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Abstract

Traditional knowledge graph embedding (KGE) models map entities and relations
to unique embedding vectors in a shallow lookup manner. As the scale of data
becomes larger, this manner will raise unaffordable computational costs. Anchor-
based strategies have been treated as effective ways to alleviate such efficiency
problems by propagation on representative entities instead of the whole graph.
However, most existing anchor-based KGE models select the anchors in a primitive
manner, which limits their performance. To this end, we propose a novel anchor-
based strategy for KGE, i.e., a relational clustering-based anchor selection strategy
(RecPiece), where two characteristics are leveraged, i.e., (1) representative ability of
the cluster centroids and (2) descriptive ability of relation types in KGs. Specifically,
we first perform clustering over features of factual triplets instead of entities, where
cluster number is naturally set as number of relation types since each fact can
be characterized by its relation in KGs. Then, representative triplets are selected
around the clustering centroids and further mapped into corresponding anchor
entities. Extensive experiments on six datasets show that RecPiece achieves higher
performances but comparable or even fewer parameters compared to previous
anchor-based KGE models, indicating that our model can select better anchors in a
more scalable way.

1 Introduction

Knowledge graphs (KGs) [35], such as Freebase [5], Wikidata [69], consist of a large number
of relational facts, such as Freebase [5], Wikidata [69], YAGO [51] and NELL [8], consist of a
large number of relational facts, which are generally in the format of triplets, i.e., (head entity,
relation, tail entity). Each triplet in KGs reveals a specific connection between entities. To leverage
such informative knowledge to enhance the capacity of models in different fields [75, 24, 84] and
applications [40, 43, 38], multiple knowledge graph embedding (KGE) models [59, 60, 48, 42, 82,
32, 31, 15, 14, 34, 35, 36, 81, 80] have been proposed these years.

However, traditional KGE models usually encode the entities, relations, and factual triplets in KGs
shallowly. Assuming the dimension as d, traditional KGE models, such as RotatE [61], will map these
elements in KGs into subspace RN×d, where N is the number of the target objects. Such a shallow
lookup manner in these traditional KGE models results in a linear growth of memory consumption
for storing the embedding matrix and incurs high computational costs [13]. Thus, as the scale of data
becomes larger and larger, top-level GPU or CPU clusters with more memory space are required for
these traditional KGE models. For example, about 78M × 200d entity feature matrix and 58.1 GB
GPU RAM [20] are needed for the best-performing model on PyTorch-BigGraph dataset [29].
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Figure 1: The problem of shallow knowledge graph embedding method.

To address such efficiency problems, there are three typical strategies integrated with KGE models,
including quantification [37, 53, 71], knowledge distillation [22, 72, 55, 85], and anchor-based
sampling [20, 70, 30, 78]. However, the first two types of strategies aim to realize more lightweight
models for deployment by compressing the normal-size trained model. In other words, the standard
KGE models still need to be trained on large datasets in advance. Compared to them, the anchor-based
sampling strategy, raised by [20], will be more efficient in both training and deployment phrases, since
it actually reduces the size of the entity set for propagation, i.e., from an intact set of all of the entities
to an anchor set of some representative entities. Note that propagation means the feature aggregation
procedure. Compared to quantification and knowledge distillation, anchor-based sampling can be
easily composed with different KGE baselines to optimize the efficiency of these models.

While, most of the existing anchor-based KGE models [20, 70, 30, 78] select the anchors in a
primitive manner, e.g., random selection, and manual selection of different centrality measurement
strategies [20], etc. Thus, the anchor quality cannot be well guaranteed, which limits the performance
of the models. In particular, the weights for each strategy on different datasets are usually determined
according to grid searching, which is resource-consuming. In addition, considering efficiency will
generally bring performance loss compared to the selected shallow KGE backbones. Therefore,
reducing performance loss while ensuring good efficiency is also a problem that our work expects to
solve. More related works are discussed in Appendix A.2 due to the space limitation.

Our work takes an attempt to design a more reasonable and accurate anchor selection strategy for
better-quality knowledge embedding. During the investigation, two important characteristics come
to our sights and are used in our RecPiece, including: (1) representative ability of the cluster centroids
and (2) descriptive ability of relation types in KGs. Specifically, cluster centroids are proven as
the most representative samples within corresponding clusters in various works [67, 52, 26, 46].
Meanwhile, clustering will not introduce too many procedures via unsupervised learning techniques,
which is proper to be adopted as the core mechanism for anchor selection in an efficient KGE model.
Furthermore, typical clustering algorithms require two inputs, i.e., clustering features and cluster
number. Both of them should be determined according to the characteristics of KGs, thus leading the
clustering-based mechanism more suitable for the data type of KGs. As known to all, KGs focus more
on relationships between entities compared to other graph types, so each factual triplet in KGs reveals
relational knowledge. In addition, triplets can be easily categorized into different clusters according
to relation types in KGs. For example, (Mike, father of, Tom) and (John, father of, James) can both
be characterized into same type, i.e., facts to reveal the "father of " relationship. The characteristic
shows the descriptive ability of relation types in KGs. Inspired by it, we select features of factual
triplets instead of entities as the clustering features, and the number of relation types is set as the
cluster number. Note both of the information can be easily obtained as the attributes in any KGs.

To this end, we propose RecPiece, a novel anchor-based KGE model with a relational clustering-based
anchor selection strategy. Specifically, we perform clustering over the features of the relational facts
instead of entities, where the cluster number is naturally set to the number of relation types since each
fact can be characterized by its relation in KGs. Then, the representative triplets are selected around
the clustering centroids, which are further mapped into corresponding anchor entities. Extensive
experiments are conducted on both link prediction and entity classification among RecPiece, shallow
KGE models, and typical anchor-based KGE baseline, i.e., NodePiece, to demonstrate the promising
capacity of our RecPiece from six aspects, i.e., superiority, effectiveness, scalability, efficiency,
transferability, and sensitivity. In summary, the contributions are shown from three aspects below:

• Problem. We analyze the limitations of previous anchor-based KGE models, and point out two
useful characteristics: (1) representative ability of the cluster centroids and (2) descriptive ability
of relation types in KGs, which guide RecPiece to address the limitations.

2



• Method. We design a novel anchor-based KGE model with a relational clustering-based anchor
selection strategy. In particular, we perform clustering on the features of factual triplet into |R|
(the number of relation types) clusters, which can be easily determined as the attributes of any
given KGs, thus leading to a more scalable and explainable efficient KGE model.

• Experiment. Extensive experiments show that RecPiece can endow shallow KGE models to
have better efficiency but without significant performance losses compared to other anchor-based
KGE models on various downstream tasks, indicating that our model can select better anchors in
a more scalable way. In particular, RecPiece is not only 84x and 1.2x lightweight than shallow
KGE baseline, i.e., AutoSF, and anchor-based KGE baseline, i.e., NodePiece, but also makes
9.5% and 4.9% ranking performance improvements on MRR.

2 Related Work
This section summarizes the recent related works from three aspects: i.e., traditional knowledge
graph embedding (KGE) model, parameter-efficient model, and anchor-based strategy. Due to the
space limitation, please refer to Appendix A.2 for details.

3 Method
The methodology of our RecPiece is illustrated in this section. More concretely, we first formulate
the task and present the overall framework of RecPiece. Then, we further introduce the modules and
procedures within RecPiece in detail, especially for the relational clustering-based anchor selection
procedure. At last, we provide a comprehensive discussion on the excellent attributes of RecPiece,
which is enlightening for understanding our model. The framework of RecPiece is shown in Fig. 2.

3.1 Prelinmary Table 1: Notation summary.

Notation Explanation
E ,R,G set of entity, relation and triplet
e, r, t element of entity, relation, fact
Gi fact set for relation ri
p(·) pretrained triplet encoder
g(·) clustering algorithm
ϕa(·) candidate triplet selection mechanism
ϕb(·) triplet-entity mapping mechanisms
f(·) KGE models for feature propagation
| · | quantity number
H, h feature matrix and vector
C cluster centroid set
ci ith cluster centroid

dist(·) distance function
Di distance set

T ∗ , Ti candidate triplet set and subset for cluster i
A candidate anchor set
Θ triplet distribution based on relations
k number of anchors (hyper-parameter)

Task Formulation The knowledge graph is the di-
rected relational graph, denoted as KG = (E ,R,G),
where E , R and G represent the set of entities (i.e.,
nodes), relations (i.e., edge types) and fact triplets
(i.e., edges), respectively. Similar to typical anchor-
based baseline [20], RecPiece are more like a plug-
and-play auxiliary module, which can be easily ap-
plied to any KGE model to reduce the space com-
plexity of the adopted KGE backbone. Moreover,
RecPiece is evaluated on different downstream tasks,
i.e., link prediction and entity classification. Note
that the focus of this work is not only on those rank-
ing and classification metrics but also the efficiency.
In other words, the main goal of our RecPiece is to
achieve better performances on different tasks with
fewer or comparable parameters compared to the pre-
vious anchor-based KGE models.

Knowledge Graph Characteristic Knowledge graphs (KGs) [35, 25] store the relational facts
intuitively. Compared to other graph data, KG focuses more on the relationships between entities,
and the knowledge is stored in the factual triplets. Moreover, considering adopting the clustering
algorithm for anchor selection, the cluster number can be easily fetched according to the number of
relation types. Thus, we selected the features of triplets as the clustering features in this paper.

3.2 Overview Framework
Our RecPiece is a novel anchor-based KGE model with a relational clustering-based anchor selection
strategy, which contains five procedures as shown in Fig. 2, including (a) feature preparation, (b)
clustering over features of factual triplets, (c.1) candidate triplet selection, (c.2) triplet-entity mapping
and (d) feature propagation. As anchors in RecPiece are selected based on the clustering-based
mechanism, we need to generate the clustering features and determine the cluster number in advance.
Thus, encoder p(·) is adopted for triplet feature preparation for clustering in (a). Then, the generated
features are clustered into |R| clusters via g(·) during (b). Later on, we construct the anchor set via
two procedures, (c.1) and (c.2). Finally, feature propagation happens on the anchors constrained with
different task losses in (d). More details are described as follows, and notations refer to Tab. 1.
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Figure 2: The illustration of our model, which is an anchor-based KGE model, termed RecPiece,
by introducing a more explainable and scalable relational clustering-based anchor selection strategy.
Note that different factual triplets are coloured in different colours according to relation types, i.e.,
blue for r1, orange for r2, and green for r3. p(·) and f(·) are two encoders for feature preparation and
propagation, respectively. Besides, g(·) is the adopted clustering algorithm with the cluster number
set as the number of relation type |R|, and anchor set construction contains two steps ϕa(·) and ϕb(·).
Note that the detailed description of the above modules is illustrated in Section 3 and the notations
are summarized in Tab. 1.

3.3 Feature Preparation
Feature preparation aims to generate the features for clustering. During the procedure, the encoder
p(·) takes the triplet set G as input and outputs the corresponding feature matrix HG ∈ R|G|×d, where
the feature vector hti of triplet ti can be easily fetched from the corresponding row as HG [i, :].

HG = p(G) (1)

Specifically, p(·) contains the following steps: we first generate the embeddings of entities and
relations with selected knowledge graph encoders. Then, we traverse all factual triplets in G and get
the feature vector htn for nth triplet tn = (eh, r, et) by summing up the normalized embeddings
h̄ of entities (h̄eh

, h̄et) and relation (h̄r). Finally, the triplet feature matrix Ht is generated by
concatenating all triplet embeddings together.

HG =
⊕
tn∈G

htn (2)

3.4 Relational Clustering-based Anchor Selection
As the core of RecPiece, a novel relational clustering-based anchor selection strategy is designed
based on characteristics of both clustering centroids and knowledge graphs. Specifically, the selection
strategy can be separated into two parts, i.e., cluster centroid generation and anchor set construction.

3.4.1 Cluster Centroid Generation
We first perform clustering over the priorly generated triplet feature matrix, i.e., Ht into |R| clusters,
where cluster number is set as the number of the relation types. The adopted clustering algorithm g(·)
can output the embedding vector set of cluster centroids C = {hc1 ,hc2 , · · · ,hc|R|}.

C = g(Ht, |R|) (3)
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3.4.2 Anchor Set Construction
The cluster centroids are usually not the specific samples in datasets. Thus, we find representative
samples as anchors around them. To achieve the goal, two procedures are designed for anchor set
construction, including candidate triplet selection ϕa(·) and triplet-entity mapping ϕb(·). Concretely,
the former procedure aims to select representative triplets for each relation type, while the latter
procedure picks up the representative entities based on the triplets to constitute the final anchor set.

Candidate Triplet Selection. The factual triplets with the top mi closest distance to the cluster
centroid ci ∈ C are selected as the candidate triplets. Specifically, cosine(·) function is used as the
distance function dist(·) to measure the distance, which can also be substituted into other functions,
such as euclidean(·). Then, we can get the distance set D for each cluster:

Di =
⋃

tn∈G
dist(ci, tn)

=
⋃

tn∈G

[ ⟨hci ,Ht[n, :]⟩
∥hci∥2 · ∥Ht[n, :]∥2

]
,

(4)

where tn ∈ G denote the nth factual triplet, and hci represents the feature vector for centroid ci.

T ∗ =
⋃

i∈[1,|R|]

Ti

=
⋃

i∈[1,|R|]

arg top-mi
tn

Di ,
(5)

where the candidate triplet set T ∗ is composed of sets T for different relation types. Triplets, whose
embeddings are the top mi closest to hci ∈ C, are selected as the candidate triplets via arg top-mi.
Note that mi is not a hyperparameter, and it can be calculated when given the total anchor number k:

mi = k · |Gi|
|G|

, (6)

where ri represents the ith relation type and |Gi|/|G| is the frequency distribution Θ of triplets with
relation ri, which can be easily obtained based on the attribute of the KGs. Taking the KG in Fig. 2
as an example, the [|G1|, |G2|, |G3|] = [7, 7, 7] and r3, and if k = 6, [m1,m2,m3] = [2, 2, 2].

Triplet-Entity Mapping. The entity anchor set A is constructed from the selected triplet set T ∗ by
randomly picking either the head or tail entity as the anchor entity corresponding to each triplet. The
|A| ≤ |T ∗|, since we will remove those identical entities.

A = ϕb(T ∗) (7)

3.5 Feature Propagation
The hashing and encoding procedures in [20] are leveraged for feature propagation. Specifically, the
features of each entity ei are first hashed into a hash(ei) using two types of anchor information, i.e.,
discrete distances and relational contexts. Then, we leverage MLP as the encoder f(·) to bootstrap the
feature embeddings of each entity based on the vectorized hashing features. Besides, according to the
types of the downstream tasks, i.e., entity classification and link prediction, various loss functions are
adopted for training and optimization. In conclusion, our RecPiece can be integrated with different
combinations of KGE backbones and loss functions toward different tasks and scenarios.

3.6 Attributes of RecPiece
In this section, we further discuss some attributes of the proposed RecPiece from various aspects
shown below. (1) Random and manual anchor selection in previous anchor-based models is highly
dependent on the human experience. Compared to them, ours is more reasonable and learnable
according to the representative ability of the cluster centroids. (2) Our RecPiece is developed based
on the characteristics of KGs. Specifically, we perform clustering on features of triplets instead of
entities since the knowledge units in KG are stored in triplets, which can also be easily characterized
based on the relation type. (3) The hyper-parameter, i.e., cluster number, for clustering algorithms can
be determined according to the attributes in KGs in RecPiece as the number of relation types. Thus,
our anchor selection only contains one hyper-parameter, i.e., anchor number, which is inevitable and
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Table 2: Link prediction results on FB15k-237, WN18RR, CoDEx-L, and YAGO 3-10. % denotes
the Hits@10 ratio regard to the anchor-based KGE baseline, i.e., NodePiece + RotatE.

FB15k-237 WN18RR
#Parameter (M) MRR Hits@10 % Effi. #Parameter MRR Hits@10 % Effi.

RotatE 29.3 0.338 0.533 100 0.012 40.6 0.476 0.571 100 0.012
NodePiece + RotatE 3.2 0.254 0.420 78.8 0.079 5.0 0.396 0.504 88.3 0.079
RecPiece + RotatE 2.9 0.265 0.431 80.9 0.091 5.0 0.402 0.506 88.6 0.080
Improvement 9.3% 4.3% 2.6% 2.6% 1.5% 0% 0.3% 0.4% 0.3% 1.3%

CoDEx-L YAGO 3-10
#Parameter (M) MRR Hits@10 % Effi. #Parameter MRR Hits@10 % Effi.

RotatE (500d) 77.0 0.258 0.387 100 0.003 123.0 0.495 0.670 100 0.004
RotatE (20d) 3.8 0.196 0.322 83.2 0.052 4.8 0.121 0.262 39.1 0.025
NodePiece + RotatE 3.6 0.190 0.313 80.9 0.053 4.1 0.231 0.465 69.4 0.055
RecPiece + RotatE 3.0 0.198 0.323 83.5 0.066 4.1 0.243 0.482 71.9 0.058
Improvement 16.7% 4.2% 3.2% 3.2% 24.5% 0% 5.2% 3.7% 3.6% 5.5%

Table 3: Entity classification results on two subsets in WD50k.
WD50K (5% labeled) WD50K (5% labeled)

#Parameter (M) ROC-AUC PRC-AUC Hard Acc ROC-AUC PRC-AUC Hard Acc
MLP 4.1 0.503 0.016 0.001 0.510 0.017 0.002

COMPGCN 4.4 0.836 0.280 0.176 0.834 0.265 0.161
Nodepiece+COMPGCN 0.75 0.981 0.443 0.513 0.981 0.450 0.516
RecPiece + COMPGCN 0.64 0.983 0.459 0.538 0.984 0.464 0.536

Improvement 14.7% 0.3% 3.6% 4.9% 0.3% 3.1% 3.9%

also needed by other anchor-based methods. Besides, other models even need resource-consuming
grid-searching to get weights for different centrality measurement strategies on different KGs. (4)
Based on the above analyses, RecPiece is also more capable of being extended to various KGE
models and applied to different KGs.

4 Experiment
Experiments are conducted to demonstrate the promising capacity of our RecPiece from five aspects,
i.e., superiority, effectiveness, scalability, efficiency, transferability, and sensitivity, by answering the
following six questions.

• Q1: Superority. Does RecPiece achieve better performance compared to the previous anchor-
based strategy, NodePiece, when integrated with different KGE models for different downstream
tasks?

• Q2: Effectiveness. Does the clustering strategy make a difference? Besides, how do the adopted
components in RecPiece influence the performance?

• Q3: Efficiency. Will the RecPiece lead to a more parameter-efficient model? What is the
performance of time and memory cost?

• Q4: Scalability. How does our RecPiece perform on large-scale knowledge graph?
• Q5: Transferability. Will our RecPiece be effectively integrated with different KGE backbones?
• Q6: Sensitivity. How does the performance influenced by RecPiece with different hyper-

parameters?

4.1 Experiment Setting
Table 4: Dataset Statistic. "LP" and "EC" denote
link prediction and entity classification. "#" repre-
sents the number.

Data Task #Ent. #Rel. #Fact
FB15k-237 LP 14,505 237 310,079
WN18RR LP 40,559 11 92,583
CoDEx-L LP 77,951 69 612,437

YAGO3-10 LP 123,143 37 1,089,000
OGB WikiKG 2 LP 2,500,604 535 17,137,181

WD50K EC 46,164 526 222,563

Datasets. Six benchmark datasets are lever-
aged to evaluate our RecPiece as same as previ-
ous works do [13, 20, 30]. Specifically, FB15k-
237 [64], WN18RR [18], CoDEx-L [54], and
YAGO3-10 [45] are used for link prediction.
The entity classification is carried out on two
subsets (5% and 10% labeled) from WD50K
[21], and the OGB WIKIKG 2 [23, 20] is the
larger KGs for scalability analysis. The statistic
details of the datasets are shown in Tab. 9.

Implementation Details. All experiments are conducted on the server with 4-core Intel(R) Xeon(R)
Platinum 8358 CPUs @ 2.60GHZ, a single 80 GB A100 GPU and 64GB RAM with PyTorch [49]
libraries.
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Table 5: Ablation study for different anchor se-
lection strategies."EP" and "RP" represent entity
prediction and relation prediction. "NDC" and
"PPR" are short for Node Degree Centrality and
Personalized PageRank.

Entity Prediction Relation Prediction
MRR Hits@10 MRR Hits@10

Random 0.249 0.417 0.878 0.971
NDC 0.250 0.418 0.877 0.970
PPR 0.251 0.419 0.878 0.971

NodePiece 0.254 0.420 0.881 0.970
RecPiece 0.265 0.431 0.884 0.975

The p(·) for feature preparation is selected
as pretrained NodePiece [63] in the first few
epochs. Besides, k-means [41, 44] is selected as
g(·) for clustering, and the cluster number is set
as "#Rel." in Tab. 9 for different datasets. For
a fair comparison, we set anchor numbers k for
each dataset as the same as [20], and 2-layer-
MLP is adopted as f(·) feature propagation. In
addition, we replace the default p(·), g(·) and
dist(·) to pretrained GraIL [63], BitechingK-
means [50] and euclidean(·) for robustness anal-
ysis. Moreover, as for different tasks, RecPiece
is integrated with three KGE backbones, i.e., Ro-
tatE [61], ComPGCN [68], and AutoSF [79] to compare with thirteen KGE models, including (1)
link prediction: TransE [6], DisMult [77], ComplEX [65], PairRE [10], RotatE [61], TripleRE [78],
AutoSF [79], LRE + PairRE [11], NodePiece + RotatE [20], and NodePiece + AutoSF [20]; (2) entity
classification: MLP, ComPGCN [68], and NodePiece + ComPGCN [20]. More details are present in
Appendix.

Evaluation Metrics. For link prediction, both MRR [16] and Hits@k [1] are used as the ranking
metrics. Besides, ROC-AUC, PRC-AUC, AP, and Hard Accuracy are the evaluation metrics [23] for
entity classification. To quantify the efficiency, we report the parameter number #P (M), memory cost
(GB), running time (hours), and Effi. [13]. Note that Effi. [13] is calculated by MRR/#P.

4.2 Main Performance (RQ1)

The performance comparison is carried out between our RecPiece and the existing anchor-based
KGE baseline, i.e., NodePiece, on two typical downstream tasks, i.e., link prediction and entity
classification. It aims to answer Q1.

Table 6: Ablation study for whether pretrained
based on language models. "KG-self" and "PLM"
represent that the pretrained features are generated
on structure information and extra-textual informa-
tion, respectively.

Model MRR Hits@10
RotatE 0.338 0.533

NodePiece + RotatE 0.254 0.420
RecPiece (KG-self) + RotatE 0.265 0.431

RecPiece (PLM) + RotatE 0.262 0.425

Table 7: Ablation study for different clustering
features. "triplet" and "entity" represent clustering
over the features of relational triplets and entities,
respectively. All the results are for link prediction
results on FB15k-237

Model MRR Hits@10
RotatE 0.338 0.533

NodePiece + RotatE 0.254 0.420
RecPiece (triplet) + RotatE 0.265 0.431
RecPiece (entity) + RotatE 0.259 0.424

Results Report Tab. 2 shows that RecPiece
can achieve better performance on link predic-
tion, i.e., average 6.5% fewer on parameter
number and 3.5% and 2.5% improvements on
MRR and Hits@10. In particular, the improve-
ments are apparent on FB15k-237 and CoDEx-L.
Even though the performance improvements on
WN18RR are the smallest, it is still comparable.
According to Tab. 3, RecPiece can also achieve
promising results on entity classification with
about 14.7% fewer in parameter number and
3.3% and 4.4% boosts on PRC-AUC and Hard
ACC, respectively.

Discussion Based on the above results, we can
easily get the answer to Q1 that our RecPiece
can achieve better performances on both link
prediction and entity classification with com-
parable or even fewer parameters compared to
the previous anchor-based strategy, NodePiece
[20]. It further indicates less performance loss
will be caused by RecPiece in a more parameter-
efficient manner. Although our RecPiece still
raises the performance loss compared to the shallow KGE baselines, i.e., RotatE and COMPGCN, it is
an inevitable trade-off for considering efficiency (over 90% reduction on parameters) via anchor-based
strategy, which also occurs on other anchor-based KGE models. Moreover, we notice that different
performance improvements are made by our RecPiece in different datasets. It may suggest that our
RecPiece can achieve better performance on those denser datasets for link prediction, thus leading to
fewer improvements on sparser WN18RR compared to denser FB15k-237.
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Figure 3: Ablation study of different components in RecPiece. (a), (b) and (c) show the impact of the
different pretrained triplet encoder p(·), clustering algorithm g(·), and distance function dist(·) for
link prediction task on FB15k-237

4.3 Ablation Studies (RQ2)
In this section, different ablation studies are presented to prove the effectiveness of RecPiece.
Concretely, we first discuss the effectiveness of our anchor-selection strategy. Then, we further
analyze the effectiveness of the important components in each step of RecPiece shown in Section 3.2
and Fig. 2.
4.3.1 Anchor Selection Strategies
The anchors of better quality will definitely contribute to better performances. To prove that our
relational clustering-based anchor selection strategy can effectively select better anchors, we compare
it with four other strategies, i.e., Random Selection, Node Degree Centrality, Personalized PageRank,
and NodePiece, on FB15k-237 for link prediction, which contains two different settings, i.e., missing
entity prediction and missing relation prediction. Tab. 5 shows that our anchor selection strategy
outperforms other strategies in both two settings. In particular, our strategy makes the 4.3% and 2.6%
performance boost on MRR and Hits@10 metrics compared to the NodePiece-based model.
4.3.2 Feature Preparation
In this section, we discuss the impact of different pretrain triplet encoders in the first step of RecPiece,
i.e., feature preparation.

We first adopt different structural information encoders p(·) in KGs for pretraining. Fig. 3 (a) shows
that both GraIL [63] and default RNP [20] can both achieve promising performance, but RNP is
better than the GraIL model. Besides, we also attempt to leverage the typical pretrained language
model (PLM), i.e., BERT [27], to prepare the pretrained features over the real textual meaning of
different entities and relations. The results are shown in Tab. VII. It indicates that relying on structural
information for pretraining on KG link prediction is more promising than extra-textual meaning. It
is reasonable that link prediction is indeed a task more related to network structures. However, the
results also show the potential capacity of our RecPiece when leveraging the extra information.

In our model, the pretrained procedure is only used for feature preparation, which can be replaced as
you want. No matter which feature preparation it is, the key idea of the paper will not be affected.
Nevertheless, our RecPiece can all make improvements when leveraging different pretrained encoders.

4.3.3 Clustering over Features
As for the second step of RecPiece, we discuss and analyze the clustering features and the clustering
methods.
Clustering Features We also conduct experiments to verify that it is better to perform clustering
on relational triplet features. Table VI shows that although there are still performance boosts when
leveraging entity features, there are more apparent improvements in performances with triplet features.
Thus, the results prove our idea, i.e., relational triplet features are more representative than entity
features in KGs. Note that we try different cluster numbers for experiments on entity clustering and
select the best results of them (with cluster number 10).
Clustering Methods We also try different clustering methods for anchor selection, i.e., KMeans and
BisectingKmeans. Fig. 3 (b) shows that both clustering methods can lead to promising performances.
It further indicates that our framework is effective with different clustering method choices, which
demonstrates the generalizability of our model.

4.3.4 Anchor Selection
As for the anchor selection step, we further analyze the impact of different distance functions to
select the anchors that are closer to the clustering centroids. The experiments are carried out on two
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Figure 4: Memory cost and running time comparison.

types of distance function, i.e., Cosine function and Euclidean function. Fig. 3 (c) demonstrates that
RecPiece is robust to different distance functions, where Cosine(·) is better than Euclidean(·). But no
matter which strategies they are, the performances are higher than the performance without distance
function. It further indicates the effectiveness and generalizability of our framework.

4.3.5 Discussion
We comprehensively present ablation studies from different aspects. Tracking all of the
results of the experiments demonstrates the effectiveness of RecPiece, which is composed
of the answer to Q2. Since the ablation study on feature propagation is to evalu-
ate the effectiveness of different combinations of backbone KGE models, which is simi-
lar to transferability analysis, the detailed discussion of this part is shown in Section 4.6.

Table 8: Link prediction results on OGB WikiKG
2. The best results are marked in Bold.

Model #Params MRR
TransE (500d) 1250M 0.426 ±0.003
DisMult (500d) 1250M 0.373 ±0.005
RotatE (250d) 1250M 0.433 ±0.002

ComplEX (250d) 1250M 0.503 ±0.003
PairRE (200d) 500M 0.521 ±0.003

PairRE+LRE (700d) 505M 0.584 ± n/a
TripleRE 501M 0.579 ±0.002
AutoSF 500M 0.546 ±0.005

NodePiece + AutoSF 6.9M 0.570 ±0.003
RecPiece + AutoSF 5.9M 0.598 ±0.003

Improvement 14.5% 2.2%

4.4 Efficiency Analysis (RQ3)
This section presents and discusses the effi-
ciency of RecPiece from three aspects, param-
eter efficiency, memory efficiency, and time ef-
ficiency. As shown in Tab. 2 and Tab. 3,
RecPiece can incredible save about 10x, 8x,
26x, 30x, and 7x parameters on five bench-
mark datasets, including FB15k-237, WN18RR,
CoDEx-L, YAGO 3-10 and WD50K compared
to shallow KGE baselines, i.e., RotatE and
COMPGCN. Compared to NodePiece, the re-
sults above prove that RecPiece can endow the
KGE model to be more parameter-efficiency.
Specifically, performance boosts are made on
both link prediction and entity classification
with comparable or even fewer parameters. It
further indicates less performance loss will be caused by RecPiece in a more efficient manner. Al-
though we focus more on parameter efficiency, Fig. 4 shows the recorded real GPU cost and running
time are comparable and slightly less. Concretely, it has better efficiency on real memory cost and
running time, i.e., on average 114 MB and 0.89 hours reduction compared to NodePiece. It further
indicates that RecPiece also has a good effect on memory efficiency and time efficiency.

In conclusion, the efficiency of our RecPiece is promising (RQ3). We also admit that the pre-train
paradigm and anchor-based strategies will cost some resources, both in time and memory, which
will be optimized in the future. Note that such redundancy is commonly seen in other methods with
similar techniques. Considering the performance gains, such a limited cost is also acceptable, which
should not influence the effectiveness of RecPiece.

4.5 Scalability Analysis (RQ4)
We compare RecPiece with nine state-of-the-art KGE models on OGB WikiKG 2 [23] to measure
its scalability to larger KGs. According to Table 8, we observe that our RecPiece + AutoSF can
outperform other KGE models. Specifically, the RecPiece + AutoSF model has only 5.9 M parameters,
about 84x smaller than the most efficient shallow models, i.e., AutoSF. Meanwhile, it is also about 1.2x
lighter than the anchor-based KGE baseline, i.e., NodePiece + AutoSF [20], with the same quantity of
anchors. Meanwhile, our RecPiece + AutoSF can even achieve better ranking performances compared
to the KGE model with best performance, i.e., about 2.2% MRR improvement compared to PairRE +
LRE [70]. Moreover, the running time for NodePiece + AutoSF and RecPiece + AutoSF is recorded
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Figure 5: Sensitive analysis in different settings. (a) and (b) reveals the influence of the models on
feature preparation in different epochs (i.e., |P.E.| represents the pretrained epoch number), where (a)
is for entity classification on WD15K (5% labeled), and (b) is for link prediction on FB15k-237. (c)
indicates the influence of the total anchor number k. (c) is based on link prediction on FB15k-237.

as 5.33 and 5.25 hours, which is also comparable. We believe that the above results prove the better
scalability of RecPiece with promising parameter reduction and better ranking performance.

4.6 Transferability Analysis (RQ5)
We answer Q5 in this section. Based on the aforementioned experimental results cover two different
downstream tasks, i.e., entity classification and link prediction, and three different types of shallow
KGE backbones, i.e., RotatE, COMPGCN, and AutoSF, we can reorganize and analyze the results
from another view. First of all, all of the experimental results are promising. In particular, there are
5.2% MRR performance improvements made by RecPiece on YAGO 3-10 for link prediction when
integrated with RotatE. Secondly, the improvements occur in all the situations when the backbone
models are integrated with our RecPiece. Therefore, as the conclusion, it is demonstrated that
our RecPiece is proven to be easily extended to different tasks and different KGE models as a
plug-and-play auxiliary mechanism, which shows great transferability of our RecPiece.

4.7 Sensitivity Analysis (RQ6)
We measure the sensitivity of RecPiece from two aspects to answer Q6, including the analysis on
(1) pre-trained epochs for the feature preparation model p(·), (2) anchor number k. The experiment
results are shown in Fig. 5. In general, our RecPiece is insensitive to the hyperparameters, which
demonstrates that our RecPiece can achieve stable performances. More specifically, we can get the
following two observations according to the aforementioned two aspects.

(1) Fig. 5 (a) and (b) reveals that there usually exists a pretrained epoch threshold pe∗ for p(·),
which indicates that the pretrained features are effective enough to be clustered for anchor
selection after pe∗, e.g., around 800 epochs (in 4000 epochs) for entity classification on WD15K
(5% labeled) and 150 epochs (in 400 epochs) for link prediction on FB15k-237.

(2) Fig. 5 (b) shows that more anchors will benefit the performance as same as NodePiece. Tradi-
tional KGE models propagate the features based on the whole graph, which is equivalent to the
anchor set composed of all entities. A larger set of anchors is closer to the complete entity set so
that less information will be abandoned, thus leading to better performance.

5 Conclusion
In this paper, we propose a novel anchor-based KGE model with a relational clustering-based anchor
selection strategy, RecPiece, where two characteristics are leveraged, i.e., (1) representative ability of
the cluster centroids and (2) descriptive ability of relation types in KGs. Specifically, we perform
clustering over the features of triplets instead of entities into |R| (number of relation types) clusters.
Then, representative samples are selected around cluster centroids, which are further mapped into
corresponding anchor entities. Extensive experiments show that RecPiece can endow shallow KGE
models to have fewer parameters without significant performance loss compared to other models, on
various tasks, indicating that our model selects better anchors in a more scalable way. In the future,
we plan to optimize this preparation procedure via a self-adaptive mechanism along with feature
propagation for better practicability and adaptivity in the future.
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A Appendix

A.1 Limitations and Future Works

Although proven effective and the idea is novel for large-scale KGE models, this paper only takes
a primitive attempt to select better anchors via clustering. Specifically, our feature preparation is
independent which requires auxiliary models. In this manner, the quality of anchors will be influenced
if the adopted model is not well-trained. Thus, we plan to optimize this preparation procedure via a
self-adaptive mechanism along with feature propagation for better practicability and adaptivity in the
future.

A.2 Related Work

This section summarizes the recent related works from three aspects: i.e., traditional knowledge graph
embedding (KGE) model, parameter-efficient model, and anchor-based strategy. The discussion
on typical related works provides the necessary background knowledge for our novel anchor-based
parameter-efficient KGE model, which assists readers to better understand our work.

Traditional Knowledge Graph Embedding Model. Traditional knowledge graph embedding
(KGE) models aim to map entities and relations into low-dimensional representations [25, 2, 33]
while preserving the semantic information underlying the original KG. In general, it can be roughly
divided into three types, i.e., translational models [6, 62, 19], tensor factorization models [57, 66],
and graph neural network based models [28, 57, 17, 68, 76]. For example, RotatE [61] proposes a
rotation-based translational method with complex-valued embeddings to better infer the symmetry,
anti-symmetry, inversion, and composition facts, which are widely used. As an improved model
for RGCN [56], COMPGCN [68] also jointly learns the representations with various entity-relation
composition operations. Moreover, AutoSF [79] proposes an adaptive manner for KGE scoring
function searching, which gains promising performance on large-scale scenarios. The above three
typical KGE baselines constitute the backbone models in this paper following previous works [20, 10].
However, few of these traditional KGE models do consider the efficiency of parameters [20] and data
compression [83]. As the scale of data becomes larger, the shallow lookup in traditional KGE models
will result in linear growth of memory consumption for storing larger embedding matrices and incurs
high computational costs [20], which limits their scalability to real-world scenarios. Our RecPiece is
designed for more parameter-efficient representation learning on knowledge graphs.

Parameter-Efficient Model. Different strategies have been leveraged for more efficient KGE
models in recent years, which can be roughly categorized into three types, i.e., quantification [37, 53],
knowledge distillation [22, 72, 85], and anchor-based sampling [39, 3]. As for quantification-based
methods, TS-CL [53] reduces the dimensions by learning discrete entity representations via quantiza-
tion. Besides, LightKG [71] designs the residual module to induce diversity among codebooks and
performs the dynamic negative sampling using quantization technology. Compared to them, MulDE
[72], DualDE [85], and Graph2Feat [55] are all distillation-based methods, which are developed
based on the teacher-student frameworks. Specifically, MulDE [72] leverages multiple KGE models
as teacher models to extract a student model with a lower dimension for space consumption reduction.
However, the teacher model in DualDE [85] is more suitable for the student model to obtain better
distillation results by considering the dual influence between them. Besides, Graph2Feat [55] extends
the distillation procedure for inductive setting. However, the above two types of strategies aim to real-
ize more lightweight models for deployment by compressing the trained model in normal size, which
means that the standard KGE models still need to be trained on large datasets in advance. Compared to
them, the anchor-based models [20, 70, 30, 78] will be more efficient in both training and deployment
since they actually reduce the size of the entity set for propagation. Moreover, anchor-based sampling
can be easily composed with different KGE baselines to optimize the efficiency of these models.
Beyond the above categories, ATTH [9] utilizes hyperbolic space and geometric transformations to
learn the improved low-dimensional representations, and PIE [12] reduces the space consumption
for entity representations via discrete code vectors and tensor decomposition. More recently, EARL
[13] does not learn one vector for each entity but by learning only the embedding of a small number
of entities, encoding the distinguishing information from their connected relationships, k nearest
reserved entities, and multi-hop neighbors, which translates the distinguishing information into entity
embedding. A*Net [86] proposes a path-based propagation strategies. Meanwhile, AdaProp [80] and

17



Table 9: Dataset Statistic. "LP" and "EC" denote link prediction and entity classification. "#"
represents the number.

Datasets Tasks #Entities #Relationship #Edges #Train #Validation #Test
FB15K-237 LP 14,505 237 310,079 272,115 17,526 20,438
WN18RR LP 40,559 11 92,583 86,835 2824 2924

CoDEx-Large LP 77,951 69 612,437 551,193 30,622 30,622
YAGO 3-10 LP 123,143 37 1,089,000 1,079,040 4978 4,982

OGB WikiKG 2 LP 2,500,604 535 17,137,181 16,109,182 429,456 598,543
WD50K EC 46,164 526 222,563 4600(N) 4600(N) 4600(N)

One-shot subgraph method [81] propose novel subgraph-based efficient methods, which are also an
emerging direction these years.

In this work, we focus more on developing a better and characteristic-adaptive anchor-based sampling
strategy. Unlike other independent parameter-efficient methods, although the anchor-based methods
may cause performance deduction, their plug-and-play attributes are better than other parameter-
efficient methods. It has excellent potential to be easily integrated with any other KGE models,
including hyperbolic embedding methods, such as ATTN [9]. Besides, among different types of
efficiency of KGE models, such as parameter efficiency, time efficiency, and memory efficiency, we
are concentrating more on the parameter efficiency of traditional KGE models instead of targeting
time and memory complexity.

Anchor-based Strategy. Anchor-based strategies, as effective sampling techniques, are widely
used in different fields [52, 73, 74, 67, 7] to solve efficiency problems these years. The main idea of
these strategies is to select the representative sample to represent a group of data so that the whole
dataset is not required for the learning procedure, which will improve the scalability and efficiency
of the original model. Inspired by Subword-powered algorithms [4, 58] in NLP, NodePiece [20] is
proposed, which is the most representative anchor-based KGE model. Many KGE models come
out based on it, such as TripleRE [78]. Besides, StarGraph [30] and DigPiece [70]are proposed
by adding extra neighbour constraints. Although these models all achieve promising performance,
the anchors in these methods are still selected in a primitive manner, e.g., random selection, and
manual selection of different centrality measurement strategies, including Node Degree Centrality,
Personalized PageRank, etc. Since these selection strategies are neither reasonable nor developed
according to the characteristics of the data type of KGs, the quality of the anchors cannot be well
guaranteed, which limits the performance of the models. In particular, the weight for each strategy on
different datasets is determined according to grid searching, which is time-consuming.

A.3 Experiment Setting

Experiment settings are introduced from three aspects, i.e., datasets, implementation details, and
evaluation metrics.

A.3.1 Datasets

Six benchmark datasets are leveraged to evaluate our RecPiece as same as previous works do
[13, 20, 30]. Specifically, FB15k-237 [64], WN18RR [18], CoDEx-L [54], and YAGO3-10 [45] are
used for link prediction. Among them, FB15k-237 [64] contains 237 relations, which is derived from
Freebase [5], and inverse relations are deleted to avoid the leaking problem compared to FB15k.
Similar to it, WN18RR [18] is derived from WordNet [47] without inverse relations. FB15k-237
can be considered relation-rich graphs, while WN18RR is a sparse graph with few relation types.
Besides, YAGO3-10 [45] consists of entities that have a minimum of 10 relations each which are
extracted from YAGO3. Different from the above three typical traditional datasets, CoDEx [54]
contains more diverse and interpretable content and is more difficult to evaluate. In this work, we
used the largest subset of it. The entity classification is carried out on two subsets (5% and 10%
labeled) from WD50K [21]. Furthermore, we leverage OGB WIKIKG 2 [23, 20], a large-scale KG,
for scalability analysis. The statistical details of the datasets are shown in Tab. 9.

A.3.2 Implementation Details

All experiments are conducted on the server with 4-core Intel(R) Xeon(R) Platinum 8358 CPUs
@ 2.60GHZ, a single 80 GB A100 GPU, and 64GB RAM with PyTorch [49] libraries. The p(·)
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for feature preparation is selected as pretrained NodePiece [63] in the first few epochs. Besides,
k-means [41, 44] is selected as g(·) for clustering, and the cluster number is set as "#Rel." in Tab. 9
for different datasets. Besides, a 2-layer-MLP is adopted as f(·) feature propagation. In addition,
we replace the default p(·), g(·) and dist(·) to pretrained GraIL [63], BitechingKmeans [50] and
euclidean(·) for ablation analysis.

Moreover, as for different tasks, RecPiece is integrated with three KGE backbones, i.e., RotatE
[61], COMPGCN [68], and AutoSF [79] to compare with thirteen KGE models, including (1) link
prediction: TransE [6], DisMult [77], ComplEX [65], PairRE [10], RotatE [61], TripleRE [78],
AutoSF [79], LRE + PairRE [11], NodePiece + RotatE [20], and NodePiece + AutoSF [20]; (2) entity
classification: MLP, COMPGCN [68], and NodePiece + COMPGCN [20]. Note that the anchor
selection in our RecPiece is a relational clustering-based anchor selection strategy. Compared to the
manual selection strategy (composed of 20% Random Selection, 40% Personalized PageRank, and
40% Node Degree Centrality) in NodePiece, ours is more explainable and scalable. Here we present
some descriptions of the used models as follows.

• RotatE defines each relation as a rotation from the source entity to the target entity in the complex
vector space, enabling it to model and infer various relation patterns, including symmetry,
antisymmetry, inversion, and composition relations.

• COMPGCN encodes entities and relations jointly by using various composition operators from
KGE techniques, addressing the issue of over-parameterization in GCNs.

• AutoSF proposed an algorithm that can automatically design and discover optimal scoring
functions of the KGE model. Through a progressive greedy search algorithm, AutoSF can
design promising KGE scoring functions effectively from a vast search space.

• TransE is a translation-based KGE model that aims to model inversion and composition relations.
Inspired by the translation invariance in the word2vec model, TransE tries to make h + r≈t,
where h, r, and t represent the head entity, relation, and tail entity in a triplet, respectively.

• DistMult assumes that all relations in the KG are symmetric and represent them as block-
diagonal matrices. Such a relation representation mechanism, combined with simple dot product
operations, improves the efficiency of triplet evaluation.

• ComplEx uses complex vectors instead of real vectors to represent the embeddings of entities and
relations, which allows the model to distinguish between symmetric and asymmetric relations.

• PairRE uses paired vectors to represent each relation, allowing the margin in the loss function to
adjust adaptively. Thus, PairRE can express more complex relations, such as sub-relations.

• TripleRE combines projection and translation operations. Specifically, the representation vectors
of the head and tail entities are first projected and then translated to obtain the relation represen-
tation. This method enriches the expression of relations, enabling the model to handle complex
relations.

• NodePiece proposed an efficient and plug-and-play node selection mechanism for KGE models.
Specifically, NodePiece is inspired by WordPiece from the field of natural language processing,
which is able to represent large-scale knowledge graphs using only fewer entity embeddings
while also enhancing the generalization performance of the model at the same time.

• LRE is a high-efficiency method that utilizes tensor decomposition to enhance the parameter
efficiency of KGE models. Specifically, rather than decomposing the observed 3D tensor directly,
LRE decomposes the entity embedding matrix to low-rank matrices.

A.3.3 Evaluation Metrics

Two types of evaluation metrics are adopted for two different downstream tasks. For link prediction,
both mean reciprocal rank (MRR) [16] and Hits@k [1] are used as the ranking metrics, where k ∈ {1,
3, 10}. Besides, ROC-AUC, PRC-AUC, AP, and Hard Accuracy are the evaluation metrics [23] for
entity classification. To quantify the efficiency, we report the parameter number #P (M), memory cost
(GB), running time (hours), and Effi. [13], which is the metric recently proposed by [13] to evaluate
the efficiency of the KGE models.

Effi. =
MRR

#Parameter
(8)

Note that higher Effi. it is, the more efficient the model performs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We present the contributions from three aspects, i.e., problem, method, and
experiment.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss it in our final section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental details are carefully described. Besides, the authors mention
that the source code will be released after the double-blind review.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The authors mention that the source code will be released after the double-blind
review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of experimental settings are carefully described in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Six aspects of experiments are conducted to evaluate the proposed model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details of experimental settings are carefully described in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors preserve anonymity and obey the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper targets on the large-scale problem in knowledge graphs. By solving
it, existing representation learning models can be applied to more general and realistic
scenarios, such as retrieval on society relationship graph, etc.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:[NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the backbone models and datasets are cited with their references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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