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Abstract

Logical rules, both transferable and explain-
able, are widely used as weakly supervised sig-
nals for many downstream tasks such as named
entity tagging. To reduce the human effort of
writing rules, previous researchers adopt an it-
erative approach to automatically learn logical
rules from several seed rules. However, ob-
taining more seed rules can only be accom-
plished by extra human annotation with heavy
costs. Limited by the size and quality of the
seed rules, the model performance of previ-
ous systems is bounded. In this paper, we
develop a novel framework STREAM to dis-
till task-specific logical rules from large pre-
trained models. Specifically, we borrow recent
prompt-based language models as the knowl-
edge expert to yield initial seed rules, and based
on the formed high-quality instance pool that
acts as an intermediary role, we keep teach-
ing the expert to fit our task and learning task-
specific logical rules. Experiments on three
public benchmarks demonstrate the effective-
ness of our proposed framework. Without any
participation of manual annotation, our system
has gained significant improvements over pre-
vious state-of-the-art methods.

1 Introduction

Following the supervised learning paradigm, re-
searchers resort to human annotation to obtain train-
ing data for specific tasks such as named entity tag-
ging and relation extraction. Though accurate, man-
ually annotated data construction is quite expen-
sive and time-consuming. In real scenarios, logical
rules often serve as a source of weak supervision
that provides abundant weakly supervised data for
various downstream models, and compared with
labeling data, applying rules can cover more appli-
cation domains with better interpretability. There-
fore, rule-based labeling systems (Figure 1) have
attracted considerable attention in recent years.

In fact, it’s not easy to develop an accurate and
complete rule system, as the logical rules are usu-
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Figure 1: Schematic diagram of a rule-based weakly
supervised named entity tagging system. Our goal in
this work is to learn logical rules without any human
effort, corresponding to the dotted area in the figure.

ally summarized by human experts and the build-
ing process requires extensive domain knowledge.
Besides, there is no evaluation metric to guide an-
notators to select valuable rules. The usability and
quality of acquired rules can not be guaranteed. In
this sense, how to build a reliable rule system with
limited human effort is still an important challenge.

To solve above issue, previous researchers pay
attention to the automatic construction of logical
rules, which tends to start from a few seed rules and
learn new logical rules by pre-defined similarity
measures in an iterative manner. Though proven to
be effective, these systems still require manually
constructed seed rules as the cold start. Limited by
human effort, the size of seed rules is usually small
so that the system performance is bounded.

In this work, we propose a fully automated
framework STREAM to diStill Task-specific logi-
cal Rules from large prE-trAined Models, and this
framework can take human out of the loop indeed.
Specifically, (1) in order to get rid of the restric-
tions of the seed rules, we firstly ask large pre-
trained models for help. As the prompt-based pre-
trained models own the zero-shot ability to generate
candidate entity types, we design two appropriate
prompt templates and achieve automatic acquisi-
tion of seed rules by the model outputs’ consistency.



(2) Once seed rules are obtained, we form a high-
quality instance pool to continuously add potential
instances to the pool and distill new logical rules
from the pool in an iterative manner. (3) At last,
based on the convergent instance pool, we further
fine-tune a new prompt-based model with more
suitable prompt templates to obtain more reliable
seed rules. Notably, each step in the framework
does not require any human involvement.

Experiments on three public named entity tag-
ging benchmarks demonstrate the effectiveness of
our proposed framework STREAM, with consis-
tent improvements over several baseline models
and far exceed the state-of-the-art (SOTA) systems.
Besides, we perform a detailed ablation study to
analyze the quality of our obtained seed rules, the
convergence of our propose iterative framework,
and some specific cases of learned logical rules.

Accordingly, the major contributions of our work
are summarized as follows:

(1) We introduce the large pre-trained prompt-
based models to end the dilemma that the logical
rule learning systems require seed rules as a start.

(2) We develop an effective and stable frame-
work to distill logical rules in an iterative manner,
which combines prompt-based fine-tuning and rule
distillation to achieve mutual enhancement.

(3) We conduct detailed experiments to illustrate
the effectiveness and rationality of our framework —
without any human involvement, the performance
of STREAM has surpassed previous rule learning
systems based on manually selected seed rules.

2 Methodology

2.1 Overview

In this work, we adopt named entity tagging as the
specific downstream task to compare with previous
work (Li et al., 2021) of learning logical rules. The
diagram of STREAM is visualized in Figure 3.

2.2 Logical Rules

In real scenarios, logic rules can appear in vari-
ous forms. For convenience, we define the logical
rules in the unified form of “if p then q (i.e.p —
¢)”. In named entity tagging task, “p” can be any
logical expression and “g” is the corresponding
entity category. For example, a logical rule may
look like: “if the entity’s lexical string is PD", then
its corresponding entity label should be disease”.

'PD: Parkinson’s disease

As demonstrated in previous work (Zhou and
Su, 2002), we define five meta logical rules to tag
named entities based on their lexical, contextual,
and syntax information. In addition, some combi-
nations of simple logical rules are also considered.

2.2.1 Meta Logical Rules

Following existing literature, our pre-defined meta-
rules are: (1) TOKENSTRING rule matches entity’s
lexical string; (2) PRENGRAM rule matches en-
tity’s preceding context tokens; (3) POSTNGRAM
rule matches entity’s succeeding context tokens;
(4) POSTAG rule matches entity’s part-of-speech
tags; (4) DEPENDENCYREL rule matches the de-
pendency relations of the entity and its headword.

nummod roj
compound nsubj prep det

v ¥ [

Thirty PD patients participated

in the study

NUM PROPN NOUN VERB ADP DET NOUN

Figure 2: Dependency parsing example.

Figure 2 shows an example with its dependency
structure. In this sentence, word PD is a potential
disease entity and following logical rules may exist:

TOKENSTRING == PD — disease
PRENGRAM == thirty — disease
POSTNGRAM == patients — disease
POSTAG == PROPN — disease
DEPENDENCYREL ==

(compound, patient) — disease

In fact, above simple rules may sometimes fail to
work, therefore we introduce complex rules, which
combine several simple rules into compound rules
by logical connectives including and (A), or (V)
and negation (—). For example, only a mention that
satisfies both rule POSTNGRAM == patients and
rule POSTAG == PROPN can be a disease entity.

2.2.2 Logical Rules Mining

After defining the form of meta logical rules, we
traverse the entire training set and recall all poten-
tial rules that satisfy the format of meta rules.

2.3 Zero-shot Prompt Models as Seed Rules

In our proposed framework STREAM, we design
a zero-shot prompt-based module to generate seed
rules from pre-trained models without any human
participation, and the details are as follows.
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Figure 3: (1) In the first loop, zero-shot prompt-based models provide initial seed rules (i.e.dotted line) and form the
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negative instances from sampling to fine-tune prompt-based models, generate better seed rules, and form a new
instance pool PLg. (3) During the process, simple and compound logical rules are distilled from the pool PLg.

2.3.1 Zero-shot Prompt Model Inputs

For each sentence in the unlabeled training corpus
PLy, we first obtain its noun chunks E by open-
source dependency parsing tools such as Spacy?.
Actually, each noun chunk E; may be a potential
entity so that we construct the following prompt-
based input to mine its possible entity types:

T, : LC...[mask] suchasE...RC (1)

where LC and RC are left and right context tokens.
With the help of the zero-shot capability of large
pre-trained models, we can obtain the condition
probability output (PS C RY, where V is the vo-
cabulary size) of noun chunk E at the position of
special token [mask]. For example, the prompt
input of the above sentence “Thirty PD patients
participated in the study” with noun chunk PD is:

Thirty [mask] such as PD patients . . . study (2)

At the position of word [mask], pre-trained models
are able to directly output entity types like “dis-
eases”, “disorders”, “conditions” and so on, and
we select Top-K types (S1 : {S11,S12,...,S1x})
from the output condition probability PS; : PS
as the candidate types of noun chunk E;, where
Sy; is the entity type that outputs the 74, highest

confidence in the conditional probability PS;.

“https://spacy.io/models/en#ten_core_web_sm

However, the above prompt-based input breaks
left context and focus more on right context, and
we propose another prompt-based input to take left
context also into consideration. It is defined as:

Ty : LC...E and some other [mask] ... RC (3)

For this prompt-based input, we can also obtain
its Top-K entity types (Sa : {821, Sog, ... ,SQK}),
and the final type set S of noun chunk E should be
generated from two above type sets S; and S».

2.3.2 Label Words Mapping

To bridge the gap between model’s output types
S and our task-specific categories Y, we design a
module to find label words mapping automatically.

Specially, to find the label word mapping for
target category Y;, we count the co-occurrence be-
tween prompt model’s output types S; and target
type Y; in all S, and filter out the types with high
support (S;;, : S). Actually, the co-occurring types
in S;;, are often synonyms or aliases of the target
type Y;. For instance, we can find target category
diseases and type disorders tend to appear together
in S, which means there is a label word mapping:
disorders — disease. We define the founded label
mapping as M, which maps all entity types in S;
to target type Y;, this is defined as:

M: S =Y, Y;€Y 4)



2.3.3 Zero-shot Seed Rules

By the label word mapping M, we can convert
the initial condition probability output PSq 2 to our
task-specific condition probability PY;2 C RY,
where v is the target category number.

PY; and PY are the entity type predictions for
noun chunk E that come from two different prompt-
based models. Therefore, if the two models’ predic-
tions are similar and have no differences, the final
entity type O can be considered as the common
output type of the two models. It is defined as:

Y if Y= Yo,
O—{ i Y=Yy )

unk otherwise.

where Y; is the entity type with the iy, largest
model confidence py; in PY{, and unk means the
entity type is unknown due to models’ divergence.
For these chunks E with determined entity type
O # unk, we further filter out the chunks with high
model confidence p, where p = min(pi1, p21)-

Besides, we also use a support threshold to fur-
ther filter out high-quality chunks (i.e.chunks that
occur less often may be noisy), and we define the
final obtained chunks pool as PLg.

PLs ={E:p>pi,r>nri} 6)

where p;, r; are confidence and support thresholds.
Actually, any noun chunk E with entity category O
in the high-quality chunk pool PLg can be seen as
an initial TOKENSTRING rule:

TOKENSTRING == chunk E — type O  (7)

2.4 Distill Task-specific Logical Rules from
High-quality Instance Pool

Once seed rules are obtained, we can fetch all in-
stances that matches the seed rules to form a in-
stance pool PLg — PL . Based on the initial pool
PLR, we aim to add high-quality instance to the
pool, and distill new logical rules from the pool.

24.1 Add High-quality Instances to the Pool

Based on the high-quality instances in PLg, we
can train specific (i.e.named entity tagging) down-
stream models, and the trained model is defined as
JF. After that, we use the trained model to generate
a pseudo label for each unlabeled instance in PLy;.

To identify potential high-quality instances in
unlabeled instances PL;; , we use the instances in
high-quality pool PLg as a guide. In detail, for
any unlabeled sentence s,, € PLy, its pseudo label

given by the trained model is Y,, = F(s,). We
randomly sample a certain number of high-quality
instances from PLg with the same entity label Y,,,
and estimate the similarity between the instance s,
and these sample instances. This is defined as:

S-score(s,,) = Medium[sim(s,, s;)], s; € PLg

®)
where sim is the function to measure the semantic
similarity between sentence s, and the sampled
sentence s;, and Medium means that the final score
is the median (i.e.avoid the influence of outliers)
of all pair scores (sim(s,, s;), s; € PLg). Besides,
to decide the score threshold of adding instances
to the pool PLg, we also randomly select instance
sj from PLg, and calculate the similarity score be-
tween the instance s; and the remaining instances
PLg/s;. This process is defined as:

S-score; = Medium[S-score(s;, PLg/s;)], s; C PLg

€))

2.4.2 Distill Task-Specific Rules from the Pool

With such a high-quality instance pool PLg, our
goal is to find all high-quality rules from potential
rules set R mined in section 2.2.2. For any rule
R, € R, we define its confidence score as:

Mg,
Nr

R-score(R,) = logy NR,, (10)

where Vr, is the number of sentences that meets
rule Ry, in the pool PLg, and Mg, is the number
of sentences that matches rule R,, correctly (i.e.the
rule labelling result is consistent with the high-
confidence label O). Similarly, we also use the ex-
isting high-quality rules to determine the dynamic
threshold for filtering out potential rules:

R-score; = Medium[R-score(R;)], R; C PLg
1
Accordingly, we keep repeating the steps de-
fined in sections 2.4.1 and 2.4.2 until pool PLg
or PL R, is no longer updated. During this process,
high-quality instances are gradually added to the
instance pool PLg, and corresponding high-quality
logical rules are also produced.

2.5 Fine-tuned Prompt Model as Seed Rules

In section 2.3.1, we propose to utilize zero-shot
prompt-based models to generate initial seed rules,
however, these rules are just a compromise at the
time of data cold start (i.e.w/o any weakly labeled
data). Once we have collected enough high-quality



instances in pool PLg, we can further adjust the
prompt-based model to adapt to our specific task,
and generate seed rules with higher quality.

2.5.1 Fine-tuned Prompt Model Inputs

To further fine-tuned prompt models, we construct
two new prompt-based inputs as follows:

Ts :LC ... E ... RCE is [mask] [mask] entity

T4 :LC...E...RCE [s] [s]...[s] [mask] [s]
(12)
where [s] is the soft mask token. In the input tem-
plate T3, we aim to make the prompt-based model
to output entity types at the positions of two [mask]
tokens, and its label words mapping is:

[mask] [mask]
a/an 0] —  E’s entity label is O
not an —  Eisnotan entity (13)

For example, if the output words at the positions of
two mask tokens [mask] are “a disease”, it means
chunk E is an entity and its label is disease.

Besides, we also use a soft embedding prompt-
based input scheme (i.e.T4), which can implic-
itly learn word embeddings at the positions of [s]
through gradient propagation. In this case, our goal
is to constrain the model to output the target entity
types O directly at the position of [mask].

Compared to the zero-shot prompt-based input
proposed in section 2.3.1, the above two prompt-
based inputs do not destroy the original sentence
structure and promote the models to better under-
stand the meaning of the entire sentence.

2.5.2 Negative Instance Sampling

However, instances in pool PLg are all positive
sentences so that the models can not be trained
only on pool PLg. To solve this issue, we sample
some high-quality negative instances also based on
the consistency of model outputs, this is defined as:

Y11 lf Yi1 = Y217
NA otherwise if S11 = So1,

unk otherwise.

0= (14)

In short, negative samples (i.e.NA) are the samples
with same zero-shot prompt model outputs (S1; =
S21), but not with any target entity type (S11 ¢ Y).

2.5.3 Fine-tuned Seed Rules

Based on the positive sentences provided by the
pool PLg and negative instances sampled in sec-
tion 2.5.2, we can fine-tune prompt-based models
with the inputs defined in section 2.5.1. Then, sim-
ilar to the approach in section 2.3.3, we use the
fine-tuned models to predict pseudo labels for all
unlabeled sentences, and filter out the sentences
with high model confidence and high support as
new seed rules. Immediately afterward, our system
will repeat the steps in sections 2.4 and 2.5 to con-
tinuously distill more new rules, form a larger pool
PL s and fine-tune a better prompt-based model.

3 Experiments

Our experiments are designed to verify the effec-
tiveness of our proposed system — STREAM.

3.1 Benchmark

BC5CDR (Li et al., 2016) is constructed with
BioCreative VCDR task corpus. It contains 500
train, 500 dev and 500 test PubMed articales, with
15,953 chemical and 13,318 disease entities.

CHEMDNER (Krallinger et al., 2015) contains
10,000 PubMed abstracts with 84,355 chemical
entities, in which the training/dev/test set contain
14,522/14,572/12,434 sentences respectively.

CONLL2003 (Tjong Kim Sang, 2002) con-
sists of 14,041/3,250/3,453 sentences in the train-
ing/dev/test data split of Reuters news articles”.

3.2 Model and Metric

To evaluate the quality of our generated rules,
we use the rule-labeled data to train the named
entity tagging model and report corresponding
model performance. The evaluation metrics in our
experiments include Precision(P), Recall(R) and
Fl-score(F;). In STREAM, we use the model
in (Jiang et al., 2020) as the specific tagging model.

3.3 Baseline

We select several recent weakly supervised meth-
ods to compare, including current SOTA systems.

Seed Rules uses manually annotated seed rules to
match test set and evaluate the label performance.

Seed-Tagger uses seed rules to label test set and
train the tagging models on the labeled data.

3Following previous work, type MISC is not considered.



Method Need BC5CDR CHEMDNER* CONLL2003
Seed?|| P | R | F P | R | F P | R | F

Seed Rules v 9409 | 381 | 733 | 91.60 | 13.19 | 23.07 | 95.77 | 2.76 | 5.36
Seed-Tagger | v | 78.33 | 21.60 | 33.86 | 84.18 | 21.91 | 34.78 | 72.57 | 24.68 | 36.83
LinkedHMM | v | 10.18 | 15.60 | 12.32 | 23.99 | 10.77 | 14.86 | 19.78 | 31.51 | 24.30
HMM-Agg v | 4370 | 21.60 | 29.00 | 49.60 | 18.40 | 26.80 | 52.00 | 8.50 | 14.60
CGExpan v | 4096 | 24.75 | 30.86 | 45.70 | 25.58 | 32.80 | 55.97 | 28.70 | 37.95
AutoNER v | 4222 30.66 | 3552 | 66.83 | 27.59 | 39.05 | 32.07 | 598 | 10.08
Self-Training | v | 73.69 | 29.55 | 42.19 | 85.06 | 20.03 | 32.42 | 72.80 | 24.83 | 37.03
TALLOR v 6653 ] 66.94 | 66.73 | 48.34 | 52.56 | 50.36 | 64.29 | 64.14 | 64.22
STREAM X | 7247 | 67.90 | 70.11 | 63.93 | 55.13 | 59.20 | 69.92 | 72.30 | 71.09

Table 1: Model performances on BCSCDR, CHEMDNER, and CONLL2003. Bold and underline indicate the best
and the second best scores, * means the reported result is our re-implementation of author-provide code.

CGExpan (Zhang et al., 2020) expands lexicons
by language models. Following previous work, we
use CGExpan to expand the size of human anno-
tated TOKENSTRING rules (i.e.lexicons) to 1000.

AutoNER (Shang et al., 2018b) labels untyped
terms automatically with a pre-defined dictionary.
We use the best expanded lexicon from CGExpan
as the dictionary. Both of the expanded lexicon and
the mined phrases from AutoPhrase (Shang et al.,
2018a) as untyped mined phrases.

LinkedHMM (Safranchik et al., 2020) proposes
to utilize a generative model to aggregate noisy
rules, and forms weak supervision signals to train
the models. We use the best expanded lexicon
from CGExpan as the tagging rules and the mined
phrases from AutoPhrase as the linking rules.

HMM-Agg (Lison et al., 2020) introduces the
hidden Markov models to generate weak labels
by labeling functions. We use the best expanded
lexicons from CGExpan as the labeling functions.

Self-Training uses the seed rules to get initial
teacher models and iterates the processes of gener-
ating pseudo labels for unlabeled data and training
student models following self-training scheme.

TALLOR (Li et al., 2021) bootstraps high-
quality logical rules to train a neural tagger in an
iterative manner, with selected, the most frequent
manually annotated seed rules as the input.

3.4 Overall Performance

We summarize the model performances of our
STREAM and above mentioned baselines in Ta-
ble 1. From the table, we can see: (1) Method Seed
Rules yield a high accuracy, however, this simple

matching pattern lacks generalization ability and
results in a low model recall. (2) Similarly, the
Self-training method starts from a small amount of
seed data and has a good model accuracy, but its
model recall is poor due to the limited data size. (3)
Lexicon expanded model CGExpan and AutoNER
sacrifice a certain model accuracy in exchange for
more balanced model performance. (4) Previous
SOTA system TALLOR can learn logical rules in
an iterative manner and achieves competitive model
Fl-score. Since this system still relies on initial
seed rules, its model performance is bounded.
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Figure 4: Model Performances on dataset BCSCDR
with different manually annotated seed rules size.

Compared to the above baseline models, our pro-
posed system STREAM does not need any human-
annotated seed rules or data. We draw curves in
Figure 4 to illustrate how many seed rules TAL-
LOR needs to be comparable to our STREAM.
From the figure, we can see that: When the number
of most frequent seed rules reaches 825, the model
performance of TALLOR exceeds STREAM for



the first time. However, acquiring such the most
frequent seed rules is quite labor-intensive.

3.5 Ablation Study

To explore how our proposed system STREAM
works, we now present ablation studies.

Initial Seed Rules In section 2.3.3, we utilize
zero-shot prompt-based models’ consistent outputs
as initial seed rules. We firstly conduct experiments
to check the quality of initial seed rules.

Method BC5CDR CHEMDNER
P | R [ F P [ R [ R
TALLOR 66.53 | 66.94 | 66.73 | 48.34 | 52.56 | 50.36
STREAM;,,;; | 70.46 | 64.99 | 67.62 | 57.13 | 50.52 | 53.62
STREAM 7247 | 67.90 | 70.11 | 63.93 | 55.13 | 59.20
Table 2: Ablation results of different rule learn-

ing systems on BC5CDR and CHEMDNER, method
STREAM,;,,;; uses the initial seed rules.

We summarize the model performances of differ-
ent logical rule learning systems in Table 2. From
the table we can see that: With only the initial rules
given by the zero-shot prompt model, our system
STREAM;,,;; has surpassed the previous SOTA
method TALLOR in metrics P and F;, which means
the generated seed rules are reliable. Besides, we
directly utilize the human-annotated labels to ver-
ify the quality of the initial rules in a more intuitive
way: When confidence threshold p, = 0.3 and sup-
port threshold r; = 4, about 219 seed rules are
obtained with an accuracy of 98.6%.

In the process of initial seed rules generation,
hyperparameters p; and r; are relatively impor-
tant. We draw the figure in Figure 5 to show the
model performances of STREAM;,,;; with differ-
ent combinations of p; and r;. From the figure, we
can see that: (1) When p; = 0.3 and r, = 0.4,
our system STREAM;,,;; achieves the best perfor-
mance. (2) As hyperparameters p; or r; increases,
the model performance first increases and then de-
creases. This is because a low parameter value may
introduce some data noise, while a high parameter
value may reduce the number of recalled rules.

Fine-tuned Seed Rules After fine-tuning prompt-
based models, the model can output high confi-
dence scores for those correct samples. Thus, to
filter out them, we adopt p; as 0.99, and following
previous experience, we adopt 7; as 4. With this
combination, we can find that about 272 seed rules
are recalled with an accuracy of 97.4%.
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Figure 5: Model performances of different hyperparam-
eter combinations on dataset BCSCDR.

In section 2.5.1, we propose two prompt-based
inputs T3 and T4: Ts directly uses hard words to
form the prompt sentence while T4 introduces soft
embeddings to learn during training process. To
compare the two prompt inputs, we present an ab-
lation study, and the results are in Table 3.

Method BC5CDR CHEMDNER
P [ R | F P [ R [F
TALLOR 66.53 | 66.94 | 66.73 | 48.34 | 52.56 | 50.36
STREAM},4q | 73.13 | 65.82 | 69.28 | 61.49 | 55.65 | 58.42
STREAM 72.47 | 67.90 | 70.11 | 63.93 | 55.13 | 59.20
Table 3: Ablation results of different prompt-

based inputs on BCSCDR and CHEMDNER, method
STREAMj,,q uses the prompt-based input Ts, method
STREAM uses the prompt input Ty.

From the table we can see that: (1) Whether tem-
plate T3 or T4 is used, our system STREAM can
achieve SOTA model performance. (2) Soft tem-
plate T4 performs better because it can learn a more
efficient prompt pattern during training process.

High-quality Instance Pool In section 2.4, we
add high-quality instances to PLg and distill new
logical rules from PLg in an iterative manner. To
figure out how PLg changes during the training
process, we now show the ablation in Figure 6.
From the figure, we can see: (1) During the
iterative process, the size of PLg continues to in-
crease, but its growth rate gradually slows down.
(2) At the beginning of the iteration, high-quality
instances are added to the pool PLg, and the model
performance increases. However, at the later itera-



Logical Rule Matched Sentence

Logical Rule Condition p Entity Type ¢

Other symptoms of allergicapj reactionsyoun
were not clinically detectable.

PRENGRAM == symptoms of

A POSTAG == ADJ NOUN p — q : disease

Grade less than or equal to 2 nauseanoyn and
vomiting occurred in 66%, courses and phlebitis ...

POSTNGRAM == and vomiting

— ¢ : disease
A POSTAG == NOUN p=g:a

This study describes neuropsychiatric side effects in
patients after treatment with mefloquinepropn.

PRENGRAM == after treatment

with A POSTAG == PROPN p =+ ¢ : chemical

Prophylactic use of lamivudine with chronic immun-
osuppressive therapy for rheumatologic disorders.

PRENGRAM == therapy for

— q : di
A POSTNGRAM == [END] p q : disease

Table 4: Cast study of learned logical rules on dataset BCSCDR, [END] means the end (.) of sentences.
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Figure 6: Changes of PLg size and model performance
on development set (i.e.dev F}) during training process.

tion stage, some noise instances may be introduced,
which causes the model performance to decrease.

3.6 Case Study: Learned Logical Rules

In the above section, we have proved that our sys-
tem STREAM can extract better logic rules with
better downstream model performance. In this sec-
tion, we present a case study to show the learned
logical rules from a more intuitive perspective.

In Table 4, we select four sentences and corre-
sponding learned logical rules from the training
corpus. For example: (1) The entity mention in
the first sentence matches the POSTAG form of
ADJ NOUN, and its PRENGRAM words are symp-
toms of, therefore, STREAM can infer a rule:
(PRENGRAM == symptoms of A POSTAG ==
ADJ NOUN) — disease. (2) In the forth sentence,
the PRENGRAM words of mention rheumatologic
disorders are therapy for while the mention is just
the end of sentence. STREAM can extract logical
rule (PRENGRAM == therapy for A POSTNGRAM
== END) — disease from this sentence.

4 Related Work

Weak Supervision To alleviate the issue of lim-
ited labeled data, previous researchers made many
efforts to improve named entity tagging systems
from different perspectives: (1) (Ren et al., 2015;
Fries et al., 2017; Giannakopoulos et al., 2017) in-
troduce distant supervision (Mintz et al., 2009), an
automated method to label data by aligning text
with remote knowledge bases, to build NER sys-
tems without human supervision. (2) (Shang et al.,
2018a) uses typed lexicons and (Peng et al., 2019)
uses incompetent dictionaries as the indirect super-
vision to guide model training. (3) Recently, (Li
et al., 2021) proposes to learn logical rules from
selected seed rules to generate more diverse pseudo
labels, and achieves the SOTA model performance.
However, above systems still rely on seed data or
rules, so that the model performance is bounded.

Language Models Vaswani et al. (2017) pro-
posed a self-attention based architecture — Trans-
former, and it soon becomes the backbone of many
following language models. By pre-training on
a large-scale corpus, BERT (Devlin et al., 2019)
obtains the ability to capture a notable amount of
“common-sense” knowledge and gains significant
improvements on many tasks following the fine-
tune scheme. Recently, (Gao et al., 2021; Han et al.,
2021; Wei et al., 2021) found that the prompt-based
models achieve remarkable few-shot performance,
and reformulate the traditional paradigm of fine-
tuning to prompt-tuning, which could better utilize
the knowledge of the pre-trained models.

5 Conclusion

In this work, we propose an automated framework
STREAM to distill task-specific logical rules from
large pre-trained models. Experiments show the
effectiveness of STREAM, with stable and signifi-
cant improvements over different baseline models.
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