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ABSTRACT

Locally differentially private (LDP) graph analysis allows private analysis on a
graph distributed across multiple users. However, such computations are vulnerable
to poisoning attacks, where an adversary can skew results by submitting malformed
data. This paper studies the impact of poisoning attacks on graph degree estimation
protocols under LDP. We make two key contributions. First, we observe that
LDP makes protocols more vulnerable to poisoning – the impact is worse when
adversaries poison their (noisy) responses rather than their input. Second, we note
that graph data is naturally redundant, as every edge is shared between two users.
Leveraging this redundancy, we design robust degree estimation protocols under
LDP that reduce the impact of poisoning and compute accurate degree estimates.
We evaluate our protocols on real-world datasets to demonstrate their effectiveness.

1 INTRODUCTION

A distributed graph is defined over a set of users, where each user only knows the edges involving
them—in other words, each user has access to their own adjacency list. This means each user
has a local view of the graph, and no single entity has knowledge of the entire graph. A real-
world example of this can be found in decentralized social media platforms, such as Mastodon,
Diaspora, PeerTube, where each user (account holder) represents a node, and an edge between
two users indicates they are "friends" (i.e., they follow each other). In this scenario, an un-
trusted aggregator, such as Mastodon itself, may attempt to compute statistics for the entire
graph. However, since the edges represent sensitive information (e.g., edges reveal users’ per-
sonal social connections), users cannot submit their data to the aggregator directly. Instead, they
add noise to their data to achieve a local differential privacy (LDP) guarantee before sharing
it with Mastodon. LDP has already been deployed by major commercial organizations such
as Google Erlingsson et al. (2014), Apple Greenberg (2016), and Microsoft Ding et al. (2017).
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Figure 1: Analysis in the LDP setting

The distributed nature of LDP, however, makes it vulner-
able to poisoning attacks. For instance, it is both easy
and realistic for an adversary to inject fake users into the
system (e.g., by creating fake accounts on Mastodon) or
compromise the accounts of real users (by hacking) to
run untrusted applications on user devices. Consequently,
there is no guarantee that these users will comply with the
LDP protocols. The adversary can send carefully crafted
malformed data from these non-compliant users and skew
estimates, including those involving only honest users.

Prior work, which focuses on tabular data Cheu et al. (2021); Cao et al. (2021); Li et al. (2022), finds
that poisoning attacks can be carried out against LDP protocols. However, the impact of poisoning
under LDP for graph analysis is largely unexplored. In this paper, we initiate a formal study on the
impact of poisoning on LDP protocols for graph statistics. We focus on the task of degree vector
estimation, one of the most fundamental tasks in graph analysis Raskhodnikova & Smith (2016).

A real-world use-case for a poisoning attack is as follows – suppose a company is interested in hiring
the most influential nodes (users) of a graph for marketing its product on Mastodon and uses a node’s
degree as its measure of influence. An adversary might want to promote a specific malicious node to
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be selected as an influencer or prevent an honest node from being selected as an influencer; concretely,
suppose a single malicious user wants to be selected as influential. If the LDP protocol used is the
Laplace mechanism, where each user directly submits their (noisy) degree to the analyst, then the
malicious user can lie flagrantly and report their degree to be n− 1, the maximum degree possible!

We address this challenge and design degree estimation protocols that are robust to poisoning
attacks. Our algorithms are based on the key observation that graph data is naturally redundant –
the information about an edge eij is shared by both users Ui and Uj . Importantly, the users do not
explicitly share this information; rather, it is implicitly shared by the structure of the graph itself. For
example, in a social media graph, both users are aware of their mutual "friend" connection (i.e., the
edge between them). Leveraging this observation, we propose robust protocols based on two new
ideas. First, we use distributed information – we collect the information about each edge from both
users. The second idea is to verify that the collected information is consistent. Specifically, as long as
at least one of Ui or Uj is honest, the analyst can check for consistency between the two edge reports
and detect malicious behavior.

A key challenge to our mechanism design is that LDP forces all consistency checks to be probabilistic—
edge inconsistencies may arise from both malicious behavior and random noise. Consequently, our
protocols will flag malicious users using confidence intervals based on the expected number of
inconsistent edges. We must set these intervals precisely, so that malicious users who fabricate many
edges are caught, while honest users whose users are never falsely flagged as malicious. This requires
us to carefully define what it means for a protcol to behave robustly. In summary, we are the first to
study the impact of poisoning on LDP degree estimation for graphs. Our main contributions are:

• Novel Formal Framework. We propose a formal framework for analyzing the robustness of a
protocol. Specifically, we measure the robustness along two dimensions, accuracy (for honest
users) and soundness (for malicious users). Intuitively, good accuracy means that the protocol has
high utility for honest users, and good soundness means that it can detect/restrict malicious users.

• New Results on Poisoning Attacks. Based on the proposed framework, we study the impact
of poisoning on private degree estimation in the LDP setting. The attacks can be classified into
two types: (1) input poisoning where the adversary does not have access to implementation of
the LDP protocol and can only falsify their input (Fig. 2a), and (2) response poisoning where
the adversary can tamper with the LDP implementation and directly manipulate the (noisy)
responses of the LDP protocol (Fig. 2b). The former is independent of LDP while the latter
utilizes the characteristics of LDP. We observe that LDP makes a degree estimation protocol
more vulnerable to poisoning – the impact of response poisoning is worse than that of input
poisoning. Additionally, we provide a lower bound for input poisoning.

• Novel Robust Degree Estimation Protocols. Leveraging the natural redundancy in graph data,
we design robust degree estimation protocols under LDP that significantly reduce the impact of
adversarial poisoning and compute degree estimates with high utility. Our robustness guarantees
are attack-agnostic – they work for all attacks on all graphs. Additionally, our results matches
with the lower bound (upto constants) for input poisoning.
• Comprehensive Attack Evaluation. We conduct a comprehensive empirical evaluation to

validate our theoretical results. First, we assess the threat of poisoning attacks through 16 real-
world motivated scenarios. Our findings reveal that even a small number of malicious users
(m = 1%) can inflict significant damage. Next, we demonstrate the robustness of our degree
estimation protocols against these attacks. Our results show that our protocols effectively mitigate
poisoning attacks even with a larger number of malicious users (m = 33%) in real-world datasets.

2 RELATED WORK

A recent line of work Cheu et al. (2021); Cao et al. (2021); Wu et al. (2021); Li et al. (2022) has
explored the impact of poisoning in LDP. However, these works focused either on tabular data or
key-value data. Additionally, prior work mostly focuses on the task of frequency estimation which
is different from our problem of degree estimation. For the former, each user has some item from
an input domain and the data aggregator wants to compute the histogram over all the users’ items.
Whereas, we compute the degree vector ⟨d̂1, . . . , d̂n⟩ which is not an aggregate query – each user
directly reports their degree di (a count or via an adjacency list). A detailed discussion is in App. F.
A long line of work has proposed LDP protocols for computing different statistics over a distributed
graph Blocki et al. (2012); Chen et al. (2020); Hay et al. (2009); Day et al. (2016); Imola et al. (2022;
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2021). However, none of them address the problem of data poisoning. To the best of our knowledge,
ours is the first work to study the impact of poisoning for graphs under LDP.

A slew of poisoning attacks Biggio et al. (2012); Mei & Zhu (2015); Fang et al. (2020); Bhagoji
et al. (2019); Chen et al. (2017); Bagdasaryan et al. (2018); Xie et al. (2020) on machine learning
(ML) models have been proposed in the federated learning setting Kairouz et al. (2019). Note that
ML model training is fundamentally different from the task of graph analysis. Hence, none of the
techniques from this literature are directly applicable here.

3 PRELIMINARIES

We focus on the privacy guarantee of edge LDP Nissim et al. (2007); Raskhodnikova & Smith (2016)
which protects the existence of an edge between any two users. In other words, on observing the
output, an adversary cannot distinguish between two graphs that differ in a single edge. Edge LDP is
the most popular and standard notion of privacy for distributed graphs and has been widely studied
widely Imola et al. (2022; 2021); Wang et al. (2016); Qin et al. (2017a); Cormode et al. (2018); Zhang
et al. (2020); Xia et al. (2021); Zheng et al. (2021). Formally:
Definition 1 (ϵ-Edge LDP Qin et al. (2017b)). Let R : {0, 1}n 7→ X be a randomized algorithm
that takes an adjacency list l ∈ {0, 1}n as input. We say R provides ϵ-edge LDP if for any two
neighboring lists l, l′ ∈ {0, 1}n that differ in one bit (i.e., one edge) and any output s ∈ X ,

Pr[R(l) = s] ≤ eϵPr[R(l′) = s]

Randomized Response (RRρ) Warner (1965) releases a bit b ∈ {0, 1} by flipping it with probability
ρ = 1

1+eϵ . We extend the mechanism to inputs in {0, 1}n by flipping each bit independently with
probability ρ which satisfies ϵ-edge DP. The Laplace mechanism(RLap) is a standard algorithm
to achieve DP Dwork & Roth (2014). For degree estimation, each user Ui simply reports d̃i =
di + η, η ∼ Lap( 1ϵ ) where Lap(b) represents the Laplace distribution with scale parameter b. This
mechanism satisfies ϵ-edge DP.

3.1 PROTOCOL SETUP

Problem Statement. We consider single round, non-interactive protocols in which each user
Ui, i ∈ [n] runs the local randomizer Ri : {0, 1}n → X on their adjacency lists li. The aggregator
collects the noisy responses and applies a function D : Xn → (N ∪ {⊥})d to produce final degree
estimates d̂ = ⟨d̂1, . . . , d̂n⟩. Here, d̂i is the aggregator’s estimate for di for user Ui. Note that the
aggregator is allowed to output a special symbol ⊥ for a user Ui if they believe the estimate d̂i to be
invalid (i.e., Ui is malicious). Degree vector estimation is one of the most fundamental tasks in graph
statistics and is very commonly used for measuring the influence of a node (also known as degree
centrality Borgatti & Everett (2006); Kempe et al. (2005)). As ours is the first study to examine the
impact of data poisoning on graphs under LDP, we begin by addressing this fundamental problem.

Threat Model. In executing protocol P , a subset of usersM∈ [n] may be malicious, with m = |M|
representing their count. The malicious users may return arbitrary output to perform a poisoning
attack on P . We refer toH = [n] \M as the set of honest users. We do not make any assumptions
on how the malicious users are instantiated in practice – they could be fake accounts created by
an adversary, or compromised real accounts, or a combination of both. Based on the practical
implementation of the LDP protocol, there is an important distinction between the way in which the
malicious users may carry out their poisoning attacks:

• Input Poisoning. Here the users do not have access to the implementation of the LDP randomizer.
For instance, mobile applications might run proprietary code which the users do not have
permission to tamper with. The only thing a malicious user can do is falsify their underlying
input, i.e., change their input from li to an arbitrary l′i, and then report qi = Ri(l

′
i) (Fig. 2a).

• Response Poisoning. This is a stronger threat model where a malicious user has direct control
over the implementation of the LDP randomizer. For instance, the user could hack into the mobile
application collecting their data. Consequently, the user can completely bypass the randomizer
and submit an arbitrary response qi (Fig. 2b) to the aggregator.

Note that input poisoning applies to any protocol, private or not, because a user is free to change their
input anytime. However, response poisoning attacks are unique to LDP – the distinction between
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R(ln)
<latexit sha1_base64="mg4fwP97CEvNcQA/nhbSuN0ApAQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87447xdLbsWdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtasWrVap3F6X6dRZHHk7gFMrgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AwHaOlg==</latexit>

ln
<latexit sha1_base64="0Hy/XpvHXA+f7+UFXWowhanbZu8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9lX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1cqjdU=</latexit>

User	1

User	2

User	n

Data	Aggregator

q1
<latexit sha1_base64="el+ant67oFU9GIKpYdQ05/L4FLQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpse+V+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8NqfCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPHzdljbE=</latexit>

q2
<latexit sha1_base64="F1SLfhxyjKG+7GV4ARO6+vL7XGk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsV8r9csVt+rOQVaJl5MK5Gj0y1+9QcQSxTUySa3tem6M/pQaFEzyWamXWB5TNqZD3k2ppopbfzq/dUbOUmVAwsikpZHM1d8TU6qsnagg7VQUR3bZy8T/vG6C4bU/FTpOkGu2WBQmkmBEssfJQBjOUE5SQpkR6a2EjaihDNN4shC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAYjeIZXeHOU8+K8Ox+L1oKTzxzDHzifPzjqjbI=</latexit>

qn
<latexit sha1_base64="M2vvY5tdvNAOpgsSxu0oqpxgX/k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsa9L/XLFrbpzkFXi5aQCORr98ldvELFEcY1MUmu7nhujP6UGBZN8VuollseUjemQd1OqqeLWn85vnZGzVBmQMDJpaSRz9ffElCprJypIOxXFkV32MvE/r5tgeO1PhY4T5JotFoWJJBiR7HEyEIYzlJOUUGZEeithI2oowzSeLARv+eVV0qpVvYtq7f6yUr/J4yjCCZzCOXhwBXW4gwY0gcEInuEV3hzlvDjvzseiteDkM8fwB87nD5QWje4=</latexit>

𝑙2 𝑅(𝑙2)Poisoning

.

.

.

(a) Illustration of Input Poisoning

R(l1)
<latexit sha1_base64="Pa3beMgPzbtSwGlSJdkptk2uGU8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87533i+W3Io7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpa1YpXq1TvLkr16yyOPJzAKZTBg0uowy00oAkEHuEZXuHNkc6L8+58LFpzTjZzDH/gfP4AY8WOWQ==</latexit>

R(ln)
<latexit sha1_base64="mg4fwP97CEvNcQA/nhbSuN0ApAQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87447xdLbsWdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtasWrVap3F6X6dRZHHk7gFMrgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AwHaOlg==</latexit>

l2
<latexit sha1_base64="cGrDOFyL5pGKO3TAZPX9es7d10c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gD8K42Z</latexit>

ln
<latexit sha1_base64="0Hy/XpvHXA+f7+UFXWowhanbZu8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9lX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1cqjdU=</latexit>

User	1

User	2

User	n

Data	Aggregator

q1
<latexit sha1_base64="el+ant67oFU9GIKpYdQ05/L4FLQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpse+V+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8NqfCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPHzdljbE=</latexit>

qn
<latexit sha1_base64="M2vvY5tdvNAOpgsSxu0oqpxgX/k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsa9L/XLFrbpzkFXi5aQCORr98ldvELFEcY1MUmu7nhujP6UGBZN8VuollseUjemQd1OqqeLWn85vnZGzVBmQMDJpaSRz9ffElCprJypIOxXFkV32MvE/r5tgeO1PhY4T5JotFoWJJBiR7HEyEIYzlJOUUGZEeithI2oowzSeLARv+eVV0qpVvYtq7f6yUr/J4yjCCZzCOXhwBXW4gwY0gcEInuEV3hzlvDjvzseiteDkM8fwB87nD5QWje4=</latexit>

l1
<latexit sha1_base64="vHJlzNlNbmXQOyxFuDi0QsChg1Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD6p42Y</latexit>

𝑞2Poisoning

.

.

.

(b) Illustration of Response Poisoning

an user’s input and their response is a characteristic of LDP which we results in a separation in the
efficacy of the two types of attacks (see Sec. 6.3).

Motivating Attacks. Consider the following two realistic attacks for illustration. In a degree inflation
attack, a target malicious user Ut ∈ M wants to inflate his degree estimate to affect his influence.
He colludes with the other malicious users in M to do so, by requesting they behave as if they
are connected with him. For example, if edges are being collected via RRρ, the responses of the
malicious users will be biased towards reporting an edge (for reponse poisoning, these users may
report a connection with no noise at all). Conversely, in a degree deflation attack, a target honest user
Ut ∈ H is victimized by the malicious users inM, who will behave as if they are not connected
with Ut even if they are. They may report that no edge exists between the users, and may deflate the
degree estimate of Ut or produce edge inconsistencies. Both of these attacks are rooted in reality and
driven by monetary incentives, as it is common for brands to collaborate with popular users on social
networks for marketing purposes ("influencers"). Moreover, these attacks are realistic, as it is easy
for an adversary to create fake accounts and carry out a poisoning attack.

4 QUANTIFYING ROBUSTNESS

In this section, we present our formal framework for analyzing the robustness of a protocol for degree
estimation. Specifically, we measure the robustness along two dimensions, honest error and malicious
error. Intuitively, low honest error means that the protocol results in accurate degree estimates for
honest users. On the other hand, low malicious error prevents a malicious user from manipulating
their degree estimate too much without detection.

Honest Error. The honest error of a protocol quantifies the manipulation of an honest user’s estimator.
Specifically, malicious users can adversely affect an honest user Ui ∈ H by (1) tampering with the
value of Ui’s degree estimate d̂i (by introducing additional loss in accuracy), or (2) attempting to
mislabel Ui as malicious (by influencing the aggregator to report d̂i = ⊥. The honest error of a
protocol accounts for these scenarios and is formally defined as follows:
Definition 2. (Honest Error) Let ⟨R1, . . . , Rn⟩ be a non-interactive, LDP protocol for degree
estimation producing estimates ⟨d̂1, . . . , d̂n⟩. LetM be a set of malicious users with |M| = m and
H be the set of honest users. Then, the protocol has (α1, δ1)-honest error w.r.t. an attack fromM if
for all input graphs G ∈ G we have:

Pr
[
∀Ui ∈ H, d̂i =⊥ ∨|d̂i − di| ≥ α1

]
≤ δ1. (1)

The parameter α1 dictates the utility of the estimate d̂i, and the parameter δ1 dictates the chance of
failure—that either of the aforementioned conditions fail to hold. Thus, if a protocol has (α1, δ1)-
honest error, it means that with probability at least (1− δ1), the degree estimate d̂i for any honest
user Ui ∈ H is inaccurate by at most α1, and Ui is guaranteed to be not mislabeled as malicious.
Lower the value of α1 and δ1, better is the robustness of the protocol for honest users.

Malicious Error. The malicious error of a protocol quantifies the manipulations of a malicious
user’s estimator. In particular, the protocol either returns a high accuracy estimate or returns d̂i =⊥
for these malicious users, regardless of the poisoning attack used. Formally, we use the following
definition (which uses the complement event d̂i ̸=⊥ ∧|d̂i − di| ≥ α2):
Definition 3. (Malicious Error) Let ⟨R1, . . . , Rn⟩ be a non-interactive, LDP protocol for degree
estimation producing estimates d̂1, . . . , d̂n. LetM be a set of malicious users with |M| = m. Then,
the protocol has (α2, δ2)-malicious error w.r.t an attack fromM if, for all input graphs G ∈ G:

Pr
[
∀Ui ∈M, d̂i ̸=⊥ ∧|d̂i − di| ≥ α2

]
≤ δ2. (2)
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Like with honest error, the parameter α2 dictates the accuracy of the estimate d̂i, and δ2 dictates the
chance of failure. As an important distinction, note that the failure event is when d̂i is both ̸=⊥ and
has poor utility, as stated above. Thus, the ∨ used in the definition of honest error is replaced by a
∧. In other words, a protocol has (α2, δ2)-malicious error if for any malicious user Ui, i ∈M, the
protocol (1) fails to identify Ui as malicious, and (2) reports its degree estimate d̂i with an accuracy
loss greater than α2, with probability at most δ2. Lower the value of α2 and lower the value of δ2,
better is the robustness.

Note. Our proposed framework provides a strong notion of robustness – not only are we
able to guarantee high utility estimates, but also detect and flag individual malicious users
(by reporting ⊥). The assumption of bounding the number of adversaries (m) is inspired by
standard assumptions in cryptography Goldreich (2001) and erasures in coding theory cod.
In practice, m can be set based on empirical evidence Shejwalkar et al. (2022).

5 ROBUSTNESS LOWER BOUNDS FOR LDP PROTOCOLS

Here, we present a lower bound on the error of LDP protocol under poisoning. To do this, we
simplify the problem of degree vector estimation to a simple task of distinguishing two scenarios,
and then appeal to information-theoretic lower bounds in LDP. In our first scenario, consider an
“honest world” where user Un follows the protocol honestly, but the other malicious users manipulate
their inputs to erase any edge to Un. In the second scenario, or the “malicious world”, user Un

behaves maliciously and inflates his degree (using input poisoning) by about m
4 +

√
n

40ϵ such that it
matches the degree of Un in the honest world, and the malicious users manipulate their inputs to
accordingly report an edge. The key idea of the attack in the malicious world is to design the input
poisoning of Un such that his output is identical to what it would be in the honest world. Thus, the
only feature left to distinguish the two worlds are the responses from user U1, . . . ,Un−1, which are
themselves subject to information-theoretic lower bounds on LDP Duchi et al. (2013). This is the key
to obtaining the

√
n
ϵ term in the error bound—if the output of Un in the malicious world were not

crafted to be indistinguishable from the output in the honest world, the privacy error term would be 1
ϵ ,

which is the typical error term in the central model of DP. Formally, our lower bound is:

Theorem 1. For any m,n, and ϵ < 1
20 , and any non-interactive, ϵ-LDP protocol, there is an input

manipulation attack such that the protocol has either (m4 +
√
n

40ϵ , 0.1)-honest error or (m4 +
√
n

40ϵ , 0.1)-
malicious error w.r.t the attack.

Since input poisoning is a subset of response poisoning, this lower bound applies to both types of
protocols. Our lower bound applies to all ϵ < 1

20 , and typically small values of ϵ are of interest
(corresponding to high privacy). With more careful bookkeeping of constants, the maximum value
of ϵ can almost certainly be increased. While we conjecture that a tighter lower bound for response
poisoning is Ω(m+ m

ϵ +
√
n
ϵ ), proving this fact is more difficult and we leave it as future work.

Now, we demonstrate that naive, baseline protocols fall far from these lower bounds. We summarize
our discussion here, and defer a formal discussion to App. A.

Laplace Mechanism. The simplest mechanism for estimating degree is the Laplace mechanism,
RLap, where each user directly reports their degree estimates plus Lap( log(1/δ)ϵ ) noise. Consequently,
the degree estimate of an honest user cannot be tampered with at all, and each user attains just
log log(1/δ)

ϵ error per user. Thus, the Laplace mechanism has O( log(1/δ)ϵ , δ)-honest error, and the
per-user loss in accuracy is comparable with the Laplace mechanism in central DP. On the flip side, a
malicious user can flagrantly lie about their estimate without detection, meaning the protocol has
not (α, δ)-malicious error for any α < n− 1 and δ < 1. In other words, there exists a graph and an
attack against RLap in which a malicious user is guaranteed to manipulate their true degree by n− 1.
Randomized Response. Now, consider the mechanism where users release their edges via random-
ized response. As each edge is shared by two users, edge (i, j) is reported by just one of the users
based on their index. We will refer to this approach as SimpleRR (Alg. 2). The aggregator counts the
total number of edges to user and then debias the estimate of the degree. Since up to m of a user’s

edges may be reported by malicious user, we can show this protocol has (m +
m+
√

n log(1/δ)

ϵ , δ)-
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honest error (with the
√
n term coming from the error of randomized response). However, since

a malicious user may in the worst case fabricate all of their edges, this protocol has again not
(α, δ)-malicious error for any α < n− 1 and δ < 0. In other words, a malicious user can always get
away with the worst-case n− 1 manipulation. A detailed discussion is in App. A.

6 PROPOSED ROBUST PROTOCOLS

In this section, we present our proposed protocols for robust degree estimation. We start by focusing
on response poisoning and design protocols that improve both the malicious error and the honest
error. We conclude by discussing our results for input poisoning which are optimal, i.e., matches the
lower bound of Thm. 1 (up to constants).

6.1 IMPROVING MALICIOUS ERROR WITH VERIFICATION

RRCheck Protocol. As discussed earlier, the naive SimpleRR protocol has high malicious error. To
tackle this, we propose a new protocol, RRCheck(Alg. 1), as follows. RRCheck enhances the data
collected by SimpleRR with verification – for edge eij ∈ E, instead of collecting a noisy response
from just one of the users Ui or Uj , RRCheck collects a noisy response from both users. This creates
data redundancy which can then be checked for consistency. Specifically, the estimator counts only
those edges eij for which both Ui and Uj are consistent and report a 1. The count of noisy edges
involving user Ui is then given by:

count11i =
∑

j∈[n]\i qi[j]qj [i].

The unbiased degree estimate of Ui is computed as follows:

d̂i =
count11i −ρ2(n−1)

1−2ρ . (3)

Algorithm 1 RRCheck: {0, 1}n×n 7→ {N ∪
{⊥}}n

Parameters: ϵ - Privacy parameter;
τ - Threshold for consistency check;

1: ρ = 1
1+eϵ

2: for i ∈ [n] do
3: qi = RRρ(li)

4: for i ∈ [n] do
5: count11i =

∑
j∈[n]\i qi[j]qj [i]

6: count01i =
∑

j∈[n]\i(1− qi[j])qj [i]

7: if |count01i − ρ(1 − ρ)(n − 1)| ≤ τ
then

8: d̂i =
1

1−2ρ (count
11
i −ρ2(n−1))

9: else
10: d̂i =⊥

return (d̂1, d̂2, . . . , d̂n)

For robustness, RRCheck imposes a check on the
number of instances of inconsistent reporting (Ui and
Uj differ in their respective bits reported for their
mutual edge eij). For every user Ui, the protocol has
an additional capability of returning ⊥ whenever the
consistency check fails, indicating that the aggregator
believes that Ui is malicious. The intuition is that
if the Ui is malicious and attempts to poison a lot
of the edges, then there would be a large number
of inconsistent reports for the edges to honest users.
RRCheck counts the number of inconsistent reports
for Ui as:

count01i =
∑n

j=1(1− qi[j])qj [i],

i.e., the number of edges connected to user Uifor
which they reported 0 and user Uj reported 1. Intu-
itively, the check computes the expected number of
inconsistent reports assuming Ui to be honest and
flags Ui in case the reported number is outside a

confidence interval. Formally, if

|count01i − ρ(1− ρ)(n− 1)| ≤ τ, (4)

then set d̂i =⊥, where τ = m +
√
3nρ ln 2

δ is a threshold. This check forces a malicious user
to send a response with only a small number of poisoned edges (as allowed by the threshold τ ),
thereby significantly restricting the attack strength. For example, they are not able to indicate they
are connected to all users in the graph, as this would produce a large number of inconsistent edges.

Note that due to the randomization required for LDP, some honest users might also fail the check.
However, we observe that for two honest users Ui and Uj , the product term (1−qi[j])qj [i] follows the
Bernoulli(ρ(1− ρ)) distribution, irrespective of whether the edge eij exists. Consequently count01i
is tightly concentrated around its mean. This ensures that the probability of mislabeling an honest
user (by returning ⊥) is low.
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Theorem 2. LetM be a set of malicious users with |M| = m. Then, the RRCheck protocol run

with threshold τ = m+
√
2ρn ln 4n

δ has
(
2m( e

ϵ+1
eϵ−1 ) + 4

√
n

√
(eϵ+1) ln(4n/δ))

eϵ−1 , δ

)
-honest and malicious

error w.r.t any response poisoning fromM (proof is presented in App. G.5).

The additional verification of RRCheck results in a clear improvement — the malicious users can
now skew their degree estimates only by a limited amount (as determined by the threshold τ ) or risk
getting detected, which results in a lower malicious error. Specifically, a malicious user can now only
skew their degree estimate by at most Õ

(
m(1+ 1

ϵ )+
√
n
ϵ

)
for response poisoning attacks, respectively

(as compared to n − 1 in Thm. 7). Intuitively, the
√
n
ϵ term comes from the error introduced by

randomized response. The m(1 + 1
ϵ ) term comes from the adversarial behavior of the malicious

users – m term is inevitable and accounts for the worst case scenario where all m malicious users are
colluding and report consistently, while the 1

ϵ factor corresponds to the scaling factor required for
de-biasing. This observation is in line with prior work Cheu et al. (2021) that assesses the impact of
poisoning attacks on tabular data.

The robustness guarantees in the above theorem worsen with smaller ϵ. This is because at lower
privacy, the collected responses are more noisy thereby making it harder to distinguish honest users
from malicious ones. In particular, a protocol should not return ⊥ for honest users (i.e., mislabel
them) to ensure good robustness. Here, more malicious error is tolerated before a ⊥ is returned for
a malicious user. This is evident in Eq. 4–threshold τ grows with smaller ϵ. See App. B for more
details on this price of privacy.
Interestingly for response poisoning, the degree deflation attack (Sec. 3) is a worst-case attack for
honest error – the attack can skew an honest user’s degree estimate by Ω

(
m(1+ 1

ϵ )+
√
n
ϵ

)
. Similarly,

the degree inflation attack can skew a malicious user’s degree estimate by Ω
(
m(1 + 1

ϵ ) +
√
n
ϵ

)
)

resulting in the worst-case malicious error.

Note. Our robustness results (including the ones presented later) are completely attack-
agnostic – they hold for any attack,for any number of malicious users m, and all graphs.

6.2 IMPROVING HONEST ERROR WITH A HYBRID PROTOCOL

The robustness guarantees for RRCheck contain a Õ(
√
n
ϵ ) term coming from the noise in randomized

response. This is inherent in any randomized response based mechanism Beimel et al. (2008); Chan
et al. (2012) since each of the n bits of the adjacency list need to be independently randomized.
On the other hand, RLap provides a more accurate degree estimate for the honest users but has the
worst-case (n − 1) malicious error (see Thm. 6). In this section, we present a mitigation strategy.
The key idea is to combine the two approaches and use a hybrid protocol, Hybrid, that achieves the
best of both worlds – honest error of RLap, and malicious error of RRCheck.

The Hybrid protocol is outlined in Alg. 4 and described as follows. Each user Ui prepares two
responses – the noisy adjacency list, qi, randomized via RRρ, and a noisy degree estimate, d̃lapi ,
perturbed via RLap, and sends them to the data aggregator. Ui divides the privacy budget between the
two responses according to some constant c ∈ (0, 1). The data aggregator first processes each list
qi to employ the same consistency check on count01i as that of the RRCheck protocol (Step 9). In
case the check passes, the aggregator computes the unbiased degree estimate d̃rri from count11i , in
the exact same way as RRCheck. Note that d̃rri and d̃lapi are the noisy estimates of the same ground
truth degree, di, computed via two different randomization mechanisms. To this end, the aggregator
employs a second check (Step 11) to verify the consistency of the two estimates:

|d̃rri − d̃lapi | ≤ 2τ
1−2ρ + 1

(1−c)ϵ ln
2n
δ ,

where ρ in this case is equal to 1
1+ecϵ . This check accounts for the noise from d̃rri (the 2τ

1−2ρ ) term,

and the noise from d̃lapi (the 1
(1−c)ϵ ln

2n
δ term). Finally, the protocol returns ⊥ if either of the checks

fail. In the event that both the checks pass, the aggregator uses d̃lapi (obtained via RLap) as the final
degree estimate d̂i for Ui.
Each d̂rri estimate is computed identically to that of RRCheck. Hybrid allows a user to send an

7
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even more accurate estimate of their degree – to prevent malicious users from outright lying about
this value, d̂lapi is compared to d̂rri . This allows Hybrid to enjoy the honest error of RLap and the
malicious error of RRCheck. Formally,
Theorem 3. M is a set of m malicious users. For all c ∈ (0, 1), the Hybrid protocol run
with τ = m+

√
2ρn ln 8n

δ has ( ln(2n/δ))(1−c)ϵ , δ)-honest error and
(
4m( e

cϵ+1
ecϵ−1 ) + 8

√
n

√
(ecϵ+1) ln(8n/δ)

ecϵ−1 + ln(2n/δ))
(1−c)ϵ , δ

)
-

malicious error w.r.t any response poisoning attack fromM (The proof is in App. G.7.).

We remark that Hybrid achieves the optimal honest error of Õ( 1ϵ ) that is achievable under LDP. This
is due to the fact that the data aggregator uses d̃lapi as its final degree estimate. The malicious error
can be written as Õ(m(1 + 1

ϵ ) +
√
n
ϵ ) which is the same as that of RRCheck. This is enforced by the

two consistency checks. Hence, the hybrid mechanism achieves the best of both worlds. Observe that
the above result does not violate the lower bound –while that protocol achieves O( 1ϵ ) honest error, its
malicious error is higher than the bound stated in Thm. 1.

6.3 OPTIMAL RESULTS FOR INPUT POISONING ATTACKS

So far we have only considered response poisoning attacks where the malicious users are free to
report arbitrary responses to the aggregator. However, to carry out such an attack, a user would have
to bypass the LDP data collection mechanism’s security features, such as those in mobile applications
preventing unauthorized code tampering. Given its very realistic practical threat, here we study
the impact of input poisoning attacks. Note that input poisoning attacks are strictly weaker than
response poisoning attacks. This is because the poisoned input is randomized to satisfy LDP in the
former which introduces noise in the final output, thereby weakening the adversary’s signal. Hence
intuitively, we hope to obtain better robustness against input poisoning attacks.

First, we show the result for SimpleRR. There is an improvement in both the honest error and the
malicious error, because the adversary’s signals in the poisoned data (such as, a malicious user
indicating they share an edge with every other user, or m malicious users intentionally deleting their
edges to an honest user), are noised via randomized response which weakens them.

Theorem 4. LetM be a set of m malicious users. SimpleRR has (m+
√
n

√
2(eϵ+1) ln 4n

δ

eϵ−1 , δ)-honest
error and (n− 1, 1

2 )-malicious error w.r.t any input poisoning fromM (proof in App. G.9).

Written asymptotically, the honest error of Thm. 4 is Õ(m +
√
n
ϵ ), which improves the guarantee

over response poisoning attacks (Thm. 7) by a factor of m
ϵ . This shows a separation between input

and response poisoning attacks. A similar case holds for the malicious error – while a malicious user
can always manipulate their degree by n− 1 under response poisoning attacks, for input poisoning
attacks, SimpleRR has (n− 1, 1

2 )-malicious error.

Despite exhibiting improvement over response poisoning, the naive protocols still fall short of
providing acceptable malicious error. Here, we analyze the robustness of our proposed protocols,
SimpleRR and Hybrid, under input poisoning. For both the mechanisms here, we can set a smaller
value for τ , the threshold for checking the number of inconsistent edges. This is because the number
of inconsistent edges is more concentrated around its means, and hence, a tighter confidence interval
with a smaller τ suffices. Thus, both the honest error and the malicious error of the protocols are
improved. For lack of space, the results for SimpleRR are in App. C. For Hybrid, we have:

Theorem 5. For any c ∈ (0, 1), the Hybrid protocol with threshold τ = m(1− 2ρ) +
√

8max{ρn,m} ln 8n
δ

has ( 1
(1−c)ϵ ln

4n
δ , δ)-honest error and (4m+ 8

√
max{n,m(ecϵ + 1)}

√
2(ecϵ−1) ln 8n

δ

ecϵ+1 , δ)-malicious error w.r.t
any input poisoning for any set of m malicious users (proof in App. G.11).

Written asymptotically, the honest error of Hybrid is (Õ( 1ϵ ), δ), and its malicious error is (Õ(m+
√
n
ϵ ), δ). Compared with Thm. 3 for response poisoning, Hybrid has similar honest error since the

data aggregator uses the degree estimate collected via RLap as its final estimate as before. However,
the malicious error is improved by an additive factor of O(mϵ ), which comes from the smaller τ .

Note. The robustness results for Hybrid for input poisoning are order optimal, i.e., they match
the lower bound in Thm. 1 (up to constant factors).
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7 EVALUATION

In this section, we answer the following questions:

• Q1. How do the different protocols perform in terms of the honest error and the malicious error?
• Q2. How do the efficacies of input and response poisoning attacks compare?

(a) FB: Degree Inflation (b) FB: Degree Deflation (c) Syn: Degree Inflation (d) Syn: Degree Deflation

Figure 3: Robustness Analysis: The whiskers range from the maximum to the minimum empirical
honest error and malicious error observed across all the attacks of the specific type. The line
corresponds to the strongest evaluated attack of the specific type.

(a) FB: Combination Attack

(b) Syn: Combination Attack

Figure 4: Comparison of input and response poisoning: We plot the empirical honest error and
malicious error. dk denotes the degree of the k percentile node.

Experimental Setup. We consider two graphs – a real-world sparse graph, FB and a synthetically
generated dense graph, Syn. Due to lack of space, more details about the experimental setup are in
App.D. We carry out an extensive analysis of the robustness of our protocols by evaluating against
16 different attacks. The attacks are broadly classified into two types – degree inflation and degree
deflation where the goal of the malicious users is to increase (resp. decrease) the degree estimate
of a target malicious (resp. honest) user by as much as possible. We choose these attacks because
firstly, they can meet the asymptotic theoretical error bounds. Secondly, these attacks are grounded in
real-world motivations and represent practical threats (Sec. 3). The 16 attacks evaluated represent
different configurations of the degree inflation and deflation attacks. Specifically, they differ in (1)
the number of targets (both malicious or honest users), (2) how the non-target malicious users are
chosen (3) collusion strategies. The different configurations capture a multitude real-world attack
scenarios and adversarial goals (Tab. 2 in App. E). Due to the lack of space, we defer the details of all
the attacks in App. E. For every attack we report the maximum loss in accuracy over all the honest
targets (honest error, α1) and the malicious targets (malicious error, α2). We run each experiment 50
times and report the mean. We use δ = 10−6 and c = 0.9 for Hybrid. Extra results are in App. D.2.
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7.1 ROBUSTNESS ANALYSIS

We focus on response poisoning to analyze the worst-case scenario (since response poisoning is
stronger than input poisoning). The number of malicious users is set to m = 1% and ϵ = 0.7.
Degree Inflation. We report the empirical malicious error for all the attacks that have a degree
inflation component (10 out of the 16 attacks) in Figs. 3a and 3c for FB and Syn, respectively. In
other words, these are all the attacks where at least a subset of the malicious users are trying to
inflate the degree of some (malicious) target. We observe that both our proposed protocols perform
significantly better than the baseline. For instance, for the strongest inflation attack we evaluated
(attack A11 in Tab. 2) – SimpleRR has 9.7× and 13.8× higher malicious error than Hybrid and
RRCheck, respectively, for FB. Note that RRCheck performs slightly better than Hybrid. This is
because, although both the protocols have the same asymptotic malicious error, the constants are
higher for Hybrid (see Sec. 6.2). Finally, for both datasets our protocols flag the malicious targets
(returning ⊥) for 51%− 70% of the trials (Tab. 1). This indicates that our proposed protocols are
able to detect malicious users, thereby disincentivizing malicious activity.
Degree Deflation. Figs. 3b and 3d show the results for the degree deflation attacks on FB and Syn,
respectively. Specifically, we report the empirical honest error for all the attacks that have a (11 out of
the 16 attacks evaluated). We observe that Hybrid performs the best. For instance, for the strongest
deflation attack we evaluated (attack A8 in Tab. 2) it has 16.2× and 13.6× lower honest error than
SimpleRR and RRCheck, respectively, for Syn. Additionally, our protocols are able to flag malicious
users when they target a large number of honest users. Specifically, for the strongest degree deflation
attack, Hybrid flags 4.5% and 49.8% of the malicious users for FB and Syn, respectively. RRCheck,
on the other hand, flags 3% and 59.3% of the malicious users for FB and Syn, respectively. Note that
the number of actual honest users affected by a malicious user is bounded by its degree. Hence, the
rate of flagging is less aggressive for FB since it is a sparse graph.

7.2 COMPARING INPUT AND RESPONSE POISONING

We plot the efficacies of input and response poisoning attacks in Fig. 4. For this, we choose the
strongest combination attack we evaluated (A10 in Tab. 2). We observe that input poisoning is weaker
than response poisoning in terms of both the honest error and the malicious error. Specifically, the
malicious error is worse than response poisoning for all three protocols (since response poisoning has
an extra O(mϵ ) term). In terms of the honest error, input poisoning is worse than response poisoning
(again because of the extra O(mϵ ) term in response poisoning). m = 33%, ϵ = 0.7. However, the
honest error for Hybrid is comparable for both input and response poisoning which is consistent with
our theoretical results (Thm. 5). This is because under both types of attacks, Hybrid uses the honest
users’ Laplace estimates which are not affected by the malicious users. As expected, the separation
between input and response poisoning becomes less prominent with higher ϵ and lower m, as it is
harder to pull off strong attacks for these regimes.
We also mark the degree of 95th percentile node (d95) for the graphs in the plots. The way to interpret
this is as follows. If an error of a protocol falls below the line, then any malicious user can inflate their
degree estimate to be in the > d95 percentile by staging a poisoning attack. Our protocols perform
better for the dense graph Syn (attacks are prevented for both values of ϵ). This is because of the
Õ(

√
n
ϵ ) term in the malicious error – this term dominates the malicious error for sparse graphs.

We plot the measure d95 − d80 in Figs. 4a and 4b where dk denotes the degree of the k percentile
node. The way to interpret this is as follows. If an error falls to the left of the line, then malicious
users can successfully deflate the degree of an honest target from > 95 percentile to < 80 percentile.
Based on our results, we observe that Hybrid is mostly effective in protecting against this attack even
with a large number of malicious users of m = 33%.

8 CONCLUSION

In this paper, we have investigated the impact of poisoning attacks on degree vector estimation for
graphs under LDP. We have presented a formal framework for analyzing the robustness of a protocol
against poisoning. Our framework can quantify the impact of a poisoning attack on both honest
and malicious users. We have shown a lower bound on such poisoning attacks. Additionally, we
have proposed novel robust degree estimation protocols under LDP by leveraging the natural data
redundancy in graphs that can match the lower bound for a specific class of attacks.
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A QUANTIFYING ROBUSTNESS CNTD.

Complementary to Defn. 2 in Sec. 4, we introduce the notion of α1-tight honest error. A protocol
has α1-tight honest error w.r.t an attack, if there exists a graph such that the attack is guaranteed to
either skew the the degree estimate of at least one honest user by exactly α1. We use this definition to
show the existence of strong attacks that are guaranteed to be very successful in manipulating the
data of an honest user, which motivates the need for robust solutions.

Similarly for malicious error we introduce the notion of α1-malicious error. A protocol has α1-tight
malicious error w.r.t an attack if there exists a graph G ∈ G such that at least one malicious user
is guaranteed to have their degree estimate mis-estimated by exactly α1 without getting detected.
In other words, an attack with (n − 1)-tight honest error/malicious error represents the strongest
possible attack– an user’s estimate can always be skewed by the worst-case amount. We use this
definition to motivate the need for more robust protocols.

IMPACT OF POISONING ON BASELINE MECHANISMS CNTD.

Within our robustness framework, we analyze the two naive private mechanisms – the Laplace
mechanism and randomized response. The shortcomings of these mechanisms motivate the design of
our robust protocols as discussed in the main paper.

A.1 LAPLACE MECHANISM

The simplest mechanism for estimating an user’s degree is the Laplace mechanism, RLap, where each
user directly reports their noisy estimates. Consequently, the degree estimate of an honest user cannot
be tampered with at all – the Õ( 1ϵ )

1 term is due to the error of the added Laplace noise. This error is
in fact optimal (matches that of central DP) for degree estimation. On the flip side, a malicious user
can flagrantly lie about their estimate without detection resulting in the the worst-case malicious error.
Specifically, there exists a graph and an attack against RLap in which a malicious user is guaranteed
to manipulate their true degree by n − 1 – this holds for the case where the malicious user is an
isolated node but lies that their degree is n− 1. The robustness of RLap against response poisoning
attacks is formalized as follows:

Theorem 6. LetM be a set of malicious users with |M| = m. The RLap protocol has ( 1ϵ log
n
δ ), δ)-

honest error w.r.t any response poisoning fromM. However, there is a response poisoning attack A
such that RLap has (n− 1)-tight malicious error w.r.t A.

The proof is in App. G.3. Thus according to our robustness framework, RLap has low honest error but
high malicious error. Intuitively, RLap fails to provide low malicious error because there is no way to
verify the malicious users’ reports. It is important to note that RLap has low honest error even with
n− 1 malicious users while the worst-case malicious error is inevitable even with a single malicious
user.

A.2 RANDOMIZED RESPONSE

In this section, we look at an alternative mechanism where the users release their edges via randomized
response. Recall that the information about an edge is shared between two users – the idea here is to
leverage this distributed information. For our baseline algorithm, SimpleRR (described in Alg. 2), the
data aggregator collects information about an edge from a single user. Specifically, for edge (i, j)

1Õ hides factors of log 1
δ
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with i < j, it simply uses the response from user Ui to decide if the edge exists. To estimate the
degree, it counts the total number of edges to user Ui with the random variable count1i and then
computes a debiased estimate of the degree. Note that this naive approach is used by many prior
works in graph algorithms Wang et al. (2016); Qin et al. (2017a); Imola et al. (2021; 2022). Formally

Algorithm 2 SimpleRR: {0, 1}n×n 7→ {N ∪ {⊥}}n

Parameter: ϵ - Privacy parameter
Input: {l1, · · · , ln} where li ∈ {0, 1}n is Ui’s adjacency list;
Output: (d̂1, · · · , d̂n) where d̂i is Ui’s degree estimate;
Users

1: for i ∈ [n] do
2: qi = RRρ(li)

Data Aggregator
3: for i ∈ [n] do
4: count1i =

∑
j<i qj [i] +

∑
i<j qi[j]

5: d̂i =
1

1−2ρ (count
1
i − ρ(n− 1))

return (d̂1, d̂2, . . . , d̂n)

for response poisoning attacks, we have:
Theorem 7. LetM be a set of malicious users with |M| = m. Then, the SimpleRR protocol has

(m eϵ+1
eϵ−1 +

√
n

√
(eϵ+1) ln 2n

δ

eϵ−1 , δ)-honest error w.r.t any response poisoning attack fromM. However,
there is a response poisoning attack A such that SimpleRR has (n− 1)-tight malicious error with
respect to A.

The above theorem is proved in App. G.4. For ϵ < 1, the honest error is ≈ m(1 + 1
ϵ ) +

√
n
ϵ .

Intuitively, the
√
n
ϵ term comes from the error introduced by randomized response. The m(1 + 1

ϵ )
term comes from the adversarial behavior of the malicious users – m term is inevitable and accounts
for the worst case scenario where all m malicious users are colluding (see discussion at the end of Sec.
6.3), while the 1

ϵ factor corresponds to the scaling factor required for de-biasing. This observation is
in line with prior work Cheu et al. (2021) that assesses the impact of poisoning attacks on tabular
data. Clearly, smaller the value of ϵ, worse is the attack’s impact.

Similar to the Laplace mechanism, SimpleRR has (n− 1)-tight malicious error, i.e., a malicious user
can always get away with the worst-case n − 1 error. This happens when Un is an isolated node
who acts maliciously and reports an all-one list. Thus, once again this worst-case malicious error is
inevitable even with a single malicious user.

B PRICE OF PRIVACY

The randomization required to achieve privacy adversely impacts a protocol’s robustness to poisoning.
Here, we perform an ablation study, and formalize the price of privacy by comparing to the honest
error and malicious error of non-private protocols. For this, we adapt our consistency check to the
non-private setting via the DegCheck protocol (Alg. 3) as described below. First, every user reports
their true adjacency list to the data aggregator. The data aggregator then employs a consistency check
to identify the malicious users. Due to the absence of randomization, the check is much simpler here
and involves just ensuring that the number of inconsistent reports for user Ui is bounded by m, i.e.,
count01i + count10i ≤ m. In case the check goes through, the aggregator can directly use count11i ,
the count of the edges where both users have reported 1s consistently, as the degree estimate d̂i. We
quantify the impact of the poisoning attacks on DegCheck as follows.
Theorem 8. LetM be a set of malicious users with |M| = m. Then, there are poisoning attacks A1

andA2 such that the DegCheck protocol has m-tight honest error w.r.tA1 and (min{2m−1, n−1})-
tight malicious error w.r.t A2.

The proof of the above theorem is in App. G.6. Note that the robustness guarantees are tight in that
there are attacks which always successfully attain m error for an honest user and min{2m−1, n−1}
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Algorithm 3 DegCheck: {0, 1}n×n 7→ {N ∪ {⊥}}n

Parameter: m - Number of malicious users;
Input: {l1, · · · , ln} where li ∈ {0, 1}n is Ui’s adjacency list;
Output: (d̂1, · · · , d̂n) where d̂i is Ui’s degree estimate;
Users

1: for i ∈ [n] do
2: qi = li

Data Aggregator
3: for i ∈ [n] do
4: count11i =

∑
j∈[n]\i qi[j]qj [i]

5: count01i =
∑

j∈[n]\i(1− qi[j])qj [i]

6: count10i =
∑

j∈[n]\i qi[j](1− qj [i])

7: if (count01i + count10i ) ≤ m then
8: d̂i = count11i
9: else

10: d̂i = ⊥
return (d̂1, d̂2, . . . , d̂n)

for a malicious user. Thus, the low-order manipulation term of O(m) is inevitable even for non-private
protocols based on consistency checks.

Comparing Thm. 8 to Thm. 2, we see an improvement in both the honest error and malicious error
guarantees over the private protocols – the malicious users can skew the degree estimates by only
O(m), and the Õ(mϵ +

√
n
ϵ ) terms have disappeared. This highlights the price of privacy – the private

protocols incur additional error due to the randomization of LDP.

Thus, our proposed RRCheck protocol shows that the malicious error of a degree estimation protocol
can be significantly improved by leveraging the redundancy in graph data. Additionally, we observe
the robustness of the protocol worsens with higher privacy and we explicitly formalize price of
privacy.

C INPUT POISONING ATTACK CNTD.

Here, we present our results for input poisoning for the Laplace mechanism and the RRCheck
mechanisms.

Recall in the Laplace mechanism, each user simply reports a private estimate of their degree. Under
input poisoning attacks, Laplace noise is added to the poisoned input before it is reported to the
data aggregator. Consequently, the response poisoning attack in which a malicious user could
deterministically report their degree as n− 1 (Thm. 6) is no longer possible – in order to manipulate
their degree by n− 1, the malicious user needs to get lucky with the sampled Laplace noise, resulting
in the following theorem:

Theorem 9. LetM be a set of malicious users with |M| = m. The RLap protocol has ( 1ϵ ln
n
δ , δ)

honest error and (n− 1, 1
2 )-malicious error with respect to any input poisoning attack fromM.

The proof of the above theorem is in App. G.8. Unsurprisingly, compared to Thm. 6 for response
poisoning, the honest error is unchanged because no attack is possible for honest users. However, the
malicious error is different. Thm. 6 delineates an (n− 1)-tight malicious error, demonstrating the
feasibility of the worst-case attack in which a malicious user can always manipulate their degree by
n− 1. In contrast, RLap has (n− 1, 1

2 )-malicious error with respect to any input poisoning attack.
This is because the sampled Laplace noise is negative with probability 1

2 . Hence, even a worst-case
malicious user who sends the maximum degree of n− 1 will only get assigned a final estimate this
high if the sampled noise is non-negative. Thus, the noise in the Laplace mechanism prevents the
adversary from carrying out the deterministic worst-case attack.

Now we present our results for RRCheck:
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Algorithm 4 Hybrid: {0, 1}n×n 7→ {N ∪ {⊥}}n

Parameters: ϵ - Privacy parameter;
τ - Threshold for consistency check;

Input: {l1, · · · , ln} where li is Ui’s adjacency list;
Output: (d̂1, · · · , d̂n) where d̂i is Ui’s degree estimate;
Users

1: Select c ∈ (0, 1)
2: ρ = 1

1+ecϵ

3: for i ∈ [n] do
4: qi = RRρ(li)

5: d̃lapi = ∥li∥1 + Lap( 1
(1−c)ϵ )

Data Aggregator
6: for i ∈ [n] do
7: count11i =

∑
j∈[n]\i qi[j]qj [i]

8: count01i =
∑

j∈[n]\i(1− qi[j])qj [i]

9: if |count01i − ρ(1− ρ)(n− 1)| ≤ τ then
10: d̃rri = 1

1−2ρ (count
11
i − ρ2(n− 1))

11: if |d̃rri − d̃lapi | ≤ 2τ
1−2ρ + 1

(1−c)ϵ ln
2n
δ then

12: d̂i = d̃lapi
13: else
14: d̂i =⊥
15: else
16: d̂i =⊥

return (d̂1, d̂2, . . . , d̂n)

Theorem 10. Let M be a set of malicious users with |M| = m. The protocol RRCheck run
with τ = m(1− 2ρ) +

√
8max{ρn,m} ln 8n

δ has (2m+ 4
√

max{n,m(eϵ + 1)}
√

2(eϵ+1) ln 8n
δ

eϵ−1 , δ)-honest error and
malicious error with respect to any input poisoning attack fromM.

The proof is in App. G.10. For typical values of ϵ, the honest error and the malicious error can
be written as (Õ(m +

√
n
ϵ ), δ) (because

√
m(eϵ + 1) ≤ √n). Compared to Thm. 2 for response

poisoning attacks, there is an improvement of m
ϵ which is a direct consequence of a smaller τ .

D EVALUATION CNTD.

D.1 EXPERIMENTAL SETUP

Datasets. We consider two graphs – a real-world sparse graph and a synthetically generated dense
graph.

• FB. This graph corresponds to data from Facebook McAuley & Leskovec (2012) representing the
friendships of 4082 Facebook users. The graph has 88K edges.

• Syn. To test a more dense regime, we evaluate our protocols on a synthetic graph generated using
the Erdos-Renyi model Erdős et al. (1960) with parameters G(n = 4000, p = 0.5) (n is the
number of edges; p is the probability of including any edge in the graph). The graph has ≈ 8
million edges.

Configurations. For every attack we report the maximum error over all the honest targets (honest
error, α1) and the malicious targets (malicious error, α2). We run each experiment 50 times and
report the mean. We use δ = 10−6 and c = 0.9 for Hybrid.

Our theoretical results suggested setting τ = m+C
√
ρn, where C is a constant that is obtained from

Chernoff’s bounds, for the different input and response manipulation attacks. The constant C is not
tight, and for the practical interest of using as small a threshold as possible, we sought to set τ as
small as possible so as not to falsely flag any honest user. Note that lower the threshold, lower is the
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SimpleRR RRCheck Hybrid
FB Syn FB Syn FB Syn

Min. 0 0 56.0% 52.0%54.5% 51.0%
Mean. 0 0 63.2% 61.4%62.1% 60.0%
Max. 0 0 75.0% 70.0%70.0% 70.0%

Table 1: Table of max, min, and average percentage of malicious targets flagged for degree inflation
attacks.
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Figure 5: Robustness Analysis: The whiskers range from the maximum to the minimum empirical
honest error or malicious error observed across all the attacks of the specific type. The line corresponds
to the strongest evaluated attack of the specific type.

permissible skew (α1 and α2 for the honest error and the malicious error, respectively) introduced by
poisoning, thereby improving the robustness of our protocols. We ran preliminary experiments using
50 runs of each protocol on both graphs, and we found that at all values of ϵ, setting τ = m+0.4

√
ρn

(for m = 40) and τ = m+ 0.1
√
ρn (for m = 1500) did not result in any false positives. Thus, we

used these smaller thresholds in our experiments, and throughout the experiments there were no false
positives.

Attacks. For each attack type, we consider both input and response poisoning versions. In the
following, let Ut represent the target user.
RRCheck. For the degree inflation attack, the non-target malicious users always report a 1 for the
malicious user Ut (i.e. that they are connected to Ut) in the hopes of increasing Ut’s degree estimate.
Likewise, Ut reports 1s for all other malicious users. For the honest users, Ut reports extra 1s (for
non-neighbors) in the hopes of further increasing their degree estimate. The exact mechanism depends
on whether it is response poisoning or input poisoning and is detailed in App. E.

For degree deflation, we consider the worst-case scenario where m of the neighbors of the honest
user Ut act maliciously. The malicious neighbors always report 0 for their edges to Ut (see App. E).
Hybrid. For degree inflation, the non-target malicious users report their edges using the same strategy
as in RRCheck. For d̃lapi , they send their true degree estimates since their degrees are not the targets.
Similarly, Ut uses the same strategy as in RRCheck for reporting their edges. For d̃lapt , Ut reports an
inflated value based on the reported edges and the threshold τ (see App. E). For degree deflation, we
consider the worst-case scenario where m of the neighbors of Ut act maliciously. The malicious users
behave as they did in RRCheck and report their true degrees for d̃lapi , as these are not the targeted
degrees.
SimpleRR. For degree inflation, we consider the worst-case scenario where the target malicious user
Ut is responsible reporting all their edges, and chooses to reports all 1s. For degree deflation, we
again consider the worst case scenario where the malicious users are responsible for reporting the
edges to Ut, and they report 0s.
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(a) FB: Combination Attack (b) Syn: Combination Attack

Figure 6: Robustness analysis with varying ϵ: Higher brightness denotes higher ϵ

(a) FB: Combination Attack (b) Syn: Combination Attack

Figure 7: Robustness analysis with varying number of malicious users m: Higher brightness denotes
higher m

D.2 EXPERIMENTAL RESULTS CNTD.

ℓ1 Error. We report the ℓ1 error of the entire noisy degree vector d̂ = ⟨d̂1, . . . , d̂n⟩ in Fig. 5a and 5b,
for FB and Syn, respectively. We observe that Hybrid performs the best. This is because recall that
Hybrid has the best honest error while its malicious error is comparable to that of RRCheck. Since the
number of honest users is much higher than the number of malicious users, the ℓ1 error of Hybrid is
significantly better than that of RRCheck due to its lower honest error. For instance, for the strongest
overall attack we evaluated in terms of the ℓ1 error (A8 – the same as that for the degree inflation
case) Hybrid has 4.0× and 6.3× lower ℓ1 error than RRCheck and SimpleRR, respectively for Syn.

D.3 IMPACT OF ALGORITHMIC PARAMETERS

Here, we study the impact of the three algorithmic parameters – privacy parameter ϵ, total number of
malicious users m and threshold for consistency check τ – on the attack efficacy.

The effect of ϵ. Figs. 6b and 6a show the impact of the attacks with varying privacy parameter ϵ. We
study the strongest combination attack (attack A10) which considered in the previous section. We
observe that, increasing privacy (lower ϵ) leads to more skew for all attacks on all three protocols.
For instance, the malicious error of the response poisoning version of the degree deflation attack for
FB 42× worse for ϵ = 0.1 than that for ϵ = 3 for Hybrid. Additionally, we observe that malicious
users get flagged only response poisoning since this is a stronger attack than input poisoning.
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(b) Syn: Degree Inflation Attack

Figure 8: Impact of varying threshold τ on flagging malicious users: Higher brightness denotes
higher τ

The effect of m. We show how the attack efficacy varies with m in Figs. 7a and 7b. We consider
the strongest combination attack (attack A10) here as well. As expected, the impact of poisoning
worsens with increasing m. Specifically, both the honest error and the malicious error of RRCheck
worsen with increasing m. For instance, the honest error of response poisoning degrades by 8.5× as
we increase m from 1% to 33% for Syn. The honest error is uninfluenced by m for Hybrid – this is
because it reports the Laplace estimates for the honest users which are not impacted by the malicious
users. On the other hand, the malicious error remains unaffected by m for SimpleRR since here
a malicious target can always carry-out the worst-case attack regardless of m (Thm. 7). Another
interesting observation is that even a relatively small number of malicious parties (m = 1%) can stage
significantly damaging poisoning attacks. This demonstrates the practical threat of such poisoning
attacks. Nevertheless, our results show that our proposed protocols are able to significantly reduce
the impact of poisoning attacks even with a large number of malicious users (m = 33%).
The effect of τ . Recall for a degree inflation attack, the target malicious user Ut falsely reports extra
1s for its honest non-neighbors. Now for any given attack, lower the value of the threshold higher
is the chance of flagging Ut (true positive rate, TPR). An additional advantage is that this reduces
the amount by which Ut can skew its degree estimate (i.e., improves malicious error α2) However,
the cost is an increase in the chance of erroneously flagging an honest user (false positive rate, FPR).
In order to obtain a rigorous formal guarantee on both true positive rate (honest error) and false
positive rate (malicious error), the theoretical thresholds presented in our theorems are quite stringent.
However, we observe that in practice we can use lower values of threshold. We show this in Fig. 8a
and 8b on the strongest inflation attack evaluated (A11 in Table 2). There is no notion of threshold
for the naive protocol SimpleRR, hence it has TPR=FPR=0. For our robust protocols, Hybrid and
RRCheck, we test 10 different values of lower thresholds q · τ where q ∈ (0, 1). We observe that
lowering the threshold delineates a trade-off between TPR and FPR. For all our experiments, we
select a threshold that maximizes TPR at FPR=0 through empirical testing.

E ATTACKS DETAILS

In this section, we describe the specific implementations of the attacks we use for our evaluation in
Section 7.

Recall an attack consists of m malicious users, where m is known beforehand. Each malicious user
may perform any of the following three actions: 1) lie about their own connections to changer their
estimate, 2) target some subset of malicious users to change those estimates, and 3) target some
subset of honest users to tamper with those estimates. We consider sixteen possible ways to do this in
ways that would often occur in the real world. The methods appear in Table 2, and we describe them
now.

In the simplest attacks (A1 - A3), we consider a set of compromised malicious users whose goal is to
either inflate a target malicious user or deflate a target honest user. In A1 and A2, the compromised
malicious users constitute a random subset of users. In A3, the compromised malicious users come
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from the neighbors of the target honest user, representing a worse attack. In these attacks, and for the
rest, we assume the target malicious user lies about his connections to try to increase his degree while
the target honest user follows protocol.

In A4 and A5, we scale up A1 to more malicious targets, which could happen if a group of compro-
mised users is used to target multiple accounts. As there is no way to select friends of many targets at
once, we omit A3.

In A6 through A8, we consider a more realistic selection strategy: Instead of malicious users drawn
completely at random, we consider they are drawn from a community in the graph, which is more
realistic as similar accounts are often targeted together. We then consider these accounts targeting
multiple honest users, and in A8 we simulate what would happen when the malicious users are used
recklessly and target a large fraction of the community.

In A9 and A10, we again consider malicious users in a community, but this time they target both
malicious and honest users.

Finally, in the rest of the attacks, we consider combinations of two of the previous attacks carried out
independently. This is more realistic, as in the real world, different parties of malicious users may
collude independently.

Attack

Number Number Number Malicious

Descriptionof of of User
Malicious Malicious Honest Selection

Non-targets Targets Targets Strategy

A1 39 1 0 Random Pure degree inflation attack where the malicious
users are chosen at random from the entire graph

A2 40 0 1 Random Pure degree deflation attack where the malicious
users are chosen at random from the entire graph

A3 40 0 1 Neighbor Pure degree deflation attack where the malicious
users are neighbors of the honest target

A4 35 5 0 Random Pure degree inflation attack where the malicious
users are chosen at random from the entire graph

A5 30 10 0 Random Pure degree inflation attack where the malicious
users are chosen at random from the entire graph

A6 40 0 5 Community Pure degree deflation attack where the malicious users and the
honest targets are chosen from the same community of the graph

A7 40 0 10 Community Pure degree deflation attack where the malicious users and
honest targets are chosen from the same community of the graph

A8 40 0 600 Community Pure degree deflation attack where the malicious users and the
honest targets are chosen from the same community of the graph

A9 35 5 5 Community Combination attacks where the malicious users and the
honest targets are chosen from the same community of the graph

A10 30 10 10 Community Combination attacks where the malicious users and the
honest targets are chosen from the same community of the graph

A11 (15,15) (5,5) (0,0) (Community,Community) Degree inflation attack where two sets of 15 non-target malicious users target
5 malicious users independently in two different communities

A12 (10,10) (10,10) (0,0) (Community,Community) Degree inflation attack where where two sets of 10 non-target malicious users target
10 malicious users independently in two different communities

A13 (20,20) (0,0) (5,5) (Community,Community) Degree deflation attack where two sets of 20 malicious users target
5 honest users independently in two different communities

A14 (20,20) (0,0) (10,10) (Community,Community) Degree deflation attack where two sets of 20 malicious users target
10 honest targets independently in two different communities

A15 (15,20) (5,0) (0,5) (Community,Community) Combination attacks where two sets of malicious users of sizes 15 and 20 target
10 malicious and 10 honest targets independently in two different communities

A16 (10,20) (10,0) (0,10) (Community,Community) Combination attacks where two sets of malicious users of sizes 10 and 20 target
10 malicious and 10 honest targets independently in two different communities

Table 2: Summary of evaluated attacks

E.1 ATTACKS AGAINST RRCheck

E.1.1 DEGREE INFLATION ATTACKS

Let Ut, t ∈M denote the target malicious user.
Input Poisoning. In this attack, the non-target malicious users set the bit for Ut to be 1. The target
malicious user constructs his input by setting 1 for all other malicious users. They also report 1 for
honest users to which they share an edge.

For honest users to which Ut does not share an edge, Ut flips some of the bits to 1 with the hopes of
artificially increasing his degree. He does this for a r1-fraction of these neighbors. See Algorithm 5
for the details; we term this attack Ainp

RRCheck. Note that if r1 = 0, then the malicious user is being
completely honest for these users and will not inflate his degree, and if r1 = 1, then he lies about
each of these users and will likely be caught. Thus, his strategy is to pick a value in between 0 and 1,
and in the experiments we found that r1 = 15% was a good tradeoff point.
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Algorithm 5 Ainp
RRCheck : {0, 1}n 7→ {0, 1}n

Parameters: ϵ - Privacy parameter;
Input: l ∈ {0, 1}n - True adjacency list;

t - Target honest user;
Output: q ∈ {0, 1}n - Reported adjacency list;

1: Select r1 ∈ [0, 1]
2: H1 = {i ∈ H|l[i] = 1}

▷H1 is the set of honest users with a mutual edge
3: H0 = H \H1

▷H0 is the set of honest users without a mutual edge
4: F ∈R H0, |F | = r1|H0|

▷ Randomly sample r1 fraction of the users inH0

5: l′ = {0, 0, · · · , 0}
6: for i ∈ H1 ∪M∪ F do
7: l′[i] = 1

8: for i ∈ [n] do
9: q[i] = RRρ(l

′[i])
return q

Algorithm 6 Aresp
RRCheck : {0, 1}n 7→ {0, 1}n

Parameters: ϵ - Privacy parameter;
Input: l ∈ {0, 1}n - True adjacency list;
Output: q ∈ {0, 1}n - Reported adjacency list;

1: Select r1 ∈ [0, 1]
2: q = RRρ(l)
3: I1 = {i ∈ H|q[i] = 1}

▷H1 is the set of honest users with an edge in q
4: I0 = H \ I1
5: F ∈R I0, |F | = r1|I0|

▷ Randomly sample r1 fraction of the users in I0
6: for i ∈ I1 ∪M∪ F do
7: q[i] = 1

return q

Response Poisoning. For response poisoning, the non-target malicious first find a plausible response
by applying RRρ to their data. They then set the bit for Ut to be 1, indicating they are connected to
this user.

The target malicious user constructs his response by first applying RRρ to his data to compute a
plausible response. Then, he flips his bits to malicious users to 1, and for honest users, he takes a
r1-fraction of the 0s in his response and flips them to 1. The quantity r1 is a tradeoff parameter with
the same intuition as for Ainp

RRCheck. The details of this attack appear in Algorithm 6, and it is termed
Aresp

RRCheck.

E.1.2 DEGREE DEFLATION ATTACKS

Let Ut, t ∈ H denote the target honest user.
Input Poisoning. Here, every malicious user constructs his input acting honestly for non-target users
and setting a 0 for Ut.
Response Poisoning. Every malicious user acts honestly for non-target users by applying randomized
response to their input. They finally send a 0 for their connection to Ut.
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Algorithm 7 Ainp
Hybrid : {0, 1}n 7→ {0, 1}n

Parameters: ϵ - Privacy parameter;
Input: l ∈ {0, 1}n - True adjacency list;
Output: q ∈ {0, 1}n - Reported adjacency list;

d̃lap - Reported noisy degree estimate;

1: Select r2 ∈ [0, 1]
2: ρ = 1

1+ecϵ

▷ c is the constant used in Alg. 4 to divide the budget between the RR and Laplace steps.
3: q ← Ainp

RRCheck(l, cϵ)

4: ˜count
11 ← m(1− ρ)2 + E[

∑
i∈H qiRRρ(li)]

5: err,inp =
˜count

11−ρ2n
1−2ρ .

6: d̂Lap = err,inp + r2
τ

1−2ρ + η where η ∼ Lap( 1
(1−c)ϵ ).

return q, d̃Lap

E.2 ATTACKS AGAINST Hybrid

E.2.1 DEGREE INFLATION ATTACKS

Let Ut, t ∈M be the target malicious user.
Input Poisoning. The non-target malicious users flip their edge to Ut to a 1 as they do in Ainp

RRCheck.
They send an honest estimate of their degree d̃Lap as this does not affect the target.

The target malicious user crafts his input adjacency list q as he did in Ainp
RRCheck. For his estimate d̃Lap

t ,
he computes the expected value of d̃rrt given that he submitted q while the other users either submit
RRρ(li) or RRρ(1), depending if they are honest or malicious. Specifically, the expected value is
given by

err,inp =
m(1− ρ)2 + E[

∑
i∈H qiRRρ(li)]− ρ2n

1− 2ρ
.

He finally sets d̃rrt = err,inpt + r2
τ

1−2ρ where r2 ∈ [0, 1], which again trades off between how
much cheating is possible and getting flagged. During the trials, we used q2 = 0.1 as this did not
significantly increase the target’s chance of being rejected as ⊥. This attack, termed Ainp

Hybrid, appears
in Algorithm 7.

Response Poisoning. The non-target malicious users flip their edge to Ut to a 1 as they do in Ainp
RRCheck.

They send an honest estimate of their degree d̃Lap as this does not affect the target.

The target malicious user crafts his response adjacency list q as he did in Aresp
RRCheck. For his estimate

d̃Lap
t , he computes the expected value of d̃rrt given that he submitted q while the other users either

submit RRρ(li) or 1, depending if they are honest or malicious. This expected value is given by

err,resp =
m+ E[

∑
i∈H qiRRρ(li)− ρ2n]

1− 2ρ
.

He finally sets d̃rrt = err,resp + r2
τ

1−2ρ where r2 ∈ [0, 1] serves a similar tradeoff purpose as for

Ainp
Hybrid.

E.2.2 DEGREE DEFLATION ATTACKS

Let Ut, t ∈ H represent the honest target.
Input Poisoning. For the adjacency list, all the malicious users follow the same protocol as for
RRCheck. For the degree, all the malicious users follow the Laplace mechanism truthfully as these
values are immaterial for estimating the degree of the target honest user.

Response Poisoning. For the adjacency list, all the malicious users follow the same protocol as for
RRCheck(·). For the degree, all the malicious users follow the Laplace mechanism truthfully as these
values are immaterial for estimating the degree of the target honest user.
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Algorithm 8 Aresp
Hybrid : {0, 1}n 7→ {0, 1}n

Parameters: ϵ - Privacy parameter
Input: l ∈ {0, 1}n - True adjacency list;
Output: q ∈ {0, 1}n - Reported adjacency list;

d̃lap - Reported noisy degree estimate;

1: Select r2 ∈ [0, 1]
2: q = Aresp

RRCheck(l, ϵ)
3: ρ = 1

1+ecϵ

▷ c determines how the privacy budget is divided between the two types of response as in Alg. 4
4: ˜count

11 ← m+ E[
∑

i∈H qiRRρ(li)]

5: err,resp = m+ ˜count
11−ρ2n

1−2ρ

6: d̃Lap = err,resp + r2
τ

1−2ρ

return q, d̃Lap

F RELATED WORK CNTD.

A recent line of work Cheu et al. (2021); Cao et al. (2021); Wu et al. (2021); Li et al. (2022) has
explored the impact of poisoning in LDP. However, these works focused either on tabular data or
key-value data. Additionally, prior work mostly focuses on the task of frequency estimation which
is different from our problem of degree estimation. For the former, each user has some item from
an input domain and the data aggregator wants to compute the histogram over all the users’ items.
Whereas, we compute the degree vector ⟨d̂1, . . . , d̂n⟩ – each user directly reports their degree di
(a count or via an adjacency list). More specifically, Cao et al. Cao et al. (2021) proposed attacks
where an adversary could increase the estimated frequencies for adversary-chosen target items or
promote them to be identified as heavy hitters. Wu et al. Wu et al. (2021) extended the attacks for
key-value data where an adversaryaims to simultaneously promote the estimated frequencies and
mean values for some adversary-chosen target keys. Cheu et al. Cheu et al. (2021) formally analyzed
the poisoning attacks on categorical data and showed that local algorithms are highly vulnerable to
adversarial manipulation – when the privacy level is high or the input domain is large, an adversary
who controls a small fraction of the users in the protocol can completely obscure the distribution of
the users’ inputs. This is essentially an impossibility result for robust estimation of categorical data
via non-interactive LDP protocols. Additionally, they showed that poisoning the noisy messages can
be far more damaging than poisoning the data itself. A recent work Li et al. (2022) studies the impact
of data poisoning for mean and variance estimation for tabular data. In the shuffle DP model, Cheu et
al.Cheu & Zhilyaev (2022) have studied the impact of poisoning on histogram estimation. In terms
of general purpose defenses, prior work has explored strategies strategy based on cryptographically
verifying implementations of LDP randomizers Kato et al. (2021); Ambainis et al. (2003); Moran &
Naor (2006) – this would restrict the attacks to input poisoning only.

G PROOFS

First, we introduce notation and preliminary results used in our proofs.

G.1 NOTATION

In this section, for a graph G with vertices [n], we let di(S) for S ⊆ [n] denote the number of
neighbors of node i in the set S. We will often abuse notation for a set S of users by also letting S be
the indices of the users in the set. Thus, we may let i ∈ S be the index of some user in S . Finally, we
sometimes refer to user Ui simply as user i.

G.2 PRELIMINARY RESULTS

We will heavily make use of the following concentration result:
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Lemma 1. Let X1, . . . , Xn denote independent random variables such that Xi ∼ Bernoulli(pi). Let
v =

∑n
i=1 pi(1− pi), and X =

∑n
i=1 Xi. Then,

Pr[|X − E[X]| ≥ max{1.5 ln 2

δ
,

√
2v ln

2

δ
}] ≤ δ.

Proof. Center the random variables so that Zi = Xi − pi; the variance v does not change. We know
by Bernstein’s inequality that for all t ≥ 0,

Pr[Z ≥ t] ≤ exp

( −t2
2(v + t/3)

)
≤ exp

(
−max

{
t2

2v
,
3t

2

})
.

Thus, if t ≥ max{ 32 ln 2
δ ,
√

2v ln 2
δ }, then Pr[Z ≥ t] ≤ δ

2 . Applying the argument to −Z, we obtain
the two-sized bound.

Next, we observe the following facts about randomized response.

Fact 1. If user i ∈ H, then E[qi[j]] = ρ+ (1− 2ρ)di(j).

Fact 2. If users i, j ∈ H, then E[qi[j]qj [i]] = ρ2 + (1− 2ρ)di(j).

G.3 PROOF OF THEOREM 6

Recall that in the Laplace mechanism, a user’s degree estimate d̂i is simply di + Li, where
Li ∼ Lap( 1ϵ ) is a Laplace random variable generated by the user.

Honest Error. The honest error guarantee follows from the concentration of Laplace distri-
bution: Each Laplace random variable Li satisfies |Pr[|Li| ≥ t] ≤ e−tϵ. Setting t = 1

ϵ ln
n
δ and

applying the union bound, each of the n Laplace variables will satisfy |Li| ≤ 1
ϵ ln

δ
n with probability

1− δ, and if this holds, then |di − d̂i| ≤ 1
ϵ ln

δ
n for honest users.

Tight Malicious Error. Consider the empty graph. A malicious user Ui may report n − 1, the
maximum possible degree, and thus d̂i = n− 1 while di = 0.

G.4 PROOF OF THEOREM 7

Honest Error.

As defined in SimpleRR, the estimator count1i is given by

count1i = (
∑
j<i

qj [i] +
∑
i<j

qi[j]) (5)

We may alternatively split the above sum into honest bits and malicious bits as count1i = honi+mali.
Here,

honi =
∑

j<i,j∈H
qj [i] +

∑
i<j

qi[j]

mali =
∑

j<i,j∈M
qj [i].

Since all bits in the sum honi are honest, by Fact 1 we have E[honi] = ρ|Hi| + (1 − 2ρ)di(Hi),
whereHi = H ∪ {1, 2, . . . , i− 1}.
Furthermore, 0 ≤ mali ≤ |Mi|, whereMi = [n] \ Hi. This implies |mali − Emal,i| ≤ |Mi|,
where Emal,i = ρ|Mi|+ (1− 2ρ)di(Mi). By Lemma 1 and a union bound, with probability 1− δ,
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we have for all i ∈ Hi that

|honi − E[honi] +mali − Emal,i| ≤
√
2ρn ln

2n

δ
+ |Mi|

=⇒
∣∣count1i − ρn− (1− 2ρ)di

∣∣ ≤√
2ρn ln

2n

δ
+m

=⇒ |d̂i − di| ≤
1

1− 2ρ

√
2ρn ln

2n

δ
+

m

1− 2ρ
.

Tight Malicious Error. Consider the empty graph, and suppose that user n is malicious. Since this
user reports all his edges, he may report qi[j] = 1 for all j < 1. Thus, d̂n ≥ n − 1, but dn = 0,
showing n− 1-tight malicious error.

G.5 PROOF OF THEOREM 2

Recall the key quantities defined in RRCheck (Algorithm 1):

count11i =
∑

j∈[n]\i

qi[j]qj [i] (6)

count01i =
∑

j∈[n]\i

(1− qi[j])qj [i]. (7)

We now prove honest error.

Honest Error. It will be helpful to split count11i = hon11
i + mal11i , where hon11

i =∑
j∈H\i qi[j]qj [i] and mal11i =

∑
j∈M\i qijqji. We define hon01

i and mal01i similarly such that
they satisfy count01i = hon01

i +mal01i . We break the proof into two claims: showing that honest
users receive an accurate estimate and that they are not disqualified.
Claim 1. We have

Pr[∀Ui ∈ H. |d̂i − di| ≥ m+2
√

ρn ln 4n
δ

1−2ρ ] ≤ δ

2
.

Proof. Let Ui ∈ H. Then, hon11
i is a sum of h − 1 Bernoulli random variables with p = ρ2 or

(1− ρ)2. By Fact 2, we have

E[hon11
i ] = ρ2(h− 1) + (1− 2ρ)di(H)

Now, v defined in Lemma 1 satisfies (h− 1)ρ2 ≤ v ≤ (h− 1)(1− (1− ρ)2) ≤ 2(h− 1)ρ. Applying
the Lemma and a union bound, we have with probability at least 1− δ

2 that for all i ∈ H,

|hon11
i − E[hon11

i ]| ≤ 2
√

(h− 1)ρ ln 4n
δ . (8)

On the other hand, we have that 0 ≤ mal11i ≤ m, so if we let E11
mal,i = ρ2m + (1 − 2ρ)di(M)

(defined for convenience later), then |mal11i − E11
mal,i| ≤ m.

Applying the triangle inequality, the following holds over all i ∈ H:

|hon11
i − E[hon11

i ] +mal11i − E11
mal,i| ≤ m+ 2

√
ρn ln 4n

δ

=⇒ |count11i − ρ2(n− 1)− (1− 2ρ)di| ≤ m+ 2
√
ρn ln 4n

δ

=⇒ |d̂i − di| ≤
m+ 2

√
ρn ln 4n

δ

1− 2ρ

This proves the claim.

Next, we show that honest users are not likely to be disqualified.
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Claim 2. We have

Pr[∀Ui ∈ H. |count01i − ρ(1− ρ)(n− 1)| ≥ τ ] ≤ δ

2
,

where τ = m+
√
2ρn ln 4n

δ

Proof. Let Ui be honest. Then, the quantity hon01
i consists of h − 1 Bernoulli random variables

drawn from ρ(1− ρ). We have

E[hon01
i ] = ρ(1− ρ)(h− 1).

As defined in Lemma 1, v satisfies 1
2 (h− 1)ρ ≤ P ≤ (h− 1)ρ. Applying the Lemma and a union

bound, we have with probability 1− δ
2 that for all i ∈ H,

|hon01
i − E[hon01

i ]| ≤
√
2ρ(h− 1) ln 4n

δ (9)

Noticing that |mal01i −mρ(1− ρ)| ≤ m, we have by the triangle inequality that

|count01i − ρ(1− ρ)(n− 1)| ≥ m+
√
2ρn ln 4n

δ .

This concludes the proof.

Putting it together,
(
m( e

ϵ+1
eϵ−1 ) +

√
n

2
√

(eϵ+1) ln 4n
δ

eϵ−1 , δ

)
-honest error follows.

Malicious Error.

When player i is a malicious player, we can still prove a tight bound on count11i + count01i , and this
combined with the check in SimpleRR means that his degree estimate will be accurate.

Claim 3. We have

Pr[∀i ∈M. |count11i + count01i
− (1− 2ρ)di − ρ(n− 1)| ≤ τ ] ≥ 1− δ,

where τ = m+
√
2ρn ln 4n

δ .

Proof. Observe that count11i + count01i =
∑n

j=1,j ̸=i qj [i]. Let hon1
i denote the sum of the qj [i]

where j is honest, and mal1i denote the sum of the malicious players. By Fact 1, we have E[hon1
i ] =

di(H)(1−2ρ)+hρ. Applying a union bound over Lemma 1, for all i ∈M, we have with probability
at most δ that

|hon1
i − E[hon1

i ]| ≥
√

2ρn ln 2m
δ (10)

Because |mal1i −(1−2ρ)di(M)−ρ(m−1)| ≤ m, the claim follows from the triangle inequality.

To conclude the proof, consider any malicious user i ∈M is not disqualified (d̂i ̸=⊥), as if he is then
the malicious error event trivially happens. Thus, it must be true that |count01i −(n−1)ρ(1−ρ)| ≤ τ .
However, given this and the event in Claim 3 holds, it follows by the triangle inequality that

|count11i − (1− 2ρ)di − ρ2(n− 1)| ≤ 2τ

|d̂i − di| ≤
2τ

1− 2ρ

This establishes
(
2m( e

ϵ+1
eϵ−1 ) + 4

√
n

√
(eϵ+1) ln 4n

δ

eϵ−1 , δ

)
-malicious error.
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G.6 PROOF OF THEOREM 8

Honest Error. Let honest Ui share an edge with all malicious users inM. Now, all the malicious
users can lie and report 0 for Ui, i.e., set qj [i] = 0∀j ∈M. This deflates Ui’s degree by m.
Malicious Error. Let malicious Ui share an edge with all users in the graph. Consider the attack
where Ui and Uj , j ∈ M \ i report 0 for their edges, and additionally Ui reports 0 for min{m −
1, n−m} additional honest users. In this way, Ui can deflate its degree estimate by min(2m− 1, n).

G.7 PROOF OF THEOREM 3

Honest Error. By Claim 2, the first check in Hybrid will not set d̂i =⊥ for any honest user with
probability at least 1 − δ

4 . The variables d̂rri in Hybrid behave identically to d̂i in RRCheck. By

Claim 1 we have for all users, |d̂rri − di| ≤ m+2
√

ρn ln 8n
δ

1−2ρ , with probability at least 1− δ
4 .

By concentration of Laplace random variables, we have for all i ∈ H that |d̂lapi − di| ≤ 1
ϵ ln

2n
δ with

probability at least 1− δ
2 , and by the triangle inequality we have |d̂lapi −d̂rri | ≤

m+2
√

ρn ln 8n
δ

1−2ρ + 1
ϵ ln

2n
δ .

Thus, the second check will not set d̂i =⊥ assuming these events hold, and the estimator d̂i satisfies
the honest error bound of d̂lapi .

Malicious Error. Following the same argument we saw in the proof for malicious error for Theorem 2,
we can have that, with probability at least 1− δ

2 , for all malicious users i ∈M, we have |d̃rri − di| ≤
2τ

1−2ρ . Suppose that d̂i is not set to be ⊥. This implies that |d̃rri − d̃lapi | ≤ 2τ
1−2ρ + 1

ϵ log
2n
δ . By the

triangle inequality, this implies

|d̃rri − di| ≤
4τ

1− 2ρ
+

1

ϵ
log

2n

δ
.

This establishes ( 4τ
1−2ρ + 1

ϵ log
2n
δ , δ)-malicious error.

G.8 PROOF OF THEOREM 9

Honest Error. The honest error guarantee follows in the same way as Theorem 6.
Malicious Error Consider a malicious user Ui, and let mi be the malicious degree estimate sent
by Ui, with 0 ≤ mi ≤ n − 1. The estimator is given by d̂i = mi + η, η ∼ Lap( 1ϵ ). Thus,
Pr[|di −mi − η| ≥ n− 1] ≤ Pr[η > 0] ≤ 1

2 .

G.9 PROOF OF THEOREM 4

Honest Error. We follow the honest error proof of Theorem 7, with the following change. Observe
that mali consists of |Mi| Bernoulli random variables of mean either ρ or 1 − ρ. Thus, with

probability 1− δ
2 , we have |mali − E[mali]| ≤

√
2m ln 4m

δ for all i ∈M.

Thus, we can show |mali − Emal,i| ≤ (1 − 2ρ)|Mi|, where Emal,i = ρ|Mi| + (1 − 2ρ)di(Mi).
Finishing the proof, we can show

|d̂i − di| ≤
1

1− 2ρ
(
√
2ρn ln 4n

δ +
√
2m ln 4m

δ ) +m.

Malicious Error.

In order for |di− d̂i| = n−1, it is necessary for |count1i −ρ(n−1)− (1−2ρ)di| ≥ (1−2ρ)(n−1).
We have count1i is a sum of n− 1 Bernoulli random variables of mean either ρ or 1− ρ, so it can
be written as µ+ Zi, where Zi is approximately a normal random variable of mean 0. Observe that,
since µ and ρ(n− 1) + (1− 2ρ)di are in the interval [ρ(n− 1), (1− ρ)(n− 1)], it is impossible for
the difference µ− ρ(n− 1) + (1− 2ρ)di to exceed (1− 2ρ)(n− 1) unless Zi has the correct sign,
which happens with probability at most 1

2 . This establishes (n− 1, 1
2 )-malicious error.
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G.10 PROOF OF THEOREM 10

Honest Error. Our proof follows that of Theorem 2. We are able to prove stronger versions of the
claims.
Claim 4. We have

Pr[∀i ∈ H. |d̂i − di| ≥ m+

√
8max{ρn,m} ln 8n

δ

1− 2ρ
] ≤ δ

2
.

Proof. We can control hon11
i in exactly the same way as in Claim 1, so (8) holds with probability

1 − δ
4 , for all i ∈ H. On the other hand, we know that mal11i is now a sum of di(M) Bernoulli

random variables with bias either (1− ρ)2 or (1− ρ)ρ, plus a sum of m− di(M) Bernoulli random
variables with bias either ρ(1− ρ) or ρ2. Thus,

ρ(1− 2ρ)di(M) + ρ2m ≤ E[mal11i ]

≤ (1− ρ)(1− 2ρ)di(M) + ρ(1− ρ)m.

From this, we can show |E[mal11i ]−E11
mal,i| ≤ (1− 2ρ)m, where E11

mal,i = ρ2m+(1− 2ρ)di(M).
Applying Hoeffding’s inequality, we conclude that with probability at least 1− δ

4 , for all i ∈ H,

|mal11i − E[mal11i ]| ≥
√
2m ln 8n

δ

Thus, |mal11i − E11
mal,i| ≤ (1− 2ρ)m+

√
2m ln 8n

δ . Applying the triangle inequality, we obtain

Pr[|hon11
i +mal11i − E[hon11

i ]− E11
mal,i|

≥
√

2m ln 8n
δ + (1− 2ρ)m+ 2

√
ρn ln 8n

δ ] ≤ δ
2 .

The result follows in the same way as in Claim 1.

Claim 5. We have

Pr[∀i ∈ H. |count01i − ρ(1− ρ)(n− 1)| ≥ τ ] ≤ δ
2 ,

where τ = m(1− 2ρ) +
√

8max{ρn,m} ln 8n
δ .

Proof. We can follow the same line of reasoning as Claim 2 and conclude that (9) holds. Similar to

Claim 4, we can show that |mal01i − ρ(1 − ρ)m| ≤ (1 − 2ρ)m +
√

2m ln 8n
δ with probability at

least δ
4 , and applying the triangle inequality, we see

Pr[|count01i − ρ(1− ρ)n| ≥ m(1− 2ρ)+ √
2m ln 8n

δ +
√
2ρn ln 8n

δ ] ≤ δ
2 .

The (2m+
4
√

2max{ρn,m} ln 8n
δ

1−2ρ , δ)-honest error guarantee follows from the union bound over the
two claims.

Malicious Error When player i is a malicious player, he is still subject to the following claim:
Claim 6. We have

Pr[∀i ∈M. |count11i + count01i
− (1− 2ρ)di − ρ(n− 1)| ≤ τ |] ≥ 1− δ,

where τ = m(1− 2ρ) +
√
8max{ρn,m} ln 8n

δ .
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Proof. Observe that count11i + count01i =
∑n

j=1,j ̸=i qj [i] = hon1
i +mal1i . With the same argument

as in Claim 3, we know that (10) holds. Similarly, each random variable in mal1i comes from either
Bernoulli(ρ) or Bernoulli(1− ρ), and thus with probability at least 1− δ

2 , for all i ∈M

|mal1i − E[mal1i ]| ≤
√

2m ln 4m
δ

Since E[mal1i ] ∈ [ρm, (1−ρ)m], This implies that |mal1i −ρm| ≤ (1−2ρ)m+
√
2m ln 4m

δ . Thus,
the claim follows.

Having established this claim, we can prove (2m+4
√
2max{ρn,m} ln 8n

δ , δ)-malicious error using
an identical method as in the proof of malicious error for Theorem 2.

G.11 PROOF OF THEOREM 5

Honest Error. As input manipulation attacks are a subset of response manipulation attacks, the same
honest error guarantee as Theorem 3 holds.

Malicious Error. The proof of this is similar to the proof of malicious error for Theorem 3, using
previous results in Theorem 10.

G.12 PROOF OF THEOREM 1

Preliminaries. Our theorem will use information theory, and in particular will require defining
probability divergences. WLOG, we will consider a finite domain X . For a distribution P on on X ,
and we will abuse notation and also write P (x) = PrX∼P [X = x]. For two distributions P,Q on X ,
the total variation distance is given by

TV D(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|.

Similarly, the KL-divergence is given by

DKL(P∥Q) =
∑
x∈X

P (x) ln(
P (x)

Q(x)
).

The KL divergence satisfies several important properties. The data processing inequality states that,
for any randomized process f ,it holds that DKL(P∥Q) ≥ DKL(f(P )∥f(Q)) (the TVD also satisfies
this inequality). For distributions P1, P2 on X and Q1, Q2 on Y , we may define the conditional KL
divergence by

DKL(Q1|P1∥Q2|P2) = Ex∼P1

∑
y∈Y

Q1(y|P1 = x) ln(
Q1(y|P1 = x)

Q2(y|P2 = x)
)


The chain rule of KL divergences states that DKL(P1, Q1∥P2, Q2) = DKL(P1∥Q1) +
DKL(Q1|P1∥Q2|P2). It is easy to use this rule that if P1, Q1 are independent along with P2, Q2,
then DKL(P1, Q1∥P2, Q2) = DKL(P1∥Q1) +DKL(Q1∥Q2). For proofs of the above and more
information, refer to the information theory textbook (such as doi (2005)).

Proof. Suppose to the contrary that there was such a protocol, given by local randomizers Ri.
Consider an “honest” world where G has no edges except to user n. For i = 1 to n− 1, let zi indicate
whether the edge from i to n is present, and let zi ∼ Bern( 12 + p) i.i.d. where p = m

4n + 1
6
√
n(eϵ−1)

.
Let yi indicate whether Ui acts maliciously, and let yi ∼ Bern(m

2n ), i.i.d. Finally, suppose that each
malicious with an edge to user n behaves as if the edge doesn’t exist. Formally, for i = 1 to n− 1,
the random variable

x0
i =

{
0 yi = 1

zi otherwise
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defines the input of user i to the randomizer that concerns edges to Un. Next, Un, who will behave
honestly in this world, will use w0

i = zi for i = 1, . . . , n − 1, as their input. Thus, the protocol
responses in this world will be(

R1(⟨0, x0
1⟩), . . . ,Rn−1(⟨0, x0

n−1⟩),Rn(⟨w0
1, . . . , w

0
n−1⟩)

)
,

where 0 indicates a vector of n−1 0s. Let r0(n−1) indicate the first n−1 terms of the above tuple, and
r0n indicate the final term. By the honest error guarantee, the responses may be post-processed into an
estimate d̂n(r

0
(n−1), r

0
n) such that |d̂n − dn| ≤ m

4 +
√
n

40ϵ for each graph G. With probability at least

0.9, Un has degree at least n
2 +

m
4 +

√
n

6ϵ −3
√
n (since ϵ < 1

20 ) in this world. Thus, Pr[d̂n ≥ n
2 ] ≥ 0.8,

where the probability considers the randomness in G, and running the protocol described above.

In the second, “malicious” world, G will be defined the same way, except each zi ∼ Bern( 12 − p)
i.i.d. For i = 1 to n− 1, malicious users will be chosen the same way as before, and we may define
yi as before. This time, each malicious user will behave as if there is an edge to user n, so they will
use

x1
i =

{
1 yi = 1

zi otherwise
as their input to Un. Un will act maliciously as well, by acting as if he has an edge to each malicious
user, and with probability s = 1 − (1−2p)

(1+2p)(1−m/2n) , to an honest user as well. Formally, he will
define y′i ∼ Bern(s), and compute

w1
i =

{
1 yi = 1 or y′i = 1

zi otherwise

Thus, the output of the protocol in this world will be(
R1(⟨0, x1

1⟩), . . . ,Rn−1(⟨0, x1
n−1⟩),Rn(⟨w1

1, . . . , w
1
n−1⟩)

)
.

Let r1(n−1) indicate the first n − 1 terms of the above tuple, and r1n indicate the final term. From

the maliciour error guarantee, we have that in this world, Pr[d̂n = ⊥ ∨ d̂n ≤ n
2 ] ≥ 0.8.

This is a disjoint event from the event in the honest world, and in particular, it implies that
TV D((r0(n−1), r

0
n)∥(r1(n−1), r

1
n)) ≥ 0.8.

However, observe that each w0
i is identically distributed to each w1

i —they are both drawn from
Bern(m

2n + (1 − m
2n )(

1
2 + p)). In the honest world, we have that Pr[x0

i = 0|w0
i = 0] = 1, and

Pr[x0
i = 0|w0

i = 1] = Pr[yi = 1] since the only way x0
i = 0 can occur if z0i = 1 is if yi = 1.

Similarly, in the malicious world we have Pr[x1
i = 0|w1

i = 0] = 1, and

Pr[x1
i = 0|w1

i = 1]

=
Pr[x1

i = 0, w1
i = 1]

Pr[w1
i = 1]

=
Pr[yi = 0, y′i = 1, zi = 0]

1− Pr[yi = 0, y′i = 0, zi = 0]

=
2p− m

4n + pm
2n

1− (1−m/2n)(1− s)(1/2 + p)

=
2p− m

4n + pm
2n

1/2 + p

Now, we will derive a contradiction using the information between the two worlds. In either world,we
have that rn is a post-processing of w(n−1). By the data processing inequality and chain rule of KL
divergences, we have

DKL((r
0
(n−1), r

0
n)∥(r1(n−1), r

1
n))

≤ DKL((r
0
(n−1), w

0
(n−1))∥(r1(n−1), w

1
(n−1)))

= DKL(w
0
(n−1)∥w1

(n−1)) +DKL(r
0
(n−1)|w0

(n−1)∥r1(n−1)|w1
(n−1)).
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The first term is clearly 0. Using conditional independence of the xis and the protocols, we can write

DKL(r
0
(n−1)|w0

(n−1)∥r1(n−1)|w1
(n−1))

=

n−1∑
i=1

DKL(r
0
i |w0

i ∥r1i |w1
i ).

Now, we apply Theorem 1 of Duchi et al. (2013), which states that, when Ri satisfies lo-
cal differential privacy, and x0

i , x
1
i are two distributions, we have DKL(Ri(x

0
i )∥Ri(x

1
i )) ≤

4(eϵ − 1)2TV D(x0
i , x

1
i )

2. Plugging in the above probabilities, we have

TV D(x0
i |w0

i = 0, x1
i |w1

i = 0) = 0

TV D(x0
i |w0

i = 1, x1
i |w1

i = 1) =

∣∣∣∣2p− m
4n + pm

2n

1/2 + p
− m

2n

∣∣∣∣
=
|2p−m/2n|

1/2 + p
.

Plugging in p = m
4n + 1

6
√
n(eϵ−1)

, both of the above are at most 1
3
√
n(eϵ−1)

, and thus
DKL(r

0
i |w0

i ∥r1i |w1
i ) ≤ 4

9n . Thus, we have

DKL(r
0
(n−1)|w0

(n−1)∥r1(n−1)|w1
(n−1)) ≤

4

9
.

Finally, by Pinsker’s inequality, we know that

TV D((r0(n−1), r
0
n), (r

1
(n−1), r

1
n)) ≤

√
2

9
< 0.5,

completing the contradiction.

32


	Introduction
	Related Work
	Preliminaries
	Protocol Setup

	Quantifying Robustness
	Robustness Lower Bounds for LDP Protocols
	Proposed Robust Protocols
	Improving Malicious Error with Verification
	Improving Honest Error with a Hybrid Protocol
	Optimal Results for Input Poisoning Attacks

	Evaluation
	Robustness Analysis
	Comparing Input and Response Poisoning

	Conclusion
	Quantifying Robustness Cntd.
	Laplace Mechanism
	Randomized Response

	Price of Privacy
	Input Poisoning Attack Cntd.
	Evaluation Cntd.
	Experimental Setup
	Experimental Results Cntd.
	Impact of Algorithmic Parameters

	Attacks Details
	Attacks Against RRCheck
	Degree Inflation Attacks
	Degree Deflation Attacks

	Attacks Against Hybrid
	Degree Inflation Attacks
	Degree Deflation Attacks


	Related Work Cntd.
	Proofs
	Notation
	Preliminary Results
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 2
	Proof of Theorem 8
	Proof of Theorem 3
	Proof of Theorem 9
	Proof of Theorem 4
	Proof of Theorem 10
	Proof of Theorem 5
	Proof of Theorem 1


