the "gain" of SOM neurons and can be modulated (see Discussion), which
is the key circuit mechanism to flexibly switch between static inference and dynamic inference with
various speeds. Details regarding the network can be found in Appendix Sec. B.

To facilitate math analysis, the above dynamics consider infinite number of neurons in theory
(NE → ∞), then the sum of inputs from other neurons θj becomes an integration (convolution) over
θ, e.g., (W ∗ r)(θ) =

∫
W(θ − θ′)r(θ′)dθ′, while our simulations take finite number of neurons.

ρ = N/2π is the neuronal density in the stimulus feature space, a factor in discretizing the integral.

2.1 THEORETICAL ANALYSIS OF THE CANONICAL CIRCUIT DYNAMICS

Theoretical approaches to obtain analytical solutions of the nonlinear circuit dynamics have been
established (Fung et al., 2010; Wu et al., 2016; Zhang & Wu, 2012), including attractor states, full
eigenspectrum of the perturbation dynamics, and the projected dynamics onto dominant eigenmodes.
These analytical solutions are essential to identify circuit’s Bayesian algorithms. Below, we brief the
key steps and results of the math analysis, with details in Appendix Sec. D.

Attractors. E neurons in canonical circuit dynamics have the following attractor states with a bump
profile over the stimulus feature space (Fig. 1F; Sec. D.1),

ūE(θ) = ŪE exp[−(θ − z̄E)
2/4a2], r̄E(θ) = R̄E exp[−(θ − z̄E)

2/2a2]. (2)

Similar bump attractor states exist for SOM neurons (Eq. D6). In contrast, PV neurons don’t have a
spatial bump profile since their interactions with E neurons are unstructured (Eq. 1b).

Dimensionality reduction for stimulus sampling dynamics. The perturbation analysis reveals that
the first two dominant eigenmodes of the circuit dynamics correspond to the change of bump position
zE and the bump height UE respectively (Sec. D.3, Fung et al. (2010); Wu et al. (2016)). Projecting
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the circuit dynamics (Eqs. 1a and 1c) onto the 1st dominant eigenvector (position z change) yields
the low-dimensional dynamics of bump positions zE and zS ,

E neurons: żE ≈ τ−1
E [UEF (xt − zE) + UES(zS − zE)] + σEτ

−1/2
E ξt, (3a)

SOM: żS ≈ (τS)
−1[USE(zE − zS)] (3b)

where σE is a constant invariant with network activities. The zE dynamics in Eq. (3a) will be linked
to the Bayesian sampling dynamics, i.e., the equilibrium distribution of zE should match the posterior.
Conceptually, this implies the circuit sampling is realized by the fluctuation of the location zE of the
population bump responses, i.e., the fluctuation of population responses along the y-axis in Fig. 1F-G.
And the z̄E in Eq. (2) corresponds to the time-averaged mean of zE . The sampling time constant
τX = τUX is proportional to the bump height UX (X ∈ {E,S}), which is solved as (Sec. D.2),

(a). UE ≈ UEE + UEF + UES , (b). US ≈ USE , with UXY = ρwXY RY /
√
2. (4)

UXY denotes the population input magnitude from neuron type Y to X (see Sec. D.3). Eqs. (3a - 4)
are the basis for identifying the circuit sampling algorithms for both static and dynamic inference.

3 THE INTERNAL MODEL AND SAMPLING ALGORITHMS IN THE CIRCUITS

The stage from external stimulus feature zt to the feedforward input rF (t) (Eq. 1e) is regarded as the
generative process, and then the canonical circuit dynamics is supposed compute the posterior of zt
via its algorithm. We start by proposing an internal generative model in the circuit and assuming it
matches with the true world model. Then we will prove our proposition via math analysis.

3.1 THE SUBJECTIVE INTERNAL GENERATIVE MODEL IN THE CANONICAL CIRCUIT

The internal model of latent stimulus transition stored in the canonical circuit is assumed to have
the following form, similar to previous studies (e.g., Deneve et al. (2007); Kutschireiter et al. (2023))

p(zt+1|zt) = N
(
zt+1|zt + vδt,Λ−1

z δt
)
, (5)

where δt is the time bin, v is the moving speed of latent stimulus, and Λz is the precision of the
transition. When v = 0 and Λz → ∞, the latent stimulus is static over time, and the stimulus
inference degenerates into extensively studied static inference (e.g., Orbán et al. (2016); Echeveste
et al. (2020); Masset et al. (2022); Zhang et al. (2023); Sale & Zhang (2024)).

Stimulus likelihood f(z). The stochastic feedforward input from the stimulus feature z (Eq. 1e)
naturally specifies the stimulus likelihood calculated as a Gaussian (Sec. C.1),

f(zt) ∝ p[rF (t)|zt] =
∏

θ Poisson[λF (θ|z)] ∝ N
(
zt|xt,Λ

−1
F

)
, (6)

where its mean xt =
∑

j rF (θj)θj/
∑

j rF (θj) and precision ΛF = a−2
∑

j rF (θj , t) =√
2πρa−1RF can be read from rF via population vector (Georgopoulos et al., 1986; Dayan &

Abbott, 2001), and they are geometrically regarded as rF ’s location and the height respectively (Fig.
1D-E). Notably, the Gaussian stimulus likelihood results from the Gaussian profile of feedforward
input tuning λF (θ|zt) (Eq. 6) (Ma et al., 2006). And a single snapshot of rF (t) parametrically
conveys the whole stimulus likelihood L(zt) (Ma et al., 2006).

3.2 THE PROPOSED SEQUENTIAL SAMPLING FOR DYNAMIC INFERENCE IN THE CIRCUIT

The inference of dynamic latent stimuli has been well established in statistics, and the instantaneous
posterior p(zt|rF (1 : t)) ≡ πt(zt) given all feedforward inputs rF (1 : t) up to time t can be
iteratively computed as the recursive Bayesian filtering (RBF, (Bishop, 2006)),

πt+1(zt+1) ∝ f(zt+1)
∫
p(zt+1|zt)πt(zt)dzt. (7)

Although the RBF with Gaussian case permits exact inference via Kalman filter, the circuit im-
plementation of Kalman filter is not straightforward by requiring complex, nonlinear operations
(Rao, 2004; Beck & Pouget, 2007) (see more in Discussion). Thus, we consider using sequential
sampling to approximate the RBF. The flexible representation of sampling can simplify the circuit
implementation by eliminating the need for complex, nonlinear operations in deterministic circuits,
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which will be shown below. Sequential sampling utilizes stochastic sampling to approximate the
integration (marginalization) in Eq. (7), the most challenging computation in Bayesian filtering,

πt+1(zt+1) ∝ f(zt+1) ·
[
1
L

∑L
l=1 p

(
zt+1|z̃(l)t

)]
, z̃

(l)
t ∼ πt(zt),

≈ f(zt+1) · p (zt+1|z̃t) , (only draw one sample, L = 1).
(8)

Drawing only one sample at each time avoids the need to average over probabilities (Eq. 8), and
keeps the posterior πt(zt) closed as Gaussian, which, otherwise, will be a Gaussian mixture and
needs extra approximations in the circuit as in previous studies (Rao, 2004; Beck & Pouget, 2007).

πt(zt) = N (zt|µt,Ω
−1
t ), with Ωt = ΛF + Λzδt

−1, µt = Ω−1
t [ΛFxt + Λz(z̃tδt

−1 + v)]. (9)

It is worth noting that drawing one sample in each time step is a conceptual way of understanding the
sampling process in the discrete dynamics. In the continuous case (δt → 0), the number of samples
that can be drawn in a single “time step” is related to the relative time scales between the latent
transition and sampling dynamics. This approximation works well when the latent z changes slowly.
In addition, drawing one sample in Eq. (8) doesn’t imply the distribution p (zt+1|z̃t) is approximated
by a single sample and collapses into a delta function. Rather, it is a parametric Gaussian distribution
(Eq. 5) with the mean parameter determined by z̃t.

3.3 NEURALLY PLAUSIBLE SEQUENTIAL SAMPLING DYNAMICS

There are many ways of generating random samples, z̃t ∼ πt(zt) (Eq. 8). It was found the canonical
circuit can realize both Langevin and Hamiltonian sampling for static inference (Sale & Zhang, 2024),
so we consider how to utilize these two sampling dynamics for sequential sampling in dynamic
inference and then link them to the circuit’s bump position dynamics (Eq. 3a-3b).

Langevin sequential sampling. It uses the last sample z̃t−1 to evaluate the gradient of πt(z) and run
one step of the Langevin dynamics (Welling & Teh, 2011; Septier & Peters, 2016; Ma et al., 2015),

z̃t = z̃t−1 +
(
τ−1
L δt

)
∇z lnπt(z̃t−1) +

(
2τ−1

L δt
)1/2

ηt, (10)

with the equilibrium distribution πt(z). In sequential sampling, it is not necessary to draw many
samples to reach equilibrium. Instead, one sample is drawn from πt(z) (running Eq. 10 for one
step), and then the next sample z̃t+1 is drawn from the next posterior πt+1(z). This corresponds to
a non-equilibrium Langevin dynamics. The efficiency of the non-equilibrium sequential sampling
depends on the time scale of the sampling, τL, and the change of posterior πt(z).

Hamiltonian sequential sampling defines a Hamiltonian function H(z, p) with a momentum p,

Ht(z, p) = − lnπt(z) +K(p), K(p) = m−1p2/2. (11)

K(p) is kinetic energy with m analogous to the mass in physics. We consider the Hamiltonian
sampling dynamics with friction γ that dampen momentum (Chen et al., 2014; Ma et al., 2015),

d

dt

[
z̃t
pt

]
= −

[
0 −τH
τH γ

] [
∇z lnπt(z̃t−1)

m−1p

]
+
√
2

[
0 0
0 γ1/2

]
ξt. (12)

Adaptive sampling step size. Although the step size (τL in Eq. 10) leaves the equilibrium distribution
invariant, it is critical in non-equilibrium sequential sampling when only a few samples are drawn
from each instantaneous posterior πt(z). The step size determines a trade-off between sampling
efficiency and accuracy. For example, a small step size slows down sampling, causing the samples to
fail to track fast-moving latent stimuli. Our analysis clearly shows the step size determines a bias and
variance trade-off (Sec. E.4). In theory, Riemann manifold sampling provides an elegant framework
to use πt(z)’s curvature, measured by Fisher information Gt(z), to adaptively adjust the step size
Amari & Douglas (1998); Girolami & Calderhead (2011); Septier & Peters (2016),

τL ∝ Gt(z); m ∝ Gt(z); where Gt(z) = −Eπt(z)

[
∇2

z lnπt(z)
]
= Ωt. (13)

Later we will show the circuit can adaptively adjust its sampling step size based on the transition
speed and precision of the latent stimulus.

5
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Figure 2: Langevin sampling circuit for both static and dynamic inference. (A-B) The recurrent E
weights leave the equilibrium distribution invariant but changing the temporal sampling dynamics.
(C) The recurrent weight determines a trade-off between exploitation and exploration, and is critical
for non-equilibrium sequential sampling of dynamic inference. (D) The optimal recurrent weight for
dynamic inference increases with the latent transition precision. (E-F) The internal speed generation
in the circuit comes from the spatial offset of population responses between SOM and E neurons that
can be controlled by SOM gain. (G) Higher speed of the latent stimulus requires higher SOM gain
in the circuit. (H) The bump height monotonically decreases with the speed as a result of increased
gain, yielding a larger sampling step size. (I) The circuit with fixed weights can flexibly sample latent
moving stimulus with varying input intensity that controls likelihood precision.

4 LANGEVIN SEQ. SAMPLING CIRCUIT FOR DYNAMIC AND STATIC INFERENCE

We validate the circuit implements Langevin sequential sampling with adaptive step size by aligning
its bump position dynamics (Eq. 3a) with the Langevin dynamics (Eq. 10). For ease of understanding,
we started from a simplified case where the latent stimulus zt had zero speed but with transition noise
(v = 0 and Λz ̸= 0, Eq. 5). We then extended our solution to the full case with v ̸= 0.

4.1 SAMPLING FOR LATENT STIMULI WITH BROWNIAN MOTION (v = 0, Λz ̸= 0)

We compared the circuit sampling dynamics (Eq. 3a) with the Langevin sequential sampling dynamics
(Eq. 10) (substituting πt(z) with v = 0 in Eq. (9) and step size (Eq. 13) into Eq. (10)) to identify the
circuit parameters for Langevin sequential sampling, and the structure of circuit sampling.

Sampling dynamics Sampling time constant
E neurons żE ≈ τE

−1[UEF (xt − zE)] + σEτE
−1/2ξt τE = τUE = τ(UEE + UEF )

Langevin żt = τ−1
L [ΛF (xt − z)] +

(
2τ−1

L

)1/2
ηt τL ∝ Ωt = Λzδt

−1 + ΛF

Zero-speed latent stimulus requires no SOM inhibition (gS = 0). When v = 0, the Langevin
sampling only has a drift term of the likelihood gradient that can be conveyed by the feedforward
input in the circuit (comparing the two green terms in the above Table). Hence there is no need for
SOM inhibition, realized by a zero SOM gain gS = 0 (Eq. 1c).

Feedforward E weight wEF is constrained to sample instantaneous posteriors πt(z). The
drift term magnitude UEF ∝ wEFRF (Eq. 4) is a product of the feedforward input strength RF

(proportional to likelihood precision ΛF , Eq. 6) and the feedforward weight wEF . The wEF needs
to adjusted with the σE to align the sampling variance with the posterior variance.

Recurrent E weight wEE is constrained by the adaptive sampling time constant τE . τE is
critical for non-equilibrium sequential sampling. Comparing the τE and τL in the above Table, since
UEF ∝ ΛF (Eqs. 6 and 4), the wEE can be set to make UEE ∝ Λz and hence τE ∝ τL. Fig.
2C shows the bump position trajectory compared with various wEE , suggesting wEE is critical in
determining the sampling step size. Moreover, each transition precision Λz has an optimal wEE to
minimize the mean square error between the circuit’s sample trajectory and the true latent stimulus,
and the recurrent weight wEE increases with Λz (Fig. 2D), confirming our theory (Eq. 14b).
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Combined, the circuit parameters for Langevin sequential sampling are (see Sec. E.1.1),

(a). wEF =
√
πσ2

E/a = (2
√
3)3F; (b). wEE = awEF (

√
2πρδtRE)

−1Λz; (c). gS = 0. (14)

Flexible sequential sampling with various likelihood uncertainties. Once the circuit paramters
are set based on Eq. (14), the circuit can sample πt(z) with various uncertainties without changing
synaptic weights (Fig. 2I), all are automatically adjusted by the circuit dynamics. Specifically,
changing the input intensity RF changes the likelihood precision ΛF (Eq. 6), which further scales the
likelihood gradient magnitude UEF and the bump height UE determining the sampling step size τE .

4.2 BACKWARDS COMPATIBILITY FOR STATIC SAMPLING

The static sampling refers to sampling the static posterior π(z) ≡ p(z|rF ) where the latent stimulus z
and the given feedforward neural input rF are both fixed over time. Although a fixed latent stimulus is
realized under static transition parameter (v = Λ−1

z = 0, Eq. 5), the static posterior π(z) is different
from the dynamic posterior πt(zt) obtained under the static parameter. Specifically, the static posterior
degenerates into the likelihood, π(z) = f(z) (Eq. 6), while the dynamic posterior obtained under
static parameter becomes evidence accumulation, i.e., πt(zt) = f(zt)πt−1(zt−1) =

∏
t f(zt).

Remarkably, even if the static posterior is different with the dynamic posterior obtained under static
parameters, the circuit whose parameters are set for sequential sampling with latent transition noise
(v = 0 and Λ−1

z ̸= 0, Eq. 14) can automatically sample static posteriors without adjusting any circuit
parameters (Fig. 2A). The automatic backwards compatibility arises from the sampling time constant
τE (controlled by recurrent E weight wEE) is a free parameter for static sampling (Eq. 3a) that
doesn’t affect the equilibrium distribution (Fig. 2B), despite it is critical in sequential sampling (Eq.
14b, Fig. 2D). In static sampling, the convergence time is not an issue and the sampling dynamics
can run until equilibrium.

4.3 SAMPLING LATENT STIMULI WITH VARIOUS SPEEDS BY MODULATING SOM GAIN

With non-zero latent transition speed v, the Langevin sampling has an extra speed v-drift term ,
żt = τ−1

L [ΛF (xt − z) + Λzv] + (2τ−1
L )1/2ηt. Since ΛF (xt − z) comes from the feedforward input

(Eq. 6), it is straightforward to reason that the inhibitory feedback UES(zS − zE) in the circuit (Eq.
3a) provides the speed-drift term Λzv. We next analyze this in the circuit dynamics.
1) To infer a moving latent stimulus with speed v by the circuit, the E neurons’ bump position zE

should move with the same average speed: ⟨żE⟩ = ⟨ẋt⟩ = v where ⟨·⟩ denoting the average
across trials. A similar condition holds for SOM neurons: ⟨żS⟩ = v (Eq. 3b).

2) To minimize systematic bias, the average separation between zE and the input feature xt should
be zero: ⟨xt − zE⟩ = 0, otherwise ⟨zE(t)⟩ is offset from the true latent zt.

All of this implies that the circuit should internally generate a moving neural sequence with the same
speed as the latent stimulus, rather than being passively driven by the input feature xt. To study the
internal speed generation mechanism, we decompose zE = ⟨zE⟩ + δzE , where ⟨zE⟩ is the mean
of Eq. (3a) capturing the internally generated movement while the residue δzE captures sampling
fluctuation. Substituting the decomposition back to Eq. (3a) yields the dynamics of ⟨zE⟩ and δzE ,

(a). ⟨żE⟩ = τ−1
E UES⟨zS − zE⟩ = v; (b). δ̇zE ≈ τ−1

E UEF (δxt − δzE) + σEτ
−1/2
E ηt, (15)

Interestingly, the dynamics of residue δzE correspond to sampling a latent stimulus with zero speed
as presented in Sec. 4.1, in that the ⟨δxt⟩ = ⟨xt − ⟨xt⟩⟩ = 0.

Internal speed modulates SOM gain gS . Combining Eqs. (15a and 4), the circuit’s internal speed v
is proportional to E and SOM’s bump position separation ⟨zE − zs⟩ (Fig. 2E-F; see Sec. E.1.1)

v = τ−1⟨zE − zs⟩ ≈
(
4a2τ−2 ln gs + const.

)1/2
(16)

⟨zE − zs⟩, however, is a circuit response rather than an adjustable parameter, so we seek a circuit
parameter to modulate the internal speed v. We are interested in changing the internal speed by
modulating the SOM’s gain gS (Eq. 1c), rather than changing synaptic weights, although both can
modulate speed. This is because the neural gain can be quickly modulated at cognitively relevant time
scales (tens to hundreds of milliseconds). In contrast, changing synaptic weights requires synaptic
plasticity, which is too slow to coordinate with fast cognitive computation.
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Considering the weak limit of feedforward input intensity RF , solving Eqs. (3a - 4) obtains a neat
relation between v and the SOM gain gS (Eq. 16, details in Sec. E.1.1). The internal speed increases
with the SOM gain gS , a fact confirmed by numerical results (Fig. 2G). In practice, gS may be
modulated by VIP neurons (not included in the present circuit model), conveying the self-motion
speed to modulate the internal stimulus speeds (see Discussion).

Conditions of Langevin sequential sampling for nonzero speed. Based on the condition for
implementing circuit Langevin sampling for a zero speed (Eq. 14), we only need to adjust the SOM
gain gS to make the circuit’s internal speed equal to the latent speed (Fig. 2G).

Faster sampling associated with faster speed. The circuit has an additional desirable feature, in that
it automatically uses a larger sampling step size to sample a faster latent stimulus. This is because the
sampling time constant τE = τUE (inversely proportional to the step size) decreases with the SOM
gain gS , (Fig. 2H), a feature favored for higher internal speed v. By contrast, the speed-dependent
sampling step size is not present in the Riemann manifold sampling, in that the Fisher information of
the instantaneous posterior Ωt does not rely on latent stimulus speed (Eq. 9).

5 HAMILTONIAN SEQUENTIAL SAMPLING IN THE CIRCUIT

We further investigate how the circuit implements Hamiltonian sequential sampling (Eq. 12) with
SOM gain modulation. Inspired by Langevin sequential sampling in the circuit, we know that
inferring a moving latent stimulus requires a deterministic internal speed, realized by the speed-
dependent SOM gain gS (Eq. 16, Fig. 2G). We also know that the residue dynamics δzE correspond
to Langevin sampling of a latent stimulus with zero speed (Eq. 15b). Intuitively, upgrading the
Langevin to Hamiltonian sampling corresponds to upgrading the Langevin dynamics of δzE (Eq. 15)
into Hamiltonian dynamics (Eq. 12). As will be shown, Hamiltonian sequential sampling can be
easily realized by increasing the SOM gain gS and feedforward weight wEF based on the circuit
weights for Langevin sequential sampling in the last section.

We can decompose the bump position dynamics in a similar way, with zX = ⟨zX⟩ + δzX (X ∈
{E,S}) with ⟨zX⟩ capturing deterministic speed. We obtain the residue dynamics of δzE and δzS

1,

τE δ̇zE = [UH
ES(δzS − δzE) + UH

EF (δxt − δzE)]︸ ︷︷ ︸
Momentum p, (Hamiltonian)

+ [UL
EF (δxt − δzE) + σE

√
τEξt]︸ ︷︷ ︸

Langevin

, (17a)

τS δ̇zS = USE(δzE − δzS), (17b)

where the feedforward input term (Eq. 17a, green) in δzE dynamics is decomposed into two parts
reflecting the contribution from the Langevin and Hamiltonian sequential sampling. UL

EF is the
feedforward input magnitude in Langevin sequential sampling (the same as in Eq. 15). UH

ES is
the extra SOM inhibition to the E neurons, overlaid with the UES in ⟨zE⟩ dynamics for internal
speed generation in Eq. (15). Transforming the above (δzE , δzS) into the (δzE , p) dynamics and
organizing it in the standard form of Hamiltonian sampling (Eq. 12) (see Sec. E.2),[

δ̇zE
ṗ

]
= −

[
UL
EF (τEΛF )

−1 −βEΛ
−1
F

βEΛ
−1
F τEβpβEΛ

−1
F

] [
−∇z lnπt(zE)
(τEβE)

−1ΛF · p

]
+

[
σEτ

−1/2
E 0
0 σp

]
ξt (18)

where βp, βE and σp are functions of the coefficients in Eqs. (17a-17b) (details in Sec. E.2). Eq.
(18) shows that the circuit implements mixed Langevin/Hamiltonian sampling rather than pure
Hamiltonian sampling, and that the momentum p has a friction term that dampens the momentum.

Conditions for realizing Hamiltonian sampling. Realizing sampling in the circuit requires altering
the ratio of the drift and diffusion coefficients (Eq. 18). Comparing Eq. (18) to Eqs. (10 and 12), we
observe the requirements for realizing Hamiltonian sampling(Sec. E.2),

(a). wL
EF = (2

√
3)3F; (b).

(
USwES

)
· gHS −RF · wH

EF = F
(
wH

EF /w
L
EF

)
UE , (19)

where F (x) is a monotonically increasing function of x and increases with the 1st order of x (see SI
Sec. E.2). Condition (a) is already satisfied in the Langevin sampling (Eq. 14a). This suggests that
for circuit Hamiltonian sampling, we only need to enlarge the SOM gain gS and feedforward weight
wEF , and that the increase of the two is approximately linear (Eq. 19, Fig. A1D).

1The UES(δzS − δzE) is negligible in Langevin sampling (Eq. 15) but is essential for Hamiltonian sampling.
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Figure 3: Hamiltonian sequential sampling in the circuit. (A) Additional SOM gain and feedforward
weight are needed to upgrade the Langevin sequential sampling into Hamiltonian. (B) The trajectory
of the residual dynamics of E and SOM samples resembles sampling a latent stimulus with zero
speed. (C-D) Hamiltonian sequential sampling induces oscillations in the E and SOM samples (bump
positions) around the true moving latent stimulus. (C): spatiotemporal responses; (D): decoded
sampling trajectories. To clearly illustrate the oscillations associated with Hamiltonian sequential
sampling, we used a larger SOM gain that deviates from the black line in (A). (E-F) The Hamiltonian
sequential sampling is characterized by relative oscillations of samples around the latent moving
stimulus (F), and resembles the spatial trajectories decoded during hippocampal theta sequences (E)
when a rodent is actively exploring. (E) is adapted from Wang et al. (2020). (G) The SOM gain
changes the internal speed of latent stimulus, and switches the sequential sampling algorithms with
adjusted with feedforward weights together.

Hamiltonian sampling trajectory resembles hippocampal theta sequences. Hamiltonian sequen-
tial sampling naturally introduces oscillations in the sampling trajectory zE (Fig. 3D). For dynamic
inference of a moving latent stimulus, oscillations appear as the samples switch between leading and
lagging the true latent stimulus (Fig. 3F), while the samples are still centered around the true stimulus.
This is comparable to the hippocampus’ internal spatial trajectories during theta oscillations when
animals are actively exploring the environment (Wang et al., 2020). Furthermore, the hippocampal
theta sequences exhibit an asymmetry between the leading and lagging sweeps, where the leading
sweep has a larger amplitude (comparing the area above and below zero in Fig. 3E), reproduced in
the Hamiltonian sequential sampling in the circuit (Fig 3F). This suggests the biological plausibility
of circuit Hamiltonian sequential sampling.

6 CONCLUSION AND DISCUSSION

This theoretical study claims canonical recurrent circuits implement sequential sampling to infer
either a dynamic or static latent stimulus. It reveals for the first time that the circuit flexibly samples a
latent stimulus with different speeds and precisions using either Langevin or Hamiltonian sampling,
all of which are modulated by SOM neurons’ gain (gS , Eq. 1c) containing two parts: one of which
increases with the latent stimulus speed (Eq. 16), and the other which acts as a baseline that changes
the mixing proportion of Langevin and Hamiltonian sampling (Eq. 19, Fig. 3G). Interestingly,
Hamiltonian sequential sampling trajectories in the circuit resemble hippocampal theta sequences
(Fig. 3C-F), supporting the biological feasibility of the algorithm.

What controls SOM’s gain? The SOM receives VIP’s inhibition (not included in the model) whose
activities are modulated by self-motion signals (Bigelow et al., 2019; Ramamurthy et al., 2023; Guy
et al., 2023), possibly by receiving the efference copy from the motor cortex. Therefore, our canonical
circuit infers the noisy moving stimulus due to self-motion (see extensions for unknown speed).

PV gain: an alternative way to adjust internal transition precision. Our above result considers
adjusting the recurrent E weight wEE to modulate the internal transition precision Λz (Sec. 4.1, Fig.
2D). However, synaptic weight modulation is a slow process that may not be able to capture the rapid
change of transition precision. Alternatively, adjusting the internal Λz can be realized by the fast
gain modulation of PV neurons (adding a gain factor gP in front of wEP in Eq. 1b). The PV’s gain
determines the firing rate of E neurons (RE in Eq. 2) that in turn modulate the recurrent E input
strength UEE that directly represents the Λz (Table in Sec. 4.1). Fig. A8 confirms this possibility,
where a larger PV gain represents a smaller transition precision.
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Experimental prediction/postdiction. Sampling a faster latent stimulus needs a larger SOM gain in
the circuit (Fig. 3A), causing stronger oscillations of samples (Fig. 3D,F). This reproduces the phe-
nomenon that the theta oscillation power and frequency both increase with movement speed(Whishaw
& Vanderwolf, 1973; McFarland et al., 1975; Jeewajee et al., 2008; Hinman et al., 2011; Gupta
et al., 2012; Winter et al., 2015; Hinman et al., 2016), and hence our model offers a novel testable
circuit mechanism for speed-dependent theta oscillations, whose circuit mechanism remains unclear.
For example, a latest circuit model reproduces theta oscillations but is unlikely to reproduce the
speed-dependent theta oscillations (Chu et al., 2024).

Comparison with other inference circuit studies. First, using the same circuit model as Sale
& Zhang (2024), we realize a significant step forward in understanding circuit computations. The
previous study only considers the static inference (Sale & Zhang, 2024), while we show that the same
circuit can flexibly conduct both static and dynamic inference. Second, previous studies of dynamics
inference neural circuits all considered deterministic circuit algorithms rather than sampling (Wu
et al., 2003; Rao, 2004; Beck & Pouget, 2007; Deneve et al., 2007; Wilson & Finkel, 2009; Pfister
et al., 2009; 2010; Ujfalussy et al., 2015; Kutschireiter et al., 2023). Depending on the concrete neural
representation strategy, deterministic inference circuits require either approximation by interchanging
the order of logarithm and sum (Rao, 2004; Beck & Pouget, 2007), or need complicated nonlinear
functions to implement the marginalization (Deneve et al., 2007; Wilson & Finkel, 2009; Pfister
et al., 2009; 2010; Ujfalussy et al., 2015; Kutschireiter et al., 2023), even if the generative model
is linear and exists an exact solution (Kalman filter). The above two challenges are avoided in our
sampling circuit: the first by having one effective sample at a time (Eq. 8, L = 1), and the second by
replacing complex nonlinear functions with stochastic sampling and linear interactions. This result
provides a novel benefit of sampling by simplifying the complexity of circuit implementation. Third,
comparing with other circuit sampling studies (Orbán et al. (2016); Echeveste et al. (2020)) where
the sampling is defined in the high-dimensional neural space (u in Eq. 1a), our circuit sampling is
within the low-dimensional stimulus feature subspace (Eq. 3a). Nevertheless, due to the similarity of
the circuit models, we believe the sampling defined on different spaces can be unified eventually.

Distinguish deterministic and sampling circuits in dynamic inference. The two families of circuit
algorithms for dynamics inference can be potentially distinguished in experiments. The Hamiltonian
sequential sampling is characterized by the oscillations (Fig. 3D), which are absent in deterministic
circuits executing the Kalman filter. To distinguish Langevin sequential sampling from the Kalman
filter in neural circuits, we can analyze the variability of circuit estimates (samples). When clamping
the posterior πt(zt) (Eq. 8) and analyzing the samples zt+1 in the next time step, the variance of zt+1

in Langevin sampling circuit will reflect the variance of πt+1(zt+1). By contrast, the variance of
zt+1 in the Kalman filter circuit is either zero (due to deterministic dynamics in the ideal case) or
irrelevant with πt+1(zt+1) (considering irrelevant internal noise in the brain). Practically, claiming
the instantaneous posterior can be indirectly realized by analyzing neural data conditioned on the
same zt.

Limitations and extensions of the model. First, although we only present a single circuit model
sampling a 1D latent dynamic stimulus, our circuit model and its sequential sampling algorithm can
be generalized to sample multivariate dynamic latent stimulus (Fig. A4A; Sec. E.3). Second, we
implicitly assume that the latent speed is provided to the circuit via SOM gain. When the latent
speed is unknown, it corresponds to an HMM parameter to be inferred, which can be realized via
the forward-backward (FB) algorithms (Bishop, 2006) that naturally require sweepings over the
forward and backward directions over time. This FB algorithm is analogous to the oscillations in the
Hamiltonian sequential sampling (Fig. 3E-F), suggesting the hippocampal theta sequences might be
a candidate circuit mechanism for realizing FB.
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Wen-Hao Zhang, Si Wu, Krešimir Josić, and Brent Doiron. Sampling-based bayesian inference in
recurrent circuits of stochastic spiking neurons. Nature Communications, 14(1):7074, 2023.

Wenhao Zhang, Tai Sing Lee, Brent Doiron, and Si Wu. Distributed sampling-based bayesian
inference in coupled neural circuits. bioRxiv, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Appendix Figures 16

B The canonical circuit model dynamics: detailed description 19

C The generative model and Bayesian sampling 20

C.1 The stimulus likelihood from feedforward inputs . . . . . . . . . . . . . . . . . . 20

C.2 The instantaneous stimulus posterior in a hidden Markov model . . . . . . . . . . 21

C.3 HMM inference via sequential Sampling . . . . . . . . . . . . . . . . . . . . . . . 21

D Theoretical analysis of the nonlinear circuit dynamics 22

D.1 Network Gaussian attractor ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Critical recurrent weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.3 Projection of circuit dynamics on dominant eigenfunctions . . . . . . . . . . . . . 23

E Static and dynamic Bayesian sampling in recurrent circuit dynamics 25

E.1 Langevin sequential sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E.1.1 Static latent stimulus (zero speed, no noisy transition) . . . . . . . . . . . . 25

E.2 Mixed Langevin/Hamiltonian sampling . . . . . . . . . . . . . . . . . . . . . . . 27

E.3 High-dimensional posterior distributions . . . . . . . . . . . . . . . . . . . . . . . 29

E.4 Bias Variance Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F Simulation details 31

F.1 Network parameters and simulation . . . . . . . . . . . . . . . . . . . . . . . . . 31

F.2 Read out stimulus samples from the population responses . . . . . . . . . . . . . . 32

F.3 Comparing the sampling distributions with posteriors . . . . . . . . . . . . . . . . 32

F.4 Reproducing E neurons’ tuning curves from modulating interneurons . . . . . . . . 33

F.4.1 Continuous approximation of the Poisson feedforward inputs . . . . . . . . 33

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX FIGURES

C
ro

ss
 c

o
rr

.

(n
o

rm
a

li
ze

d
)

1

0

0 10
Time t(/t)

B
u

m
p

 P
o

si
ti

o
n

0

-6

4

0 10

Net (no SOM)

Net (with SOM)

A B

Direction (deg)

R
a

te
 (

n
o

rm
e

d
)

R
a

te
 (

n
o

rm
e

d
)

180-180 0 –90 0 90

1

0.4

1.0

0

1

0

180-180 0 –90 0 90

Stimulus feature z

Experiment

Tuning of an example E neuron

Model
1

Model
Control

+ SOM

Experiment

q,q’
−180 0 180

W
X

Y
 (
q
,q

’)

0
aXY

wXY

X,Y={E,S,F}

Recurrent kernel

C E

0

D

S
a

m
p

le
 P

re
ci

si
o

n
 

Fdfwd. Input Intensity, R
F

0 12
0

0.4 likelihood
Net

Figure A1: Neuronal tuning curves in the circuit model and static inference. (A) The tuning curve of
E neurons in the control state (blue) compared to enhancing PV or SOM neurons. Model generates
similar results to experimental data, adapted from Wilson et al. (2012). (B) The recurrent connection
kernel in the circuit model. (C) The reduced circuit (without SOM) with fixed parameters flexibly
samples different likelihood uncertainties controlled by the feedforward input intensity. (D) The
stimulus samples zE read out from E population responses from the circuit with (purple) and without
(blue) SOM neurons can both sample the same likelihood distribution. (E) The circuit with SOM
neurons has a faster sampling speed demonstrated by the cross-correlation function of stimulus
samples.

J
S
D
iv

A B
10

0

3Fdfwd. w
EF
(/w

C
)

G
a
in

0.8

0.2

Proportion of 

Ham. sampling

3

7

M
S
E

0 1

Figure A2: (A) Jensen-Shannon divergence for varying feedforward input weights and SOM gain.
There exists a linear manifold where Divergence is minimal. (B) Increasing the proportion of
Hamiltonian Monte Carlo (increasing gain and feedforward weight along the manifold of (A) increases
the mean square error (MSE).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B
u

m
p

 P
o

si
ti

o
n

-180

180

0

N
e

u
ro

n
 in

d
e

x

Exc

0

50

True Stimulus
Net (w/ SOM)
Net (no SOM)

20

-30

0

Time t(/t)0 30

A

B
Time t(/t)0 30

C

-180

180

0

N
e

u
ro

n
 in

d
e

x

Exc
0

100

Time t(/t)0 40

-180

180

0

N
e

u
ro

n
 in

d
e

x

0

3

Time t(/t)0 40

SOM

Gain
Speed

Figure A3: Population activities in response to a moving stimulus with and without SOM neurons.
(A) E neuron population responses tracking a moving stimulus. (B) Decoded bump position of E
neurons with and without SOM compared with the true latent stimulus. Without SOM neurons, a
spatial offset exists between the stimulus sample and true latent stimulus. (C) We select gain-speed
pairs from the linear fit of the lowest mean square error (MSE) regime identified in Figs. 2G and 3A.
We smoothly increase the latent speed over a 500τ simulation, and use it to generate stochastic input
sequences. Meanwhile, we update the SOM gain based on the instantaneous latent speed by using
the linear fit of the gain-speed function. We find that the network reliably tracks the moving stimulus
with time-varying input speed.

B

S
ti
m
u

lu
s 

sa
m

p
le

 z
2
(N

et
 2

)

142

154

158 172

5t

0

-125
0

75

20Time (t/dt)

B
u

m
p

 P
o

si
ti

o
n

Stimulus sample z
1
(Net 1)

T
im

e
 (
t

/d
t)

Bump Position (Net 1)

True Stimulus 1

True Stimulus 2

Bump Position (Net 2)

C
Coupled recurrent circuit model

Exc 1

SOM

W
EE

W
EF

Stimulus 

feature

Feedfwd.

input

S
a

m
p

li
n

g
G

e
n

e
ra

ti
v

e
 m

o
d

e
l

W
ES

SOM

W
EE

W
EF

W
ES

Exc 2

W
EE

21

11 22

W
EE

12

Net 1 Net 2

r
F1,t

r
F1,t-1

z
1t

z
1,t-1

......

Time

r
F2,t

r
F2,t-1

z
2t

z
2,t-1

......

Time

A

Figure A4: Sampling high-dimensional posteriors. (A) Each latent stimulus, z1 and z2, can be
sampled by a recurrent circuit motif that is the same as 1B, coupled together with their coupling
storing the prior p(z1, z2). (B) Decoded bump position of E neurons from each circuit (net) compared
with the true latent stimulus. (C) The 2D sampling trajectories generated by the coupled circuit, and
the true latent stimulus (gray line).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Time t(/t)0 Time t(/t)0

x
-z

E

B
u

m
p

 P
o

si
ti

o
n

B
u

m
p

 P
o

si
ti

o
n

B
u

m
p

 P
o

si
ti

o
n

E Position

E Linear fit

SOM Position

SOM Linear fit

-110

-130

0

E Residual

SOM Residual

7.5

-5

0

-4

4

z
E 
- z

S

dz
E
 - dz

S

-4

4

0

30 30

A B

C D

Figure A5: Dynamic inference via Langevin sequential sampling in the reduced circuit with E and
PV neurons. (A) Decoded bump position from E and SOM neurons and their respective linear fits in
the presence of a moving latent stimulus with non-zero speed. (B) Deviation of the bump position
from the true underlying stimulus. (C) Difference between the bump position and fitted linear curve
for both SOM and E. Regarded as δzX in main text. (D) Difference of E and SOM bump position
(purple) and δzE − δzS (red).

Time t(/t)0 Time t(/t)0

x
-z

E

B
u

m
p

 P
o

si
ti

o
n

B
u

m
p

 P
o

si
ti

o
n

B
u

m
p

 P
o

si
ti

o
n

E Position

E Linear fit

SOM Position

SOM Linear fit

-120

-160

E Residual

SOM Residual

z
E 
- z

S

dz
E
 - dz

S

10

5

0

0

-2

4

-4

4

0

30 30

A B

C D
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B THE CANONICAL CIRCUIT MODEL DYNAMICS: DETAILED DESCRIPTION

E neurons. Each E neuron is selective for a 1D stimulus feature z: the orientation or location. θj
denotes the preferred feature of the j-th E neuron. The preferred feature of all ,NE , E neurons,
{θj}NE

j=1, uniformly covers the whole space of z (Fig. 1B). Mathematically, in the continuous limit
(θj → θ) corresponding to an infinite number of neurons, the E dynamics is (Zhang et al., 2016; Wu
et al., 2008). For convenience, we rewrite the dynamics for E neurons below,

τ u̇E(θ, t) = −uE(θ, t) + ρ
∑

X∈{E,F,S}(WEX ∗ rX)(θ, t) +
√

τF[uE(θ, t)]+ξ(θ, t), (B1)

where uE(θ, t) and rE(θ, t) represent the synaptic inputs and firing rates of neurons preferring z = θ,
respectively. X denotes neuronal types with E, F and S standing for E neurons, sensory feedforward
inputs, and the SOM neurons, respectively. τ is the time constant, ρ = N/2π is the neuronal density
covering the stimulus feature space, and [x]+ = max(x, 0) is negative rectification. E neurons receive
internal Poisson variability with Fano factor F, mimicking stochastic spike generation. The symbol
∗ denotes the convolution W(θ) ∗ r(θ) =

∫
W(θ − θ′)r(θ′)dθ′. While our math equation (Eq. 1)

considers the continuum limit to facilitate math analysis (standard for continuous attractor networks),
all simulations are based on a finite number of neurons (e.g., 180 excitatory and 180 SOM neurons).
The Gaussian white noise, ξ(θ, t) is the Dirac delta function ⟨ξ(θ, t)ξ(θ′, t)⟩ = δ(θ − θ′)δ(t− t)

Recurrent weight kernel. WY X(θ) is the recurrent connection kernel from neurons of type X to
those of type Y , modeled as Gaussian functions (Fig. A1A),

WY X(θ) = wY X

(√
2πaXY

)−1
exp(−θ2/2a2XY ), (B2)

where wY X is the peak amplitude and aXY is the connection width from neuron type X to Y . Peak
weight from SOM to E is negative for the tuned inhibition (wES < 0). Furthermore, different
WXY (θ) have different connection width, detailed in Sec. F.1.

PV neurons. PV neuron firing is driven by E neurons. For simplicity, they are not selective to
stimulus, an extreme case of their weak tuning in reality Adesnik et al. (2012); Moore & Wehr (2013);
Wilson et al. (2012). PV provides divisive, unstructured global inhibition to E neurons to stabilize the
circuit. Their effect is modeled as divisive normalization, a canonical operation (activation function)
observed in neural circuits Niell (2015); Carandini & Heeger (2012); Cooke et al. (2020),

rE(θ, t) = [uE(θ, t)]
2
+/(1 + ρwEP rP ), rP =

∫
[uE(θ

′, t)]2+dθ
′, (B3)

where rp (scalar) corresponds to the mean firing rate of the population of PV neurons and wEP (a
positive scalar) characterizes the global inhibition strength from PV neurons to E neurons. This
divisive normalization function acts as an activation function for the instantaneous synaptic input
uE(θ, t) to the firing rate of E neurons rE(θ, t).

SOM neurons. In contrast to PV, SOM neurons have tuning and provide subtractive, local structured
inhibition to E neurons Wilson et al. (2012). The SOM’s dynamics is

τ u̇S(θ, t) = −uS(θ, t) + ρ(WSE ∗ rE)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+. (B4)

where gS is the "gain" of SOM neurons and can be modulated (see Discussion). As for the E neurons,
uS and rS represent the synaptic input and firing rate for SOM neurons respectively. For simplicity,
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we do not consider mutual inhibition between SOM neurons, which negligibly affects our results.
Consistent with neuroanatomy, our SOM neurons do not receive direct feedforward input Fishell &
Kepecs (2020); Campagnola et al. (2022), which is necessary to realize Hamiltonian sampling as
suggested in a recent study Sale & Zhang (2024). Therefore, we only consider SOM neurons being
linearly modulated by E neurons, WSE ∗ rE .

Stochastic sensory feedforward input. The feedforward input rF (θ, t) (Eq. 1a) is stochastically
evoked from the latent stimulus zt (Fig. 1D-E), modeled as conditionally independent Poisson spikes
with Gaussian tuning given zt, the conventional setting in neural coding studies Ma et al. (2006);
Zhang et al. (2023),

rF (θ, t) ∼ Poisson[λF (θ|zt)], λF (θ|zt) = RF exp[−(θ − zt)
2/2a2], (B5)

where λF (θ|zt) is the mean firing rate of neuron θ given zt. rF is approximated as a continuous
Gaussian random variable with multiplicative noise.

C THE GENERATIVE MODEL AND BAYESIAN SAMPLING

We define a hidden Markov model that consists of the latent stimulus {zt} evoking feedforward
inputs {rF (t)} (Fig. 1A). The latent dynamics evolve as defined by the transition probability,

p(zt+1|zt) = N (zt+1|zt + vδt,Λ−1
z ), (C1)

where v is the latent transition speed and Λz characterizes the transition noise. The observed
feedforward inputs by the neural circuits are generated as,

p(rF,t|zt) =
NE∏
j=1

Poisson (rF,t(j)|λF,t(j)∆t) =

NE∏
j=1

[λF,t(j)∆t]rF,t(j)

rF,t(j)!
exp[−λF,t(j)∆t], (C2)

C.1 THE STIMULUS LIKELIHOOD FROM FEEDFORWARD INPUTS

We present the math to determine the stimulus likelihood p(rFt|zt) as previously used in other
models Sale & Zhang (2024). The stimulus likelihood function can be derived from the feedforward
input by substituting the instantaneous feedforward firing rate, λF (θ|zt), into the Poisson distribution
(omitting the time t for clarity). Taking the logarithm of Eq (C2),

ln p(rF |z) =
∑

j

[
rF (j) ln(λF (j)∆t)− ln(rF (j)!)− λF (j)

]
,

=
∑

j rF (j) ln(λF (j)∆t) + const.
(C3)

The last line is obtained by assuming the population firing rate,
∑

j λF (j), is a constant irrelevant
with z. Substituting the Gaussian profile of feedforward firing rate λF (z),

ln p(rF |z) = −
∑
j

rF (j)
(θj − z)2

2a2
+ const,

= −1

2
ΛF (z − x)2 + const,

(C4)

where

x =

∑
j rF (θj)θj∑
j rF (θj)

, ΛF = a−2
∑
j

rF (θj). (C5)

Finally, we approximate the likelihood precision as a function of the peak feedforward firing rate,
RF .

ΛF ≈ a−2
∑
j

λF (θj),

≈ a−2ρ

∫
λF (θ)dθ

= a−2ρRF

∫
e−(θ−z)2/2a2

dθ

=
√
2πρa−1RF ,

(C6)
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C.2 THE INSTANTANEOUS STIMULUS POSTERIOR IN A HIDDEN MARKOV MODEL

We are interested in the recursive posterior distribution over the latent state zt given feedforward
inputs up to time t using Bayesian filtering.

p(zt+1|rF,1:t+1) ≜ πt+1(zt+1) = p(rF,t+1|zt+1)

∫
p(zt+1|zt)p(zt|rF,1:t)dzt. (C7)

Generally, this involves two phases. One is determining the predictive posterior

p(zt+t|rF,1:t) =

∫
p(zt+1|zt) π(zt) dzt (C8)

which estimates how the hidden state changes in the next time step before receiving the observed
feedforward inputs. Then the update phase,

p(zt+1|rF,1:t+1) ∝ p(rF,t+1|zt+1) p(zt+1|rF,1:t). (C9)

which incorporates the latest observation.

C.3 HMM INFERENCE VIA SEQUENTIAL SAMPLING

The integral in calculating predictive posterior (Eq. C8) is a generally difficult operation in statistical
inference, which imposes a challenge to be implemented in neural circuits.

The present study considers approximately calculating the integral via sampling. Specifically, we
replace the integral over zt with a finite sum of samples z̃(l)t ∼ πt(zt), leading to the approximation,∫

p(zt+1|zt)πt(zt) dzt ∝
1

L

L∑
l=1

p(zt+1|z̃(l)t ), z̃
(l)
t ∼ πt(zt) (C10)

We assume the circuit draws one sample at a time, which simplifies the recursive posterior to,

πt+1(zt+1) ≈ f(zt+1) · p(zt+1|z̃t) ≡ N (zt+1|µt+1,Ω
−1
t+1) (C11)

where

Ωt+1 = ΛF,t + Λz

µt+1 =
ΛF,t xt+1 + Λz(z̃t + v∆t)

ΛF,t + Λz
= Ω−1

t+1

[
ΛF,t xt+1 + Λz(z̃t + v∆t)

]
.

(C12)

in which we use the sample, z̃t drawn from the previous posterior, πt(zt), to approximate the integral.

Langevin sampler. The samples could, for example, be generated by Langevin dynamics, performing
a stochastic gradient ascent on the log posterior.

z̃t+1 = z̃t +
ε2

2
∇z lnπt+1(z̃t) + εηt (C13)

where ηt ∼ N (0, I) and the gradient is given by:

∇z lnπt+1(z̃t) = ΛF,t(xt+1 − z̃t) + Λzv (C14)

In the absence of a changing latent stimulus (i.e., v = Λ−1
z = 0), the static posterior degenerates to

the likelihood,

z̃t+1 = z̃t +
ε2

2
ΛF,t(xt+1 − z̃t) + εηt. (C15)

where

dz̃t+1

dt
= lim

δt→0

z̃t+1 − z̃t
δt

=
ε2

2δt
ΛF,t(xt+1 − z̃t) +

ε√
δt
ηt (C16)

Later we will show the Langevin sequential sampling can be implemented by the circuit dynamics
for static and dynamic inference.
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D THEORETICAL ANALYSIS OF THE NONLINEAR CIRCUIT DYNAMICS

D.1 NETWORK GAUSSIAN ATTRACTOR ANSATZ

We analyze the circuit’s attractor state. To ease of reading, we copy the circuit dynamics in below
(Eqs 1a and 1c),

τ
∂uE(θ, t)

∂t
= −uE(θ, t) + ρ

∑
X=E,F,S

(WEX ∗ rX)(θ, t) +
√
τFE [uE(θ, t)]+ξ(θ, t),

τ
∂uS(θ, t)

∂t
= −uS(θ, t) + ρWSE ∗ rE(θ, t); rS(θ, t) = gS · [uS(θ, t)]+,

(D1)

Taking the equilibrium mean, we have

⟨uE(θ)⟩ = ρ
∑

X=E,F,S

(WEX · ⟨rX⟩)(θ),

⟨uS(θ)⟩ = ρWSE · ⟨rE⟩(θ),
(D2)

We propose the following Gaussian ansatz satisfying the equilibrium state of the circuit dynamics,
consistent with previous workSale & Zhang (2024); Zhang et al. (2020),

⟨uE(θ)⟩ = UE exp

[
− (θ − zE)

2

4a2E

]
. (D3)

We obtain the ansatz of firing rate for E neurons by substituting ⟨UE(θ)⟩ into divisive normalization,

⟨rE(θ)⟩ =
[U2

E(θ, t)]
2

1 + ρwEP

∫
[UE(θ, t)]2dθ

=
U2
E

1 + ρwEPU2
E

√
2πaE︸ ︷︷ ︸

RE

exp

[
− (θ − zE)

2

2a2E

]
. (D4)

Then we can substitute the Gaussian ansatz into the stationary state for the circuit dynamics for each
input.

⟨IXY (θ)⟩ = ρWXY ∗ ⟨rY (θ)⟩

= ρ

∫
wXY (θ

′ − θ)⟨rY (θ)⟩dθ′

= ρwXY RY
aY√

a2XY + a2Y
exp

[
− (θ − zY )

2

2(a2XY + a2Y )

]
.

(D5)

After substitution, the E and SOM dynamics are then,

UE exp

[
− (θ − zE)

2

4a2E

]
=

ρ√
2

[
wEEREe

−(θ−zE)2/4a2
E + wEFRF e

−(θ−µz)
2/4a2

E

]
+ ρwESRS

aS√
2aE

exp

[
− (θ − zS)

2

4a2E

]
.

US exp

[
− (θ − zS)

2

4a2S

]
= ρwSERE

aE√
a2SE + a2E

exp

[
− (θ − zE)

2

2(a2SE + a2E)

]
,

(D6)

from which we can get the following constraints on the connection width,

a2S = a2SE + a2E

a2E = a2ES + a2SE . (D7)

Since we have a summation of functions, we can make the approximation that when the positions are
sufficiently close together, zE = zS = µz , then the sum will also be Gaussian. Therefore, the ansatz
is adequate.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.2 CRITICAL RECURRENT WEIGHT

In our simulations, we scale the peak connect weight in the connection kernel by the smallest recurrent
weight where the E network can self-sustain persistent activity without any external input. To find
this critical weight, wc, we start with Eq. (D6) in equilibrium,

UE =
ρ√
2

(
wEERE +

aS
aE

wESRS

)
,

US =
ρ√
2

aE
aS

wSERE .
(D8)

Combining RS = gSUS from Eq. (1c) in the main text with Eq. (D8) we obtain,

UE =
ρ√
2
RE

(
wEE +

ρ√
2
wESgSwSE

)
(D9)

Substituting Eq. (D9) into Eq. (D4)

UE =
ρU2

E√
2 + 2

√
πkρaEU2

E

(
wEE +

ρ√
2
wESwSEgS

)
, (D10)

we can find UE ,

2
√
πkρaEU

2
E − ρUE

(
wEE +

ρ√
2
wESwSEgS

)
︸ ︷︷ ︸

wc

+
√
2 = 0. (D11)

with solution

UE =
ρwc ±

√
ρ2w2

c − 8
√
2πkρaE

4
√
πkρaE

(D12)

For persistent activity, the inside of the square root should be positive. Therefore, we can solve for
the critical recurrent weight, wc,

w2
c >

8
√
2πkaE
ρ

D.3 PROJECTION OF CIRCUIT DYNAMICS ON DOMINANT EIGENFUNCTIONS

We next substitute the Gaussian ansatz into the E and SOM neurons’ dynamics.

For the E neurons’ dynamics,

LHS = τUE
d

dt
exp

[
− (θ − zE)

2

4a2E

]
= τ

[
UE

θ − zE
2a2E

dzE
dt

+
dUE

dt

]
exp

[
− (θ − zE)

2

4a2E

]
,

RHS =

(
−UE +

ρwEERE√
2

)
exp

[
− (θ − zE)

2

4a2E

]
+

ρwESRSaS√
2aE

exp

[
− (θ − zS)

2

4a2E

]
+

ρwEFREF√
2

exp

[
− (θ − µz)

2

4a2E

]
+
√
τFUE exp

[
− (θ − zE)

2

8a2E

]
ξ(θ, t)

(D13)

Then again, for the SOM neurons,

LHS = τUS
d

dt
exp

[
− (θ − zS)

2

4a2S

]
= τ

[
US

θ − zS
2a2S

dzS
dt

+
dUS

dt

]
exp

[
− (θ − zS)

2

4a2S

]
,

RHS = −US exp

[
− (θ − zS)

2

4a2S

]
+

ρwSEREaE√
2aS

exp

[
− (θ − zE)

2

4a2S

]
.

(D14)

Previous work has identified two dominant motion modes of recurrent attractor networks Wu et al.
(2008); Fung et al. (2010). These two dominant modes correspond to the eigenfunctions of the bump
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height and bump position,

Position: ϕ0(θ|zX) ∝ exp

[
− (θ − zX)2

4a2X

]
(D15)

Height: ϕ1(θ|zX) ∝ (θ − zX) exp

[
− (θ − zX)2

4a2X

]
. (D16)

where ϕ0 and ϕ1 are the eigenfunctions of the bump height and position, respectively.

Projections of the E dynamics
Then projecting Eq. (D13) onto the bump height eigenfunction ϕ0(θ|zE)

τ
dUE

dt
= −UE +

ρ√
2
wEERE +

ρwESRSaS√
2aE

exp

[
− (zS − zE)

2

8a2E

]
+

ρ√
2
wEFRF exp

[
− (µz − zE)

2

8a2E

]
+

√
F

aE
√
3π

√
τUEηt

(D17)

and the position eigenfunction ϕ1(θ|zE),

τUE
dzE
dt

=
ρwESRSaS√

2aE
(zS − zE) exp

[
− (zS − zE)

2

8a2E

]
,

+
ρ√
2
wEFRF (µz − zE) exp

[
− (µz − zE)

2

8a2E

]
+

√
8aEF

3
√
3π

√
τUEξt

(D18)

Projections of the SOM dynamics
We similarly project the SOM dynamics onto the bump height and position eigenfunction, ϕ0(θ|zS)
and ϕ1(θ|zS), respectively.

Position: τ
dUS

dt
= −US +

ρwSEREaE√
2aS

exp

[
− (zE − zS)

2

8a2S

]
(D19)

Height: τUS
dzS
dt

=
ρwSEREaE√

2aS
(zE − zS) exp

[
− (zE − zS)

2

8a2S

]
(D20)

We define the following variables to simplify notations,

τX = τUX , UXY =
ρaY√
2aX

wXY RY , σE =

√
8FaE

3
√
3π

, σU =

√
F

aE
√
3π

(D21)

Then, the E and SOM dynamics simplifies to,

τU̇E = −UE + UEE + UESe
−(zS−zE)2/8a2

+ UEF e
−(x−zE)2/8a2

+ σUτ
1/2
E ηt (D22a)

τU̇S = −US + USEe
−(zS−zE)2/8a2

(D22b)

τE żE = UESe
−(zS−zE)2/8a2

(zS − zE) + UEF e
−(x−zE)2/8a2

(x− zE) + σEτ
1/2
E ξt (D22c)

τS żS = USEe
−(zS−zE)2/8a2

(zE − zS) (D22d)

In equilibrium, we assume the difference between bump positions is small enough compared to the
connection width a, i.e., |zE − zS | and |µz − zE | << 4a. Furthermore, we assume the bump height
UE and US are large enough, which makes the bump position dynamics (time constant) much slower
than the height dynamics, and then we consider the stationary state of the height UE and US . In this
case, we can simplify the dynamics for the bump height and position,

UE = UEE + UES + UEF + σUτ
1/2
E ηt (D23a)

US = USE , (D23b)

τE żE = UES(zS − zE) + UEF (x− zE) + σEτ
1/2
E ξt, (D23c)

τS żS = USE(zE − zS). (D23d)
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E STATIC AND DYNAMIC BAYESIAN SAMPLING IN RECURRENT CIRCUIT
DYNAMICS

E.1 LANGEVIN SEQUENTIAL SAMPLING

E.1.1 STATIC LATENT STIMULUS (ZERO SPEED, NO NOISY TRANSITION)

To map the network dynamics to Bayesian inference, we start with the static inference case where
the network utilizes Langevin sampling, previously described Sale & Zhang (2024). Comparing Eq.
(C16) to the circuit dynamics derived in Sec. D.3 without SOM,

żE = τ−1
E UEF (µ− zE) + σEτ

−1/2
E ηt. (E1)

We can compare ε to τE to derive the condition in which our network realizes sequential sampling.
From Eq. (D21), τE = τUE , and UE has been previously derived as (without SOM),

UE =
ρ√
2

(
wEERE + wEFRF

)
, (E2)

Previous work has mapped the feedforward input to the likelihood distribution in Langevin sampling.
In accordance with those derivations, we consider the recurrent weight wEE to be proportional to the
latent transition precision, Λz . Then,

ε2 = UEδt =
ρ√
2

[
wEERE + wEFRF

]
UE =

ρwEERE√
2︸ ︷︷ ︸

∝Λz

+
ρwEFRF√

2︸ ︷︷ ︸
∝ΛF

. (E3)

Therefore, we consider

(a). wEF =
√
πσ2

E/a = (2
√
3)3F; (b). wEE = awEF (

√
2πρδtRE)

−1Λz; (c). gS = 0. (E4)

Dynamic Langevin sampling (non-zero speed and noisy latent transition) When the latent variable
changes with constant velocity and transition noise, the transition probability is,

p(zt+1|zt) = N (zt+1|zt + vδt,Λ−1
z ). (E5)

Starting from the projected dynamics in Eq. (D22), if the circuit can infer the moving latent stimulus
accurately, the average speed of the circuit’s sample should match the speed of input x,

(a). ⟨żE⟩ = ⟨żS⟩ = ⟨ẋ⟩ = v, (b). ⟨xt − ⟨zE⟩⟩ ≈ 0. (E6)

And the 2nd equality in the above equation is obtained that the average difference between the input
xt and circuit sample zE should be close to zero, otherwise there will be a systematic bias.

The internal speed in the circuit

If we average the bump position dynamics over trials (Eqs. D22c and D22d),

τE⟨żE⟩ = τEv = UESe
−(zS−zE)2/8a2

⟨zS − zE⟩+ UEF e
−(x−zE)2/8a2

⟨x− zE⟩︸ ︷︷ ︸
≈0

(E7)

τS⟨żS⟩ = τSv = USEe
−(zS−zE)2/8a2

⟨zE − zS⟩ (E8)

Combining Eq. (D22b) and Eq. (E8), we obtain the following relationship between velocity and
separation between the bump positions,

τ
(
USEe

−(zS−zE)2/8a2
)
v = USEe

−(zS−zE)2/8a2

(zE − zS)

⇒ τv = zE − zS

which is the Eq. (16) in the main text.
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To find how v is related to the gain of SOM, we assume (x− zE) is still negligible,

τUEv = UESe
−τ2v2/8a2

(−τv) ⇒ UE = −UESe
−τ2v2/8a2

Substituting the above equation into the height relation,

UE = UEE + UESe
−τ2v2/8a2

+ UEF

We arrive,

−2UESe
−τ2v2/8a2

= UEE + UEF (E9)

From our previous simplifications, Eq. (D21), we know

UES =
ρaS√
2aE

wESRS

UES =
ρ2

2
wESwSEgSREe

−τ2v2/8a2

(E10)

which we can substitute back into Eq. (E9) to obtain,

− 2 · ρ
2

2
wESwSEgSREe

−τ2v2/4a2

=
ρ√
2
wEERE +

ρ√
2
wEFRF

⇔
(

ρ√
2
wESwSEgSe

−τ2v2/4a2

+ wEE

)
RE = −wEFRF .

Since RF is given, this means an increase gS comes with an increase of v2 to keep the RF unchanged
to satisfy the above equation. Solve the above equation,

v2 = −4a2

τ2
ln

[
−
(
wEE +

wEFRF

RE

) √
2

ρwESwSE

1

gS

]
, (E11)

=
4a2

τ2

[
ln gS − ln

(√
2(wEERE + wEFRF )

ρ(−wES)wSERE

)]
, (E12)

which becomes the Eq. (16) in the main text.

The residue dynamics for circuit sampling

The above analysis suggests the mean of the circuit samples, ⟨zE⟩, captures the latent stimulus speed.
Now we analyze the sampling dynamics of the residue that is defined as,

δzE = zE − ⟨zE⟩, δzS = zS − ⟨zS⟩

and the residue of the input feature is similarly defined,

δxt = xt − ⟨xt⟩.

Computing the difference between the circuit’s bump position dynamics (Eqs. D22c and D22d) and
the trial-averaged mean dynamics (Eqs. E7 and E8) yields the residue dynamics,

τE δ̇zE = UES(δzS − δzE) + UEF (δxt − δzE) + σEτ
1/2
E ξt, (E13)

τS δ̇zS = USE(δzE − δzS). (E14)

Considering the case that (δzS − δzE) is small enough, which can be realized by a not strong SOM
gain gS , we can ignore it in δzE dynamics,

τE δ̇zE ≈ UEF (δxt − δzE) + σEτ
1/2
E ξt.

We see the δzE dynamics is comparable to the circuit’s Langevin sampling dynamics in the static
case (Eq. E1). The above analysis has two implications. First, it suggests that the ⟨zE⟩ captures the
speed of the latent stimulus, which is generated from the separation of E and SOM’s samples, i.e.,
zE − zS . Second, the residue dynamics δzE corresponds to a Langevin sampling dynamics to a latent
stimulus with zero speed, in that ⟨δxt⟩ = 0.
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E.2 MIXED LANGEVIN/HAMILTONIAN SAMPLING

To ease of analysis, we convert the Eqs. (D23c and D23d) into the matrix form(
żE
żS

)
= D−1

U F1

(
zE
zS

)
+D−1

U µz +D
−1/2
U Σ1ξt (E15)

where

DU =

(
τUE

τUS

)
, F1 =

(
−(UEF + UES) UES

USE −USE

)
, µz =

(
UEFxt

0

)
, Σ1 =

(
σE 0
0 0

)
(E16)

Static mixed sampling (xt is fixed over time)

To reveal how the circuit with SOM neurons implements Hamiltonian sampling, we can decompose
the network dynamics zE as a mixture of the Langevin sampling and the Hamiltonian sampling parts
Sale & Zhang (2024),

τE żE = [UES(zS − zE) + UH
EF (xt − zE)]︸ ︷︷ ︸

Momentum p, (Hamiltonian part)

+ [UL
EF (xt − zE) + σE

√
τEξt]︸ ︷︷ ︸

Langevin part

, (E17)

where UH
EF and UL

EF denotes the proportion of feedforward input contributed by the Hamiltonian or
Langevin sampling component, respectively. From Eq. (E17), we define momentum p as

p = UES(zS − zE) + UH
EF (x− zE)

= (−UES − UH
EF , UES , U

H
EF ) · (zE , zS , x)⊤.

In this way, we can define a transition matrix between the network dynamics and momentum.(
z
p

)
= T

(
zE
zS

)
+

(
0

UH
EFxt

)
, T =

(
1 0

−UES − UH
EF UES

)
.

To simplify the analysis, we consider xt = 0 over time without loss of generality (and then ẋt = 0:

d

dt

(
z
p

)
= T

d

dt

(
zE
zS

)
=
(
TD−1

U MUT
−1
)
T

(
zE
zS

)
︸ ︷︷ ︸
(z,p)T

+Tµz +TD
−1/2
U Σ ξt

To derive TD−1
U MUT

−1,

T−1 =
1

UES

(
UES 0

UES + UH
EF 1

)
D−1

U MU =

(
τ−1
E 0
0 τ−1

S

)(
−(UEF + UES) UES

USE −USE

)
=

(
−τ−1

E (UEF + UES) τ−1
E UES

τ−1
S USE −τ−1

S USE

)
Then, multiply and simplify to obtain the result,

TD−1
U MUT

−1 =
1

UES

(
−τ−1

E UL
EF τ−1

E

UL
EFhE − τ−1

S USEU
H
EF −hE − τ−1

S USE

)
where hE = τ−1

E (UES + UH
EF ).

We then rewrite the dynamics as,

d

dt

(
z
p

)
= −

(
τ−1
E UL

EF −τ−1
E

βE βp

)(
z
p

)
+Tµz +

(
τ
−1/2
E σE

σp

)
ξt (E18)

where

βE = −τ−1
E UL

EF (UES + UH
EF ) + τ−1

S USEU
H
EF (E19)

βp = τ−1
E (UES + UH

EF ) + τ−1
S USE (E20)

σ2
p = (UES + UH

EF )
2σ2

Eτ
−1
E (E21)
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Mapping to the standard form of mixed Langevin and Hamiltonian sampling

In mixed sampling,the equilibrium distribution π(z) sampled is defined as,

π(z, p) = exp[−H(z, p)] = exp[lnπ(z)−K(p)] (E22)

where K(p) is kinetic energy with m analogous to the mass in physics. As in the main text, the
Hamiltonian sampling dynamics with friction γ for dampening momentum is Chen et al. (2014); Ma
et al. (2015),

d

dt

[
z̃t
pt

]
= −

[
0 −τH
τH γ

] [
−∇z lnπ(z)

m−1p

]
+

√
2

[
0 0
0 γ1/2

]
ξt. (E23)

For mixed sampling Langevin and Hamiltonian sampling,

d

dt

(
z
p

)
= −

(
τ−1
L −τ−1

H

τ−1
H τ−1

p

)(
−∇z lnπ(z)

m−1p

)
+

√
2

(
τL

τp

)−1/2

ηt (E24)

where ∇z lnπ(z) = ΛF (xt − z) = −ΛF z (considering xt = 0).

We then convert the circuit’s bump position dynamics (Eq. E18) into the standard mixed sampling
form,

d

dt

(
z
p

)
= −

(
UL
EF (τEΛF )

−1 −βEΛ
−1
F

βEΛ
−1
F τEβpβEΛ

−1
F

)(
ΛF z

(τEβE)
−1ΛF p

)
+

(
τ
−1/2
E σE

σp

)
ηt (E25)

Comparing Eq. (E24) to Eq. (E18), we have,

τ−1
L = UL

EF (τEΛF )
−1, (E26a)

τ−1
H = βEΛ

−1
F , (E26b)

m−1 = (τEβE)
−1Λ−1

F (E26c)

τ−1
p = βpm

−1 → τ−1
p = τEβpβEΛ

−1
F (E26d)

We next determine the conditions in which the network can realize mixed Langevin and Hamiltonian
sampling. For the Langevin sampling condition:

τ−1
L = UL

EF (τEΛF )
−1 =

τ−1
E σ2

E

2
, (E27)

where,

UEF =
ρwEF√

2
, RF =

a√
2π

ΛF ,

We can then constrain the feedforward weight for realizing Langevin sampling component,

wL
EF =

√
πσ2

E

UL
EFa

=

(
2√
3

)3
F

UL
EF

(E28)

In addition, realizing the Hamiltonian sampling in the circuit requires,

τEβpβEΛ
−1
F =

σ2
p

2
. (E29)

Substituting the expressions (Eq. E21) into the above equation, and define common terms to simplify
the expression,

hE = τ−1
E (UES + UH

EF ), hS = τ−1
S USE (E30)

We arrive,

(hE + hS)(−UL
EFhE + UH

EFhS)Λ
−1
F = UL

EFh
2
E (E31)

Rearranging the above equation into a quadratic for hE ,

2UL
EFh

2
E + (UL

EF − UH
EF )hShE − UH

EFh
2
S = 0 (E32)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

By using the relation that UH
EF /U

L
EF = wH

EF /w
L
EF , the root of hE is,

hE =
hS

4

−(1− wH
EF

wL
EF

)
±

√(
1−

wH
EF

wL
EF

)2

+ 8
wH

EF

wL
EF

 ≡ F (wH
EF /w

L
EF ) · hS . (E33)

Combining the above equation with the Eq. (E30)

τ−1
E (UES + UH

EF ) = F (wH
EF /w

L
EF )τ

−1
S USE (E34)

Substituting the detailed expression of UES , USE , τE , we can find(
USwES

)
· gS −RF · wH

EF = F
(
wH

EF /w
L
EF

)
UE , (E35)

which is the Eq. (19) in the main text.

Note that the wH
EF is the extra feedforward weight for Hamiltonian sampling based on the original

weight wL
EF for Langevin sampling. And the extra wH

EF needs to be associated with the SOM gain gS .
We see that there is a line manifold of the combination of wH

EF and gS implements the Hamiltonian
sampling in the circuit.

Dynamic mixed sampling (non-zero speed, noisy latent transition) We present how the circuit can
realize the mixed Langevin and Hamiltonian sequential sampling to implement a latent stimulus with
non-zero speed and noisy transitions over time.

The overall math analysis process is similar to the Langevin sequential sampling as presented in
Sec. E.1.1. That is, we need the SOM gain to enable the internal speed generation in the circuit
that captures the latent stimulus speed (Eq. E7), and then the residue dynamics is equivalent to
implementing the sampling of a static input with only noisy transitions (Eqs. E13 - E14).

Unlike the Langevin sequential sampling where the residue δzE − δzS is negligible (Eq. E15) in that
all the SOM gain gS is used to generate internal speed, in the Hamiltonian sequential sampling the
δzE − δzS is non-negligible. Therefore, we need to analyze the joint residue dynamics of δzE and
δzS . Copy the Eqs. (E7-E8 and E13 - E14) in below,

τE⟨żE⟩ ≈ UES⟨zS − zE⟩, (E36)
τS⟨żS⟩ = USE⟨zE − zS⟩, (E37)

τE δ̇zE = UH
ES(δzS − δzE) + UH

EF (δxt − δzE) + σEτ
1/2
E ξt, (E38)

τS δ̇zS = UH
SE(δzE − δzS). (E39)

We can think of the ⟨zX⟩ and ⟨δzX⟩ (X = E,S) in two steps.

1. First, we determine the circuit weight to make sure ⟨zX⟩ tracks the input speed, including
setting the speed-dependent SOM gain by using Eq. (E12) and the feedforward weight by
using Eq. E4.

2. Second, based on the circuit weight in the first step, we overlay additional feedforward
input UH

EF and additional SOM inhibition UH
ES to induce oscillations in the residue ⟨δzX⟩

dynamics. In this way, the residue dynamics obey the same math analysis with Sec. E.2.
This immediately gives rise to the additional feedforward weight and SOM gain to realize
Hamiltonian sequential sampling,(

USwES

)
· gHS −RF · wH

EF = F
(
wH

EF /w
L
EF

)
UE , (E40)

which is the Eq. (19) in the main text.

E.3 HIGH-DIMENSIONAL POSTERIOR DISTRIBUTIONS

We consider the multivariate posterior distribution case via coupled circuits (See Supp Fig S6).
The core algorithm (Eq. 9) generalizes naturally to multivariate latent states, where the transition
probability becomes a joint distribution and the feedforward input shapes a multivariate likelihood.

πt+1(z1,t+1, z2,t+1) ∝ f(z1,t+1, z2,t+1) ·
[ 1
L

L∑
l=1

p
(
z1,t+1, z2,t+1|z̃(l)1,t, z̃

(l)
2,t

)]
(E41)
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where z1 and z2 are the two latent stimuli. Each latent stimulus can be sampled by a recurrent circuit
motif that is the same as Fig. 1B, while the two circuit motifs are coupled together with their coupling
storing the prior p(z1, z2). When supposing only one sample is generated in each time step, the
instantaneous posteriors is approximated as,

πt+1(z1,t+1, z2,t+1) ≈ f(z1,t+1, z2,t+1)p
(
z1,t+1, z2,t+1|z̃(l)1,t, z̃

(l)
2,t

)
(E42)

In particular, when assuming each input is independently generated by the latent stimulus, the likeli-
hood can be factorized, i.e., f(z1,t+1, z2,t+1) = f(z1,t+1)f(z2,t+1). Similarly, we consider the tran-
sition probability can be factorized, i.e., p

(
z1,t+1, z2,t+1|z̃(l)1,t, z̃

(l)
2,t

)
= p

(
z1,t+1|z̃(l)1,t

)
p
(
z1,t+1|z̃(l)2,t

)
,

the marginal instantaneous posterior of z1 is,

πt+1(z1,t+1) ≈ f(z1,t+1)p
(
z1,t+1|z̃(l)1,t

)
p
(
z1,t+1|z̃(l)2,t

)
(E43)

Then we can plug this expression into Eq. (11), and then the dynamics is consistent with the dynamics
of the circuit motif 1 in the coupled motifs. And the terms on the RHS of the above equation
corresponds to the feedforward input, recurrent input within the same circuit motif, and the recurrent
input from another circuit input.

E.4 BIAS VARIANCE TRADE-OFF

The sampling time constant governs the bias-variance trade-off. Below we analyze the equilibrium
mean and variance of the sampling error for Langevin sequential sampling. The Langevin sequential
sampling has the following sampling dynamics (Eq. 11),

z̃t = z̃t−1 + (τ−1
L δt)∇z lnπt(z̃t−1) + (2τ−1

L δt)1/2ηt−1 (E44)

where ηt ∼ N (0, I). From the Eq. (10), the gradient is given by

∇z lnπt(z̃t−1) = Ωt(µt − z̃t−1) = ΛF (xt − z̃t−1) + Λzv

Then,
z̃t = z̃t−1 + (τ−1

L δt)[ΛF (xt − z̃t−1) + Λzv] + (2τ−1
L δt)1/2ηt (E45)

Here our analysis assumes the sampler’s internal speed (v in Eq. (E45)) matches the true speed of
the latent stimulus in the external world (Eq. 6). This corresponds to set the SOM inhibition in the
recurrent circuit model to make the circuit’s internal speed matches the true speed (Eq. 20)

From Eq. 7, the observed feature xt is generated by,

xt = zt + Λ
−1/2
F ζt (E46)

where zt is the true latent stimulus. Substituting the above equation of xt into Eq. ((E45)),

z̃t = z̃t−1 + (τ−1
L δt)[ΛF (zt + Λ

−1/2
F ζt − z̃t−1) + Λzv] + (2τ−1

L δt)1/2ηt−1 (E47)

Meanwhile, the dynamics of the true latent stimulus is derived from the transition probability (Eq. 6)

zt = zt−1 + vδt+ Λ−1/2
z

√
δtξt−1 (E48)

Define the error between the sample and the true latent stimulus as

et = z̃t − zt (E49)

And subtracting both sides of Eq. ((E47)) by the both sides of Eq. ((E48)) respectively,

et = et−1+(τ−1
L δt)[ΛF (zt+Λ

−1/2
F ζt− z̃t−1)+Λzv]+(2τ−1

L δt)1/2ηt−1− [vδt+Λ−1/2
z

√
δtξt−1]

(E50)
Meanwhile, the zt − z̃t−1 in the 2nd RHS term in Eq. (E50) can be calculated

zt − z̃t−1 = (zt−1 − z̃t−1) + vδt+ Λ−1/2
z

√
δtξt−1 = −et−1 + vδt+ Λ−1/2

z

√
δtξt−1 (E51)

Substituting this back into Eq. (E50), and reorganize the equation,

et − et−1

δt
= −τ−1

L ΛF et−1 + (ΛF τ
−1
L δt+ τ−1

L Λz − 1)v + noiset (E52)
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where the noise term is

noiset = (ΛF τ
−1
L δt− 1)Λ−1/2

z ξt−1 + τ−1
L Λ

1/2
F ζt + (2τ−1

L )1/2ηt−1 (E53)

Then we convert the difference equation of et into a differential equation by taking to the limit δt → 0.
Note that the terms containing δt on the RHS disappear as they are high-order terms,

lim
δt→0

et − et−1

δt
=

det
dt

= −τ−1
L ΛF et−1+(τ−1

L Λz−1)v+[−Λ−1/2
z ξt−1+τ−1

L Λ
1/2
F ζt+(2τ−1

L )1/2ηt−1]

(E54)
Sampling Bias To eliminate the bias, i.e., ⟨et⟩ = 0, we need to let the drift bias term (the 2nd RHS
term in the above equation) be zero, corresponding

τL = Λz (E55)

So it exists an optimal sampling time constant.

Sampling variance The sampling error variance in the equilibrium can be immediately solved by
using the Lyapunov equation (note that the three noises are independent),

V (et) =
Λ−1
z + τ−2

L ΛF + 2τ−1
L

2τ−1
L ΛF

(E56)

F SIMULATION DETAILS

F.1 NETWORK PARAMETERS AND SIMULATION

The commonly used parameters in all simulations are included in Table 1. Each network, both
excitatory and inhibitory, includes N = 180neurons, uniformly distributed along the stimulus feature
space z ∈ (−180◦, 180◦]. The neuronal density is ρ = N/wz where wz = 360 is the width for
stimulus feature space.

The synaptic weights are scaled by the minimal E-to-E recurrent, wc connection needed to hold
persistent activity without feedforward input or SOM gain, solved by when setting RF = gS = 0.

wc = 2
√
2(2π)1/4

√
kaE/ρ ≈ 0.896. (F57)

We then scale the feedforward input intensity by the peak population synaptic input, Uc, calculated
as,

Uc =
wc

2
√
πkaE

(F58)

Table 1: Default network parameters

Parameter Variable Value
Excitatory time constant τ 1
Feedforward weight wEF 0.83wc

E to SOM weight wSE 0.5wc

PV to E weight wPV 0.0005
SOM to E weight wES 0.5wc

Connection width aE 40◦

Feedforward input location z 0
Fano factor of injected variability F 0.5
SOM connection width aS 37.4◦

E to SOM connection width aSE 34.6◦

SOM to E connection width aES 20◦

SOM Time constant τ 5τ

When Λz > 0, v = 0 in Fig. 2 C-D, I, the feedforward input intensity is, RF = 0.2Uc. Afterwards,
the recurrent weight, standard deviation for the transition probability, and feedforward input intensity
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are set based on the parameter scan in 2D, to wEE = 0.53wc,RF = 0.8Uc, and Λ
−1/2
z = 0.04,

respectively for all following simulations.

Simulations of the network dynamics were done using Euler’s method. The time step was
dt = 0.01τ . Each stimulation was run for 500τ with the first 100τ discarded to exclude
non-equilibrium responses. Each simulation took approximately one minute on a Asus ROG
Zephyrus laptop which has an i7 intel core and 32 RAM. For parameter scans, a HPC 512 GB RAM
computing cluster was utilized with 36 parallel jobs for about 5 minutes.

Table 2: Langevin network parameters Fig. 2

Parameter Variable Value
Feedforward weight wEF 0.8wc

Feedforward input location z 0
External speed v 0.83
SOM gain gS 1.25
Transition standard deviation σz = Λ

−1/2
z 0.04

Feedforward input intensity RF 0.8Uc

Table 3: Hamiltonian network parameters

Parameter Variable Value
Feedforward weight wEF 1.53wc

E to E weight (Fig. 3C-F) wEE 1.3wc

Feedforward input location z 0
External speed v 2.5
SOM gain (Fig. 3C-F) gS 10

Table 4: Fig. A4 network parameters

Parameter Variable Value
Feedforward weight wEF 0.83wc

E to SOM weight wSE 0.5wc

E to E weight wEE 0.5wc

SOM to E weight wES 0.5wc

SOM gain gS 5
E1 to E2 weight w12 = w21 0.2wc

F.2 READ OUT STIMULUS SAMPLES FROM THE POPULATION RESPONSES

Instantaneous stimulus samples, zE , zS were read out with a linear decoder, population vector from
the neuron population.

zE(t) =

∑
j rE(θj , t)θj∑
j rE(θj , t)

(F59)

The empirical distribution of the stimulus samples was defined as,

p(z) =
∑
t

δ(z − zE(t)) (F60)

F.3 COMPARING THE SAMPLING DISTRIBUTIONS WITH POSTERIORS

The Kullback-Leibler divergence was used as an metric for the difference between the sampling
distribution, p(z) =

∑
t δ(z − zE(t)), and theoretically calculated posterior distribution, p(z|rF ).

DKL[p(z|rF )||p(z)] =
∫

p(z|rF ) ln
p(z|rF )
p(z)

dz (F61)
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The posterior, or likelihood since the prior is uniform, is read out from the feedforward input Eq.6.
We parameterized the empirical sampling distribution as a Gaussian to use the mean and covariance
for the samples to calculate the KL Divergence.

F.4 REPRODUCING E NEURONS’ TUNING CURVES FROM MODULATING INTERNEURONS

For comparison of the E neurons’ tuning curves, Wilson et al. (2012), we perturb PV and SOM
neurons’ in the network individually and measure how these perturbations change E neurons’ tuning
curves. The experiments applied a full-field light to the same type of neuron Wilson et al. (2012),
which we approximate as a constant input applied to each neuron of the same type.

For SOM,

τ
∂uS(x, t)

∂t
= −uS(x, t) + ρWSE ∗ rE(θ, t) + IS ; (F62)

where IS is the additional input applied to each SOM neuron.

Similarly for the PV neurons into the divisive normalization function, (Eq. 1b),

rE(θ, t) =
[uE(θ, t)]

2
+

1 + ρwEP

∫
([uE(θ, t)]2+ + IP )dθ′

, (F63)

where IP is the perturbing input.

Then, with the existence of one of these offset inputs, we change the presented feedforward input
location z (Eq. 1e) and measure the mean firing rate of an example E neuron.

F.4.1 CONTINUOUS APPROXIMATION OF THE POISSON FEEDFORWARD INPUTS

In modeling the sensory input to the network, we approximate Poisson variability by a Gaussian
distribution, a standard approach when firing rates are sufficiently high. Specifically, the feedforward
input rF (θ, t) is stochastically evoked from the latent stimulus zt, with a mean firing rate λF (θ|zt)
given by a Gaussian tuning curve. Under a Gaussian approximation to the Poisson process, rF (θ, t)
is treated as a continuous random variable:

r̃F (θ, t) = λF (θ|zt) +
√

λF (θ|zt), ξ(θ, t), (F64)

where ξ(θ, t) denotes independent standard Gaussian noise. In the Hidden Markov Model (HMM)
framework, two sources of stochasticity are naturally present: one from the internal latent dynamics
of zt, which evolves with its own noise process, and another from the observations rF (θ, t), which
reflects noisy sensory encoding of the latent state.
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