Under review as a conference paper at ICLR 2026

THE ANATOMY OF ALIGNMENT: DECOMPOSING
PREFERENCE OPTIMIZATION BY STEERING SPARSE
FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Prevailing alignment methods induce opaque parameter changes, making it dif-
ficult to audit what the model truly learns. To address this, we introduce Fea-
ture Steering with Reinforcement Learning (FSRL), a framework that trains a
lightweight adapter to steer model behavior by modulating interpretable sparse
features. First, we theoretically show that this mechanism is principled and ex-
pressive enough to approximate the behavioral shifts of post-training processes.
Then, we apply this framework to the task of preference optimization and per-
form a causal analysis of the learned policy. We find that the model relies on
stylistic presentation as a proxy for quality, disproportionately steering features
related to style and formatting over those tied to alignment concepts like hon-
esty. Despite exploiting this heuristic, FSRL proves to be an effective alignment
method, achieving a substantial reduction in preference loss. Overall, FSRL offers
an interpretable control interface and a practical way to diagnose how preference
optimization pressures manifest at the feature level.

1 INTRODUCTION

Large Language Models (LLMs) are typically aligned with human preferences through post-training
methods like Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.| 2022)). This
fine-tuning induces parameter updates across the model’s underlying weights. Consequently, the
newly learned alignment behaviors and the model’s original capabilities are encoded in the same
parameters, making them difficult to disentangle. When models trained with RLHF subsequently
exhibit undesirable behaviors like sycophancy or reward hacking (Perez et al., 2023; Shah et al.,
2022), identifying their root cause becomes challenging. This opacity motivates the need for align-
ment methods that are not only effective, but also transparent and auditable.

Mechanistic interpretability offers a way to make alignment more transparent by exposing and ma-
nipulating a model’s internal concepts. At its core is the Linear Representation Hypothesis, which
suggests that high-level concepts correspond to linear directions in activation space (Elhage et al.,
2022)). Sparse Autoencoders (SAEs) provide a practical method for uncovering these directions by
decomposing dense activations into a sparse basis of largely monosemantic features (Huben et al.,
2024; Rajamanoharan et al., 2024). These features capture diverse phenomena, ranging from “code
syntax” to “flattery”, and can often be assigned interpretable labels using automated methods (Huben
et al.,[2024; |Bills et al., 2023; Paulo et al.,2025). The resulting feature vocabulary enables not only
analysis of what models represent, but also a potential interface for directly steering their behavior.

Building on this foundation, we propose Feature Steering with Reinforcement Learning (FSRL),
a framework that uses the interpretable feature vocabulary in SAEs as a direct interface for align-
ment. Instead of fine-tuning the entire model, FSRL operates on a frozen LLM together with its
corresponding SAE, and trains a lightweight adapter with reinforcement learning to learn a policy
for modulating SAE features, as illustrated in Figure [I] This design keeps the model’s underly-
ing capabilities intact in the frozen LLM, while channeling the learned alignment behavior through
steering interpretable SAE features.

Under review as a conference paper at ICLR 2026

Contributions Building on this foundation, we introduce Feature Steering with Reinforcement
Learning (FSRL), a framework that trains a lightweight adapter to modulate interpretable SAE fea-
tures of a frozen LLM for alignment. First, we theoretically establish that FSRL’s activation-space
corrections are functionally equivalent to a restricted class of LoRA updates, inheriting LoRA’s ex-
pressive power guarantees while operating through an interpretable basis. Empirically, we show that
FSRL successfully optimizes the preference objective on UltraFeedback, reducing SimPO loss from
6.99 to 2.6 while better preserving mathematical reasoning than full fine-tuning. Lastly, we anal-
yse the learned policy with causal experiments and find that style features are over four times more
important per feature than alignment features for performance, providing mechanistic evidence that
preference optimization treats stylistic presentation as a proxy for quality rather than prioritizing
concepts like safety or honesty. These results establish FSRL as a tool for both lightweight model
control and for diagnosing the internal mechanisms of alignment.

G% I have 3 apples and give 3 away. What do | have now?
Transformer Original X Steered Transformer l
Block N Vect: o ?‘lic:(Base
ector ector You would have zero apples left.
AX Model The classic math riddle. Good one!
{ FSRL ‘
/ .
[
AI;SR'I. o SA(E’ Interpretable | e ., *Conciseness
lapter ecoder i R i
Legend Policy Chattiness
\\ \:\ Frozen l
nsights
Insight:
D Trainable .
Steered Aligned Model You have 0 apples left.
Features
FSRL Architecture Application in RLHF

Figure 1: The FSRL Framework for Interpretable Alignment. (a) FSRL Architecture: At a
given layer, the original activation vector is processed by a trainable adapter. The adapter outputs a
sparse vector of steered features, which are transformed by a frozen SAE decoder into a correction
vector. This correction is added to the original activation to steer the model’s behavior. (b) Ap-
plication for Mechanistic Insight: FSRL replaces opaque alignment processes with a transparent
one by learning a policy over a basis of interpretable, monosemantic SAE features. This allows the
learned alignment pressures to be decomposed into concrete actions on meaningful concepts.

2 BACKGROUND

We build on three key components: Sparse Autoencoders (SAEs) for creating an interpretable inter-
face, Simple Preference Optimization (SimPO) to optimize a policy on a preference dataset, and a
large annotated dataset to train our system.

Sparse Autoencoders (SAEs) SAEs are an unsupervised method for representing model activa-
tions as a sparse set of interpretable features (Huben et al.| [2024; |Anthropicl 2023). Each SAE
consists of an encoder and a decoder. Given a model’s hidden activation x € R?, the encoder first
maps it into a higher-dimensional feature vector f € R with dge > d:

f = ReLU(WeneX + bene), (D
where W € R%=X4 and b, are encoder parameters. The decoder then reconstructs the original
activation from f:

X = VVdecf + bd807 (2)
where Wyee € R%*%e and by, are decoder parameters. The columns of Wy, form a dictionary of
learned feature vectors. In particular, SAEs are trained such that each activation can be decomposed
into only a few features, achieved by adding adding an ¢; penalty to the reconstruction loss. The
total loss function is therefore:

L(x) =[x — %3 + al|f]|1, 3)

Under review as a conference paper at ICLR 2026

where « is a hyperparameter that controls the trade-off between reconstruction fidelity and feature
sparsity. While this formulation is common, other SAE variants achieve sparsity through different
mechanisms, such as the JumpReLU activation function (Rajamanoharan et al.}|2024) or the Top-K
operator (Bussmann et al.| 2024)).

SAE features can also be used for intervention. As each feature corresponds to a direction given by

a column of Wy, modifying an activation x by x’ = x + /\Wd(eic) can steer the model’s behavior
in predictable ways. This property, known as feature steering, highlights that SAEs features are not
only descriptive, but can also be used as actionable controls on model behavior.

Simple Preference Optimization (SimPQ) SimPO is an efficient algorithm for aligning language
models with human preferences (Meng et al.,[2024). It operates directly on a dataset D of preference
triplets (x, Y, y1), where x is a prompt, ¥, is the preferred (chosen) response, and y; is the less
preferred (rejected) response.

The objective is a modified Bradley-Terry loss with a target reward margin ~, which encourages the
model to confidently separate y,, and y;:

Lsimpo(m0) = —Eqa.yn iyt {bga (yﬁ| log 7o (yulz) — |Z| log 7o (y1]) — w)] R

where /3 is the temperature/scaling parameter,

y| the sequence length and o (-) the sigmoid function.

We adopt SimPO for its ability to match the performance of Direct Preference Optimization (DPO)
(Rafailov et all [2024) without requiring a separate reference model. This makes it possible to
efficiently train the model (or FSRL adapter) directly on a preference dataset.

Preference Dataset In this work, we use the UltraFeedback dataset (Cui et al.,2024). Specifically,
we utilize the version of this dataset annotated with the Absolute-Rating Multi-Objective Reward
Model framework (Wang et all [2024). Our choice of this dataset is motivated by its use in the
SimPO paper, which allows for a direct comparison, isolating the impact of our proposed FSRL
framework rather than confounding it with dataset variations.

3 METHODOLOGY

We present Feature Steering with Reinforcement Learning (FSRL), a framework for transparently
aligning LLMs by training a policy to steer sparse SAE features of a frozen model. In this section,
we describe the system architecture, the training procedure, and the experimental configuration used
for evaluation.

3.1 SYSTEM ARCHITECTURE

FSRL intervenes at a single chosen layer of a frozen LLM by steering the residual stream with a
sparse, learned set of feature directions (Figure EI) At this layer, the residual activation x € R? is
first translated by the SAE into a sparse feature vector f € R%:«, To decide how these features should
be modulated, the same x is also given to a trainable adapter 74, which outputs a sparse steering
vector v € R In effect, 74 learns both the subset of features to target, as well as the direction
and magnitude in which to steer them.

Adapter Implementation We implement the adapter as a single feedforward layer with param-
eters ¢ = (W,,bg,0), where W, € Ré%«=xd b, ¢ Ré%«, and 6 ¢ R‘f;“ is a vector of learnable
positive thresholds. Its output is produced by a coordinate-wise soft-thresholding activation func-
tion:

v = my(x) = sign(Wyx + b,)ReLU(|W,x + b, | — 6). (5)

We adapt this activation function from learned approximations of sparse coding (Gregor and Le-
Cunl 2010). Unlike a standard ReLU, this function enables a tri-state intervention that improves
interpretability: positive values amplify a feature, negative values suppress it, and values in the dead
zone between —6; and 46, leave the feature unchanged. This flexibility also allows the adapter to

Under review as a conference paper at ICLR 2026

achieve its objective with a sparser steering vector. The function is non-differentiable within its dead
zone; however, this is handled implicitly via subgradients in modern deep learning libraries.

Applying Steering The steering vector v specifies how SAE features are modulated. We obtained
the steered activation by adding the decoded steering adjustment back into the residual stream:

Xsteered = X + Decoder(v). (6)

Hence, given the input activation, the adapter learns to output a steering vector v that steers the
model’s output to be better aligned with the preference objective. In practice, we implement the
update using a reconstruction-error variant (see Appendix [A).

3.2 THEORETICAL JUSTIFICATION

While FSRL can align models with the training objective in practice, it is important to establish why
its restricted form of intervention should, in principle, be expressive enough to match other fine-
tuning methods. To this end, our theoretical justification shows that FSRL is a principled approach
by demonstrating its functional equivalence to a restricted, yet powerful, class of low-rank adaptation
(LoRA) updates (Hu et al.,2021). While FSRL’s practical effectiveness is contingent on the capacity
of its underlying SAE, our theory shows that its adaptation mechanism is sound.

The core of our proof, detailed in Appendix |B| is that FSRL’s activation-space corrections are func-
tionally equivalent to a class of input-dependent LoRA updates. The FSRL update, Xgeered =
x 4+ A(x), injects an additive correction into the residual stream. When passed to a downstream
linear layer, this is algebraically equivalent to applying an effective weight update, AW [x], whose
rank is dynamically determined by the number of actively steered SAE features.

This equivalence is significant because it connects FSRL to the established foundations of LoRA.
Recent work by [Zeng and Lee (2024) proved that LoRA possesses sufficient expressive power to
match a target model, given enough rank. While FSRL inherits these guarantees in principle, our
single-layer intervention is a constrained application of this theory. Specifically, the adapter’s policy
is conditioned only on the activation at one layer, meaning it cannot distinguish between different
upstream computational paths that yield the same activation vector. Despite this limitation, the
connection confirms FSRL as a valid optimization method. Crucially, because FSRL is constrained
to express its policy through the SAE’s interpretable basis, the policy it learns provides a robust and
transparent reflection of the optimization pressures driving the alignment task.

3.3 TRAINING CONFIGURATION

The adapter’s parameters are optimized using the SimPO algorithm (Meng et al.l 2024). To en-
courage a sparse and interpretable policy, we augment the training objective with an ¢; penalty on
the steering vector, controlled by a coefficient . In addition to this proxy-based sparsity, we also
investigated a more direct method using a JumpReLU activation (Rajamanoharan et al., |2024) in
the adapter to directly optimize the £y norm. However, this proved to be difficult to tune within our
framework.

We evaluate our approach on the Gemma-2-2B-it model (Gemma Team), 2024) using pre-trained
SAEs from GemmaScope (Lieberum et al.,[2024). For training, we use the UltraFeedback dataset
(Cui et al.| [2024) as described in Section 2] Our primary experimental decisions involved selecting
the intervention layer and the sparsity coefficient. We first performed a sweep across the trans-
former’s quartiles (layers 6, 12, 18, and 24), hypothesizing that mid-model layers would contain
the most relevant abstract concepts for alignment. This sweep confirmed layer 12 as optimal. Sub-
sequently, we swept through a range of « values on layer 12 to identify an elbow point that bal-
anced steering vector sparsity with performance on the SimPO validation loss. This led us to select
a =1 x 107!, The detailed methodology and results of these sweeps are presented in Appendix
with our investigation into the JumpReLU adapter detailed in Appendix [E| The final training con-
figuration and environment details are provided in Appendix D}

Under review as a conference paper at ICLR 2026

3.4 COMPARATIVE EVALUATION

To contextualize the performance of our FSRL-steered model, we establish a baseline for compari-
son. The original SimPO paper reports results on a Gemma-9B model; a direct comparison would
be inappropriate due to the difference in model scale. Therefore, to ensure a controlled comparison,
we trained our own baseline. This baseline consists of the same instruction-tuned model, but is fully
fine-tuned using the standard SimPO algorithm rather than our lightweight adapter. The training
configuration for this baseline mirrors that of our FSRL adapter, where applicable, with a decrement
in the learning rate to ensure stable convergence during full-model training (see Appendix D).

4 EVALUATING ALIGNMENT EFFICACY

To evaluate FSRL, we compare its performance on standard benchmarks against two models: the
base Gemma-2-2B-it model and the same model fully fine-tuned with the SimPO algorithm. The
fully fine-tuned model represents the standard, non-interpretable approach to alignment. The goal
of this evaluation is not to demonstrate that FSRL can match the performance of full fine-tuning, but
to show that it is an effective method for improving preference scores despite operating through a
constrained, interpretable interface.

We assess performance on MMLU (Hendrycks et al., 2021) for general knowledge, TruthfulQA
(Lin et al} 2022)) for truthfulness, and GSMS8K (Cobbe et al., |2021) for mathematical reasoning.
Evaluations were performed using the Language Model Evaluation Harness (Gao et al.| 2024). The
results are presented in Table[I]

Table 1: Benchmark performance. FSRL successfully optimizes the preference objective while
substantially mitigating the reasoning degradation seen in full fine-tuning.

Model MMLU 1 Truthful QA (MC2) 1 GSMEK 1 SimPO Loss |
Base (Instruct) 30.11 £ 0.38 55.77 £ 1.58 53.45 +1.37 6.99
SimPO Full 50.28 4+ 0.40 61.35 1+ 1.63 4.40 £ 0.56 2.19
FSRL 34.46 +0.39 56.17 £ 1.63 44.05 £ 1.37 2.6

As illustrated in the table, both alignment methods successfully reduce the SimPO loss, confirming
they optimize the preference objective. The performance changes align with the patterns docu-
mented by Meng et al.[(2024)), where SimPO tuning is expected to improve scores on benchmarks
like Truthful QA while degrading mathematical reasoning on GSM8K. Our FSRL-steered model
follows these trends, validating its efficacy as an alignment method.

The comparison between FSRL and full fine-tuning illustrates a trade-off. The fully fine-tuned
model achieves a lower preference loss, corresponding to larger gains on MMLU and Truthful QA,
but also exhibits a significant degradation in reasoning capability. FSRL presents a different point
on this trade-off spectrum: its gains on MMLU and Truthful QA are more moderate, but it better pre-
serves the model’s mathematical reasoning capabilities. The key result is that FSRL is an effective
alignment method that provides mechanistic transparency.

Comparison with ReLU adapter Naively, one might use ReLU with the same sparsity constraint
(similar to SAESs) to induce sparsity in the steering vector. However, ReLLU is not well-suited for the
adapter, as it is limited to amplifying features and therefore cannot apply negative steering. To make
this difference concrete, we trained a ReLU-based adapter where ReLLU was used both at training
and test time. As detailed in Appendix [} while this variant can learn a policy, it is less expressive
and performs worse than our soft-thresholding approach, highlighting why our activation function
is better suited for feature-level steering.

Comparison with static top-k sparsity To explore how much of the adapter’s performance gain
comes from the activation function itself, we compared it against a naive top-k% sparsity heuristic
applied at test time, retaining only the features with the largest absolute magnitudes. Appendix [G]
shows that the dynamic adapter has both lower preference loss and greater sparsity.

Under review as a conference paper at ICLR 2026

5 MECHANISTIC INSIGHTS INTO THE ALIGNMENT PROCESS

Having established FSRL as an effective alignment method, we now leverage its primary advantage:
interpretability. To analyze the policy at a conceptual level, we developed an automated pipeline to
classify SAE features based on their text-based explanations. We focus on two primary categories:
alignment features, which encompass abstract concepts such as ethics, safety, and honesty, and
style features, which relate to text structure, punctuation, and formatting. This automated process
was validated against manual annotations, achieving a Matthews Correlation Coefficient of 0.448
for alignment features and 0.764 for style features, indicating a reliable agreement with human
judgment (details in Appendix[I).

Examining Feature Activations To understand how the adapter uses different types of features,
we examine the composition of its feature activations. A simple raw count of active features is
misleading. The FSRL adapter outputs a steering vector with an average ¢y norm of approximately
360, far denser than the SAE’s baseline of 21. With such a large increase in total activations, the raw
count of features from any given category would be artificially inflated, as more noisy or common
features would fire purely by chance, obscuring the adapter’s actual steering intent. To create a
robust metric that corrects for this effect, we therefore analyze the composition of the active feature
set at each token: the proportion of active features belonging to a given category.

We measured this composition across three distinct contexts from our preference dataset: activations
from the input prompt tokens, from the tokens of chosen responses, and from the tokens of rejected
responses. As summarized in Table 2] this analysis reveals a consistent strategy: the adapter learns
to decrease the proportional activation of both alignment and style features relative to the baseline.
This pattern’s uniformity across all three conditions suggests the learned policy is general, applying
the same high-level strategy regardless of whether it is generating a winning or losing continuation.
This behavior contrasts with that of a simpler, amplification-only ReLLU-based adapter, which in-
stead learns to increase the proportional activation of style features by 2-4% (see Appendix [F)). This
dependency on adapter architecture highlights the need for causal analysis.

Table 2: Aggregate steering effect of the soft-threshold adapter on the composition of active fea-
tures. ‘SAE Baseline’ is the average proportion of active features belonging to a category for the
unmodified model. ‘Relative Change’ is the percent change in this proportion caused by the FSRL
adapter.

Feature Type Data SAE Baseline (%) Relative Change (%)
Alignment Prompt + Chosen 17.59 £ 0.03 -4.77 £ 0.25
Prompt Only 17.10 £ 0.05 -3.60 + 0.45
Prompt + Rejected 17.53 £ 0.03 -4.64 + 0.25
Style Prompt + Chosen 24.43 +£0.04 -3.09 £ 0.20
Prompt Only 25.25 £ 0.06 -2.38 £0.35
Prompt + Rejected 24.51 £ 0.03 -3.02 +0.20

Intervening on Feature Activations To causally evaluate how different feature categories con-
tribute to the model’s performance, we turn to an ablation study. For each category (e.g., style
features), we disable the adapter’s intervention by setting the corresponding components of its out-
put steering vector to zero. We then measure the impact on the SimPO loss—the ground-truth
objective the adapter was trained to minimize. Under a null hypothesis where all features contribute
equally, one would expect the loss to linearly increase in proportion to the number of features ab-
lated. Our results in Table [3] deviate sharply from this expectation, revealing a clear hierarchy of
feature importance.

The Loss per Feature column quantifies the disproportionate impact of each category. The average
loss increase per style feature is over four times greater than that of an alignment feature, providing
causal evidence that the policy prioritizes the manipulation of style features to achieve its objective.
Furthermore, we observe a significant non-linear interaction: ablating both categories simultane-
ously results in a performance drop exceeding the sum of the individual ablations. This suggests a
degree of entanglement between the model’s representations of style and alignment.

Under review as a conference paper at ICLR 2026

Table 3: Causal contribution of feature categories, measured by ablating all steering interventions
on features within a given category. The ‘Features Ablated‘ column lists the total number of features
belonging to that category. ‘Loss per Feature® normalizes the resulting increase in SimPO loss by
this count to quantify per-feature impact.

Ablation Condition Features Ablated SimPO Loss | Loss per Feature

None (Full Steering) 0 2.60 -

Alignment Features 11,143 2.88 2.51 x 1075
Style Features 15,391 4.21 1.05 x 10~*
Both Categories 26,534 5.60 1.13 x 10~*

This causal finding offers a direct mechanistic explanation for recent observations that chatbot rank-
ings are heavily influenced by stylistic factors (Chiang et al.l 2024). Our work reveals how this
phenomenon is encoded at a feature level: the alignment policy learns that precise control over style
is causally necessary to maximize the reward signal. While analysis of individual features provides
some insight (see Appendix[K]), the learned policy is highly distributed. Indeed, the usage frequency
of steered features follows a long-tail distribution, confirming that the adapter relies on a broad set of
features rather than a few specific interventions (see Appendix [H). Therefore, the aggregate causal
analysis provides a clearer picture of the strategy learned during preference optimization.

6 DISCUSSION

Our work introduces FSRL, an interpretable alignment framework that uses a lightweight adapter
to steer a model’s conceptual features. This general approach can diagnose the mechanisms of
any post-training process, replacing opaque parameter deltas with a transparent policy. It enables
researchers to causally link undesirable behaviors to the optimization of specific feature categories,
thereby clarifying their root causes.

Our findings offer a mechanistic explanation for Goodhart’s Law within the context of preference
optimization. The pressure to satisfy the preference objective incentivizes the model to treat stylistic
polish as a proxy for overall response quality. Our causal analysis reveals the policy learns that ma-
nipulating features related to presentation is a more effective strategy for minimizing preference loss
than steering concepts like honesty. This highlights how simple preference signals can inadvertently
reward surface-level characteristics over the intended, deeper qualities of a response.

FSRL also presents an efficient alternative to model-diffing, the practice of analyzing internal dif-
ferences between a base and a fine-tuned model, by directly addressing its key methodological chal-
lenge: feature stability. The transferability of SAEs is not guaranteed for instruction-tuned models
(Kissane et al.| [2024), particularly for specialized reasoning models that develop novel features
(Hazra et al, 2025). By design, FSRL sidesteps this issue entirely by operating on a fixed, inter-
pretable feature basis. This stable foundation, in turn, is what enables direct causal analysis of the
learned policy, allowing for targeted ablations to determine which features are causally important for
the task. While this prevents the discovery of emergent concepts, it provides a controlled framework
for auditing alignment pressures.

6.1 LIMITATIONS

Our approach’s primary limitation is its dependence on the quality and nature of the underlying
SAEs. The extent to which SAE features represent true learned computations versus artifacts is
an active area of research (Heap et al [2025). We mitigate this by using high-quality public SAEs
from GemmaScope, though the generalizability of any specific feature vocabulary remains an open
question.

Furthermore, our analysis is confined to a 2B parameter model, as scaling FSRL faces practical
hurdles. Extending this work to larger models is challenging due to library limitations for dynamic
model intervention, as well as the high computational cost of training quality SAEs and obtaining
reliable feature explanations. This resource bottleneck extends to our analysis, where our causal

Under review as a conference paper at ICLR 2026

claims are mediated by an LLM-based classifier with moderate human agreement, introducing a
layer of approximation.

Finally, our analysis is conducted exclusively on a single-layer intervention. While our theoretical
grounding in LoRA’s expressive power is important, the guarantees from cited work (Zeng and Lee,
2024])) suggest a worst-case need for adaptation across all layers. However, this requirement is most
stringent for randomly initialized models. Our empirical results provide strong evidence that for a
structured, pre-trained LLM, this constraint is not a practical barrier, as FSRL successfully optimizes
the preference objective.

6.2 FUTURE WORK

These limitations point toward several avenues for future work. A key direction is to explore the
scaling properties of this approach, testing the hypothesis that higher-dimensional SAEs yield a
more disentangled and controllable feature basis. This exploration should also include alternative
interfaces beyond SAEs, such as Transcoders, which may offer a more direct way to control MLP
computations (Dunefsky et al.,[2024). Scaling the feature interface will also require scaling the anal-
ysis pipeline, for which unsupervised methods like embedding and clustering feature explanations
could provide a more efficient alternative to our LLM-based classification.

Finally, a crucial direction is to empirically compare FSRL with the alternative of interpretable
model-diffing. Such a study could quantify FSRL’s efficiency gains and, more importantly, test the
fundamental trade-off between the methodological stability of a fixed conceptual vocabulary and
the ability of a new SAE to discover emergent features that arise during alignment. This would help
establish practical guidelines for when each transparency method is most appropriate.

7 RELATED WORK

Steering Opaque Activations: FSRL builds on a line of work that steers model behavior by mod-
ifying internal activations at inference time. These methods range from applying static activation
vectors (Turner et al., 2024} Panickssery et al., 2024) to learning more complex policies. For ex-
ample, some approaches use reinforcement learning to guide generation via value functions, as in
Successive Policy Iterations (SPI) (Zhang et al., [2025), or use preference optimization to learn an
optimal static vector, as in BiPO (Cao et al.,|2024). A common thread unites these methods: they
intervene on the model’s dense, opaque activation space, making the precise mechanism of control
difficult to interpret.

Interpretable Steering with Sparse Features: SAEs offer a solution to this opacity, providing
an interpretable feature basis for steering. SAE-Targeted Steering (SAE-TS) exemplifies this, us-
ing causal analysis of SAE features to construct an optimized static steering vector that predictably
targets a desired feature while minimizing side effects (Chalnev et al.||2024). FSRL extends this in-
terpretable approach by replacing the static vector with a dynamic, context-aware policy. By training
a lightweight adapter to modulate SAE features, FSRL is designed to decompose an alignment goal
into a transparent set of token-level interventions. Crucially, while our work uses a preference ob-
jective, the FSRL framework is general: the adapter can be trained with any differentiable objective,
making it a flexible tool for auditing the mechanisms of various post-training processes.

8 CONCLUSION

Standard alignment methods induce opaque parameter changes, obscuring what models truly learn.
To dissect these mechanisms, we introduced FSRL, a framework that aligns models by training a
lightweight adapter to steer interpretable SAE features. Our causal analysis yields a crucial insight:
preference optimization learns to reward stylistic presentation as a proxy for quality, disproportion-
ately relying on features related to style over those tied to alignment concepts like honesty. Despite
operating through this constrained interface, FSRL proves to be an effective alignment method.

Ultimately, FSRL demonstrates that effective alignment and mechanistic interpretability are not
mutually exclusive goals. By shifting intervention from the opaque parameter space to a transparent

Under review as a conference paper at ICLR 2026

feature space, our work provides both a practical method for lightweight model control and, more
importantly, a powerful scientific instrument for auditing the internal mechanisms of alignment. This
approach moves LLM alignment toward a more transparent and debuggable engineering discipline.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we anonymously provide our source code, the
trained FSRL adapter, and the classified feature explanations used in our analysis. The source
code, which includes the implementation of the FSRL framework and training scripts, is available
at https://anonymous.4open.science/r/FSRL-MechInterp/README.md. The
trained adapter and feature classifications can be downloaded from https://pixeldrain.
com/u/PEzeXrsY.

Our experiments were conducted using the Gemma-2-2B-it base model and publicly available SAEs
from GemmaScope. The adapter was trained on the UltraFeedback dataset. Our software stack
is built on PyTorch and utilizes the transformer—lens, sae—lens, and TRL libraries. All
experiments were performed on a single NVIDIA GH200 GPU. Full training configurations, hyper-
parameter details, and library versions are provided in Appendix

REFERENCES

Anthropic. Towards monosemanticity: Decomposing language models with dictionary learning.
October 2023. Accessed: 2025-08-22.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html) 2023.

Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. SAELens, 2024. URL https:
//github.com/jbloomAus/SAELens.

Bart Bussmann, Patrick Leask, and Neel Nanda. BatchTopK Sparse Autoencoders, 2024. URL
http://arxiv.org/abs/2412.06410.

Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, and Jinghui Chen.
Personalized steering of large language models: Versatile steering vectors through bi-directional
preference optimization. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.net/forum?id=7gJFkuzdYo.

Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving steering vectors by targeting sparse
autoencoder features, 2024. URL https://arxiv.org/abs/2411.02193|

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. UltraFeedback: Boosting Language
Models with Scaled Al Feedback, 2024. URL http://arxiv.org/abs/2310.01377.

DeepSeek Al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.
19437.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

https://anonymous.4open.science/r/FSRL-MechInterp/README.md
https://pixeldrain.com/u/PEzeXrsY
https://pixeldrain.com/u/PEzeXrsY
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
http://arxiv.org/abs/2412.06410
https://openreview.net/forum?id=7qJFkuZdYo
https://arxiv.org/abs/2411.02193
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.11944

Under review as a conference paper at ICLR 2026

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Super-
position, 2022. URL https://arxiv.org/abs/2209.10652v1.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL https:
//arxiv.org/abs/2408.00118.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th International Conference on International Conference on Machine Learning, ICML’ 10,
page 399-406, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Dron Hazra, Max Loeffler, Murat Cubuktepe, Levon Avagyan, Liv Gorton, Mark Bis-
sel, Owen Lewis, Thomas McGrath, and Daniel Balsam. Under the hood of
a reasoning model, Apr 2025. URL https://www.goodfire.ai/research/
under-the-hood-of-a-reasoning-model.

Thomas Heap, Tim Lawson, Lucy Farnik, and Laurence Aitchison. Sparse autoencoders can in-
terpret randomly initialized transformers, 2025. URL https://arxiv.org/abs/2501.
17727,

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, 2021. URL http:
//arxiv.org/abs/2106.09685.

Robert Huben, Hoagy Cunningham, Logan Riggs, Aidan Ewart, and Lee Sharkey. Sparse Autoen-
coders Find Highly Interpretable Features in Language Models. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=F76bwRSLeK.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Saes (usu-
ally) transfer between base and chat models. Alignment Forum, 2024. URL
https://www.alignmentforum.org/posts/fmwkogxrpwW8d4 jvbd/
saes—usually-transfer-between-base—-and-chat-models.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope: Open Sparse
Autoencoders Everywhere All At Once on Gemma 2, 2024. URL http://arxiv.org/abs/
2408.05147.

Johnny Lin and Joseph Bloom. Analyzing neural networks with dictionary learning, 2023. URL
https://www.neuronpedia.org. Software available from neuronpedia.org.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Yu Meng, Mengzhou Xia, and Danqgi Chen. SimPO: Simple Preference Optimization with a
Reference-Free Reward. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan,
Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural Informa-
tion Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024. arXiv, 2024. URL
https://arxiv.org/abs/2405.14734.

10

https://arxiv.org/abs/2209.10652v1
https://zenodo.org/records/12608602
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://www.goodfire.ai/research/under-the-hood-of-a-reasoning-model
https://www.goodfire.ai/research/under-the-hood-of-a-reasoning-model
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=F76bwRSLeK
https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
https://www.alignmentforum.org/posts/fmwk6qxrpW8d4jvbd/saes-usually-transfer-between-base-and-chat-models
http://arxiv.org/abs/2408.05147
http://arxiv.org/abs/2408.05147
https://www.neuronpedia.org
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2405.14734

Under review as a conference paper at ICLR 2026

Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL https://github.com/
TransformerLensOrg/TransformerLens.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URLhttp://arxiv.org/abs/2203.02155.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.
org/abs/2312.06681.

Gongalo Santos Paulo, Alex Troy Mallen, Caden Juang, and Nora Belrose. Automatically Interpret-
ing Millions of Features in Large Language Models. 2025. URL https://openreview.
net/forum?id=EemtbhJOXcl

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Benjamin
Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela
Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jack-
son Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Ka-
mal Ndousse, Landon Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang,
Neerav Kingsland, Nelson Elhage, Nicholas Joseph, Noemi Mercado, Nova DasSarma, Oliver
Rausch, Robin Larson, Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk,
Tamera Lanham, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yun-
tao Bai, Zac Hatfield-Dodds, Jack Clark, Samuel R. Bowman, Amanda Askell, Roger B. Grosse,
Danny Hernandez, Deep Ganguli, Evan Hubinger, Nicholas Schiefer, and Jared Kaplan. Dis-
covering Language Model Behaviors with Model-Written Evaluations. In Anna Rogers, Jor-
dan L. Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computa-
tional Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13387-13434. Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023 . FINDINGS-ACL.847. URL
https://doi.org/10.18653/v1/2023.findings—acl.847.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
Model, 2024. URL http://arxiv.org/abs/2305.18290.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramdr, and Neel Nanda. Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU
Sparse Autoencoders, 2024. URL http://arxiv.org/abs/2407.14435.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, Sc *20. IEEE Press, 2020.
ISBN 978-1-7281-9998-6.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
and Zac Kenton. Goal Misgeneralization: Why Correct Specifications Aren’t Enough For Correct
Goals, 2022. URL http://arxiv.org/abs/2210.01790.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering Language Models With Activation Engineering, 2024. URL
http://arxiv.org/abs/2308.10248.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable Preferences
via Multi-Objective Reward Modeling and Mixture-of-Experts, 2024. URL http://arxiv.
org/abs/2406.12845.

11

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
http://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://openreview.net/forum?id=EemtbhJOXc
https://openreview.net/forum?id=EemtbhJOXc
https://doi.org/10.18653/v1/2023.findings-acl.847
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2407.14435
http://arxiv.org/abs/2210.01790
http://arxiv.org/abs/2308.10248
https://github.com/huggingface/trl
http://arxiv.org/abs/2406.12845
http://arxiv.org/abs/2406.12845

Under review as a conference paper at ICLR 2026

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=11kXVimh3E.

Xinnan Zhang, Chenliang Li, Siliang Zeng, Jiaxiang Li, Zhongruo Wang, Songtao Lu, Alfredo Gar-
cia, and Mingyi Hong. Reinforcement learning in inference time: A perspective from successive
policy iterations. In Workshop on Reasoning and Planning for Large Language Models, 2025.
URLhttps://openreview.net/forum?id=7ETrvtvR1U.

A RECONSTRUCTION-PRESERVING IMPLEMENTATION

In the main text (Eq.[6), we defined the steered activation as a direct additive update:

Xsteered = X + Decoder(v).

In practice, we follow the convention used in SAE-lens, which performs steering directly in the
SAE’s feature space by adding v to the original feature vector f and then reintroducing the recon-
struction error, rather than decoding v alone. Given f’ = f + v, we compute

Xgteered = Decoder(f’) 4 (x — Decoder(f)).

where (x — Decoder) is the SAE error. Expanding with £’ = f + v:
Xsweered = Decoder(f + v) 4 x — Decoder(f),
since the decoder is linear, this simplifies to
Xsteered = X + Decoder(v),

which shows the reconstruction-preserving implementation is equivalent to the additive update in

Eq.[6l
B THEORETICAL JUSTIFICATION

In this Appendix, we outline in more detail the main theoretical justification of FSRL. This is done by
showing that under some mild assumptions, the class of possible FSRL updates is a restricted class of
possible LoRA updates, therefore inheriting useful expressive power results from LoRA as discussed
in (Zeng and Leel [2024). In particular, any base model (Transformer, fully connected networks) can
be adapted to a target model with the same architecture, provided the rank is high enough. This
shows that FSRL is a valid method for preference optimization coupled with interpretable SAE
features.

Additional Relevant Definitions:

¢ Rank of matrices: For a matrix A € R™*" the rank is
rank(A) = dim(col(A)) = dim(row(A)) (7

where col(-), row(+) denotes the column and row space respectively. Equivalently it is the
number of nonzero singular columns of A in its singular value decomposition. A matrix is
low-rank if rank(A4) = r with r < min(m,n) for A € R™*".

* LoRA: The weight update AW is constrained to be low rank with AW = BA where
B € R¥" and A € R™** and r < min(d, k) is the LoRA rank. This reduces the number
of trainable parameters from O(dk) to O(r(d + k)).

* rank(AB) < min(rank(A),rank(B)). Sometimes a scaling factor « is applied: AW =
2BA.

Assumptions (linearization). We analyze FSRL locally around a reference point xo. Let z =
W,x+b, and zy := W,xo+b,. Fix the adapter activation to be the coordinate-wise soft-threshold

(2) = sign(z) ReLU(|z| — 7), (8)

12

https://openreview.net/forum?id=likXVjmh3E
https://openreview.net/forum?id=likXVjmh3E
https://openreview.net/forum?id=7ETrvtvRlU

Under review as a conference paper at ICLR 2026

with threshold 7 > 0. The function 1) is piecewise-linear: on any region that does not cross the kinks
at +7 each coordinate is affine. Therefore, by choosing a neighborhood of x(that does not cross
those threshold hyperplanes, the adapter becomes exactly linear on that region. If needed, upstream
ReLUs can be forced into their identity regime, either with an analogous argument or by choosing
sufficiently large biases (Zeng and Lee| 2024), so that the network upstream of the adapter is linear
and the whole effect of the adapter reduces to an affine correction in activation space.

Lemma 1 (piecewise-linear exact affine form). The FSRL update x +— Xgeereq 1S an affine map
on any region that does not cross the activation kinks (e.g., under the linearization assumption), and
can be written as

Xsteered — (I + A[X])X + C[XL)
with
Alx] = Waee M[x]Wo € R efx] = Waee (¥(20) — M[x]WaxX0) + bec, (10)
where M (x) = diag(my, ..., mq,,) is the binary mask

m; 1= H{|ZU’Z| > T}. (11)

We write M [x] and by extension A[x] because the entries of the matrix M [x] depend on the input
to the adapter.

Proof. Start from the FSRL reconstruction:

Xsteered = Decoder(f + z) + (x — Decoder(f)). (12)
Rearrange:
Xgteered = X + Decoder(q/)(Wax + ba)) . (13)
Ax)

Thus FSRL modifies the residual activation by adding the correction A(x) to x
Xsteered = X + A(X), A(x) = Decoder(ip(Wax + ba)), (14)

observe that, on any region where no coordinate of z crosses 7, each coordinate of v is affine with
slope either O or 1:

O i S (1s)
Hence for such x we have the exact identity
Y(Wax + ba) = 1h(z0) + M[x](Wa(x — xo)). (16)
Applying the decoder W yields
A(x) = Waee M[x] Wa x + Waee (1)(20) — M [x] Waxo) + baec, a7

where Wy € R9*dse M[x] € RbaeXdue T}, € R%e*d and the claim follows by grouping terms.
O

Lemma 2 (rank bound via active features). Let S = {i : |20 > 7} = ||[¢(WaX0 + bg)]|o be the
set of non-zero activations from the adapter network in FSRL with & := |S|. Then

rank(A[x]) < min{k, rank(W,), rank(Wyec)} = min(k, d). (18)

Proof. Since M [x] is diagonal with exactly k ones, rank (M [x]) = k. From the rank inequality of a
product of matrices, it follows that.

rank(A[x]) = rank(Wgee M [x] W,) < min{rank(Wge.), rank(M [x]), rank(W,)}, (19)

Now because ¢ has a dead zone (|z| < 7) and the adapter output is further encouraged to be sparse
by an ¢; penalty, typically k < dg,, and we know that rank(Wye.) = rank(W,,) < min(dg,,d) = d
as dge > d. A[x] is low-rank only if the input x to the adapter induces k < d active features
otherwise d and A[x] is full rank. Therefore the rank of A is min(d, k). which yields the

>
desired bound.

k
0

13

Under review as a conference paper at ICLR 2026

Theorem 1: Under the local linearity assumption, the FSRL steering X +— Xgeered € R is a
(possible low-rank) additive correction in activation space that can always be expressed as a re-
stricted LoRA-style update of downstream weight matrices W € R%* 4 q < de. g., a Transformer
query/key/value or other linear projections). Specifically for any input x, the induced weight modi-
fication:

W+« W+ AW[x], AW[x]:= WA[x] (20)

together with a bias term W ¢[x] is contained within the class of weight updates expressible by LoRA
CLora(W,7) = {AW | AW = BA, rank(AW) < r}, but with the factorization expressed through
the SAE basis and adapter parameters trained via RL.

The rank of the weight modification depends on the input and by extension the number of active
SAE features k induced by the input:

rank(AW) < min(rank(W), d, k), (1)

where k is the number of actively steered SAE features. Thus, all FSRL updates are a subset of
LoRA updates, but with the factorization expressed through the SAE basis and adapter parameters
trained via RL.

As an additional note we describe the overall rank across inputs by 7 = dimspan{ AW (x) | x €
R%}.

Proof. Assume we have an arbitrary Transformer network with the aformentioned linearization
assumption and no residual connection. According to Lemma 1, the FSRL update can be written as
an affine map:

Xsteered — (I + A[X])X + C[X}v (22)

where A[x] € R¥4 c[x] € R? and x € R? is the original activation vector. By Lemma 2
rank(A[x]) < min(d, k) where k corresponds to the number of active (non zero) steered SAE fea-
tures. We essentially want to show that if we perform the substitution X > Xgeereq that this operation
can be written down as a (restricted class) LoRa style update of the relevant weight matrix:

W« W + AW. (23)

Consider an arbitrary layer in the Transformer network. For any linear projection in the downstream
network Wx with W € R4*4" d' < d, so for example query, key, value projections or the ones in
the multi-layer perceptron sublayer. After applying steering X — Xgeered, W€ get:

WXgteered = W((I + A[X])X + C[X])
= (W + WA[X])X + WC[X]. 24)
——

AW

This shows that this is a restricted LoRA style update where the weight matrix modification includes
the original matrix and a matrix A[x] whose rank depends on the number of actively steered SAE
features k. Because d’ < d and rank(A) < min(k, d) we have that rank(W A[x]) < min(d’, k).
For multi-head attention, the matrix modification is only low rank if the number of actively steered
SAE features is less than the per attention head subspace dimensionality d’, which we assume is
d’ < d but for the multi-layer perceptron sublayer d’ = d. [J

Corollary 1 (Inheritence of LoRA properties). Because FSRL updates are contained in the class
of LoRA updates, LoORA expressive-power results from |Zeng and Lee| (2024) apply when replacing
LoRA’s rank R by the effective FSRL rank 7. Concretely:

1. (Exactness): If r.s exceeds the LoRA rank threshold from (Zeng and Lee, 2024), then
FSRL can exactly represent a target model.

2. (Approximation) If 7g is below that threshold, the FSRL error is bounded by the same
singular-value tail bound as in mentioned (Zeng and Leel 2024), with R replaced by 7.

These properties only depend on the rank of the updates, not on the exact factorization. Therefore,
as long as FSRL can achieve the necessary effective rank via its active features, it inherits the same
guarantees.

14

Under review as a conference paper at ICLR 2026

C HYPERPARAMETER SELECTION SWEEPS

This section details the methodology used to select the intervention layer and the ¢; regularization
coefficient (o) for our main experiments with the Gemma-2-2B-it model. For these sweeps, each
configuration was trained for one epoch over the training set using a learning rate of 5 x 10~7. Other
training parameters are detailed in Appendix [D]

Sparsity Sweep: Evaluation Loss Sparsity Sweep: LO Norm Sparsity
5207.67
5000 -
? £ 40004
o 4 3538.83 3618.92
= &
€ -4
o w 3001.59
] € 30004 275552
[£
3 2
>
@)
5 = 2000
i
1000 4
04
0.060 0.080 0.100 0.200 0.400 0.060 0.080 0.100 0.200 0.400
L1 Activation Penalty L1 Activation Penalty
Layer Sweep: Evaluation Loss Layer Sweep: LO Norm Sparsity
5 5.97 8000 4 7740.98
5.34
7000 4
5
> 4
@ £' 6000
K a.03 4
4+ 3.77 4
£ 2 5000 -
° w 4429.17
® E
s =
23 S 4000+ 3618.92
l; H
) ¥
'Eu 2 30004 2917.20
£ £
W 2000 4
14
1000 4
o T T T T 0~
6 12 18 24 6 12 18 24
Layer Number Layer Number

Figure 2: Results of the two-stage hyperparameter sweep for the Gemma-2-2B model. Top Row:
Sparity sweep performed on layer 12, showing the trade-off between final SimPO validation loss
(left) and the resulting ¢, norm of the steering vector (right) for different @ penalty coefficients.
Bottom Row: Layer sweep showing the final SimPO validation loss (left) and ¢y norm (right) when
intervening at different model depths (layers 6, 12, 18, 24).

Intervention Layer Selection Our first objective was to identify the most effective layer for fea-
ture steering. We hypothesized that mid-model layers would be most suitable, as early layers in a
transformer tend to focus on low-level feature extraction, while the final layers are highly special-
ized for next-token prediction. Mid-model layers, in contrast, are thought to represent more abstract
semantic concepts, making them an ideal target for steering high-level behaviors. We tested this by
intervening at layers corresponding to the quartiles of the transformer (6, 12, 18, and 24), measuring
the final SimPO validation loss on the UltraFeedback validation set. For this study, we limited our
analysis to the publicly available SAEs from GemmaScope with a width of 65k. For each layer, we
selected the SAE with the lowest average ¢y norm as a proxy for higher feature monosemanticity.
As shown in Figure [2](bottom row), intervening at layer 12 yielded the lowest validation loss (2.94),
supporting our hypothesis.

/1 Regularization Coefficient Selection With the intervention layer fixed at 12, we then sought
an optimal « that encourages a sparse steering policy. We swept through several values for the
coefficient. The results, shown in Figure [2|(top row), illustrate the expected trade-off: increasing the
penalty reduces the ¢y norm of the average steering vector, but an excessively high penalty degrades
performance as measured by the evaluation loss. We selected a coefficient of 1x 10~ as it represents
the elbow point in the trade-off.

15

Under review as a conference paper at ICLR 2026

D TRAINING AND EVALUATION DETAILS

Hardware and Software Our experiments were constrained to a single NVIDIA GH200 system.
The training process for the FSRL adapter for one epoch requires approximately 55GB of VRAM
and completes in around 50 minutes on this hardware. This single-GPU setup was necessitated by
limitations in multi-GPU support for model surgery in transformer—1lens at the time of this
work. Our software stack includes t ransformer—-1lens (Nanda and Bloom, 2022), sae—lens
(Bloom et al.,|2024), Hugging Face’s TRL (von Werra et al.,[2020), and DeepSpeed (Rajbhandari
et al., [2020).

Training Configuration Our training configuration for both the FSRL adapter and the full-model
baseline closely follows the methodology of the original SimPO paper (Meng et al.,[2024). To create
a comparable baseline, we performed full-model fine-tuning on the instruction-tuned Gemma 2 2B
model. While the SimPO paper reports a learning rate of 8 x 10~7 for the larger 9B model, we
found it necessary to lower this to 2 x 10~7 for our 2B baseline to ensure the generation of coherent
text. Training the full baseline model is substantially more resource-intensive, requiring 93 GB of
VRAM and approximately 1 hour and 45 minutes per epoch.

For the FSRL adapter, we adopt nearly the same hyperparameters but use a learning rate of 5 x 1076,
We hypothesize that the adapter could be trained effectively with a higher learning rate than the full
baseline because the ¢; activation penalty acts as a strong regularizer, stabilizing the training process.
The final hyperparameters for our main experimental run are detailed in Table]

Table 4: Hyperparameters for the final FSRL training run.

Hyperparameter Value
Model & Data
Base Model Gemma-2-2B-it
Dataset ID princeton-nlp/llama3-ultrafeedback—-armorm
Intervention Layer 12
SAE ID layer_12/width_65k/average_10_21
Optimization
Learning Rate 5x 1076
L1 Penalty () 1x 1071
SimPO Beta (/3) 10
SimPO Gamma Ratio (y/8) 0.5
Epochs 10
Optimizer AdamW
LR Scheduler Cosine
Warmup Ratio 0.1
Weight Initialization Uniform (—107% to 1079)
Threshold Initialization 106
Training Environment
Device Batch Size 2
Gradient Accumulation Steps 16
Precision BF16
Memory Optimization DeepSpeed ZeRO Stage 1

E EXPLORATION OF A JUMPRELU ADAPTER FOR DIRECT /; SPARSITY

In addition to using an ¢; penalty, we investigated an alternative adapter architecture for inducing
sparsity more directly. The /; penalty, while computationally convenient, is a proxy for the £y norm
(feature count) that we ultimately seek to minimize. A known side effect of ¢; regularization is
that it penalizes the magnitude of all feature activations, which can lead to a potentially suboptimal
steering policy.

16

Under review as a conference paper at ICLR 2026

To address this, we explored replacing the adapter’s ReLU activation function with a JumpReLU
activation (Rajamanoharan et al., [2024)). This approach introduces a vector of learnable thresholds
0, allowing the adapter to directly optimize an ¢, sparsity objective. The sparsity loss is calculated
using the Heaviside step function, ||v||o = >, H(v; — 6;), whose non-differentiable nature is
handled by using a Straight-Through Estimator (STE) during backpropagation to learn the thresholds
0.

However, we encountered a significant challenge in practice. SimPO alignment generally requires
a low learning rate to minimize KL divergence from the base model and maintain coherent text
generation. In our experiments, we observed that the STE-based training of the thresholds 6 only
became effective at learning rates roughly three orders of magnitude greater than what was stable
for the main adapter weights.

To reconcile these conflicting requirements, we implemented a dual learning rate scheme, assigning
a low learning rate to the adapter’s linear layer parameters (W,, b,) and a separate, much higher
learning rate to the learnable thresholds 8. We additionally had to train the thresholds at full FP32
precision for them to work effectively at inducing sparsity in the activations. Despite these modifi-
cations, our models trained with the JumpReL.U adapter failed to outperform those trained with the
simpler ¢, penalty in terms of either validation performance or final steering vector sparsity within
our limited tuning budget. We believe that a more rigorous hyperparameter search could potentially
unlock the benefits of this direct sparsity-tuning method, and it remains a promising avenue for
future work.

F SUPPLEMENTARY ANALYSIS WITH A RELU ADAPTER

In this section, we provide a supplementary analysis using an alternative FSRL adapter that employs
a standard ReL.U activation function instead of the soft-thresholding operator used in the main paper.
This simpler architecture, which can only amplify features rather than suppress them, serves as a
valuable point of comparison. It allows us to test whether our central finding—the causal importance
of style features—is robust to changes in the adapter’s design.

The training configuration for the ReL.U adapter is similar to that of our primary model, with minor
adjustments to the learning rate (5 x 10~7) and the ¢; penalty coefficient (2 x 10~2) to ensure stable
convergence over two epochs. Its performance on standard benchmarks is presented in Table[5] and
the final £y norm of the adapter is 930.

Table 5: Benchmark performance of the FSRL adapter with a ReL.U activation.
Model MMLU 1 TruthfulQA MC2)1+ GSM8K T SimPO Loss |

FSRL (ReLU) 38.12+0.40 58.50 £ 1.62 30.40 + 1.27 2.71

A comparison of the two adapter architectures reveals that they occupy different points on the
performance-capability trade-off spectrum. The ReLU adapter yields stronger gains on general
knowledge and truthfulness benchmarks, but at the cost of a more pronounced degradation in mathe-
matical reasoning. Conversely, the soft-threshold adapter better preserves reasoning capabilities and
achieves a slightly better final SimPO loss, despite more moderate losses on the other benchmarks.
Given its effectiveness at optimizing the preference objective while mitigating reasoning decline, we
focus on the soft-threshold architecture for our main analysis.

F.1 MECHANISTIC ANALYSIS OF THE RELU ADAPTER

The policy learned by the ReLU adapter shows a distinct correlational pattern. As shown in Table|[6]
its policy is to systematically increase the proportional activation of style features by 2—4% relative
to the SAE’s baseline, while simultaneously decreasing the proportion of alignment-related features.

To determine if this different correlational pattern reflects a different underlying mechanism, we
performed the same causal ablation study as in the main text. The results in Table [7| show that the
underlying causal story remains consistent. Ablating style features still incurs a larger performance
penalty per feature than ablating alignment features, though the effect is less pronounced than with

17

Under review as a conference paper at ICLR 2026

Table 6: Aggregate steering effect of the ReLU adapter on the composition of active features. ‘SAE
Baseline’ is the average proportion of active features belonging to a category for the unmodified
model. ‘Relative Change’ is the percent change in this proportion caused by the FSRL adapter.

Feature Type Data SAE Baseline (%) Relative Change (%)
Alignment Prompt + Chosen 17.59 £ 0.03 -9.42 + 0.25
Prompt Only 17.10 £ 0.06 -5.47 £ 0.45
Prompt + Rejected 17.53 £ 0.03 -10.81 £0.25
Style Prompt + Chosen 2443 £0.04 2.82 +0.21
Prompt Only 25.25 £ 0.06 1.91 £ 0.36
Prompt + Rejected 2451 £0.04 411 +£0.20

the soft-threshold adapter. This demonstrates that while the specifics of the learned strategy may
differ between architectures, the causal importance of style features for satisfying the preference
objective is a robust finding.

Table 7: Causal contribution of feature categories for the ReLU adapter, measured by ablation.
Ablation Condition Features Ablated SimPO Loss | Loss per Feature

None (Full Steering) 0 2.71 -

Alignment Features 11,143 3.17 413 x107°
Style Features 15,391 3.50 513 x 1075
Both Categories 25,989 4.65 7.47 x 1075

G JUSTIFICATION FOR A LEARNED, SPARSE ADAPTER

To justify our use of a learned, dynamic sparsity mechanism, we compared its performance against
a simpler, static top-k% heuristic. We conducted an experiment where, for each input, we computed
the full steering vector but retained only the top-k% of components with the largest absolute values,
testing a range of k values up to 12.8%.

The results, shown in Figure |3 reveal that our FSRL adapter occupies a superior position on the
performance-sparsity trade-off curve. Within the tested range, the static heuristic achieved its best
validation loss of 2.69 at a sparsity of 1.60%. In contrast, our trained adapter achieves a superior
validation loss of 2.60 with an average sparsity of just 0.55%.

This demonstrates that the learned policy is significantly more efficient: it achieves a better out-
come while being, on average, nearly three times as sparse. This suggests that a static, uniform
sparsity budget is suboptimal. Instead, the adapter learns a flexible, input-dependent policy that can
apply a highly sparse vector for most inputs but activate a larger set for more complex examples, as
supported by the long-tail feature usage distribution in Appendix

H STEERED FEATURE USAGE DISTRIBUTION

To understand the usage patterns of features modulated by our FSRL adapter, we analyzed the
frequency with which each feature was steered across the validation dataset. We computed the
average usage for each feature at every token position, considering three distinct contexts: tokens
belonging to the prompt only, tokens from the prompt and the chosen response, and tokens from the
prompt and the rejected response.

The results are visualized in Figure @ The plots show that feature usage follows a highly skewed
distribution. A linear fit on the log-linear plot indicates that the usage frequency exhibits an ex-
ponential decay with respect to feature rank. This pattern reveals that a small subset of features is
steered orders of magnitude more frequently than the majority, which form a long tail of rarely-used
features. This long-tail distribution is remarkably consistent across all three contexts.

18

Under review as a conference paper at ICLR 2026

6.57 6.32 i i
—e— Static Steering

® Baseline Dynamic Steering

6.0

5.5+

o
o
|

Evaluation Loss
=
w
L

»
<)
|

3.5

3.0

2.5+

T T T T T T T T
0.10% 0.20% 0.40% 0.80% 1.60% 3.20% 6.40% 12.80%
Steering Fraction (% of features used)

Figure 3: Comparison of static vs. dynamic steering performance. The blue line traces the validation
loss for a static steering policy that activates a fixed top-k% of features, plotted on a logarithmic
x-axis with sparsity levels doubled at each step from 0.1% to 12.8%. Within the tested range,
this heuristic performs best at 1.60% sparsity (loss of 2.69). The isolated purple point shows the
performance of our learned dynamic policy, which achieves a lower loss (2.60) with a much smaller
average activation of only 0.55%, demonstrating the clear efficiency benefit of a learned, context-
dependent approach.

Furthermore, we performed a sub-analysis by partitioning the features into the alignment and style
categories defined in Appendix[I] When we examined the usage distribution for each of these subsets
independently, we observed no apparent change in the fundamental shape of the distribution. This
suggests that both alignment-related and style-related steering interventions rely on a similar pattern
of activating a small head of common features alongside a large set of more specialized ones.

Feature Usage Distributions Across Response Types
Prompt Only Prompt + Chosen Prompt + Rejected

Usage Percentage (log scale)

T T T
100 0 40 60 80 100
Feature Rank Percentile (%)

Feature Rank Percentile (%) Feature Rank Percentile (%)

Figure 4: Distribution of steered feature usage across the validation set. The plots show feature
usage frequency on a log scale (y-axis) against the feature rank percentile (x-axis). A linear fit
(dashed line) is overlaid to highlight the exponential decay in usage frequency. This distribution is
shown for three contexts: activations from prompt tokens only, from prompt and chosen response

tokens, and from prompt and rejected response tokens.

I AUTOMATED CLASSIFICATION OF SAE FEATURES

To analyze the steering vectors produced by FSRL at a conceptual level, we required a method for
categorizing the features of the SAE we use for training our adapter. We obtained feature explana-
tions from Neuronpedia (Lin and Bloom, 2023)), which are generated using the method described

19

Under review as a conference paper at ICLR 2026

by Bills et al. (Bills et al., [2023). It is important to note that these explanations did not include a
quantitative quality score; calculating such scores is a computationally expensive process that we
could not undertake due to time constraints. The absence of these scores invites some skepticism
regarding the reliability of the explanations. Our dataset covered 99.8% of the 65,536 features; ex-
planations for 192 features were unavailable. As these missing features represent a small fraction
of the total and were not observed among the top-activated features modulated by our adapter, their
exclusion is unlikely to affect our conclusions.

Given the nature of the SimPO objective and the UltraFeedback dataset, we hypothesized that the
steering policy would primarily modulate two categories of features. The first category, alignment,
includes features related to high-level concepts like ethics, safety, and honesty. The second, style,
covers features related to text structure, punctuation, and presentation. The full definitions used for
classification are provided in Appendix [J|

Manually classifying all available features was infeasible. We therefore developed an automated
classification pipeline using Deepseek V3 0324 (DeepSeek AlL[2025) via an API. We used structured
decoding to constrain the model’s output to one of two predefined labels for each category. This
process required nearly 60 million tokens and cost approximately 20 USD.

I.1 VALIDATION OF AUTOMATED CLASSIFICATIONS

To validate the LLM’s classifications, one of the authors manually labeled a random sample of 300
feature explanations for each category. The annotator was unaware of the model’s classifications to
prevent bias. We assessed the human-LLM agreement using the Matthews Correlation Coefficient
(MCQC, or ¢ coefficient), a metric for binary classification that accounts for class imbalance.

The results, summarized in Table 8] show a positive correlation for both categories, with a particu-
larly strong agreement for style-related features. This validates our use of the automated pipeline as
a scalable proxy for human judgment in analyzing the high-level properties of the learned steering
policy.

Table 8: Validation of the automated feature classification pipeline against a human annotator on
a sample of 300 features. TP: True Positives, TN: True Negatives, FP: False Positives, FN: False
Negatives.

Category Accuracy Confusion (TP, TN, FP, FN) MCC (¢)
Alignment-related 0.847 (27,227, 22, 24) 0.448
Style-related 0.900 (69, 201, 5, 25) 0.764

20

Under review as a conference paper at ICLR 2026

J FEATURE CLASSIFICATION PROMPTS

The following system prompts were used to guide the large language model in the automated clas-
sification task.

Alignment Classification Prompt

You are an expert AI alignment researcher. Your task is to classify
explanations of features from a neural network into one of two
categories: ‘alignment-related’ or ‘not-alignment-related’.

1. Alignment-related: Features that represent abstract, high-level
concepts, complex cognitive processes, or goal-directed behaviors
relevant to AI safety and alignment. This includes but is not
limited to:

- Morality and ethics (e.g., right vs. wrong, fairness, justice)

— Honesty, deception, or covert actions

— Sycophancy (flattery, brown-nosing, pandering)

— Power-seeking behaviors or instrumental goals

- Corrigibility, cooperativeness, and shutdown avoidance

- Self-awareness, self-preservation, or mentions of agency

- Harmfulness, violence, or dangerous content generation

- Systemic biases (racial, gender, political, etc.)

— Complex, goal-directed behaviors or planning (even if not
inherently harmful)

- Refusal to answer, evasiveness, or stating limitations

2. Not alignment-related: Features that represent low-level,
concrete, or topic-specific concepts without a clear link to
alignment. This includes but is not limited to:

- Specific programming languages or syntax (e.g., Python code,
JSON structures)

— Grammatical structures (e.g., punctuation, specific parts of
speech, sentence endings)

— Common objects or factual knowledge (e.g., names of people,
places, dates, scientific facts)

— Simple linguistic patterns (e.g., capitalization, repeated
characters, specific tokens like ’'the’ or ’is’)

— Specific domains like mathematics, cooking, or sports, unless
they directly involve an abstract alignment concept.

Your response must be exactly one of the two categories below and
nothing else. Do not add any conversational text or preamble.

- ‘alignment-related?®

- ‘not-alignment-related®

21

Under review as a conference paper at ICLR 2026

Style Classification Prompt

You are an expert in natural language processing and text analysis.

Your task is to classify explanations of features from a neural
network into one of two categories: ‘formatting-related’ or
‘not-formatting-related’.

1. Formatting-related: Features that represent aspects of text

structure, presentation, style, or format rather than semantic

content. This includes but is not limited to:

- Punctuation and symbols (e.g., periods, commas, parentheses,

quotation marks, dashes)

- Capitalization patterns (e.g., sentence beginnings, proper
nouns, ALL CAPS)

— Whitespace and spacing (e.g., indentation, line breaks,
paragraph breaks)

- Programming/code formatting (e.g., syntax highlighting, code

blocks, indentation)

- List formatting (e.g., bullet points, numbered lists,
item separators)

- Text length and conciseness (e.g., short responses, word
limits, brevity)

- Structural elements (e.g., headings, titles, section markers)

— Repetition patterns (e.g., repeated characters, duplicate text)

- Language style markers (e.g., formal vs informal tone indicators)
— Special characters and encoding (e.g., Unicode symbols, HTML

entities)

2. Not formatting-related: Features that represent semantic

content, meaning, topics, or conceptual information rather than

formatting. This includes but is not limited to:

- Specific topics, subjects, or domains (e.g., science, history,

sports)

- Semantic concepts and meanings (e.g., emotions, actions,
relationships)

- Factual knowledge (e.g., names, dates, places, events)

- Abstract concepts and ideas (e.g., morality, justice, creativity)

- Content-specific patterns (e.g., question types, answer
categories)

Your response must be exactly one of the two categories below and
nothing else. Do not add any conversational text or preamble.
- ‘formatting-related®

- ‘not-formatting-related®

K ANALYSIS OF HIGH-IMPACT INDIVIDUAL FEATURES

This section provides a granular view of the individual features most frequently and strongly mod-
ulated by the FSRL adapter on the UltraFeedback validation set. We present the top five features
ranked by activation frequency (Table [9), by strongest amplification (Table [I0), and by strongest

suppression (Table[TT).

A notable empirical finding is the significant overlap between the most frequently activated features
and those with the highest positive mean activation. This suggests that the policy’s most frequently
used tools are also its most powerfully applied ones. Rather than relying on a large set of features for
small, frequent adjustments, the adapter appears to have learned a more concentrated strategy where
a core set of features is modulated both often and with high magnitude. In contrast, several of the
most strongly suppressed features appear to relate to specific stylistic or structural elements, such as
code syntax, legal terminology, and common phrases. While this is an interesting observation, we

do not claim it as a conclusive finding and treat it as a subject for future investigation.

22

Under review as a conference paper at ICLR 2026

Ultimately, the absence of a clear, overarching thematic pattern across these tables suggests the
learned alignment policy is highly distributed. We hypothesize that as SAEs become more disen-
tangled, either through improved architectures or larger dictionary sizes, this type of feature-level
analysis may yield more systematic and interpretable insights. For now, this analysis justifies our
focus on the aggregate, category-based causal study presented in the main paper.

Table 9: Top 5 most frequently activated features. Descriptions are simplified for brevity.

Rank Feature ID Description Usage (%)
1 37761 Failure and error indications 14.97
2 64067 Japanese words or phrases 14.63
3 60867 Technical methods for data processing 14.31
4 62715 Concepts in healthcare and employment 14.08
5 65241 References to chemical compounds 13.71

Table 10: Top 5 features by positive mean activation (strongest amplification). Descriptions are
simplified for brevity.

Rank Feature ID Description Mean Value
1 64067 Japanese words or phrases 0.0616
2 37761 Failure and error indications 0.0552
3 60867 Technical methods for data processing 0.0542
4 65241 References to chemical compounds 0.0461
5 32656 Visual identifiers (images, logos) 0.0447

Table 11: Top 5 features by negative mean activation (strongest suppression). Descriptions are
simplified for brevity.

Rank Feature ID Description Mean Value
1 62837 Phrases including the word “with” -0.0333
2 22069 Specific details in narrative contexts -0.0330
3 63256 Code sequences or programming syntax -0.0302
4 33930 Phrases denoting conditions/classifications -0.0293
5 51861 Legal terminology and court cases -0.0282

L USE OF LARGE LANGUAGE MODELS

We disclose the use of LLMs as assistive tools in the preparation of this manuscript. The core
research ideas, experimental design, analysis, and the interpretation of all results were conceived and
executed entirely by the human authors. The LLMs’ roles were confined to technical and editorial
assistance.

The specific models and their functions were as follows:

* Gemini 2.5 Pro: This model was used as a writing assistant. Its functions included gen-
erating initial drafts of sections based on detailed outlines and key points provided by the
authors, rephrasing sentences to improve clarity and flow, and checking for grammatical
consistency.

* Claude 4 Sonnet: This model served as a technical and programming assistant. Its pri-
mary uses were for debugging Python code, troubleshooting issues within our experimental
setup, and suggesting optimizations for software implementation.

The authors have reviewed, edited, and take full responsibility for all content presented in this paper,
including any text initially drafted by an LLM, and verified its correctness and originality.

23

	Introduction
	Background
	Methodology
	System Architecture
	Theoretical Justification
	Training Configuration
	Comparative Evaluation

	Evaluating Alignment Efficacy
	Mechanistic Insights into the Alignment Process
	Discussion
	Limitations
	Future Work

	Related Work
	Conclusion
	Reconstruction-Preserving Implementation
	Theoretical Justification
	Hyperparameter Selection Sweeps
	Training and Evaluation Details
	Exploration of a JumpReLU Adapter for Direct 0 Sparsity
	Supplementary Analysis with a ReLU Adapter
	Mechanistic Analysis of the ReLU Adapter

	Justification for a Learned, Sparse Adapter
	Steered Feature Usage Distribution
	Automated Classification of SAE Features
	Validation of Automated Classifications

	Feature Classification Prompts
	Analysis of High-Impact Individual Features
	Use of Large Language Models

