
Absolute Neighbour Difference based Correlation
Test for Detecting Heteroscedastic Relationships

Lifeng Zhang
School of Information

Renmin University of China
59, Zhongguancun street, Haidian, Beijing, P.R.China 100872

l.zhang@ruc.edu.cn

Abstract

It is a challenge to detect complicated data relationships thoroughly. Here, we
propose a new statistical measure, named the absolute neighbour difference based
neighbour correlation coefficient, to detect the associations between variables
through examining the heteroscedasticity of the unpredictable variation of depen-
dent variables. Different from previous studies, the new method concentrates on
measuring nonfunctional relationships rather than functional or mixed associations.
Either used alone or in combination with other measures, it enables not only a
convenient test of heteroscedasticity, but also measuring functional and nonfunc-
tional relationships separately that obviously leads to a deeper insight into the data
associations. The method is concise and easy to implement that does not rely on
explicitly estimating the regression residuals or the dependencies between variables
so that it is not restrict to any kind of model assumption. The mechanisms of the
correlation test are proved in theory and demonstrated with numerical analyses.

1 Introduction

Detecting relationships between variables is a fundamental problem of data-driven discovery. The
well-known Pearson’s correlation coefficient (Cor), Spearman’s rank correlation, and Kendall’s tau
are concise, computationally efficient, and theoretically well understood, however can capture only
linear or monotonic relationships. Developing more powerful association detection methods has been
a challenging research and attracted extensive attention in the past decades.

A number of techniques have been developed to estimate the score of mutual information (MI) as
a measure of the dependence between variables, such as bining (partitioning) [19, 20, 11], kernel
density estimation (KDE) [17, 25], and k-nearest neighbor distances (kNN) [4, 13]. Distance
correlation (dCor) is a kind of more general statistics defined on reproducing kernel Hilbert spaces
(RKHS) [9, 10]. It has a compact representation analogous to Cor, but can capture a wider range
of associations [24, 23]. Randomized dependence coefficient (RDC) is a measure of nonlinear
dependence between random variables of arbitrary dimension based on the Hirschfeld-Gebelein-
Renyi maximum correlation coefficient [16]. Other approaches include maximal correlation [21, 3],
kernel canonical correlation analysis (KCCA) [1], principal curve based methods [5, 6], and nonlinear
spectral correlation [15]. Recently, [28] introduced an order statistics based association measure
called the neighbour correlation coefficient (nCor). With sufficient sample size, nCor is able to
detect any type of functional relationships and approximate the R2 of the underlying association.

The associations between variables are sometimes too complicated to be quickly and thoroughly
identified. Heteroscedasticity is a kind of association pattern that often occurs in real world data and
always indicates that an interaction may exist between the independent variable under test and one or
more other known or unknown variables. To address this problem, a number of statistical tests have
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been proposed such as the Park test, the Goldfeld–Quandt test, the Glejser test, the White test, and
the Lin-Qu’s test in the context of linear, nonlinear, parametric or nonparametric regression analysis
[18, 8, 26, 12, 14], and generalized autoregressive conditional heteroscedasticity (GARCH) model
for time series data [2, 7].

Nevertheless, these tests are calculated based on the residuals of regression modelling, so that
they all rely on explicitly identifying the functional dependency between variables and sometimes
can only capture certain types of heteroscedastic residuals depending on the residual models used.
All the aforementioned association detection methods are regression free, but fail to diagnose the
heteroscedasticity of data explicitly. Even though some approaches such as MI estimation are able
to measure the total dependence between variables, they still cannot distinguish heteroscedasticity
(nonfunctional relationships) from functional relationships.

Here, we propose a new association measure called absolute neighbour difference based neighbour
correlation coefficient (nCor|∆|) to examine whether the statistical dispersion of a variable is unequal
across the range of values of a second variable that predicts it. It can be used together with other
association measures to separately detect the impacts of the independent variable on the expect value
and variance of the dependent variable, that will obviously lead to a better understanding of the data.

The rest of this study is organized as follows. Sections 2 and 3 briefly review the background of data
association and heteroscedasticity, and introduce a new correlation test for examining whether a data
relationship is heteroscedastic or not. In Section 4, empirical studies are performed to evaluate the
new statistics and make comparisons with previous approaches. Finally, in Section 5, conclusions are
drawn to summarize the study. To facilitate the readability of the study, all the relevant theoretical
proofs are enclosed in appendices in supplementary material.

2 The proposed method

2.1 Heteroscedasticity and interaction

Aside from the central tendency, independent variables may sometimes influence the dispersion of
dependent variable, which indicates the presence of heteroscedasticity. Consider the general form of
a relationship between (X, Y ) expressed as follows.

Y = E[Y |X] + E = E[Y |X] +
√

Var(E|X)Θ = f(X) + g(X)Θ (1)

where Y ∈R, X = (Xi|1≤i≤M)∈RM , and E∈R respectively denote dependent variable, inde-
pendent variables, and additive noise. Θ∈R denotes the normalized noise that is defined as
Θ = E/

√
Var(E|X) so that E[Θ ] = 0 and Var(Θ) = 1. E[·|·] and Var(·|·) denote conditional

expectation and conditional variance operators respectively. f(·) and g(·) are the two functions
respectively characterize how the expectation of Y and the standard deviation of E are expressed
conditional on X. For the special case that E is homoscedastic, Var(E|X) = Var(E), and g(X)
becomes a constant. Here, we assume that all the Xi are independent to each other, and all the
functional relationships either are continuous at all points of their domains or have discontinuities of
the first kind.

Heteroscedasticity is a kind of unpredictable dependence which is also referred to as nonfunctional
relationship. As defined in (1), it is the nature and manifestation of the interaction of (X,Θ) in which
the simultaneous influence of the two variables is not additive. In such a situation, X may distinctly
influences the statistical dispersion of E (which equals to Y with its predictable part removed), but
nevertheless E cannot be predicted from X alone by using any function, that is the reason why it is
so-called nonfunctional.

Interactions can be diagnosed by using multivariate tests, such as nCor, dCor, and MI, but only
when performed on the exact set of interactive variables. Hence, they are always computational costly
to be detected exactly in real applications especially when dealing with large datasets in which there
are too many variable subsets that need to be examined one by one. When an interaction occurs,
the pairwise relationship between the dependent variable and each interacting independent variable
often appear to be heteroscedastic and at least partially nonfunctional. That is to say, a concise
heteroscedasticity test may assist in detecting the interactivity of variables which can be described
as whether and how much one variable impacts on anther variable through interaction effect. Such
a pairwise examination could quickly find out the interacting variables, and does not require any
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prior knowledge about the subset partitioning and inter-dependencies of the variables. The detected
variables, then, can be used preferentially to perform further multivariate tests for measuring the exact
interaction effects. It will obviously reduce the computational cost and make the following detection
and analysis more directional and efficient.

2.2 The population nCor|∆|

If a functional relationship exists between (X, Y ), two observations in the domain of f(·) should
have similar values of f(X) when the difference between their values of X are sufficiently small.
Suppose there is a set of variables X′ = (X ′1, . . . , X

′
M ) that

X ′i = Xi + ∆Xi, ∀1≤i≤M (2)

where each ∆Xi denotes a random variable representing an increment of Xi with extremely small
absolute value. Let Λ = ‖∆X‖ = ‖X′ −X‖ be the Euclidean norm. It is obviously that E[Λ] can
also be made arbitrarily small when each E[|∆Xi|] is sufficiently small, and vice versa. In this sense,
X′ can be considered as a near neighbour of X. Correspondingly, the neighbouring dependent variable
can be derived as

Y ′ = f(X′) + E′ = f(X) + ∆f + E′ (3)

where E′ is an independent copy of E, that is, E and E′ are independent and identically distributed
(i.i.d.). ∆f denotes the difference between the two noise free dependent variables which can be
computed as ∆f = f(X′)− f(X). Then, the neighbour difference ∆Y = Y ′ − Y should have the
following property.

Lemma 1. Consider a relationship between (X, Y ) as given in (1). Let random neighbouring
variables (X′, Y ′) be defined as above. Then, it holds that almost surely

lim
E[Λ]→0

E[∆Y ] = 0

lim
E[Λ]→0

Var(∆Y ) = 2Var(E) = 2E[g(X)2]
(4)

Figure 1 shows an example where the heteroscedasticity of one variable arises from the interaction of
two other variables. When we investigate the bivariate relationship between Y and either X1 or X2,
the other one can be naturally viewed as an unknown noise. It is clearly that when ∆Xi approaches
0, the expectation of |∆Y | implies the conditional dispersion of Y given Xi with E[Y |Xi] removed.
That is to say, the heteroscedasticity of E can be detected by examining whether the expectation of
|∆Y | is a function of Xi or a constant.

−1

1

−1

1

−1

1

X
1

X
2

Y

(a) The surface of Y versusX1

and X2

−1 0 1

−1

0

1

X
1

Y

−1 0 1

−1

0

1

X
2

Y

(b) The scatterplots of Y versus X1 and X2

−1 0 1

−2

0

2

X
1

∆
Y

1

−1 0 1

−1

0

1

X
2

∆
Y

2

(c) The scatterplots of ∆Y versus X1 and X2

−1 0 1

0

2

X
1

|∆
Y

1
|

−1 0 1

0

1

X
2

|∆
Y

2
|

(d) The scatterplots of |∆Y | versus X1 and X2

Figure 1: The surface and scatterplots of Y = (1 − X2
1 )X2, where X1, X2 ∈ [−1, 1]. The grey

shaded areas and red lines respectively indicate the dispersion of the corresponding variables and
their conditional expected values.
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Based on this concept, we propose a new correlation test to detect whether a g(·) exists between
(X, Y −f(X)) or not, without modelling either f(·) or g(·) explicitly. Let X′′ and X′′′ be other two
neighbouring variables defined as below.

{
X′′ = X′ + ∆X′

X′′′ = X′′ + ∆X′′
(5)

where ∆X′ and ∆X′′ are random increments defined the same as ∆X. The corresponding dependent
variables are defined as {

Y ′′ = f(X′′) + E′′ = f(X′) + ∆f ′ + E′′

Y ′′′ = f(X′′′) + E′′′ = f(X′′) + ∆f ′′ + E′′′
(6)

where E′′ and E′′′ are independent copies of E. Consider the difference ∆Y ′′ = Y ′′′ − Y ′′. By
Lemma 1, we have that almost surely when E[Λ′′]→ 0, if E is heteroscedastic, then Var(∆Y ′′)→
2E[g(X′′)2], otherwise Var(∆Y ′′)→ 2Var(E′′). Then, by taking advantages of the mechanism of
nCor, a new association measure is defined as below.
Definition 1. The absolute neighbour difference based neighbour correlation coefficient (nCor|∆|)
when applied to a population is defined as

nCor|∆|(X, Y ) =
Cov(|∆Y |, |∆Y ′′|)√

Var(|∆Y |)Var(|∆Y ′′|)
(7)

Theorem 1. Consider a relationship between (X, Y ) as given in (1). Let (X′, Y ′), (X′′, Y ′′),
and (X′′′, Y ′′′) be defined as above. Let Λ denotes the vector valued Euclidean norms
{‖∆X‖, ‖∆X′‖, ‖∆X′′‖}. The population nCor|∆|(X, Y ) has following properties. First,
|nCor|∆|(X, Y )| ≤ 1. Second, if E is homoscedastic, then nCor|∆|(X, Y ) = 0. Third, if E
is heteroscedastic, then almost surely

lim
E[Λ]→0

nCor|∆|(X, Y ) =
Var (g(X))E [|Θ ′ −Θ |]2

2E[g(X)2]− E [g(X)]
2 E [|Θ ′ −Θ |]2

> 0 (8)

See Appendices C and B in supplementary material for the proofs.
Remark 1. (8) clearly suggests that when Λ → 0, the value of nCor|∆| is determined only by
g(X), regardless of whether and what type of f(X) exists. This is contrary to the nCor since
limE[Λ]→0 nCor(X, Y ) = Var (f(X))/Var(Y) = R2 [28], that is, the value of nCor is dependent
only on f(X) but completely insensitive to g(X). The two tests have distinct but complementary
capabilities, and therefore can be used to respectively examine to what extent X influences the
central tendency and the statistical dispersion of Y . In orther words, one is for measuring functional
relationship, and the other one is for detecting nonfunctional relationship.

3 The nCor|∆| test for a sample

Let (x(1), y(1)), . . . , (x(N), y(N)) be the paired sequences of N independent observations from the
joint distribution of (X, Y ). For computing nCor|∆|, the realizations of the dummy variables
(X′, Y ′), (X′′, Y ′′), and (X′′′, Y ′′′) can be obtained by resampling from the original dataset, based
on the criterion of minimizing the vector valued norms λ.

3.1 Data reordering

In this study, we use the same data reordering methods as used for computing nCor in [28] to
generate neighbouring data sequences. The data reordering based resampling process ensures each
data point has an equal opportunity to be used in computing the correlation values, and thereby avoids
the appearance of a few super data points whose values dominate the resampled sequences due to
being copied many times. In this process, each data point is copied four times, respectively, as the
observations of the four sets of neighbouring variables. Therefore, the four new samples should
obey an identical joint distribution as the original one, which perfectly comply with the concept of
neighbouring variables given in Section 3.
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In the bivariate case where M = 1, the concepts of order statistics and concomitants are presented as
follows. First, sorting {x(t)} in an increasing order of its values to yield a new sequence denoted
by x(1:N)≤x(2:N)≤· · ·≤x(N :N), where x(k:N) is known as the k-th order statistic of {x(t)}. In
addition, let {nk|1≤k≤N} denotes the reordering permutation, that is, if nk = t then x(k:N) = x(t).
Second, rearranging dependent variable data in accordance with {nk} to obtain a new sequence
y[1:N ], y[2:N ], · · ·, y[N :N ] , where y[k:N ] is known as the k-th concomitant, and can be defined as
y[k:N ] = y(t) when nk = t.

For multivariate data (M > 1), the optimal reordering permutation can be obtained by minimizing
the total distance between each pair of neighbouring data points in X space derived as follows.

{n∗k|1 ≤ k ≤ N} = arg min
nk∈{1,2,··· ,N},∀1≤k≤N

ni 6=nj,∀i6=j

N−1∑
k=1

‖x(nk+1) − x(nk)‖ (9)

The nearest neighbor (NN) algorithm, then, can be used to obtain the optimal or most likely a
sub-optimal permutation {nk} for generating {x(k:N)} and {y[k:N ]}. The NN algorithm is a kind
of constructive search heuristic that is easy to implement and executes quickly. It starts at one data
point, then visits the data point that is nearest to the starting point. Afterwards, it visits the nearest
unvisited data point, and repeats this process until all data points have been visited. Finally, it outputs
the visiting path as the permutation {nk} for data reordering.

3.2 Data resampling and correlation test

Let rearranged data sequences {(x(k:N), y[k:N ])}, {(x(k+1:N), y[k+1:N ])}, {(x(k+2:N), y[k+2:N ])},
and {(x(k+3:N), y[k+3:N ])} be considered as the observations of (X, Y ), (X′, Y ′), (X′′, Y ′′), and
(X′′′, Y ′′′) respectively. Then, the neighbour difference can be calculated as ∆y[k:N−3] = y[k+1:N ]−
y[k:N ] where 1 ≤ k ≤ N − 3.

Figure 2 shows four examples that the absolute difference, especially its conditional expectation,
provides a more explicit indication of the heteroscedasticity of the data than the direct investigation
of the relationship between (x, y).
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(b) Example 2 (g(x) = 0.22 + 0.2x)
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(c) Example 3 (g(x) = 0.3 cos(πx))
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(d) Example 4 (g(x) = 0.3 + 0.2sign(cos(πx)))

Figure 2: The scatterplots of the dependent variable and absolute difference for four simulated
examples with sample size of 200. The examples can be generally represented as y = β sin(πx) +
g(x)θ, where x ∼ U(−1, 1) and θ ∼ N(0, 1). The red lines indicate the conditional Expectations.

Lemma 2. Let {(x(t), y(t))|1≤t≤N} be observed from a relationship as defined in (1), and ∆y be
computed with the optimal reordering permutation as defined in (9). It holds that almost surely,

lim
N→∞

∆y = 0

lim
N→∞

var(∆y) = 2var(e) = 2g(x)2
(10)

where the overbar and var(·) respectively denote the mean value and sample variance of the sequence.
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Definition 2. Let {A[k]} and {B[k]} denote the absolute neighbour difference sequences that is
defined as that for any 1 ≤ k ≤ N − 3{

A[k] = |∆y[k:N−3]| = |y[k+1:N ] − y[k:N ]|
B[k] = |∆y′′[k:N−3]| = |y[k+3:N ] − y[k+2:N ]|

(11)

The nCor|∆| when applied to a sample is defined as

nCor|∆|(x, y) =

N−3∑
k=1

A[k]B[k] − (N − 3)AB√
N−3∑
k=1

A2
[k] − (N − 3)A

2

√
N−3∑
k=1

B2
[k] − (N − 3)B

2
(12)

Theorem 2. Let {A[k]} and {B[k]} be the absolute neighbour differences computed as given in (11).
A hypothesis test rejects the null hypothesis of homoscedastic if

nCor(x, y) > tanh
(
Φ−1(1− α)/

√
(N − 6)

)
(13)

where α denotes the significance level, and Φ(·) is the standard normal cumulative distribution
function. If e is heteroscedastic that a g(·) exists between x and Var(e), then almost surely

lim
N→∞

nCor|∆|(x, y) =
var(g(x))|θ′ − θ|

2

2g(x)2 − g(x)
2
|θ′ − θ|

2 > 0 (14)

See Appendices C and D in supplementary material for the proofs. In summary, the proposed method
is a very concise association measure and only requires three computational steps, that is, reordering
the sample points by order statistics or NN algorithm, generating the absolute neighbour difference
sequences by (11), and then computing nCor|∆| by (12).
Remark 2. (i) nCor|∆| is designed to detect the heteroscedasticity of the underlying noise approxi-
mated by the absolute neighbour difference, rather than the residuals of any regression model. Hence,
it does not require any kind of parametric or nonparametric modelling process. (ii) In most cases,
pairwise nCor|∆| test may be sufficient for detecting nonfunctional relationships between variables.
Multivariate nCor|∆| can be used to quickly examine the heteroscedasticity arising from multiple xi
in the context of multivariate regression. When dealling with complex g(·) and high dimensional x, it
may exhibit less detection power (as demonstrated in section 4.1). (iii) The proposed test requires
comparatively large amounts of samples to ensure the overwhelming majority of data points being
close to each other in x space, otherwise it may display less detection power. In general, several
hundreds of data points might be sufficient for conducting the test (as illustrated in section 4.1 and
Appendix E in supplementary material).
Remark 3. When dealing with high-dimensional datasets, finding interacting variables is one of the
most important challenges in feature selection and has received wide attention [27, 22]. Interaction
effect is a kind of multivariate functional dependence which cannot be directly identified by any
pairwise association measure. Since heteroscedasticity always arises from interaction, the bivariate
nCor|∆| test can also be viewed as a convenient method for detecting interacting variables in
the multivariate case. As demonstrated in Appendix G in supplementary material, we can use
nCor|∆|(xi, y) to examine the heteroscedasticity of each pair of (xi, y) for screening the potential
interacting {xi}, and subsequently conduct the multivariate nCor and the COI tests as introduced in
[28] to identify the exact interactions on the reduced independent variable subset that only contains
the potential interacting {xi}. This procedure will be obviously much more efficient than identifying
interactions through detecting the full dataset.

4 Empirical studies

4.1 Effectiveness, consistency, and robustness

In this section, we conducted a set of numerical experiments performed on artificial data to evaluate
the performance of nCor|∆|, as well as to make comparisons with previous approaches. The four
examples given in Figure 2 were employed as the trial functions. Three data distributions (uniform,
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(a) The average p-values and the nonlinearities obtained by using the Park test and the White test

(b) The box plots obtained from using nCor|∆|
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(c) The average scores obtained from using dCor, RDC, MIC, MI, nCor, and nCor|∆|

Figure 3: The detection results obtained from using the previous heteroscedasticity tests, association
measures, and the proposed method for the four examples given in Figure 2 (E. 1 to E. 4). Three
data distributions (U(−1, 1), N(0, 1), and E(1)) and four sample sizes (from 200 to 2000) were
implemented in these experiments. In (b), the grey shaded areas indicate the 95% confidence intervals.

normal, and exponential), four sample sizes (200, 500, 1000, and 2000), and three R2 (0, 0.4, and 0.8)
were considered. For each case, 50 random datasets were generated for conducting the detection.

First, two widely used heteroscedasticity tests, the Park test and the White test (by using polynomials
of degree from 1 to 15, and then selecting the lowest p-value as the final result), were performed
to verify the homogeneity of residuals obtained by assuming the best fitted regression model (ŷi =
β sin(πx)) was unknown. Figure 3(a) shows that due to the fixed model structure, the Park test
failed to reject the hypothesis of homoscedasticity in examples 3 and 4. The nonlinear polynomial
based White test successfully detect all the heteroscedastic residuals, however, a rather high degree
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of nonlinearity is needed. Especially in example 3, when using normally distributed x only by the
polynomials with degree of k > 10 can the heteroscedasticity be detected as significant at p ≤ 5%.
The disadvantage of the two tests and many other approaches of the same kind is that, they all
require properly estimated regression residuals and well-specified model assumption so that they are
obviously not suitable for quick and convenient association detection.

Second, as shown in Figure 3(b), nCor|∆| successfully detected the heteroscedasticity of the data
whatever type of underlying g(x) was applied. The vast majority of nCor|∆| values are inside the
95% confidence interval in Example 1, and contrarily, the correlation scores are significant in the
other three examples. The figure clearly suggests that nCor|∆| is a consistent measure that has
statistical power increasing as the sample size increases in every case. Moreover, nCor|∆| is quite
robust to both data distribution and R2, as it exhibited very similar performance with respect to the
statistical power under different situations.

To further assess the performance of the proposed method in the extreme situations of small sample
size (N = 30, 50, 100, 150) and extremely small noise (R2 = 0.9, 0.99, 0.999), more experiments
were conducted and the results can be found in Appendix E in supplementary material. The experiment
results confirm that nCor|∆| may exhibit less detection power under smaller sample sizes, in which
case the data points are not guaranteed to be within close distance of each other in x. Moreover, the
occurrence of outliers (which also lead to large distances between reordered data points) accompanied
by extremely large R2 may make the proposed test to be prone to inflated type I error. The experiment
results suggest that this problem can be addressed by removing the isolated data points that have
extreme values of x from the datasets for nCor|∆| computation.

Third, nCor and four typical and widely accepted association measures including dCor, RDC, MIC,
and kNN based MI estimator were also implemented for comparison purpose. Here, the MI scores
were re-scaled to the range of [0, 1] as 1− exp(−2MI(x, y)). (i) As shown in Figure 3(c), despite
being able to detect g(x) when R2 = 0, dCor and RDC displayed less and less detection power
as R2 increases until becoming heteroscedasticity insensitive when R2 = 0.8. (ii) The scores of
MIC and MI in the last three examples are perceptibly greater than that in Example 1 even though
R2 = 0.8, which should reflect both the dependencies of f(x) and g(x). Despite measuring the total
dependence between (x, y), they still cannot distinguish between the impacts of x on the expectation
and variance of y, in other words, to what extent the dependence is functional (predictable) or not.
For example, the scores of MI for E.2 with R2 = 0 are very similar to that for E.1 with R2 = 0.4.
Actually, the first dependency is completely unpredictable, and the second one is just the opposite.
Both MI and MIC failed to diagnose these conditions. (iii) nCor properly measured the R2 of all
the functional relationships, but was completely insensitive to the heteroscedastic relationships. In
contrast, nCor|∆| showed stable performance on detecting heteroscedasticity whateverR2 is. Clearly,
the two tests are ideally complementary to each other, and outperforms the other methods.

Finally, we extended the four examples to multivariate case as given in Figure 4. The figure shows
that the detection power of nCor|∆| decreases as the dimension of x increases, and varies with
different g(·) and R2 especially when M is large and f(·) is highly nonlinear. This situation can be
gradually improved by increasing the sample size, however, it still cannot perform as well as nCor
(see Appendix E). This is because, g(·) is more difficult to be detected than f(·) since g(·) is blended
with θ through interaction. In these experiments, moreover, each xi has exactly the same impact on
y, which leads to another difficulty that there is no individual heteroscedasticity that dominates the
entire relationship. As shown in Appendix E, with large M and nonlinear g(·), the heteroscedastic
relationships become too blurred to be diagnosed even by a visual inspection of the scatterplots.
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Figure 4: The average nCor|∆|(x1 · · ·xM , y) scores for y = β
∑M

i=1 f(xi) +
∑M

i=1 g(xi)θ, where
f(·) and g(·) were defined the same as in Figure 2, and x1 to xM were randomly generated with
uniform distribution and data length of 200, 1000, 5000.
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4.2 Detecting complex nonfunctional relationships

In this section, two functional and six nonfunctional associations were employed to further evaluate
the proposed method. These data associations were originally introduced by Reshef et al. [19], and
most of them were inspired by the patterns found in real-world data, such as line & parabola, ellipse,
and non-coexistence. All the data sequences were generated with length of 10000, and corrupted
by uniform noises. In the first two experiments, both horizontal and vertical noises with different
variances were applied, that is, not only y but also x contain noises. In the last two experiments,
noises were separately added into x and y. For more details see Appendix F in supplementary
material. Figure 5 depicts the simulated data, and the nCor and nCor|∆| test results.

For D3-, D4-, D6-, D7-, and D8-, whatever type of noise was applied, the nCor|∆| test results suggest
that they are heteroscedastic so that there exist strong nonfunctional relationships in these datasets.
The nCor test also yielded considerable scores, that is to say, functional relationships coexist so that
there is merely a part of the variation of each y that can be predicted from x. For D5-, all the nCor|∆|
scores were significant, and meanwhile, the nCor values felled below the 95% confidence limit.
This means that y is completely unpredictable even though an obvious dependence exists between
(x, y). In this case, the central tendency of y should be a straight line parallel to x axis. From another
perspective, the detection results can also be explained as that in these datasets x influences y through
interaction to some extent with other unknown variable(s). As shown in Appendix F, actually, there is
another interacting variable u in each case that is invisible but indeed also impacts on y. Whenever u
is known, the relationship will become fully functional and predictable. In brief, the two tests detected
all the relationships in the datasets, and properly revealed the composition of the data associations.

D1−xyS D2−xyS

D1−xyL D2−xyL

D3−xyS D4−xyS

D3−xyL D4−xyL

D5−xyS D6−xyS
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(a) The simulated data (horizontal and vertical correspond to x and y) (b) Residuals
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(c) The detection results obtained from using nCor, and nCor|∆|

Figure 5: The scatterplots of the 8 types of bivariate associations corrupted by 4 types of uniform
noises. The noise free relationships of D1- and D2- are functional, and the rest are nonfunctional. In
D -xyS and D -xyL, both horizontal and vertical noises were added to the data with different noise
levels (S and L denotes small and large respectively), by contrast, only vertical noise was added in
D -yL, and only horizontal noise was added in D -xL. The red lines in (a) represent the prediction
results for the functional relationships obtained by using the best fitted ANN models (3-layers, 3
hidden neurons for D1- and 7 hidden neurons for D2-), and the regression residuals (ε) are given in
(b). (c) shows the detection results, and the grey shaded areas represent the 95% confidence intervals.

For the functional datasets, D1- and D2-, all the nCor values far exceeded the confidence limit. It
is noted that the nCor|∆| tests indicate that the underlying noises in four of the eight datasets are
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heteroscedastic. It may seem a little counterintuitive that the scatterplots of D2-xyS, D2-xyL, and
D2-xL all look more even than that of D2-yL, but nevertheless, by nCor|∆| only D2-yL was judged
to be homoscedastic and purely functional. This is because in the three datasets the observed x
was corrupted by horizontal noise ex, which may lead to an extra interaction term as y = f(x) +
h(x, ex) + ey. Since ex is unknown, h(·) becomes a heteroscedastic component of the underlying
noise and will be remained in regression residuals. Similarly, the test results shows that D1-xL is
heteroscedastic, and the heteroscedasticity of D1-xyS and D1-xyL are too weak to be detected due to
the corruption by ey. To confirm these findings, feedforward artificial neural network (ANN) was
employed to identify the associations and then check on the assumption of homoscedasticity by visual
examination of residual plots. Figure 5(a) and 5(b) show the predictive curves and residuals obtained
from using ANN models, which are entirely consistent with the results of the nCor|∆| test. In brief,
nCor|∆| successfully prejudged the heteroscedasticity of the residuals without regression modelling.

5 Conclusions

Here, we have proposed a new association measure, nCor|∆|, to detect the heteroscedastic relation-
ships between variables. When used alone, it straightforwardly examines the heteroscedasticity of the
underlying noise contained in the data rather than the residuals of a regression analysis, and therefore
it is much more efficient and easier to conduct in comparison with the traditional heteroscedasticity
tests. When used together with nCor, the two tests form an enhanced toolkit that can not only detect
a wider range of complex associations, but also distinguish between functional and nonfunctional
relationships. Compare to previous association measures, they can obviously get deeper insight into
the inter-structure of the data associations, and may provide a promising direction for further analysis.
The new method can be widely used to provide solutions for feature selection, model validation, and
many other issues in data analysis, interpretation, and modelling.
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