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Abstract
Logical rules, both transferable and explain-001
able, are widely used as weakly supervised sig-002
nals for many downstream tasks such as named003
entity tagging. To reduce the human effort of004
writing rules, previous researchers adopt an it-005
erative approach to automatically learn logical006
rules from several seed rules. However, ob-007
taining more seed rules can only be accom-008
plished by extra human annotation with heavy009
costs. Limited by the size and quality of the010
seed rules, the model performance of previ-011
ous systems is bounded. In this paper, we012
develop a novel framework STREAM to dis-013
till task-specific logical rules from large pre-014
trained models. Specifically, we borrow recent015
prompt-based language models as the knowl-016
edge expert to yield initial seed rules, and based017
on the formed high-quality instance pool that018
acts as an intermediary role, we keep teach-019
ing the expert to fit our task and learning task-020
specific logical rules. Experiments on three021
public benchmarks demonstrate the effective-022
ness of our proposed framework. Without any023
participation of manual annotation, our system024
has gained significant improvements over pre-025
vious state-of-the-art methods.026

1 Introduction027

Following the supervised learning paradigm, re-028

searchers resort to human annotation to obtain train-029

ing data for specific tasks such as named entity tag-030

ging and relation extraction. Though accurate, man-031

ually annotated data construction is quite expen-032

sive and time-consuming. In real scenarios, logical033

rules often serve as a source of weak supervision034

that provides abundant weakly supervised data for035

various downstream models, and compared with036

labeling data, applying rules can cover more appli-037

cation domains with better interpretability. There-038

fore, rule-based labeling systems (Figure 1) have039

attracted considerable attention in recent years.040

In fact, it’s not easy to develop an accurate and041

complete rule system, as the logical rules are usu-042

label

train

Weakly Supervised Data

write

Logical Rules

(1) PD → Disease
(2) nicotine→ Chemical
(3) and so on …

Thirty PD𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 patients
participated in the study.

Named Entity Tagging

Specific Task
Expert

Figure 1: Schematic diagram of a rule-based weakly
supervised named entity tagging system. Our goal in
this work is to learn logical rules without any human
effort, corresponding to the dotted area in the figure.

ally summarized by human experts and the build- 043

ing process requires extensive domain knowledge. 044

Besides, there is no evaluation metric to guide an- 045

notators to select valuable rules. The usability and 046

quality of acquired rules can not be guaranteed. In 047

this sense, how to build a reliable rule system with 048

limited human effort is still an important challenge. 049

To solve above issue, previous researchers pay 050

attention to the automatic construction of logical 051

rules, which tends to start from a few seed rules and 052

learn new logical rules by pre-defined similarity 053

measures in an iterative manner. Though proven to 054

be effective, these systems still require manually 055

constructed seed rules as the cold start. Limited by 056

human effort, the size of seed rules is usually small 057

so that the system performance is bounded. 058

In this work, we propose a fully automated 059

framework STREAM to diStill Task-specific logi- 060

cal Rules from large prE-trAined Models, and this 061

framework can take human out of the loop indeed. 062

Specifically, (1) in order to get rid of the restric- 063

tions of the seed rules, we firstly ask large pre- 064

trained models for help. As the prompt-based pre- 065

trained models own the zero-shot ability to generate 066

candidate entity types, we design two appropriate 067

prompt templates and achieve automatic acquisi- 068

tion of seed rules by the model outputs’ consistency. 069
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(2) Once seed rules are obtained, we form a high-070

quality instance pool to continuously add potential071

instances to the pool and distill new logical rules072

from the pool in an iterative manner. (3) At last,073

based on the convergent instance pool, we further074

fine-tune a new prompt-based model with more075

suitable prompt templates to obtain more reliable076

seed rules. Notably, each step in the framework077

does not require any human involvement.078

Experiments on three public named entity tag-079

ging benchmarks demonstrate the effectiveness of080

our proposed framework STREAM, with consis-081

tent improvements over several baseline models082

and far exceed the state-of-the-art (SOTA) systems.083

Besides, we perform a detailed ablation study to084

analyze the quality of our obtained seed rules, the085

convergence of our propose iterative framework,086

and some specific cases of learned logical rules.087

Accordingly, the major contributions of our work088

are summarized as follows:089

(1) We introduce the large pre-trained prompt-090

based models to end the dilemma that the logical091

rule learning systems require seed rules as a start.092

(2) We develop an effective and stable frame-093

work to distill logical rules in an iterative manner,094

which combines prompt-based fine-tuning and rule095

distillation to achieve mutual enhancement.096

(3) We conduct detailed experiments to illustrate097

the effectiveness and rationality of our framework —098

without any human involvement, the performance099

of STREAM has surpassed previous rule learning100

systems based on manually selected seed rules.101

2 Methodology102

2.1 Overview103

In this work, we adopt named entity tagging as the104

specific downstream task to compare with previous105

work (Li et al., 2021) of learning logical rules. The106

diagram of STREAM is visualized in Figure 3.107

2.2 Logical Rules108

In real scenarios, logic rules can appear in vari-109

ous forms. For convenience, we define the logical110

rules in the unified form of “if p then q (i.e.p →111

q)”. In named entity tagging task, “p” can be any112

logical expression and “q” is the corresponding113

entity category. For example, a logical rule may114

look like: “if the entity’s lexical string is PD1, then115

its corresponding entity label should be disease”.116

1PD: Parkinson’s disease

As demonstrated in previous work (Zhou and 117

Su, 2002), we define five meta logical rules to tag 118

named entities based on their lexical, contextual, 119

and syntax information. In addition, some combi- 120

nations of simple logical rules are also considered. 121

2.2.1 Meta Logical Rules 122

Following existing literature, our pre-defined meta- 123

rules are: (1) TOKENSTRING rule matches entity’s 124

lexical string; (2) PRENGRAM rule matches en- 125

tity’s preceding context tokens; (3) POSTNGRAM 126

rule matches entity’s succeeding context tokens; 127

(4) POSTAG rule matches entity’s part-of-speech 128

tags; (4) DEPENDENCYREL rule matches the de- 129

pendency relations of the entity and its headword. 130

𝑒𝑒1 𝑡𝑡1 ⋯ 𝑒𝑒2𝑡𝑡𝑑𝑑 ⋯

𝑑𝑑𝑑𝑑2 = −3

Thirty PD patients participated in the study

NUM PROPN NOUN VERB ADP DET NOUN

nummod
compound nsubj prep

proj
det

Figure 2: Dependency parsing example.

Figure 2 shows an example with its dependency 131

structure. In this sentence, word PD is a potential 132

disease entity and following logical rules may exist: 133

TOKENSTRING == PD → disease 134

PRENGRAM == thirty → disease 135

POSTNGRAM == patients → disease 136

POSTAG == PROPN → disease 137

DEPENDENCYREL == 138

(compound, patient) → disease 139

In fact, above simple rules may sometimes fail to 140

work, therefore we introduce complex rules, which 141

combine several simple rules into compound rules 142

by logical connectives including and (∧), or (∨) 143

and negation (¬). For example, only a mention that 144

satisfies both rule POSTNGRAM == patients and 145

rule POSTAG == PROPN can be a disease entity. 146

2.2.2 Logical Rules Mining 147

After defining the form of meta logical rules, we 148

traverse the entire training set and recall all poten- 149

tial rules that satisfy the format of meta rules. 150

2.3 Zero-shot Prompt Models as Seed Rules 151

In our proposed framework STREAM, we design 152

a zero-shot prompt-based module to generate seed 153

rules from pre-trained models without any human 154

participation, and the details are as follows. 155
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Figure 3: (1) In the first loop, zero-shot prompt-based models provide initial seed rules (i.e.dotted line) and form the
high-quality instance pool PLS . (2) In the following loops, STREAM uses the positive instances from PLS and
negative instances from sampling to fine-tune prompt-based models, generate better seed rules, and form a new
instance pool PLS . (3) During the process, simple and compound logical rules are distilled from the pool PLS .

2.3.1 Zero-shot Prompt Model Inputs156

For each sentence in the unlabeled training corpus157

PLU , we first obtain its noun chunks E by open-158

source dependency parsing tools such as Spacy2.159

Actually, each noun chunk Ei may be a potential160

entity so that we construct the following prompt-161

based input to mine its possible entity types:162

T1 : LC . . . [mask] such as E . . .RC (1)163

where LC and RC are left and right context tokens.164

With the help of the zero-shot capability of large165

pre-trained models, we can obtain the condition166

probability output (PS ⊂ RV , where V is the vo-167

cabulary size) of noun chunk E at the position of168

special token [mask]. For example, the prompt169

input of the above sentence “Thirty PD patients170

participated in the study” with noun chunk PD is:171

Thirty [mask] such as PD patients . . . study (2)172

At the position of word [mask], pre-trained models173

are able to directly output entity types like “dis-174

eases”, “disorders”, “conditions” and so on, and175

we select Top-K types (S1 : {S11,S12, . . . ,S1K})176

from the output condition probability PS1 : PS177

as the candidate types of noun chunk Ei, where178

S1i is the entity type that outputs the ith highest179

confidence in the conditional probability PS1.180

2https://spacy.io/models/en#en_core_web_sm

However, the above prompt-based input breaks 181

left context and focus more on right context, and 182

we propose another prompt-based input to take left 183

context also into consideration. It is defined as: 184

T2 : LC . . .E and some other [mask] . . .RC (3) 185

For this prompt-based input, we can also obtain 186

its Top-K entity types (S2 : {S21,S22, . . . ,S2K}), 187

and the final type set S of noun chunk E should be 188

generated from two above type sets S1 and S2. 189

2.3.2 Label Words Mapping 190

To bridge the gap between model’s output types 191

S and our task-specific categories Y, we design a 192

module to find label words mapping automatically. 193

Specially, to find the label word mapping for 194

target category Yi, we count the co-occurrence be- 195

tween prompt model’s output types Si and target 196

type Yi in all S, and filter out the types with high 197

support (Sih : S). Actually, the co-occurring types 198

in Sih are often synonyms or aliases of the target 199

type Yi. For instance, we can find target category 200

diseases and type disorders tend to appear together 201

in S, which means there is a label word mapping: 202

disorders → disease. We define the founded label 203

mapping as M, which maps all entity types in Sih 204

to target type Yi, this is defined as: 205

M : Sih → Yi, Yi ∈ Y (4) 206
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2.3.3 Zero-shot Seed Rules207

By the label word mapping M, we can convert208

the initial condition probability output PS1,2 to our209

task-specific condition probability PY1,2 ⊂ Rv,210

where v is the target category number.211

PY1 and PY2 are the entity type predictions for212

noun chunk E that come from two different prompt-213

based models. Therefore, if the two models’ predic-214

tions are similar and have no differences, the final215

entity type O can be considered as the common216

output type of the two models. It is defined as:217

O =

{
Y11 if Y11 = Y21,

unk otherwise.
(5)218

where Y1i is the entity type with the ith largest219

model confidence p1i in PY1, and unk means the220

entity type is unknown due to models’ divergence.221

For these chunks E with determined entity type222

O ̸= unk, we further filter out the chunks with high223

model confidence p, where p = min(p11, p21).224

Besides, we also use a support threshold to fur-225

ther filter out high-quality chunks (i.e.chunks that226

occur less often may be noisy), and we define the227

final obtained chunks pool as PLS .228

PLS = {E : p > pt, r > rt} (6)229

where pt, rt are confidence and support thresholds.230

Actually, any noun chunk E with entity category O231

in the high-quality chunk pool PLS can be seen as232

an initial TOKENSTRING rule:233

TOKENSTRING == chunk E → type O (7)234

2.4 Distill Task-specific Logical Rules from235

High-quality Instance Pool236

Once seed rules are obtained, we can fetch all in-237

stances that matches the seed rules to form a in-238

stance pool PLS → PLR. Based on the initial pool239

PLR, we aim to add high-quality instance to the240

pool, and distill new logical rules from the pool.241

2.4.1 Add High-quality Instances to the Pool242

Based on the high-quality instances in PLS , we243

can train specific (i.e.named entity tagging) down-244

stream models, and the trained model is defined as245

F . After that, we use the trained model to generate246

a pseudo label for each unlabeled instance in PLU .247

To identify potential high-quality instances in248

unlabeled instances PLU , we use the instances in249

high-quality pool PLS as a guide. In detail, for250

any unlabeled sentence su ∈ PLU , its pseudo label251

given by the trained model is Yu = F(su). We 252

randomly sample a certain number of high-quality 253

instances from PLS with the same entity label Yu, 254

and estimate the similarity between the instance su 255

and these sample instances. This is defined as: 256

S-score(su) = Medium[sim(su, si)], si ∈ PLS

(8) 257

where sim is the function to measure the semantic 258

similarity between sentence su and the sampled 259

sentence si, and Medium means that the final score 260

is the median (i.e.avoid the influence of outliers) 261

of all pair scores (sim(su, si), si ∈ PLS). Besides, 262

to decide the score threshold of adding instances 263

to the pool PLS , we also randomly select instance 264

sj from PLS , and calculate the similarity score be- 265

tween the instance sj and the remaining instances 266

PLS/sj . This process is defined as: 267

S-scoret = Medium[S-score(sj ,PLS/sj)], sj ⊂ PLS

(9) 268

2.4.2 Distill Task-Specific Rules from the Pool 269

With such a high-quality instance pool PLS , our 270

goal is to find all high-quality rules from potential 271

rules set R mined in section 2.2.2. For any rule 272

Ru ∈ R, we define its confidence score as: 273

R-score(Ru) =
MRu

NRu

log2NRu (10) 274

where NRu is the number of sentences that meets 275

rule Ru in the pool PLS , and MRu is the number 276

of sentences that matches rule Ru correctly (i.e.the 277

rule labelling result is consistent with the high- 278

confidence label O). Similarly, we also use the ex- 279

isting high-quality rules to determine the dynamic 280

threshold for filtering out potential rules: 281

R-scoret = Medium[R-score(Ri)], Ri ⊂ PLR

(11) 282

Accordingly, we keep repeating the steps de- 283

fined in sections 2.4.1 and 2.4.2 until pool PLS 284

or PLR is no longer updated. During this process, 285

high-quality instances are gradually added to the 286

instance pool PLS , and corresponding high-quality 287

logical rules are also produced. 288

2.5 Fine-tuned Prompt Model as Seed Rules 289

In section 2.3.1, we propose to utilize zero-shot 290

prompt-based models to generate initial seed rules, 291

however, these rules are just a compromise at the 292

time of data cold start (i.e.w/o any weakly labeled 293

data). Once we have collected enough high-quality 294
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instances in pool PLS , we can further adjust the295

prompt-based model to adapt to our specific task,296

and generate seed rules with higher quality.297

2.5.1 Fine-tuned Prompt Model Inputs298

To further fine-tuned prompt models, we construct299

two new prompt-based inputs as follows:300

T3 :LC ... E ... RC E is [mask] [mask] entity

T4 :LC ... E ... RC E [s] [s] . . . [s] [mask] [s]
(12)301

where [s] is the soft mask token. In the input tem-302

plate T3, we aim to make the prompt-based model303

to output entity types at the positions of two [mask]304

tokens, and its label words mapping is:305

[mask] [mask]306

a/an O → E’s entity label is O307

not an → E is not an entity (13)308

For example, if the output words at the positions of309

two mask tokens [mask] are “a disease”, it means310

chunk E is an entity and its label is disease.311

Besides, we also use a soft embedding prompt-312

based input scheme (i.e.T4), which can implic-313

itly learn word embeddings at the positions of [s]314

through gradient propagation. In this case, our goal315

is to constrain the model to output the target entity316

types O directly at the position of [mask].317

Compared to the zero-shot prompt-based input318

proposed in section 2.3.1, the above two prompt-319

based inputs do not destroy the original sentence320

structure and promote the models to better under-321

stand the meaning of the entire sentence.322

2.5.2 Negative Instance Sampling323

However, instances in pool PLS are all positive324

sentences so that the models can not be trained325

only on pool PLS . To solve this issue, we sample326

some high-quality negative instances also based on327

the consistency of model outputs, this is defined as:328

329

O =


Y11 if Y11 = Y21,

NA otherwise if S11 = S21,

unk otherwise.

(14)330

In short, negative samples (i.e.NA) are the samples331

with same zero-shot prompt model outputs (S11 =332

S21), but not with any target entity type (S11 ̸⊂ Y).333

2.5.3 Fine-tuned Seed Rules 334

Based on the positive sentences provided by the 335

pool PLS and negative instances sampled in sec- 336

tion 2.5.2, we can fine-tune prompt-based models 337

with the inputs defined in section 2.5.1. Then, sim- 338

ilar to the approach in section 2.3.3, we use the 339

fine-tuned models to predict pseudo labels for all 340

unlabeled sentences, and filter out the sentences 341

with high model confidence and high support as 342

new seed rules. Immediately afterward, our system 343

will repeat the steps in sections 2.4 and 2.5 to con- 344

tinuously distill more new rules, form a larger pool 345

PLS and fine-tune a better prompt-based model. 346

3 Experiments 347

Our experiments are designed to verify the effec- 348

tiveness of our proposed system — STREAM. 349

3.1 Benchmark 350

BC5CDR (Li et al., 2016) is constructed with 351

BioCreative VCDR task corpus. It contains 500 352

train, 500 dev and 500 test PubMed articales, with 353

15,953 chemical and 13,318 disease entities. 354

CHEMDNER (Krallinger et al., 2015) contains 355

10,000 PubMed abstracts with 84,355 chemical 356

entities, in which the training/dev/test set contain 357

14,522/14,572/12,434 sentences respectively. 358

CONLL2003 (Tjong Kim Sang, 2002) con- 359

sists of 14,041/3,250/3,453 sentences in the train- 360

ing/dev/test data split of Reuters news articles3. 361

3.2 Model and Metric 362

To evaluate the quality of our generated rules, 363

we use the rule-labeled data to train the named 364

entity tagging model and report corresponding 365

model performance. The evaluation metrics in our 366

experiments include Precision(P), Recall(R) and 367

F1-score(F1). In STREAM, we use the model 368

in (Jiang et al., 2020) as the specific tagging model. 369

3.3 Baseline 370

We select several recent weakly supervised meth- 371

ods to compare, including current SOTA systems. 372

Seed Rules uses manually annotated seed rules to 373

match test set and evaluate the label performance. 374

Seed-Tagger uses seed rules to label test set and 375

train the tagging models on the labeled data. 376

3Following previous work, type MISC is not considered.
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Method
Need

Seed ?
BC5CDR CHEMDNER∗ CONLL2003

P R F1 P R F1 P R F1

Seed Rules ✓ 94.09 3.81 7.33 91.60 13.19 23.07 95.77 2.76 5.36
Seed-Tagger ✓ 78.33 21.60 33.86 84.18 21.91 34.78 72.57 24.68 36.83
LinkedHMM ✓ 10.18 15.60 12.32 23.99 10.77 14.86 19.78 31.51 24.30
HMM-Agg ✓ 43.70 21.60 29.00 49.60 18.40 26.80 52.00 8.50 14.60
CGExpan ✓ 40.96 24.75 30.86 45.70 25.58 32.80 55.97 28.70 37.95
AutoNER ✓ 42.22 30.66 35.52 66.83 27.59 39.05 32.07 5.98 10.08
Self-Training ✓ 73.69 29.55 42.19 85.06 20.03 32.42 72.80 24.83 37.03
TALLOR ✓ 66.53 66.94 66.73 48.34 52.56 50.36 64.29 64.14 64.22
STREAM ✗ 72.47 67.90 70.11 63.93 55.13 59.20 69.92 72.30 71.09

Table 1: Model performances on BC5CDR, CHEMDNER, and CONLL2003. Bold and underline indicate the best
and the second best scores, * means the reported result is our re-implementation of author-provide code.

CGExpan (Zhang et al., 2020) expands lexicons377

by language models. Following previous work, we378

use CGExpan to expand the size of human anno-379

tated TOKENSTRING rules (i.e.lexicons) to 1000.380

AutoNER (Shang et al., 2018b) labels untyped381

terms automatically with a pre-defined dictionary.382

We use the best expanded lexicon from CGExpan383

as the dictionary. Both of the expanded lexicon and384

the mined phrases from AutoPhrase (Shang et al.,385

2018a) as untyped mined phrases.386

LinkedHMM (Safranchik et al., 2020) proposes387

to utilize a generative model to aggregate noisy388

rules, and forms weak supervision signals to train389

the models. We use the best expanded lexicon390

from CGExpan as the tagging rules and the mined391

phrases from AutoPhrase as the linking rules.392

HMM-Agg (Lison et al., 2020) introduces the393

hidden Markov models to generate weak labels394

by labeling functions. We use the best expanded395

lexicons from CGExpan as the labeling functions.396

Self-Training uses the seed rules to get initial397

teacher models and iterates the processes of gener-398

ating pseudo labels for unlabeled data and training399

student models following self-training scheme.400

TALLOR (Li et al., 2021) bootstraps high-401

quality logical rules to train a neural tagger in an402

iterative manner, with selected, the most frequent403

manually annotated seed rules as the input.404

3.4 Overall Performance405

We summarize the model performances of our406

STREAM and above mentioned baselines in Ta-407

ble 1. From the table, we can see: (1) Method Seed408

Rules yield a high accuracy, however, this simple409

matching pattern lacks generalization ability and 410

results in a low model recall. (2) Similarly, the 411

Self-training method starts from a small amount of 412

seed data and has a good model accuracy, but its 413

model recall is poor due to the limited data size. (3) 414

Lexicon expanded model CGExpan and AutoNER 415

sacrifice a certain model accuracy in exchange for 416

more balanced model performance. (4) Previous 417

SOTA system TALLOR can learn logical rules in 418

an iterative manner and achieves competitive model 419

F1-score. Since this system still relies on initial 420

seed rules, its model performance is bounded. 421

0 200 400 600 800 1000 1200 1400
seed rules

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

F 1

TALLOR
STREAM

Figure 4: Model Performances on dataset BC5CDR
with different manually annotated seed rules size.

Compared to the above baseline models, our pro- 422

posed system STREAM does not need any human- 423

annotated seed rules or data. We draw curves in 424

Figure 4 to illustrate how many seed rules TAL- 425

LOR needs to be comparable to our STREAM. 426

From the figure, we can see that: When the number 427

of most frequent seed rules reaches 825, the model 428

performance of TALLOR exceeds STREAM for 429
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the first time. However, acquiring such the most430

frequent seed rules is quite labor-intensive.431

3.5 Ablation Study432

To explore how our proposed system STREAM433

works, we now present ablation studies.434

Initial Seed Rules In section 2.3.3, we utilize435

zero-shot prompt-based models’ consistent outputs436

as initial seed rules. We firstly conduct experiments437

to check the quality of initial seed rules.438

Method
BC5CDR CHEMDNER

P R F1 P R F1

TALLOR 66.53 66.94 66.73 48.34 52.56 50.36
STREAMinit 70.46 64.99 67.62 57.13 50.52 53.62
STREAM 72.47 67.90 70.11 63.93 55.13 59.20

Table 2: Ablation results of different rule learn-
ing systems on BC5CDR and CHEMDNER, method
STREAMinit uses the initial seed rules.

We summarize the model performances of differ-439

ent logical rule learning systems in Table 2. From440

the table we can see that: With only the initial rules441

given by the zero-shot prompt model, our system442

STREAMinit has surpassed the previous SOTA443

method TALLOR in metrics P and F1, which means444

the generated seed rules are reliable. Besides, we445

directly utilize the human-annotated labels to ver-446

ify the quality of the initial rules in a more intuitive447

way: When confidence threshold pt = 0.3 and sup-448

port threshold rt = 4, about 219 seed rules are449

obtained with an accuracy of 98.6%.450

In the process of initial seed rules generation,451

hyperparameters pt and rt are relatively impor-452

tant. We draw the figure in Figure 5 to show the453

model performances of STREAMinit with differ-454

ent combinations of pt and rt. From the figure, we455

can see that: (1) When pt = 0.3 and rt = 0.4,456

our system STREAMinit achieves the best perfor-457

mance. (2) As hyperparameters pt or rt increases,458

the model performance first increases and then de-459

creases. This is because a low parameter value may460

introduce some data noise, while a high parameter461

value may reduce the number of recalled rules.462

Fine-tuned Seed Rules After fine-tuning prompt-463

based models, the model can output high confi-464

dence scores for those correct samples. Thus, to465

filter out them, we adopt pt as 0.99, and following466

previous experience, we adopt rt as 4. With this467

combination, we can find that about 272 seed rules468

are recalled with an accuracy of 97.4%.469

pt

0.1
0.2

0.3
0.4

0.5

r t

1
2

3
4

5

F1

45
50
55

60

65

max F1: (pt=0.3,rt=4)

Figure 5: Model performances of different hyperparam-
eter combinations on dataset BC5CDR.

In section 2.5.1, we propose two prompt-based 470

inputs T3 and T4: T3 directly uses hard words to 471

form the prompt sentence while T4 introduces soft 472

embeddings to learn during training process. To 473

compare the two prompt inputs, we present an ab- 474

lation study, and the results are in Table 3. 475

Method
BC5CDR CHEMDNER

P R F1 P R F1

TALLOR 66.53 66.94 66.73 48.34 52.56 50.36
STREAMhard 73.13 65.82 69.28 61.49 55.65 58.42
STREAM 72.47 67.90 70.11 63.93 55.13 59.20

Table 3: Ablation results of different prompt-
based inputs on BC5CDR and CHEMDNER, method
STREAMhard uses the prompt-based input T3, method
STREAM uses the prompt input T4.

From the table we can see that: (1) Whether tem- 476

plate T3 or T4 is used, our system STREAM can 477

achieve SOTA model performance. (2) Soft tem- 478

plate T4 performs better because it can learn a more 479

efficient prompt pattern during training process. 480

High-quality Instance Pool In section 2.4, we 481

add high-quality instances to PLS and distill new 482

logical rules from PLS in an iterative manner. To 483

figure out how PLS changes during the training 484

process, we now show the ablation in Figure 6. 485

From the figure, we can see: (1) During the 486

iterative process, the size of PLS continues to in- 487

crease, but its growth rate gradually slows down. 488

(2) At the beginning of the iteration, high-quality 489

instances are added to the pool PLS , and the model 490

performance increases. However, at the later itera- 491
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Logical Rule Matched Sentence Logical Rule Condition p Entity Type q

Other symptoms of allergicADJ reactionsNOUN
were not clinically detectable.

PRENGRAM == symptoms of
∧ POSTAG == ADJ NOUN

p → q : disease

Grade less than or equal to 2 nauseaNOUN and
vomiting occurred in 66%, courses and phlebitis ...

POSTNGRAM == and vomiting
∧ POSTAG == NOUN

p → q : disease

This study describes neuropsychiatric side effects in
patients after treatment with mefloquinePROPN.

PRENGRAM == after treatment
with ∧ POSTAG == PROPN

p → q : chemical

Prophylactic use of lamivudine with chronic immun-
osuppressive therapy for rheumatologic disorders.

PRENGRAM == therapy for
∧ POSTNGRAM == [END]

p → q : disease

Table 4: Cast study of learned logical rules on dataset BC5CDR, [END] means the end (.) of sentences.
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Figure 6: Changes of PLS size and model performance
on development set (i.e.dev F1) during training process.

tion stage, some noise instances may be introduced,492

which causes the model performance to decrease.493

3.6 Case Study: Learned Logical Rules494

In the above section, we have proved that our sys-495

tem STREAM can extract better logic rules with496

better downstream model performance. In this sec-497

tion, we present a case study to show the learned498

logical rules from a more intuitive perspective.499

In Table 4, we select four sentences and corre-500

sponding learned logical rules from the training501

corpus. For example: (1) The entity mention in502

the first sentence matches the POSTAG form of503

ADJ NOUN, and its PRENGRAM words are symp-504

toms of, therefore, STREAM can infer a rule:505

(PRENGRAM == symptoms of ∧ POSTAG ==506

ADJ NOUN) → disease. (2) In the forth sentence,507

the PRENGRAM words of mention rheumatologic508

disorders are therapy for while the mention is just509

the end of sentence. STREAM can extract logical510

rule (PRENGRAM == therapy for ∧ POSTNGRAM511

== END) → disease from this sentence.512

4 Related Work513

Weak Supervision To alleviate the issue of lim- 514

ited labeled data, previous researchers made many 515

efforts to improve named entity tagging systems 516

from different perspectives: (1) (Ren et al., 2015; 517

Fries et al., 2017; Giannakopoulos et al., 2017) in- 518

troduce distant supervision (Mintz et al., 2009), an 519

automated method to label data by aligning text 520

with remote knowledge bases, to build NER sys- 521

tems without human supervision. (2) (Shang et al., 522

2018a) uses typed lexicons and (Peng et al., 2019) 523

uses incompetent dictionaries as the indirect super- 524

vision to guide model training. (3) Recently, (Li 525

et al., 2021) proposes to learn logical rules from 526

selected seed rules to generate more diverse pseudo 527

labels, and achieves the SOTA model performance. 528

However, above systems still rely on seed data or 529

rules, so that the model performance is bounded. 530

Language Models Vaswani et al. (2017) pro- 531

posed a self-attention based architecture — Trans- 532

former, and it soon becomes the backbone of many 533

following language models. By pre-training on 534

a large-scale corpus, BERT (Devlin et al., 2019) 535

obtains the ability to capture a notable amount of 536

“common-sense” knowledge and gains significant 537

improvements on many tasks following the fine- 538

tune scheme. Recently, (Gao et al., 2021; Han et al., 539

2021; Wei et al., 2021) found that the prompt-based 540

models achieve remarkable few-shot performance, 541

and reformulate the traditional paradigm of fine- 542

tuning to prompt-tuning, which could better utilize 543

the knowledge of the pre-trained models. 544

5 Conclusion 545

In this work, we propose an automated framework 546

STREAM to distill task-specific logical rules from 547

large pre-trained models. Experiments show the 548

effectiveness of STREAM, with stable and signifi- 549

cant improvements over different baseline models. 550
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