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Abstract

The absence of ground truth explanation labels poses a key challenge for quanti-
tative evaluation in interpretable AI (IAI), particularly when evaluation meth-
ods involve numerous user-specified hyperparameters. Without ground truth,
optimising hyperparameter selection is difficult, often leading researchers to
make choices based on similar studies, which offers considerable flexibility.
We show how this flexibility can be exploited to manipulate evaluation out-
comes by framing it as an adversarial attack where minor hyperparameter ad-
justments lead to significant changes in results. Our experiments demonstrate
substantial variations in evaluation outcomes across multiple datasets, explanation
methods, and models. To counteract this, we propose a ranking-based mitiga-
tion strategy that enhances robustness against such manipulations. This work
underscores the challenges of reliable evaluation in IAI. Code is available at
https://github.com/Wickstrom/quantitative-IAI-manipulation.

1 Introduction

Interpretability in artificial intelligence (IAI) is crucial for ensuring trustworthiness (7; 17; 23; 20),
especially in finance, law and healthcare, where numerous interpretability methods and evaluation
metrics have been proposed (56; 50; 66; 65; 21; 44; 9; 22). While these advancements are helpful, it
has resulted in significant disagreement and practitioner confusion regarding the best approaches for
different problem settings (45; 35; 13; 36; 19; 31; 30). Quantitative evaluation of IAI methods has
advanced, but the variety of methods and metrics makes it difficult for researchers to make informed
choices (37; 2; 14).

A major challenge in IAI evaluation is the lack of ground truth explanation labels, leading to the use of
proxy metrics to estimate explanation quality like faithfulness (55; 4; 52; 25; 10; 53), complexity (51;
10; 24), or robustness (49; 3; 68; 25). These evaluations depend heavily on hyperparameter choices,
which are often ad-hoc and data-dependent. Faithfulness metrics (7; 58), for example, rely on
how model behaviour changes with different input manipulations, but they are highly sensitive
to hyperparameter choices such as baseline choice and perturbation order (55; 16; 15; 54; 64;
13; 48; 28). How do we mask out pixels and how large should the masks be? Since exhaustive
hyperparameter search is impractical, researchers typically make subjective choices based on prior
studies or accessibility (45; 35), introducing flexibility that can impact evaluation reliability. We
urgently need to investigate the impact of hyperparameter choice on evaluations, making it an
important area of research.
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IAI METHOD FAITHFULNESS SCORE (↓)

LRP 25.19
SALIENCY 20.23
KERNEL SHAP 23.94

IAI METHOD FAITHFULNESS SCORE (↓)

LRP 19.31
SALIENCY 22.96
KERNEL SHAP 24.87

Table 1: Faithfulness comparison of IAI methods on MNIST before (left) and after manipulation (right). The
difference lies in the perturbation method used: uniform noise vs. blurring.

In this work, we demonstrate how the flexibility in IAI evaluation can be exploited to manipulate
evaluation outcomes. Even minor changes to commonly used hyperparameters can significantly
alter faithfulness evaluation results. As illustrated in Tab. 1, standard IAI methods show substantial
differences in outcomes due to slight hyperparameter adjustments. We propose framing these
adjustments as an optimisation problem, allowing for a manipulation of either a single IAI method’s
evaluation or the joint evaluation of multiple methods. Our contributions are:

C1 Two manipulation methods, one method-specific that can increase the evaluation score for
a specific IAI method, entitled intra-manipulation, and one holistic that manipulates the
quantitative comparison of several IAI methods, entitled inter-manipulation.

C3 A comprehensive experimental analysis on manipulation of faithfulness evaluation, demon-
strating that the evaluation outcome can significantly change after manipulation.

C4 Towards improving the robustness of the quantitative IAI evaluation, we propose Mean
Resilience Rank (MRR), a ranking-based procedure to reduce the sensitivity to manipulation.

Our findings carry significant importance for the IAI community. Quantitative evaluation is crucial to
provide objective measurements of explanation quality, which can be used to select an appropriate
method for a particular task (32). If evaluations can be easily manipulated, it reduces the trustwor-
thiness of method selection. Therefore, our findings highlighting the issue of manipulation with
mitigating solutions are of critical importance for the IAI community.

2 Manipulating IAI Evaluation

First, we present the core concepts and notation used in the work. Then, we propose two ways to
manipulate IAI evaluation methods. Related works are found in Appendix A.1.

Preliminaries Let the input to a black-box classifier f be denoted as x ∈ Rd and the output of
the classifier as f(x) = ŷ. Local explanation methods (7; 61; 57; 18) interpret the decision of f
by attributing an importance score to each component of x. We denote the explanation of f for a
given class y as e ∈ Rd. Here, we present a generalized formulation of quantitative IAI evaluation to
illustrate the static input parameters and tunable hyperparameters. We assume an evaluation function
F → R on the form:

F (f,x, e, a, b, c) = s. (1)

Here, f , x, and e are input parameters provided by the user, while a, b, and c are hyperparameters
that must be determined by the user. The output of the evaluation is represented by s, which is a
scalar indicating the performance of the particular explanation. We keep the hyperparameters a, b,
and c general for the sake of clarity. But note that there could be more or less hyperparameters and
they can take many different forms (e.g., a number or a function), depending on the particular test
and the data in question.

2.1 Manipulation methods

We introduce our manipulation strategies for altering IAI evaluation outcomes through small hyper-
parameter adjustments. This approach is motivated by multiple accepted hyperparameters for a given
IAI evaluation method (see Sec. 4). For example, in faithfulness evaluations (7; 55; 4; 52; 25; 10),
perturbing input pixels is a key step, with numerous choices available, making the selection of the
appropriate one challenging (58; 54; 13). Evaluating multiple methods is computationally intensive,
and without ground truth explanations, determining the best method is infeasible. Consequently,
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practitioners often use a single perturbation method (49; 3; 11). However, as shown in Tab. 1, even
slight hyperparameter changes can significantly impact the evaluation. Those aware of this sensitivity
can potentially exploit it, which motivates our manipulation strategy.

Intra-manipulation First, we propose to focus on manipulating the evaluation outcome for a single
IAI method, which we refer to as intra-manipulation.

Definition 1 (Intra-Manipulation). Given an evaluation function F , an input sample x, an explana-
tion e, hyperparameters a, b, and c, and a feasible set of hyperparameters A∗

a for the hyperparameter
a, the intra-manipulation method solves the following optimization problem to determine the hyper-
parameter a, which maximizes the evaluation score of F :

maximize
a

F (f,x, e, a, b, c)

subject to a ∈ A∗
a.

Def. 1 defines an optimization problem where the goal is to find hyperparameters that maximize the
evaluation outcome, constrained to lie within a feasible set (A∗

a in this case) for the hyperparameters
in questions. Determining this feasible set requires the researcher’s judgement and an understanding
of the specific IAI methods subject to manipulation. Fundamentally, this set depends on the learned
functional response of the model. Sec. 2.2 further explains how to determine the feasible set. If the
feasible set is large, Def. 1 can be solved through suitable optimization techniques. If the feasible
set is small, an exhaustive search can be performed. Also note that Def. 1 can also be extended to
optimise multiple hyperparameters, such as maximising both a and b.

Inter-manipulation While Def. 1 improves the evaluation outcome of a single IAI method, altering
the evaluation outcomes of multiple IAI methods simultaneously may be desirable. Our next approach,
called inter-manipulation, involves jointly manipulating the evaluation of several IAI methods.

Definition 2 (Inter-Manipulation). Given an evaluation function F , an input sample x, a set of
explanations {e1, · · · , eM } from M different IAI methods, hyperparameters a, b, and c, and a feasible
set of hyperparameters A∗

a for the hyperparameter a, the inter-manipulation method solves the
optimization problem to determine the hyperparameter a, maximizing the following objective:

maximize
a

F (f,x, em, a, b, c)−
∑

m′ ̸=m

F (f,x, em′ , a, b, c)

subject to a ∈ A∗
a

.

Here, em is the explanation from the IAI method we aim to improve, called the focus method. The
explanation from a non-focus method is denoted as e′m, which we aim to degrade. The optimization
problem presented in Def. 2 is more complex compared to Def. 1 due to the interplay between
the different IAI methods. For example, the optimal solution could be found by a combination of
increasing the performance of the focus-method while simultaneously decreasing the performance of
the non-focus methods. Similarly, as Def. 1, the optimization problem can be solved in several ways
(e.g., Bayesian optimization) and can be extended to include several hyperparameters.

2.2 Manipulation Example: Faithfulness Evaluation

Some IAI evaluation methods are more prone to manipulation than others. For example, localisation
metrics, which assess if an explanation falls within a region of interest, typically have only 1 or even
0 hyperparameters to set (63; 5), making them harder to manipulate. In contrast, faithfulness metrics
(11; 3; 51) often involve at least 3 hyperparameters, if not more, and are among the most popular IAI
evaluation methods (7; 55; 4; 52; 25; 10). Thus, manipulating faithfulness metrics is of significant
interest. The next section provides an overview of key components in faithfulness evaluation.

The fundamental components of faithfulness Faithfulness measures to what extent explanations
follow the predictive behaviour of the model by iteratively perturbing the input and monitoring the
corresponding change in the output of the model. Explaining classification decisions is one of the
most common use cases of IAI, and thus is our primary investigation focus. T this end, ket S denote
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Figure 1: (a)
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Figure 2: (b)
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Figure 3: (c)

Figure 4: Example of possible faithfulness curves for digit classification. The leftmost curve illustrates how an
"intuitive" faithfulness curve might look, while the remaining curves show the reality of high variation.

the set of indices {1, · · · , d} for each element in the input sample x ∈ Rd. Partition S into K sets
S1, · · · , SK of equal cardinality C and arranged such that∑

i∈S1

ei ≥ · · · ≥
∑
i∈SK

ei. (2)

For convenient notation, we define the sum of attributions for one partition as

ẽSk
=

∑
i∈Sk

ei. (3)

The indices are ranked according to the input features with the highest descending importance and is
perturbed accordingly. Note that some metrics sort the indices in an ascending fashion (6; 51; 4) and
some perturb the input randomly (10), but the general approach in faithfulness metrics is to perturb
the inputs according to the rank (55; 54; 52; 3). Let xS1 denote a perturbed version of x, where all
xi for i ∈ S1 are replaced by some baseline perturbation function gp. We denote the output of the
classifier based on xS1

as ŷS1
. For xS2

, all xi for i ∈ S1 ∪ S2 are perturbed. In general, xSi
will

have all have the indices in all sets up to set Si replaced by the baseline perturbation function.

Illustrating the faithfulness curve Based on the K partitions of S, a set of progressively more
perturbed inputs can be created, i.e., {xS1 , · · · ,xSK

}. Each of the perturbed inputs is classified,
which gives a set of model outputs {ŷS1 , · · · , ŷSK

}. These model outputs are the fundamental
components for faithfulness evaluation in IAI. The rationale is that a good explanation should remove
the essential parts of an input first, which should lead to a steep drop in the classification score. A poor
explanation will remove parts that are not important, which will allow the classification score to stay
high. Fig. 1 shows an example where the classifier behaves as expected, with a sharp drop in accuracy
when the important parts of the input are removed. To compare two explanations, one can inspect a
plot such as in Fig. 1 and see which explanation has the sharpest drop in classification score. However,
such a visual approach has many limitations. First, we generally would like to compare explanations
across many samples to get a reliable estimate of how they perform. Inspecting numerous such plots
is cumbersome, and the curves can look different for different visual objects in classification, which
makes comparison challenging. Also, real-world data is not always as well-behaved as the plot shown
in Fig. 1, as illustrated in Fig. 2 and Fig. 3. Another important aspect is ensuring that the curve is a
genuine depiction of explanation quality and not an out-of-distribution (OOD) response (38; 54).

Hyperparameters in Faithfulness Metrics In faithfulness evaluation, several hyperparameters
must be determined by the user, many of which are data-dependent, necessitating re-parameterisation
for different tasks, and impeding comparability.

(Size of partition) The partition size affects how many features are removed and replaced in each
step of the faithfulness curve, balancing computational efficiency and resolution. Smaller partitions
increase computational load and risk adversarial effects when few features are removed (59), while
larger partitions produce coarser curves. Some use the image dimensions as the partition size (37),
though other choices exist (66; 7).

(Perturbation Function) The function replacing removed features varies based on the data type,
such as Gaussian noise or zero values (3; 49). The choice is critical; for example, zeroing out pixels
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may work for natural images but not for those with a black background, where it may fail to change
the network’s output (29). Diverse choices are documented across studies (49; 3; 11; 53).

(Aggregation Function) Aggregation of perturbed model outputs into a single score aids comparison.
Two common approaches include calculating the AUC of the faithfulness curve (7; 55; 49) or
correlating model outputs with attribution sums within each partition (4; 10).

(Normalization Function) To make attributions comparable across different methods, normalisation
is often required. A simple approach is to standardise using the mean and standard deviation of the
attributions, but more sophisticated methods are sometimes used (35; 12).

3 Towards Reliable Evaluations with Mean Resilience Rank

To mitigate hyperparameter manipulation, we propose to rank each IAI method for each hyperpa-
rameter setting in the feasible set, and average the ranking across the entire set. We refer to this
ranking-approach as Mean Resilience Rank (MRR). For this, we assume to evaluate M explanation
methods, with a single hyperparameter a in a feasible set A∗

a that can be altered. We denote one
element of A∗

a as ai, such that the evaluation outcome for all M methods can be collected in the set:

SF (ai) = {F (f,x, e1, ai, b, c), · · · , F (f,x, eM , ai, b, c)} . (4)

Then, we define a function R(·) that takes in a set of scores and outputs a vector with integer elements,
where 0 indicates the lowest score within the set and M − 1 indicates the highest score within the set.
Finally, we define the output of the MMR as the following ranking vector:

r =
1

|A∗
a|

∑
ai∈A∗

a

R(SF (ai))

M
. (5)

For clarity, we have focused on a single hyperparameter, but 5 can easily be extended to several
hyperparameters. For evaluation methods where a high value is desirable, a high ranking indicates
good performance, and vice versa for evaluation methods where a low value is desirable.

4 Experiments Setup

We evaluate our manipulation strategy across numerous datasets, models, and IAI methods, which
are described below. We also define the feasible sets used in our manipulation methods.

Models, Datasets and IAI Methods We examine several widely used computer vision datasets;
MNIST (27), FashionMNIST (67), PneumoniaMNIST (40), and ImageNet (26), and two common
deep learning architectures: LeNet (46) and ResNet18 (34). The LeNet is used for classifying
MNIST, FashionMNIST, and PneumoniaMNIST, while the Resnet18 is used for classifying Ima-
geNet. For ImageNet, we randomly sample 100 samples to conduct the faithfulness evaluation, for
PneumoniaMNIST we use 500 samples, and for the remaining datasets we use 1000 samples. We
choose 100 samples for ImageNet because the larger size of these images increases the computational
complexity. We choose 500 for PneumoniaMNIST as it does not have 1000 samples in its test set. We
investigate the following IAI methods; Layer-wise relevance propagation (LRP) (7), Saliency (50),
and KernelSHAP (47) using the captum library (43). We have selected these IAI methods for the
experimental analysis since they represent common choices in the IAI field.

Defining the Feasible Set of Hyperparameters for Faithfulness A critical aspect of the ma-
nipulation methods outlined in Sec. 2 is to determine the feasible set of hyperparameters. This
requires in-depth knowledge of the family of quantitative metrics that we aim to manipulate. In
this work, we focus on the faithfulness family of evaluation metrics and the critical hyperparamters
outlines in Sec. 2.2. We focus on a subset of hyperparameters to provide a clear and understandable
evaluation of our manipulation strategies. The feasible set of hyperparameters considered in this
work are shown in Tab. 2. This selection is based on common choices in the literature for partition
size (7; 18; 35; 37; 66), perturbation function (52; 3; 58), and normalization function (11; 12; 35).
We consider the aggregation function fixed as AUC aggregation, meaning that a lower faithfulness
score is better. Specifically, AUC is computed on the set of perturbed model outputs {ŷS1

, · · · , ŷSK
}.
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MNIST FASHIONMNIST PNEUMMNIST IMAGENET

PARTITION SIZE {14, 28, 56} {14, 28, 56} {14, 28, 56} {112, 224, 448}
PERTURBATION: {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)} {N (0, 1), U(0, 1), G(·)}
NORMALIZATION {TRUE, FALSE} {TRUE, FALSE} {TRUE, FALSE} {TRUE, FALSE}

Table 2: The feasible set of hyperparameter in this work for different datasets. G(·) denotes Gaussian blurring.

MNIST FASHIONMNIST PNEUMMNIST IMAGENET
IAI METHOD BASE MANIP. BASE MANIP. BASE MANIP. BASE MANIP.

IN
T

R
A LRP 25.20 7.86 21.46 5.37 21.31 6.06 129.61 41.48

SALIENCY 20.23 6.80 15.65 4.72 23.28 4.23 124.93 37.53
KERNELSHAP 23.94 8.01 18.28 4.81 22.06 4.29 128.72 40.14

IN
T

E
R LRP 25.20 7.86 21.46 5.37 21.31 6.06 129.61 41.48

SALIENCY 20.23 6.80 15.65 4.72 23.28 4.23 124.93 37.53
KERNELSHAP 23.94 8.01 18.28 4.81 22.06 4.29 128.72 40.14

Table 3: Intra-results (top three rows) towards LRP and inter-results (bottom three rows). Lower is better.

5 Results

Here we present the results of our proposed inter-manipulation and intra-manipulation. We define a
base set of hyperparameters from the literature: for MNIST, FashionMNIST, and PneumoniaMNIST,
this includes a partition size of 28, uniform noise as perturbations, and no normalization; for
ImageNet, it includes a partition size of 224, uniform noise, and no normalization. After applying the
manipulations defined in Def.1 and Def. 2, we obtain a manipulated set of hyperparameters. Our
results are centred around comparing the performance of the base set and the manipulated set.

Intra-Manipulation Results Tab. 3 (top three rows) shows the results of performing the intra-
manipulation proposed in Def. 1, where base is the score obtained with the selected set of hyperparam-
eters described above and manipulated is the score obtained after manipulation. These results show
significant potential for altering the evaluation outcome of a single IAI method, with improvements of
up to 130% from base to manipulated. Note that the manipulated scores aren’t directly comparable
since the manipulation is method-specific and hyperparameters can vary. For altering evaluation
outcomes across methods, the inter-manipulation described in the next section should be used.

Inter-Manipulation Results Tab. 3 (bottom three rows), Tab. A.1, and Tab. A.2 show the results of
performing the inter-manipulation proposed in Def. 2, where the scores are manipulated towards LRP,
Saliency, and KernelSHAP, respectively. For some tasks, the evaluation outcome can be manipulated
such that most of the three methods achieve the best performance. This is particularly apparent
for PneumoniaMNIST, where all IAI methods can achieve the best performance after manipulation.
For some datasets such as ImageNet, there is less room for manipulation. That said, the evaluation
difference between explanation methods can still be reduced and thus make the IAI evaluation findings
less conclusive (see e.g., Imagenet results in Tab. A.2).

Towards Reliable Faithfulness Evaluations The results in Tab. 3 demonstrate that the evaluation
outcome can be manipulated, eroding trust in the results. Here, we display the results of using MRR
described in Sec. 3 towards mitigating the potential for manipulation. Tab. 4 displays the results
of the ranking procedure, indicating that the top-performing IAI methods vary between datasets.
However, when averaged across all datasets, LRP emerges as the top performer, closely followed
by KernelSHAP, while Saliency is consistently ranked lower. There is notable variation in scores,
further highlighted in Fig. A.1. The benefit of this ranking approach is that there is little room
for manipulation since the top-performing methods will have to perform well across numerous
hyperparameters and datasets. The downside of this ranking approach is that it requires a significant
amount of computation including all methods, hyperparameters, and datasets. Also, while averaging
across datasets adds robustness, it can obscure important dataset-specific insights, making it crucial
to include dataset-wise rankings so that the reader can get an overview of the evaluation.
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IAI METHOD MNIST FASHIONMNIST PNEUMMNIST IMAGENET ALL

LRP 0.22 ± 0.15 0.33 ± 0.00 0.21 ± 0.00 0.26 ± 0.00 0.29 ± 0.14
SALIENCY 0.41 ± 0.26 0.44 ± 0.31 0.37 ± 0.31 0.41 ± 0.33 0.41 ± 0.30
KERNELSHAP 0.37 ± 0.33 0.22 ± 0.31 0.33 ± 0.27 0.33 ± 0.06 0.31 ± 0.31

Table 4: MRR across feasible set for each dataset and across datasets (last column). Lower is better, a rank of 0
is best and 1 is worst. Results show that the top performing method can change significantly between datasets,
but when averaging across datasets LRP and KernelSHAP are consistently higher ranked than Saliency.

6 Discussion

We have introduced two methods for manipulating the quantitative evaluation of explanation methods:
intra-manipulation, which enhances the performance of a single method, and inter-manipulation,
which affects comparative analyses of IAI methods. These methods are motivated by the absence of
ground truth labels, making hyperparameter selection a challenge. We demonstrate the effectiveness
of these manipulation strategies across various vision datasets and IAI methods, showing substantial
potential for manipulating faithfulness outcomes. This raises concerns for the IAI community,
suggesting that evaluation results cannot always be trusted. For this, we propose a new ranking-based
procedure, underscoring the urgent need for reliable evaluation in IAI.

Limitations and Future work Our proposed MRR mitigates manipulation but has limitations.
Its computational cost increases with more methods and hyperparameters. MRR also requires
domain expertise to define the feasible hyperparameter set accurately. If misdefined, it could worsen
manipulation issues by expanding hyperparameter choices. As a ranking-based method, MRR’s
scores are relative and dependent on the explanation methods set, limiting meaningful comparisons
across tasks. To address this, we encourage the IAI community to build an open-source database using
tools like Quantus (37) and OpenXAI (2) to standardise and store benchmarking results. For future
work, we aim to expand the scope of IAI adversarial manipulation to other families of quantitative
measures such as randomisation (1; 36) and robustness (3; 68; 25) which rely on parameters such as
segmentation masks and noise perturbation methods, respectively.
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A Appendix / supplemental material

A.1 Related Works

Metric-based Quality Estimation Quantitative analysis of IAI explanation has improved con-
siderably in recent years, and researchers now have a vast amount of evaluation metrics at their
disposal (37; 2). Due to the lack of ground truth explanations, researchers try to quantify the quality
of an explanation by measuring desirable properties, which can be categorized into 6 families of
properties (37); faithfulness (11), robustness (3), localisation (63), complexity (24), randomisation
(1), and axiomatic (41). Within each family, a variety of metrics exists.

Prior Studies on Hyperparameter Sensitivity in IAI Increasing attention has been given to
the influence and potential confounding effects of hyperparameters in IAI evaluations (35). These
studies vary in defining dependent versus independent variables and the hyperparameter space of
intervention, be it model, explanation, or evaluation space. Studies have examined the sensitivity of
attribution methods to explanation hyperparameters like random seed and number of samples (8), and
the impact of baseline choices in methods like Integrated Gradients on explanation outcomes (58; 62).
Additionally, the sensitivity of explanation outcomes concerning model performance variables such
as optimizer, activation function, learning rate, and dataset split has been studied (39), along with
the effects of model priors and random weight initialization on explanations and evaluations (33).
Disagreement among different explanation methods regarding top-K features and ranking has also
been investigated (45), while analyzing the impact of baselines (42).

Recently, researchers have explored how evaluation parameters affect outcomes, including the
sensitivity of randomisation metrics to hyperparameters like normalisation, randomisation order,
and similarity measures (12; 60; 36). Faithfulness metrics have been examined for hyperparameter
influences such as baseline choice and perturbation order (55; 16; 15; 54; 64; 13; 48; 28). Unlike
existing work, inspired by adversarial machine learning, we introduce a novel, general-purpose
manipulation approach, applicable across a variety of evaluation approaches. Our findings reveal that
faithfulness evaluation outcomes are highly susceptible to manipulation. This is a key issue for the
IAI community to address. We put forward a preliminary mitigating solution for this in Sec. 3.

A.1.1 Extended Results

Exploring Variance in Target Manipulation Fig A.1 shows the faithfulness score for each
configuration in the feasible set for each dataset. This plot illustrates that the average faithfulness
score across the feasible set can often be quite close. However, there is large spread in the scores,
which is present for all datasets. This spread demonstrates the lack of robustness in the faithfulness
evaluation and is part of the reason why manipulation is possible in this case. But, that alone would
not be enough to allow for manipulation, since the different methods could have the same change in
scores for different set of hyperparameters. However, the large standard deviation in Tab. 4 shows
that is not the case, since the ranking change between sets of hyperparameters. In other words, the
IAI methods react differently to different sets of hyperparameters. This, in combination with the
variation shown in Fig. A.1, is what allows for manipulation in this study.

Figure A.1: Box plot showing faithfulness scores across all hyperparameter configurations in the feasible set for
each dataset. The plot illustrates that the average faithfulness score is similar between different IAI methods
across datasets. However the high variance enables a target manipulation. Note that the scores have been
normalized dataset-wise by the highest score to allow for comparison across datasets.
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Inter-results Below we include additional results for the inter-manipulation approach.

MNIST FASHIONMNIST PNEUMMNIST IMAGENET
IAI METHOD BASE MANIP. BASE MANIP. BASE MANIP. BASE MANIP.

LRP 25.19 51.41 21.46 43.80 21.31 25.86 129.61 167.14
SALIENCY 20.23 41.57 15.65 31.83 23.28 19.61 124.93 147.56
KERNELSHAP 23.94 49.25 21.45 37.36 22.06 19.99 128.72 167.74

Table A.1: Inter-results with manipulation towards Saliency. Lower is better.

MNIST FASHIONMNIST PNEUMMNIST IMAGENET
IAI METHOD BASE MANIP. BASE MANIP. BASE MANIP. BASE MANIP.

LRP 25.19 12.07 21.46 43.80 21.31 26.42 129.61 74.93
SALIENCY 20.23 9.72 15.65 31.83 23.28 19.95 124.93 74.21
KERNELSHAP 23.94 11.53 21.45 37.36 22.06 19.55 128.72 74.66

Table A.2: Inter-results with manipulation towards KernelSHAP. Lower is better.
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