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Abstract

Reconstructing ocean surface nutrients from sparse observations is critical for
understanding long-term biogeochemical cycles. Most prior work focuses on re-
constructing atmospheric fields and treats the reconstruction problem as image
inpainting, assuming smooth, single-scale dynamics. In contrast, nutrient transport
follows advection–diffusion dynamics under nonstationary, multiscale ocean flow.
This mismatch leads to instability, as small errors in unresolved eddies can propa-
gate through time and distort nutrient predictions. To address this, we introduce
NUTS, a two-scale reconstruction model that decouples large-scale transport and
mesoscale variability. The homogenized solver captures stable, coarse-scale ad-
vection under filtered flow. A refinement module then restores mesoscale detail
conditioned on the residual eddy field. NUTS is stable, interpretable, and robust to
mesoscale perturbations, with theoretical guarantees from homogenization theory.
NUTS outperforms all data-driven baselines in global reconstruction and achieves
site-wise accuracy comparable to numerical models. On real observations, NUTS
reduces NRMSE by 79.9% for phosphate and 19.3% for nitrate over the best
baseline. Ablation studies validate the effectiveness of each module.

1 Introduction

Reconstructing historical nutrient concentrations in the surface ocean is essential for understanding
long-term biogeochemical cycles, ecosystem variability, and anthropogenic influence Stüeken et al.
[2024]. However, nutrient observations are extremely sparse, especially before the bio-Argo era when
data came from irregular ship-based campaigns. Even today, nutrient data remain far less available
than satellite-measured variables like sea surface temperature (SST) or chlorophyll Mishonov et al.
[2024], Locarnini et al. [2018].

Recent deep learning advances have driven progress in forecasting and reconstructing high-
dimensional atmospheric fields. Transformer-based models Pathak et al. [2022], Bi et al. [2023],
Lam et al. [2023], Nguyen et al. [2023] achieve state-of-the-art short-term forecasts by capturing
temporal dependencies in data-rich regimes with complete initial conditions. In contrast, climate field
reconstruction operates in sparse settings and is often framed as a spatial in-painting task Cao et al.
[2023], Wang et al. [2023], Gao et al. [2024]. Early models Ronneberger et al. [2015], Dosovitskiy
et al. [2020], Gao et al. [2022] focus on spatial correlations, while recent hybrids Li et al. [2020a],
Wang et al. [2025], Beauchamp et al. [2023] add physical constraints for greater consistency. However,
these methods are mainly designed for smooth, single-scale wind fields with well-resolved large-scale
structure.

*Equal contribution.
†Corresponding author.
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Reconstructing ocean nutrients demands a fundamentally different approach. Unlike atmospheric
fields, nutrient transport follows advection–diffusion dynamics driven by a nonstationary, multiscale
velocity field. Surface currents consist of a slowly evolving large-scale mean flow overlaid with
rapidly fluctuating mesoscale eddies. These eddies—coherent vortices spanning 10–100 km—govern
most lateral nutrient transport Vallis [2017], McWilliams [2016], Chelton et al. [2011], yet are poorly
resolved in numerical circulation models due to limited resolution and inherent uncertainty. As a
result, reconstruction models that rely directly on such flow fields are fragile: even small perturbations
in the eddy component can degrade predictions.

Robust nutrient reconstruction presents a core modeling dilemma. Filtering the input velocity field
improves stability by suppressing high-frequency eddy perturbations. However, it also removes
fine-scale structures essential for capturing local nutrient gradients. Retaining all scales introduces
instability; over-filtering sacrifices resolution. A principled solution must separate scales—preserving
large-scale transport while reintroducing mesoscale variability in a controlled manner.

We propose NUTS, a novel and robust two-scale model that, for the first time, resolves the reconstruc-
tion challenge through a structured decomposition. At its core is a homogenized advection–diffusion
solver that models nutrient transport under the filtered large-scale flow. By replacing unresolved
mesoscale variability with an effective diffusion term, this formulation captures the net impact of
fine-scale dynamics without tracking unstable eddy fluctuations. The coarse module leverages this
framework to propagate nutrient fields with stability and physical consistency. To recover fine-scale
structure, the refinement module models localized redistribution conditioned on the residual mesoscale
flow and the coarse prediction. This coarse-to-refined architecture preserves large-scale transport
patterns while restoring spatial detail in dynamically active regions. NUTS is robust to mesoscale per-
turbations, respects scale separation, and generalizes effectively under sparse observational coverage.
We establish accuracy and stability guarantees under standard assumptions from homogenization
theory, and empirically demonstrate that NUTS consistently outperforms prior baselines on both
simulated and real-world datasets. Our contributions are as follows:

• We formulate nutrient reconstruction as a spatiotemporal advection–diffusion problem and reveal
the vulnerability of naive methods to mesoscale perturbations.

• We propose NUTS, a two-scale model that combines a homogenized PDE solver with adaptive
diffusion and a refinement module conditioned on normalized eddy flow. We provide theoretical
justification of its effectiveness under standard homogenization assumptions.

• We empirically demonstrate that NUTS outperforms all data-driven baselines in global nutrient
reconstruction on both simulated and real-world datasets, achieving site-wise accuracy comparable
to physics-based numerical models. On the WOD dataset of real observations, NUTS reduces
NRMSE by 79.9% for phosphate and 19.3% for nitrate relative to the best baseline.

• Ablation studies highlight the contribution of each component and offer empirical guidance for
designing robust reconstruction architectures.

2 Related Work

This section outlines key related work and we provide a comprehensive review with extended
background and references in Appendix A.

Nutrient Data. Ocean nutrient data are typically derived from observational datasets and simulation-
based products. Raw observational archive, such as WOD Mishonov et al. [2024], provide high-quality
and in-situ measurements but suffer from sparse and uneven distribution. In contrast, simulation-
based products like the CMEMS Global Ocean Biogeochemical Hindcast (GOBH) Perruche [2018],
ECCO-Darwin Dustin et al. [2020], MOM6-COBALT2 Griffies et al. [2012] can offer global coverage
data product with coupled physical and biogeochemical dynamics, but require extensive calibration.
Furthermore, most of these simulation-based products do not incorporate biogeochemical data
assimilation and often employ simplified parameterizaton of biogeochemical processes, resulting in
regional biases and uncertainties in nutrient fields.

Reconstruction Approaches. Traditional methods such as optimal interpolation Conkright et al.
[2002], 3D/4D-Var Courtier et al. [1994], ensemble Kalman filters Nerger and Gregg [2008], and
variational inverse models Brasseur and Haus [1991] rely on data assimilation and inverse modeling
to integrate sparse observations with physical dynamics, but are often limited by computational cost
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Figure 1: Decomposition of surface ocean flow into mean and eddy components. (a) Full velocity field containing both
large-scale and mesoscale structures. (b) Mean flow obtained via low-pass filtering, capturing large-scale structures such as the
Kuroshio Current. (c) Eddy flow computed as the residual, representing high-frequency mesoscale variability. Bottom panels
display the radial frequency spectra corresponding to each flow component, with energy concentrated at low frequencies for
the mean flow and at higher frequencies for the eddy flow, illustrating effective scale separation.

and data sparsity. Recent advances in deep learning offer alternative solutions for spatiotemporal
reconstruction. CNN-based models (e.g., U-Net Ronneberger et al. [2015]) and transformers (e.g.,
ViT Dosovitskiy et al. [2020], Earthformer Gao et al. [2022]) capture spatial structures but lack
physical grounding. Physics-informed approaches—such as neural operators Li et al. [2020a], Wang
et al. [2025], implicit neural representations Luo et al. [2024], and 4DVarNet Beauchamp et al.
[2023]—embed governing equations or physical constraints into the learning process to improve
physical consistency but are limited in capacity. Foundation models (e.g., Prithvi Schmude et al.
[2024], AtmoRep Lessig et al. [2023]) show promise in meteorology but remain untested in marine
biogeochemistry. General-purpose inpainting methods using GANs Zhao et al. [2021] and diffusion
models Lugmayr et al. [2022] perform well in vision tasks but lack physical constraints and robustness
to sparse data.

3 Methodology

Notations. Let S2 denote the unit surface in R3, parameterized by latitude-longitude coordinates
x = (θ, ϕ) ∈ Ω = [−π

2 ,
π
2 ]× [−π, π]. For a time-dependent function φ(θ, ϕ, t), define φ̇ = ∂φ

∂t . The
divergence and spherical Laplacian operators are denoted ∇· and ∇2, respectively.

Problem Setup. The nutrient concentration φ follow the advection-diffusion equation: Lw,η[φ] =
φ̇+∇ · (wφ)− η∇2φ = s, where η = η(θ, ϕ) denotes the time-invariant diffusion coefficient and
s = s(θ, ϕ, t) represents the external source and sink terms. These terms account for biological
uptake and remineralization through photosynthesis, respiration, and demineralization, as well as
physical downwelling and upwelling. Given sparse nutrient measurements on Z×T ⊂ Ω×[0, T ] and
perturbed ocean flow estimates w, our goal is reconstructing nutrient concentrations by solving the
constrained PDE: Lw,η[φ] = s, subject to φ|Z×T = f |Z×T , where f represents observed nutrient
concentrations and f

∣∣
Z×T denotes its restriction to the subset Z × T .

3.1 A Naive Spatial-Temporal Reconstruction Model

In this subsection, we introduce a naive spatiotemporal reconstruction model and discuss its advantage
over image-inpainting-based methods. We then demonstrate its sensitivity to mesoscale perturbations
in the eddy component of the ocean velocity field.

Naive Model. Given an interval [t0, t1], the naive model first uses a data-driven initializer F0 to
estimate the initial nutrient field φ̂(x, t0) through the velocity field w, auxiliary variables Φ, and
sparse observations f . The estimate is then propagated by solving the advection–diffusion equation
Lw,η[φ̂] = s, where both the diffusion coefficient η and source term s are learned to match the
true field. Prior work Schiesser [1991] has demonstrated that this propagation can be implemented
via the method of lines (MOL), which discretizes the PDE into a system of first-order ODEs at
spatial locations {xk}k: φ̂(xk, t) = φ̂(xk, t0)+

∫ t

t0

[
−∇ · (wφ) + η∇2φ+ s

]
(xk, τ)dτ, where the

forward solution can be solved approximately using numerical solvers such as Runge–Kutta LeVeque
[2007]. During the model training, all components, i.e., F0, s and η are jointly optimized to minimize
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Figure 2: Overview of NUTS. NUTS is a two-scale model that combines a data-driven initializer, a homogenized PDE solver
with learned effective diffusion, and a refinement module to reconstruct ocean nutrients under sparse observations. The velocity
field is decomposed into mean and eddy components for scale separation. A learnable source module captures unresolved
inputs. Trainable modules are marked with fire icons. Cat denotes channel concatenation and ⊕ denotes element-wise addition.

the mean squared error between the prediction φ̂ and the ground-truth φ, i.e., minF0,s,η LMSE ≜
∥φ− φ̂∥22.

Advantages over Existing Image In-painting Approach. (1) Physical consistency and mass
conservation. The naive model evolves nutrient fields through an advection–diffusion PDE, ensuring
temporally consistent reconstructions that follow physical transport processes and conserve mass. In
contrast, image in-painting methods rely purely on spatial interpolation, lacking temporal dynamics
and physical grounding. (2) Effective use of sparse observations. By jointly learning the initializer,
source term, and diffusion coefficient, the naive model directly integrates observational data to
constrain transport dynamics, leading to more data-consistent estimates in sparsely sampled regions.

Sensitivity to Mesoscale Perturbations. The naive reconstruction approach evolves nutrient esti-
mates using velocity fields from numerical circulation models, which accurately capture large-scale
mean currents but often misrepresent mesoscale eddies due to limited resolution and structural uncer-
tainties. Mesoscale eddies are small-scale (10–100 km), high-energy structures that play a dominant
role in nutrient transport. As illustrated in Figure 1, the true velocity field w∗ can be decomposed
into a smooth mean component w̄∗ and a rapidly fluctuating eddy component v∗. When the MOL
uses a perturbed velocity field wδ = w∗ + δ, structural errors δ in the eddy component introduce an
additional transport term into the advection–diffusion dynamics:

φ̂(xk, t1) = φ̂(xk, t0) +

∫ t1

t0

[
−∇ · (w∗φ) + η∇2φ+ s

]
(xk, τ)︸ ︷︷ ︸

true advection–diffusion

−
[
∇ · (δφ)

]
(xk, τ)︸ ︷︷ ︸

error from flow perturbation

dτ. (1)

The perturbation term scales with ∥δ∥, which can be large, as mesoscale eddies typically carry more
energy than the mean flow (Figure 1). By Equation (1), such perturbations induce significant transport
errors that accumulate and propagate over time. This underscores the need for reconstruction models
that are robust to mesoscale flow inaccuracies.

3.2 NUTS: Eddy-Robust Nutrient Reconstruction via Two-Scale Modeling

We introduce NUTS, a principled two-scale model that reconstructs surface ocean nutrients from
sparse observations and noisy velocity inputs (see Figure 2). Unlike prior approaches, NUTS
separates nutrient transport into stable mean dynamics and unstable mesoscale variability. It applies a
homogenized PDE solver for large-scale propagation and a refinement module for controlled recovery
of fine-scale structure. This decomposition improves robustness and generalization in multiscale
ocean flows. All architectural details are provided in Appendix B.

Coarse Module Part I: Robust Initializer. The coarse stage begins by estimating the nutrient field
φ̄(xk, t0) at the start of the reconstruction interval. To suppress mesoscale noise, we apply a Fourier-
based low-pass spatial filter to the input velocity field and extract the mean flow w̄∗. This filtered
flow, along with sparse nutrient observations and auxiliary variables, is encoded by a spatiotemporal
transformer that captures long-range dependencies across space and time. The initializer is designed
to be robust to flow perturbations and produces a stable starting point for physical propagation.

Coarse Module Part II: Homogenized PDE Solver. To evolve the field forward, NUTS applies a
homogenized advection–diffusion equation:

φ̄(xk, t1) = φ̄(xk, t0) +

∫ t1

t0

[
−∇ · (w̄∗φ̂)︸ ︷︷ ︸

mean flow advection

+∇ · (K∇φ̄)︸ ︷︷ ︸
effective diffusion

]
(xk, τ) dτ. (2)
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This formulation replaces unresolved mesoscale effects with an effective diffusion tensor K(x),
which is predicted by a hypernetwork conditioned on φ̄. We discretize the system using the method of
lines and numerically integrate it over time. This structured PDE solver ensures stable and physically
grounded transport under filtered dynamics.

Refinement Module. The refinement stage corrects residual errors and restores mesoscale vari-
ability. It takes as input the coarse prediction φ̄, mean flow w̄∗, normalized eddy velocity
v̂ = (w − w̄∗)/∥w − w̄∗∥∞, sparse observations, and static covariates. These inputs are tok-
enized and passed through a vision transformer R that produces the refined estimate φ̂(x, t), i.e.,
φ̂(x, t) = R [φ̄, w̄∗, v̂,Φ, f ] (x, t). Refinement is performed independently at each timestep and
learns localized spatial redistribution driven by eddy structures.

Source Term and Conservation Loss. To account for unresolved sources and sinks, we introduce a
learnable correction term s = S(φ̂), where S is parameterized by a ResNet. The final prediction is
φ̂final = φ̂+ s. To enforce physical realism, we define total nutrient mass as M [φ](t) =

∑
k φ(xk, t),

and penalize mass drift through the conservation loss:

Lcons. =

∫ t1

t0

|M [φ̄](τ)−M [φ̄](t0)|2 + |M [φ̂](τ)−M [φ̄](t0)|2 dτ.

The final training objective is: Ltotal = ∥φ̂final − φ∥22 + λLcons., which governs the optimization of all
learnable components in NUTS.

Core Insight: Why Two-Scale Modeling Works. The key challenge in reconstructing ocean nutrient
fields lies in the dual nature of the underlying dynamics: large-scale currents govern basin-wide
transport, while mesoscale eddies induce localized variability and dominate error sensitivity. NUTS
addresses this by explicitly separating these two regimes. The coarse module filters out unstable
mesoscale fluctuations and models stable transport via a homogenized PDE with learnable diffusion.
This prevents error accumulation from uncertain eddy inputs. The refinement module then selectively
reintroduces mesoscale information—not as direct forcing, but as spatial corrections conditioned on
the residual flow. This two-stage architecture mirrors the physical structure of ocean transport and
enables both robustness and resolution in a way that single-scale models cannot.

Advantages over the Naive Approach. NUTS preserves the physical grounding of the naive model,
including advection–diffusion transport and the effective use of sparse observations. But it adds two
critical improvements: (1) Scale-aware architecture. By decoupling mean and eddy-driven dynamics,
NUTS reconstructs both broad circulation and localized nutrient features with greater fidelity. (2)
Built-in robustness. Homogenization shields the system from mesoscale perturbation errors, while
spatial refinement restores resolution without destabilizing temporal evolution.

Context and Relation to Prior Work. While prior hybrid models such as FNO Li et al. [2020a],
4DVarNet Beauchamp et al. [2023], and GraphCast Lam et al. [2023] embed physical priors into data-
driven forecasting pipelines, they typically rely on direct PDE application or learn-to-solve strategies
that do not explicitly separate stable and unstable components. In contrast, NUTS reformulates the
transport equation itself: it applies homogenization to eliminate mesoscale instability at the PDE level
and delegates high-frequency recovery to a separate spatial refinement module. This scale-aware
decomposition is essential for robustness in noisy flow regimes.

3.3 Theoretical Analysis: Effectiveness of NUTS under Eddy Perturbations

We adopt a standard multiscale formulation for ocean velocity Majda and Kramer [1999a], Pavliotis
and Stuart [2008], modeling w∗(x, t) = w̄∗(x, t) + 1

εv
∗(x, t;y, τ), where ε ≪ 1 characterizes the

scale separation between slow large-scale transport and fast mesoscale variability, and y = x/ε,
τ = t/ε2 are fast space-time variables that resolve high-frequency eddy dynamics. The mean
flow w̄∗ governs large-scale advection, while v∗ captures mesoscale eddies with rapid, oscillatory
fluctuations. This parabolic scaling is standard in homogenization theory for advection–diffusion
systems Pardoux and Veretennikov [2002], ensuring that mesoscale variability mixes locally without
inducing net large-scale transport. We further assume that both v∗ and the perturbation δ satisfy
the same structural form: periodic and mean-zero in the fast variables (y, τ). This assumption is
classical in homogenization theory Lions et al. [1978] and reflects the physical behavior of mesoscale
eddies—highly energetic but oscillatory and net-zero under space-time averaging Sandery et al.
[2020].

5



Theorem 1 (Informal; Accuracy and Robustness under Eddy Perturbations). Suppose that both the
true velocity field and the perturbation satisfy the periodic, mean-zero eddy flow assumption. Then,
under mild regularity conditions, the NUTS prediction φ̂ differs from the true solution φ∗ by at most
O(ε), independent of the perturbation strength ∥δ∥∞.

Remark: The formal statement and proof of this result are provided in Appendix C.

Interpretation. This theorem establishes two key properties of NUTS. First, the error is O(ε) and
independent of the perturbation strength ∥δ∥∞, ensuring robustness: fast, high-amplitude eddy
perturbations have negligible impact on the coarse-scale reconstruction. Second, the result guarantees
accuracy when the true eddy field varies on small spatial and temporal scales (ε ≪ 1). This is
nontrivial, as the eddy field enters the dynamics with magnitude 1/ε; despite being mean-zero,
its local influence is large. The bound confirms that the homogenized model captures the correct
large-scale behavior, justifying the use of coarse dynamics in this regime.

4 Experiment

In this section, we answer the following research questions:

RQ1. How does NUTS perform in reconstructing global surface ocean nutrient concentrations
compared to existing baselines, using both simulated and real-world observations?

RQ2. Does the proposed two-scale modeling framework enhance robustness to mesoscale perturba-
tions? How do filtering strategies and diffusion implementations influence this robustness?

RQ3. How do individual design choices—such as model architecture, auxiliary inputs, conservation
loss, and reconstruction interval—affect reconstruction accuracy?

4.1 Experimental Setup

We present the experimental setup, including datasets, baselines and evaluation metrics. Implementa-
tion and training details are in Appendix D. Code and data are available at URL.

Table 1: NRMSEs (↓) of MOM6
(Monthly) and GOBH (Monthly) data com-
pared to real observations from WOD.

Data Source Nitrate Phosphate

MOM6 0.463 0.301
GOBH 1.444 1.335

Data. We conduct experiments using two datasets for global
surface nutrient reconstruction. Simulation Dataset. To sup-
port high-quality long-term reconstruction, we release two data
products generated by the numerical physical-biogeochemical
model MOM6-COBALT2 Liu et al. [2022], referred to as MOM6
(Daily) and MOM6 (Monthly). The simulations were conducted
on 1000 CPU cores of AMD EPYC 9654 96-Core Processors
over an 11-day period, spanning 1959 to 2022 at a global nominal resolution of 0.5° (576 × 720).
The model output is subsequently regridded to a uniform 0.5° grid (360 × 720) using bilinear in-
terpolation. Each data product includes surface nitrate and phosphate concentrations, along with
auxiliary variables such as temperature, salinity, and horizontal velocities (u, v). Compared to GOBH
(Monthly) Perruche [2018], our MOM6 (Monthly) data product show improved agreement with
in-situ observations from WOD, achieving approximately 60% lower NRMSE on a 0.5° × 0.5° grid
(Table 1). Additional details are provided in Appendix D.1. Real Observations. We use in-situ
nutrient measurements from the World Ocean Database (WOD) Mishonov et al. [2024], which
contains nitrate and phosphate records from 1959 to 2022. These observations are extremely sparse,
covering only 0.16% of the full spatio-temporal grid. All measurements are regridded to match the
spatial and temporal resolution of the MOM6 data product.

Table 2: Overview of dataset divisions by year.

Task Train Validation Test

Daily Avg. 2019, 2020 2021 2022
Monthly Avg. 1959–1998 1999–2010 2011–2022

Tasks. We evaluate the model on two resolution-specific
nutrient reconstruction tasks. Daily Average Recon-
struction. Sparse observations are simulated by ran-
domly sampling nutrient values from the MOM6 (Daily)
dataset at sparsity levels of 0.1%, 1%, and 10%. The
0.1% level reflects the sparsity of real-world observations, while 10% aligns with settings used in
prior work Luo et al. [2024]. The model reconstructs full daily nitrate and phosphate fields using
these samples together with MOM6 daily flow and auxiliary variables. Monthly Average Recon-
struction. Real-world nutrient measurements from WOD and monthly flow and auxiliary variables
from MOM6 are used to reconstruct complete monthly averages of nutrient fields. Dataset partitions
are summarized in Table 2, with sampling details in Appendix D.4.

6

https://github.com/Leamonz/NUTS


Table 3: NRMSE (↓) of different models for reconstructing (1) global daily average nutrient concentrations from the
MOM6 simulation under sampling ratios of 0.1%, 1%, and 10%, and (2) global monthly average concentrations from WOD
observations. Params denotes the number of model parameters. The numbers after ± are standard errors under 3 trials.

Methods Params
MOM6 (Daily) WOD (Monthy)

Phosphate Nitrate Phosphate Nitrate

0.1% 1% 10% 0.1% 1% 10% – –

Kriging(Exp.) – 0.535±0.022 0.262±0.015 0.184±0.023 0.642±0.020 0.368±0.025 0.256±0.019 1.275±0.130 1.495±0.091

Kriging(Sph.) – 0.537±0.019 0.276±0.022 0.192±0.020 0.649±0.017 0.399±0.018 0.272±0.021 1.270±0.086 1.517±0.057

4D-VarNet 0.3M 0.151±0.008 0.154±0.012 0.156±0.010 0.168±0.006 0.170±0.007 0.161±0.008 0.187±0.008 0.203±0.009

Marble 0.6M 0.397±0.051 0.227±0.044 0.232±0.069 0.441±0.078 0.222±0.044 0.297±0.047 0.363±0.058 0.326±0.056

FNO 4.8M 0.251±0.015 0.227±0.016 0.229±0.014 0.261±0.012 0.256±0.013 0.257±0.014 0.244±0.015 0.276±0.017

U-Net 31.0M 0.151±0.008 0.148±0.013 0.149±0.011 0.169±0.007 0.166±0.012 0.167±0.013 0.174±0.012 0.187±0.008

ViT 77.7M 0.257±0.032 0.242±0.044 0.359±0.048 0.311±0.046 0.256±0.044 0.256±0.052 0.263±0.034 0.260±0.002

AtmoRep 0.7B 0.196±0.010 0.194±0.011 0.192±0.010 0.190±0.009 0.219±0.011 0.218±0.013 0.206±0.013 0.260±0.013

Prithvi 2.3B 0.216±0.055 0.197±0.043 0.208±0.054 0.279±0.049 0.274±0.057 0.275±0.036 0.222±0.042 0.338±0.046

NUTS 125.6M 0.014±0.002 0.015±0.001 0.022±0.002 0.143±0.003 0.136±0.003 0.142±0.004 0.035±0.002 0.151±0.003

Promotion – 90.7% 89.9% 85.2% 14.9% 18.1% 11.8% 79.9% 19.3%

Baselines. We compare our model against a wide range of baselines grouped into six categories:
(1) Kriging interpolation with exponential and spherical variogram models; (2) CNN-based model
U-Net Ronneberger et al. [2015]; (3) transformer-based model ViT Dosovitskiy et al. [2020]; (4)
neural operator Fourier Neural Operator (FNO) Li et al. [2020b]; (5) implicit representation method
Marble model Wang et al. [2025]; (6) foundation models pretrained on climate data, including
Prithvi WxC Schmude et al. [2024] and AtmoRep Lessig et al. [2023]; (7) physics-guided hybrid
assimilation model such as 4DVarNet Beauchamp et al. [2023]. All baselines except Marble and
Kriging reconstruct each frame independently using static inputs—observations, auxiliary variables,
and velocity fields at a single time step. Marble leverages temporal observations but excludes auxiliary
variables and flow inputs. Kriging uses only static observations. In contrast, our model takes temporal
sequences of all inputs and generates spatiotemporal nutrient reconstructions. See Appendix B.2
and D.5 for details.

Metrics. We use Normalized Root Mean Squared Error (NRMSE) to evaluate model performance,
which ensures scale independence Shcherbakov et al. [2013]. We first calculate the latitude-weighted
RMSE between the reconstructed values and the corresponding ground-truth, while NRMSE is
obtained by normalizing RMSE using the mean of the ground-truth.

4.2 Main Results (RQ1)

We compare the reconstruction performance of our model on simulation and observation data as
summarized in Table 3 and Figure 4.

Figure 3: Spatial distribution of the
phosphate-to-nitrate ratio of coeffi-
cients of variation.

Obs 1: NUTS achieves the lowest NRMSE across all daily and
monthly reconstruction tasks. We evaluate performance under
varying observation sparsity across simulated and real-world datasets.
As shown in Table 3, NUTS consistently outperforms all baselines.
On the daily task with 0.1% sparsity, it reduces NRMSE by 90.7%
for phosphate and 14.9% for nitrate compared to U-Net. On the
monthly WOD dataset, it achieves 79.9% and 19.3% improvement,
respectively. The gain is more substantial for phosphate, which
exhibits smoother temporal variation and is easier to model dynam-
ically. Figure 3 supports this, showing the spatial distribution of the
phosphate-to-nitrate ratio of coefficients of variation (CVs), where
each CV is defined as the temporal standard deviation divided by the mean concentration. Lower
values indicate weaker phosphate fluctuations, which NUTS captures more reliably.

Among baselines, U-Net and 4D-VarNet perform best. U-Net extracts multiscale features via
skip-connected encoders Ronneberger et al. [2015], while 4D-VarNet enforces physical consis-
tency through advection-aware design Beauchamp et al. [2023]. NUTS combines both principles—
multiscale modeling and physics-based dynamics—yielding consistent improvements across sparsity
levels. These gains are especially pronounced under low observation density, where auxiliary physical
variables become essential for accurate reconstruction. Baselines that lack such inputs—such as
Kriging (Exp.) and (Sph.)—exhibit large accuracy drops. In contrast, NUTS remains robust by
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Table 4: Model Analysis (NRMSE ↓). (a) Comparison of different low-pass filter types; (b) Evaluation of cutoff ratios for
frequency filtering; (c) Comparison of advection–diffusion implementations, including advection-only, fixed diffusion matrix,
and learned diffusion network. Unless otherwise specified, the target nutrient is nitrate, the low-pass filter is Fourier-based
with a cutoff ratio of 0.1, and the diffusion module is implemented using a 6-layer ResNet.

(a) Filter Type.

filter Daily Monthly
Fourier 0.136 0.151
Wavelet 0.144 0.197
Gaussian 0.143 0.169

Moving Avg. 0.154 0.167

(b) Filter Cutoff Ratio.

param. Daily Monthly
0.1 0.136 0.151
0.2 0.145 0.194
0.5 0.145 0.189
1.0 0.171 0.189

(c) Implementation of Advection Diffusion.

case Daily Monthly
advection-only 0.138 0.176

adv. + diffusion matrix 0.142 0.165
adv. + diffusion network 0.136 0.151

leveraging oceanographic drivers like sea surface temperature, as further confirmed in our ablation
study in Section 5.
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Figure 4: Site-wise NRMSE (↓) of different meth-
ods evaluated on WOD real observation.

Obs 2: In reconstructing real observation site records,
our model outperforms data-driven baselines and
matches the performance of traditional numerical
methods. We evaluate the site-wise reconstruction accu-
racy by training on 75% of WOD sites and testing on the
remaining 25%. As shown in Figure 4, NUTS achieves
site-wise NRMSEs of 1.32 for phosphate and 2.18 for
nitrate, outperforming all data-driven baselines. Its per-
formance is comparable to traditional numerical models,
including MOM6 and GOBH, demonstrating strong gen-
eralization under real-world sparsity.

4.3 Component Analysis: Contribution of the Coarse and Refinement Modules (RQ2)

We evaluate the contribution of two key coarse-stage components—low-pass filtering and effective
diffusion—as well as the refinement module. NUTS is compared against U-Net and three ablated
variants, each omitting a specific component while keeping all other settings fixed. The structural
details of these variants are summarized in Table 5, and all variants are parameter-matched with NUTS
for a fair comparison. All ablation results reported in this section use nitrate as the reconstruction
target. Results for the daily task are reported under a 1% sparsity ratio. Full hyperparameter
configurations are provided in Appendix D.5.

Table 5: Overview of Model Ablation Variants.
“B”, “F” and “F+D” represent the base model, the
base model with filtering, and the base model with
both filtering and diffusion, respectively. ✓ de-
notes inclusion; × denotes exclusion.

Variants Params
Count

Low-pass
Filter

Effective
Diffusion

Refine
Module

Naive-B 131.9M × × ×
Naive-F 131.9M ✓ × ×
Naive-(F+D) 131.7M ✓ ✓ ×
NUTS 125.6M ✓ ✓ ✓

Obs 3: Our model achieves both robustness and accu-
racy; filtering alone improves stability but sacrifices
mesoscale information. We assess robustness by perturb-
ing the eddy component v∗ using Fourier-based scaling,
generating δ = γv∗, and injecting it into the velocity field.
As shown in Figure 5, NUTS maintains low NRMSE
across all perturbation levels, demonstrating strong re-
silience to mesoscale variability. Naive-B, which directly
propagates the full velocity field without filtering, suffers
large errors—especially at γ = ±1—highlighting its sensi-
tivity to unresolved eddy perturbations. Naive-F improves
robustness by suppressing high-frequency noise but exhibits degraded accuracy due to the removal of
informative mesoscale signals. In contrast, NUTS combines the strengths of both: the coarse stage
stabilizes dynamics through filtering, while the refinement stage recovers fine-scale nutrient structure
conditioned on residual eddy flow.

Figure 5: NRMSE of different models under vary-
ing mesoscale perturbation levels.

Obs 4: Effective diffusion enhances filtered transport,
but refinement is essential for recovering mesoscale
structure. As shown in Figure 5, Naive-(F+D)—which
combines flow filtering with the effective diffusion mod-
ule—achieves lower RMSE than Naive-F and remains
robust under mesoscale perturbations. This validates the
use of homogenized advection–diffusion dynamics to sta-
bilize transport and retain partial mesoscale effects. How-
ever, despite comparable architecture and parameter count,
Naive-(F+D) still underperforms our full model, highlight-
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Table 6: Ablation Study (NRMSE ↓). (a) Comparison of coarse-stage initializers, including static and dynamic architectures;
(b) Analysis of model depth in the coarse module; (c) Analysis of model depth in the refinement module; (d) Evaluation of
source and conservation loss terms; (e) Quantification of the impact of auxiliary input variables; (f) Assessment of sensitivity
to temporal interval length. All experiments use the default setting: coarse/refine depth of 12/6, all loss terms and inputs
included, and interval length set to 4.

(a) Coarse Model Structure.

case Daily Monthly
2D CNN 0.206 0.161

ViT 0.159 0.157
3D CNN 0.162 0.153
NUTS 0.136 0.151

(b) Depth of Coarse Module.

depth Daily Monthly
6 0.185 0.160
8 0.165 0.153

12 0.136 0.151
16 0.148 0.177

(c) Depth of Refine Module.

depth Daily Monthly
2 0.142 0.164
4 0.146 0.210
6 0.136 0.151
8 0.180 0.170

(d) Source and Conservation Loss.

case Daily Monthly
w/ src, w/ cons. 0.136 0.151
w/ src, w/o cons. 0.153 0.151
w/o src, w/ cons. 0.156 0.155

w/o src, w/o cons. 0.155 0.154

(e) Auxiliary Variables.

removed var. Daily Monthly
temp. 1.059 1.014
salt 0.170 0.168
u 0.164 0.155
v 0.142 0.160

(f) Interval Length.

length Daily Monthly
1 0.159 0.157
2 0.166 0.151
4 0.136 0.151
8 0.220 0.158

ing the importance of the refinement module in reconstructing fine-scale nutrient variability lost
during filtering.

Obs 5: Filter design in the coarse module is critical; Fourier filtering with strong high-frequency
suppression yields the best performance. We ablate the design of the low-pass filter used in the
coarse module of NUTS. Among several options, the Fourier filter achieves the lowest NRMSE on
both daily (0.136) and monthly (0.151) tasks, outperforming wavelet, Gaussian, and moving average
filters (Table 4a). This result is consistent with prior work in ocean modeling and geophysical fluid
dynamics Abernathey and Marshall [2013], Callies and Ferrari [2013], where spectral (Fourier-based)
filtering is widely adopted to separate large-scale flow from unresolved mesoscale variability. We
further vary the cutoff ratio of the Fourier filter, which determines the extent of high-frequency
suppression. Lower ratios—removing more unresolved eddy components—consistently improve
reconstruction accuracy, while higher ratios degrade performance (Table 4b). These results highlight
that principled filtering in the coarse module is essential for stabilizing nutrient transport, while
fine-scale variability is later recovered by the refinement stage.

Obs 6: Incorporating a learnable diffusion module improves accuracy; state-dependent designs
further enhance performance. We ablate the diffusion design in the advection–diffusion solver of
NUTS. We compare three variants: (1) advection-only, (2) with a trainable, time-invariant diffusion
matrix K = UU⊤, and (3) the state-dependent formulation used in NUTS, where K = GG⊤ and
G = G(φ̄) is produced by a hyper-network conditioned on the coarse prediction φ̄. As shown
in Table 4c, both diffusion-enhanced variants outperform the advection-only baseline on daily and
monthly tasks, confirming the benefit of modeling unresolved subgrid dispersion. The state-dependent
design used in NUTS further improves accuracy over the time-invariant variant (0.151 vs. 0.165
on the monthly task), consistent with the theoretical expectation that effective diffusion depends on
the tracer state McWilliams [2006], McDougall and McIntosh [2001]. The improvement is more
substantial in the monthly setting, where longer temporal scales allow diffusion to play a more
dominant role in shaping nutrient transport.

5 Discussions

Ablation Study (RQ3). We evaluate the impact of architectural selection of both modules, source
module, loss design, auxiliary variables and temporal interval length on model performance. Ad-
ditional ablation results on spatial and temporal resolution, as well as the conservation loss weight
coefficient, are provided in Appendix E.1. All ablation results in this section use nitrate as the target
variable. • Coarse and Refine Module Structure. We evaluate architecture and depth for both the
coarse and refinement modules. As shown in Table 6a, static 2D CNNs underperform due to the lack
of temporal modeling, while dynamic architectures—3D CNN and spatiotemporal ViT—achieve
lower errors. NUTS, which uses a spatiotemporal transformer, yields the best NRMSE of 0.151.
Depth analysis (Tables 6b, 6c) shows that performance peaks with 12 layers in the coarse module
and 6 layers in the refinement module. Shallower models underfit, while deeper ones degrade due
to over-smoothing or training instability. These results highlight the importance of both dynamic
structure and moderate depth. •Source and Conservation Loss. Incorporating the source module
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and conservation loss enhances reconstruction accuracy (Table 6d). Additionally, the conservation
loss contributes to preserving total nutrient mass, as detailed in Appendix E.2. •Auxiliary Variables.
Sea surface temperature is the most influential auxiliary input, with its removal causing the largest
increase in reconstruction error (Table 6e). This highlights its essential role in guiding nutrient
reconstruction and is consistent with prior findings in related work such as 4DVarNet Beauchamp
et al. [2023]. •Reconstruction Interval Length. Model performance is sensitive to the choice of
reconstruction interval length, with both short and long intervals resulting in higher error relative to
intermediate settings (Table 6f). In the daily task, a 4-step interval yields the lowest NRMSE (0.136),
balancing informative temporal context and noise from redundancy or uncorrelated variability.

Conclusion and Broader Impact. We present NUTS, a two-stage, physics-informed framework
for reconstructing global surface ocean nutrients from sparse observations. By combining coarse
advection–diffusion dynamics with data-driven refinement, NUTS achieves state-of-the-art per-
formance on both simulated and real-world datasets. While our experiments focus on nitrate and
phosphate, the framework is grounded in general transport physics and naturally extends to other
passive tracers. Preliminary results (Appendix F) show promising generalization, supporting broader
applications in environmental reconstruction, climate monitoring, and Earth system science.

Future Work. Future directions include extending NUTS in three areas: spatial coverage, biogeo-
chemical complexity, and air–sea exchange. A 3D extension will capture vertical transport and
subsurface gradients. Adding processes like remineralization and nutrient uptake will improve model-
ing of regeneration and biological consumption. Air–sea gas exchange will enable reconstruction of
gas tracers for carbon and oxygen cycle monitoring.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this paper in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide complete proofs for the proposed theorem in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details of the model in Appendix B and hyper-
parameter configurations in Appendix D.3. We also open-source the code and data required
to conduct the experiments in this anonymized URL.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code and data in this anonymized URL.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide dataset divisions in Table 2, and hyper-parameter configuration
details in Appendix D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations of experimental results in Table 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the compute resources used to generate the simulation data in
Section 4, and the compute resources used to conduct experiments in Appendix D.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conform with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts of this paper in Section 5. We also provide some
preliminary results in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: All code implementations are cited with license details in Appendix D.5. For
the WOD dataset, although we were unable to locate the specific license, we have cited the
official source and provided the official link.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release two datasets under the CC-BY 4.0 licenses and code implementation
under the MIT license. Datasets and code can be found in this anonymized URL.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology of this paper does not involve LLMs as any important,
original, nor non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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