

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE ANATOMY OF ALIGNMENT: DECOMPOSING PREFERENCE OPTIMIZATION BY STEERING SPARSE FEATURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Prevailing alignment methods induce opaque parameter changes, obscuring what models truly learn. To address this, we introduce Feature Steering with Reinforcement Learning (FSRL), a framework that trains a lightweight adapter to steer model behavior by modulating interpretable sparse features. First, we theoretically demonstrate that this mechanism is expressive enough to approximate the behavioral shifts of post-training processes. We then apply FSRL to preference optimization and perform a causal analysis of the learned policy. Our analysis reveals a crucial insight: the model learns to reward stylistic presentation as a proxy for quality, disproportionately relying on features related to style and formatting over those tied to alignment concepts like honesty. By effectively optimizing the preference objective, FSRL serves as a transparent proxy for observing the alignment process. Overall, FSRL offers an interpretable control interface and a practical way to diagnose how preference optimization pressures manifest at the feature level.

1 INTRODUCTION

Large Language Models (LLMs) are typically aligned with human preferences through post-training methods like Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). This fine-tuning induces parameter updates across the model’s underlying weights. Consequently, the newly learned alignment behaviors and the model’s original capabilities are encoded in the same parameters, making them difficult to disentangle. When models trained with RLHF subsequently exhibit undesirable behaviors like sycophancy or reward hacking (Perez et al., 2023; Shah et al., 2022), identifying their root cause becomes challenging. This opacity motivates the need for tools that can decompose the alignment process into transparent, auditable components.

Mechanistic interpretability offers a way to make alignment more transparent by exposing and manipulating a model’s internal concepts. At its core is the *Linear Representation Hypothesis*, which suggests that high-level concepts correspond to linear directions in activation space (Elhage et al., 2022). Sparse Autoencoders (SAEs) provide a practical method for uncovering these directions by decomposing dense activations into a sparse basis of largely monosemantic features (Huben et al., 2024; Rajamoharan et al., 2024). These features capture diverse phenomena, ranging from “code syntax” to “flattery”, and can often be assigned interpretable labels using automated methods (Huben et al., 2024; Bills et al., 2023; Paulo et al., 2025). The resulting feature vocabulary enables not only analysis of what models represent, but also a potential interface for directly steering their behavior.

Building on this foundation, we propose **Feature Steering with Reinforcement Learning (FSRL)**, a framework that uses the interpretable feature vocabulary in SAEs as a direct interface for alignment. Conceptually, FSRL acts as a ‘Feature Adapter’ - combining the dynamic, input-dependent control of parameter-efficient fine-tuning with the transparency of feature steering. Instead of fine-tuning the entire model, FSRL operates on a frozen LLM together with its SAE, and trains a lightweight adapter with reinforcement learning to learn a policy for modulating SAE features, as illustrated in Figure 1. This design keeps the model’s underlying capabilities intact in the frozen LLM, while channeling the learned alignment behavior through steering interpretable SAE features.

054 **Contributions** In this work, we introduce Feature Steering with Reinforcement Learning (FSRL),
 055 a framework that aligns a frozen LLM by training a lightweight adapter to steer its interpretable
 056 SAE features. We first establish the soundness of this approach by theoretically demonstrating
 057 that FSRL’s activation-space corrections are functionally equivalent to a class of LoRA updates.
 058 Empirically, FSRL effectively optimizes the preference objective on UltraFeedback, though we find
 059 this optimization degrades generation coherence. We then leverage FSRL’s transparency to perform
 060 a causal analysis of the learned policy. This analysis reveals a crucial insight: the model learns to
 061 reward stylistic presentation as a proxy for quality, disproportionately relying on features related to
 062 style over those tied to alignment concepts like honesty. Finally, we validate this mechanism by
 063 ablating style features, showing that this surgical intervention partially restores generation quality.
 064 These findings establish FSRL as a general method for diagnosing how alignment pressures manifest
 065 at the feature level.

079 **Figure 1: The FSRL Framework for Interpretable Alignment. (a) FSRL Architecture:** At a
 080 given layer, the original activation vector is processed by a trainable adapter. The adapter outputs a
 081 sparse vector of steered features, which are transformed by a frozen SAE decoder into a correction
 082 vector. This correction is added to the original activation to steer the model’s behavior. **(b) Ap-
 083 plification for Mechanistic Insight:** FSRL replaces opaque alignment processes with a transparent
 084 one by learning a policy over a basis of interpretable, monosemantic SAE features. This allows the
 085 learned alignment pressures to be decomposed into concrete actions on meaningful concepts.

2 BACKGROUND

090 We build on three key components: Sparse Autoencoders (SAEs) for creating an interpretable inter-
 091 face, Simple Preference Optimization (SimPO) to optimize a policy on a preference dataset, and a
 092 large annotated dataset to train our system.

093 **Sparse Autoencoders (SAEs)** SAEs are an unsupervised method for representing model activa-
 094 tions as a sparse set of interpretable features (Huben et al., 2024; Anthropic, 2023). Each SAE
 095 consists of an encoder and a decoder. Given a model’s hidden activation $\mathbf{x} \in \mathbb{R}^d$, the encoder first
 096 maps it into a higher-dimensional feature vector $\mathbf{f} \in \mathbb{R}^{d_{\text{sae}}}$ with $d_{\text{sae}} > d$:

$$\mathbf{f} = \text{ReLU}(\mathbf{W}_{\text{enc}}\mathbf{x} + \mathbf{b}_{\text{enc}}), \quad (1)$$

097 where $\mathbf{W}_{\text{enc}} \in \mathbb{R}^{d_{\text{sae}} \times d}$ and \mathbf{b}_{enc} are encoder parameters. The decoder then reconstructs the original
 098 activation from \mathbf{f} :

$$\hat{\mathbf{x}} = \mathbf{W}_{\text{dec}}\mathbf{f} + \mathbf{b}_{\text{dec}}, \quad (2)$$

104 where $\mathbf{W}_{\text{dec}} \in \mathbb{R}^{d \times d_{\text{sae}}}$ and \mathbf{b}_{dec} are decoder parameters. The columns of \mathbf{W}_{dec} form a dictionary of
 105 learned feature vectors. In particular, SAEs are trained such that each activation can be decomposed
 106 into only a few features, achieved by adding an ℓ_1 penalty to the reconstruction loss. The total loss
 107 function is therefore:

$$\mathcal{L}(\mathbf{x}) = \|\mathbf{x} - \hat{\mathbf{x}}\|_2^2 + \alpha \|\mathbf{f}\|_1, \quad (3)$$

108 where α is a hyperparameter that controls the trade-off between reconstruction fidelity and feature
 109 sparsity. While this formulation is common, other SAE variants achieve sparsity through different
 110 mechanisms, such as the JumpReLU activation function (Rajamanoharan et al., 2024) or the Top-K
 111 operator (Bussmann et al., 2024).

112 SAE features can also be used for intervention. As each feature corresponds to a direction given by
 113 a column of W_{dec} , modifying an activation \mathbf{x} by $\mathbf{x}' = \mathbf{x} + \lambda W_{\text{dec}}^{(i)}$ can steer the model’s behavior
 114 in predictable ways. This property, known as *feature steering*, highlights that SAEs features are not
 115 only descriptive, but can also be used as actionable controls on model behavior.

117 **Simple Preference Optimization (SimPO)** SimPO is an efficient algorithm for aligning language
 118 models with human preferences (Meng et al., 2024). It operates directly on a dataset \mathcal{D} of preference
 119 triplets (x, y_w, y_l) , where x is a prompt, y_w is the preferred (chosen) response, and y_l is the less
 120 preferred (rejected) response.

121 The objective is a modified Bradley-Terry loss with a target reward margin γ , which encourages the
 122 model to confidently separate y_w and y_l :

$$124 \quad \mathcal{L}_{\text{SimPO}}(\pi_\theta) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\frac{\beta}{|y_w|} \log \pi_\theta(y_w|x) - \frac{\beta}{|y_l|} \log \pi_\theta(y_l|x) - \gamma \right) \right], \quad (4)$$

126 where β is the temperature/scaling parameter, $|y|$ the sequence length and $\sigma(\cdot)$ the sigmoid function.

127 We adopt SimPO for its ability to match the performance of Direct Preference Optimization (DPO)
 128 (Rafailov et al., 2024) without requiring a separate reference model. This makes it possible to
 129 efficiently train the model (or FSRL adapter) directly on a preference dataset.

131 **Preference Dataset** In this work, we use the UltraFeedback dataset (Cui et al., 2024). Specifically,
 132 we utilize the version of this dataset annotated with the Absolute-Rating Multi-Objective Reward
 133 Model framework (Wang et al., 2024). Our choice of this dataset is motivated by its use in the
 134 SimPO paper, which allows for a direct comparison, isolating the impact of our proposed FSRL
 135 framework rather than confounding it with dataset variations.

137 3 METHODOLOGY

139 We present Feature Steering with Reinforcement Learning (FSRL), a framework for transparently
 140 aligning LLMs by training a policy to steer sparse SAE features of a frozen model. In this section,
 141 we describe the system architecture, the training procedure, and the experimental configuration used
 142 for evaluation.

144 3.1 SYSTEM ARCHITECTURE

146 FSRL intervenes at a single chosen layer of a frozen LLM by steering the residual stream with a
 147 sparse, learned set of feature directions (Figure 1). At this layer, the residual activation $\mathbf{x} \in \mathbb{R}^d$ is
 148 first translated by the SAE into a sparse feature vector $\mathbf{f} \in \mathbb{R}^{d_{\text{sae}}}$. To decide how these features should
 149 be modulated, the same \mathbf{x} is also given to a trainable adapter π_ϕ , which outputs a sparse steering
 150 vector $\mathbf{v} \in \mathbb{R}^{d_{\text{sae}}}$. In effect, π_ϕ learns both the subset of features to target, as well as the direction
 151 and magnitude in which to steer them.

152 **Adapter Implementation** We implement the adapter as a single feedforward layer with param-
 153 eters $\phi = (W_a, \mathbf{b}_a, \tau)$, where $W_a \in \mathbb{R}^{d_{\text{sae}} \times d}$, $\mathbf{b}_a \in \mathbb{R}^{d_{\text{sae}}}$, and $\tau \in \mathbb{R}_+^{d_{\text{sae}}}$ is a vector of learnable
 154 positive thresholds. Its output is produced by a coordinate-wise soft-thresholding activation func-
 155 tion:

$$156 \quad \mathbf{v} = \pi_\phi(\mathbf{x}) = \text{sign}(W_a \mathbf{x} + \mathbf{b}_a) \text{ReLU}(|W_a \mathbf{x} + \mathbf{b}_a| - \tau). \quad (5)$$

158 We adapt this activation function from learned approximations of sparse coding (Gregor and Le-
 159 Cun, 2010). Unlike a standard ReLU, this function enables a tri-state intervention that improves
 160 interpretability: positive values amplify a feature, negative values suppress it, and values in the dead
 161 zone between $-\tau_i$ and $+\tau_i$ leave the feature unchanged. We validated this choice through architec-
 162 tural ablations detailed in Appendix F, which confirm that the ability to both amplify and suppress

162 features leads to a significantly sparser and more effective policy than an amplification-only ReLU
 163 approach..
 164

165 **Applying Steering** The steering vector \mathbf{v} specifies how SAE features are modulated. We obtained
 166 the steered activation by adding the decoded steering adjustment back into the residual stream:
 167

$$\mathbf{x}_{\text{steered}} = \mathbf{x} + \text{Decoder}(\mathbf{v}). \quad (6)$$

169 Hence, given the input activation, the adapter learns to output a steering vector \mathbf{v} that steers the
 170 model’s output to be better aligned with the preference objective. In practice, we implement the
 171 update using a reconstruction-error variant (see Appendix A).
 172

173 We favored this learned, dynamic approach over static heuristics. We empirically demonstrate that
 174 static steering vectors fail to adequately minimize the preference loss compared to our dynamic
 175 adapter (see Appendix H). Furthermore, we find that our learned sparsity policy is significantly
 176 more efficient and sparser than fixed top-k budgets (see Appendix G). Beyond these performance
 177 benefits, a trainable adapter allows the system to be optimized against any differentiable objective,
 178 ensuring FSRL is flexible enough for applications beyond preference optimization.
 179

3.2 THEORETICAL JUSTIFICATION

181 While FSRL can align models with the training objective in practice, it is important to establish why
 182 its restricted form of intervention should, in principle, be expressive enough to match other fine-
 183 tuning methods. To this end, our theoretical justification shows that FSRL is a principled approach
 184 by demonstrating its functional equivalence to a restricted, yet powerful, class of low-rank adaptation
 185 (LoRA) updates (Hu et al., 2021). While FSRL’s practical effectiveness is contingent on the capacity
 186 of its underlying SAE, our theory shows that its adaptation mechanism is sound.
 187

188 The core of our proof, detailed in Appendix B, is that FSRL’s activation-space corrections are func-
 189 tionally equivalent to a class of input-dependent LoRA updates. The FSRL update, $\mathbf{x}_{\text{steered}} =$
 190 $\mathbf{x} + \Delta(\mathbf{x})$, injects an additive correction into the residual stream. When passed to a downstream
 191 linear layer, this is algebraically equivalent to applying an effective weight update, $\Delta W[\mathbf{x}]$, whose
 rank is dynamically determined by the number of actively steered SAE features.
 192

193 This equivalence is significant because it connects FSRL to the established foundations of LoRA.
 194 Recent work by Zeng and Lee (2024) proved that LoRA possesses sufficient expressive power to
 195 match a target model, given enough rank. While FSRL inherits these guarantees in principle, our
 196 single-layer intervention is a constrained application of this theory. Specifically, the adapter’s policy
 197 is conditioned only on the activation at one layer, meaning it cannot distinguish between different
 198 upstream computational paths that yield the same activation vector. Despite this limitation, the
 199 connection confirms FSRL as a valid optimization method. Crucially, because FSRL is constrained
 200 to express its policy through the SAE’s interpretable basis, the policy it learns provides a robust and
 transparent reflection of the optimization pressures driving the alignment task.
 201

3.3 TRAINING CONFIGURATION

203 The adapter’s parameters are optimized using the SimPO algorithm (Meng et al., 2024). To en-
 204 courage a sparse and interpretable policy, we augment the training objective with an ℓ_1 penalty on
 205 the steering vector, controlled by a coefficient α . In addition to this proxy-based sparsity, we also
 206 investigated a more direct method using a JumpReLU activation (Rajamanoharan et al., 2024) in
 207 the adapter to directly optimize the ℓ_0 norm. However, this proved to be difficult to tune within our
 208 framework (see Appendix E).
 209

210 We evaluate our approach on both the **Gemma-2-2B-it** and **Gemma-2-9B-it** models (Gemma Team,
 211 2024) using pre-trained SAEs from GemmaScope (Lieberum et al., 2024). For training, we use the
 212 **UltraFeedback dataset** (Cui et al., 2024). Our primary experimental decisions involved selecting
 213 the intervention layer and the sparsity coefficient. We performed a sweep across transformer layers
 214 and α values for both models to identify configurations that balanced steering vector sparsity with
 215 SimPO validation loss. We independently validated this layer selection using a computationally
 cheaper linear probing heuristic (see Appendix C). Detailed methodology for these sweeps and the
 final hyperparameters for both models are provided in Appendix D.
 216

216 3.4 COMPARATIVE EVALUATION
217

218 To contextualize the performance of our FSRL-steered models, we establish baselines for compari-
219 son. For the 2B scale, we trained our own baseline consisting of the same instruction-tuned model
220 fully fine-tuned using the standard SimPO algorithm. For the 9B scale, to ensure a rigorous compari-
221 son against the state-of-the-art and eliminate potential errors from our own training setup, we utilize
222 the official public model checkpoint provided by the SimPO authors. The training configuration for
223 our 2B baseline mirrors that of our FSRL adapter where applicable, with a decrement in the learning
224 rate to ensure stable convergence (see Appendix D).

225 4 VALIDATING THE ALIGNMENT POLICY
226

228 We emphasize that FSRL is designed as a diagnostic tool rather than a competitor to full fine-tuning.
229 Therefore, we benchmark the models primarily to verify that the adapter successfully captures the
230 optimization signal. We compare performance against the base models and their fully fine-tuned
231 SimPO counterparts, which serve as the non-interpretable performance ceiling.

232 We assess performance on MMLU (Hendrycks et al., 2021) for general knowledge, TruthfulQA
233 (Lin et al., 2022) for truthfulness, and GSM8K (Cobbe et al., 2021) for mathematical reasoning.
234 Evaluations were performed using the Language Model Evaluation Harness (Gao et al., 2024). The
235 results are presented in Table 1.

236
237 Table 1: Benchmark performance for Gemma-2-2B-it and Gemma-2-9B-it models. FSRL optimizes
238 the preference objective across model scales. Bold values indicate the best performance on a given
239 metric within each model size group. We denote TruthfulQA as TQA for brevity

Model		MMLU \uparrow	TQA (MC2) \uparrow	GSM8K \uparrow	Loss \downarrow
Gemma-2-2B-it	Baseline	30.11	55.77	53.45	6.99
	SimPO Full	50.28	61.35	4.40	2.19
	FSRL	41.95	56.10	7.05	2.58
Gemma-2-9B-it	Baseline	33.86	61.02	75.73	6.09
	SimPO Full ¹	58.24	59.4	77.78	2.74
	FSRL	43.69	62.08	0.00	2.46

249 Our results confirm that FSRL effectively optimizes the preference objective. Despite the theo-
250 retical constraints of a single-layer intervention discussed in Section 3.2, the adapter successfully
251 minimizes preference loss across model scales. The 2B model illustrates a distinct trade-off: it pre-
252 serves more mathematical reasoning capabilities than the full fine-tune, though it lags in the other
253 benchmarks. The dynamic shifts at the 9B scale. Here, FSRL achieves the lowest preference loss
254 and the highest TruthfulQA score, surpassing even the fully fine-tuned baseline. This optimization
255 comes at the cost of a collapse in mathematical reasoning. We hypothesize this stems from the en-
256 tanglement of concepts within the SAE; the features necessary for preference optimization may be
257 closely linked to those required for mathematical ability, causing the adapter to disrupt reasoning
258 capabilities when optimizing for preferences despite the enforcement of a sparsity penalty.

260 5 MECHANISTIC INSIGHTS INTO THE ALIGNMENT PROCESS
261

262 Having established that FSRL successfully captures the optimization signal, we now leverage its
263 primary advantage: interpretability. To analyze the policy at a conceptual level, we developed an
264 automated pipeline to classify SAE features based on their text-based explanations. We focus on
265 two categories: **alignment features**, which encompass abstract concepts such as ethics, safety, and
266 honesty; and **style features**, which relate to structural presentation elements like markdown syntax,
267 list formatting, and punctuation. This automated process was validated against manual annotations,
268 achieving reliable agreement with MCC scores ranging from 0.448 to 0.764 (details in Appendix J).

269 ¹We use the model provided by Meng et al. (2024) on HuggingFace: princeton-nlp/gemma-2-9b-it-SimPO

270 **Examining Feature Activations** To understand how the adapter uses different types of features,
 271 we examine the composition of its feature activations. The FSRL adapter outputs a steering vector
 272 with an average ℓ_0 norm of 95 for the 2B model and 58 for the 9B model (compared to the SAE
 273 baselines of 73 and 130). The 9B adapter is significantly sparser than its underlying SAE, while
 274 the 2B adapter is slightly denser. Given these distinct shifts in density, a simple raw count of active
 275 features can be misleading. We therefore analyze the proportion of active features belonging to a
 276 given category at each token, relative to the base SAE’s activation patterns.

277 We measured this composition using activations derived from the preference dataset. As summarized
 278 in Table 2, this analysis reveals a consistent strategy across scales. For both the 2B and 9B models,
 279 the adapter learns to significantly decrease the proportional activation of alignment features (by
 280 $\sim 43\%$ and $\sim 54\%$ respectively) while simultaneously and substantially increasing the proportional
 281 activation of style features (by $\sim 150\%$ and $\sim 256\%$ respectively). This opposing pattern suggests
 282 the learned policy applies a general strategy of suppressing abstract alignment concepts in favor
 283 of amplifying stylistic ones. However, activation frequency does not imply utility. We therefore
 284 employ causal analysis to determine which of these actions drives optimization performance.

285
 286 Table 2: Aggregate steering effect on the composition of active features for 2B and 9B models.
 287 ‘SAE Baseline’ is the average proportion of active features in a category for the unmodified model.
 288 ‘Relative Change’ is the percent change in this proportion caused by the FSRL adapter.

Model	Feature Type	SAE Baseline (%)	Relative Change (%)
Gemma-2-2B-it	Alignment	22.83	-43.52
	Style	19.43	154.82
Gemma-2-9B-it	Alignment	19.21	-54.19
	Style	11.71	256.48

295
 296 **Intervening on Feature Activations** For each category, we disabled the adapter’s intervention by
 297 setting the corresponding components of its output steering vector to zero. We measured the impact
 298 of this ablation directly on the SimPO loss. Using the training objective as the metric allows us
 299 to make direct claims about the optimization process itself, revealing which feature categories are
 300 responsible for minimizing the preference loss, rather than observing indirect effects on downstream
 301 benchmarks. A null hypothesis where all features contribute equally would predict that the loss
 302 increases in proportion to the number of features ablated. Our results in Table 3 deviate sharply
 303 from this expectation.

304
 305 Table 3: Causal contribution of feature categories for 2B and 9B models. ‘Features Ablated’ is the
 306 total number of features in a category. ‘Loss per Feature’ normalizes the resulting increase in SimPO
 307 loss by this count.

Model	Ablation Condition	Features Ablated	SimPO Loss \downarrow	Loss per Feature
Gemma-2-2B-it	None (Full Steering)	0	2.58	–
	Alignment Features	11,143	2.63	4.49×10^{-6}
	Style Features	15,391	5.12	1.65×10^{-4}
	Both Categories	26,534	5.45	1.08×10^{-4}
Gemma-2-9B-it	None (Full Steering)	0	2.46	–
	Alignment Features	2,920	2.67	7.19×10^{-5}
	Style Features	1,889	3.21	3.97×10^{-4}
	Both Categories	4,807	4.10	3.41×10^{-4}

318
 319 The Loss per Feature column quantifies the disproportionate impact of each category. For the 2B
 320 model, the average loss increase per style feature is nearly 37 times greater than that of an alignment
 321 feature. For the 9B model, while the gap narrows, style features still exhibit a causal impact nearly 6
 322 times greater than alignment features. We verify the robustness of this finding via a sensitivity anal-
 323 ysis in Appendix L, demonstrating that the causal primacy of style features remains significant even
 under worst-case assumptions regarding classifier precision. This provides robust causal evidence

324 across scales that the policy prioritizes the manipulation of style features to achieve its objective.
 325 Furthermore, we observe a significant non-linear interaction: ablating both categories simultane-
 326 ously often results in a performance drop exceeding the sum of the individual ablations, suggesting
 327 entanglement between the model’s representations of style and alignment.

328 We term this phenomenon *style-hacking*—a specific form of reward hacking where the policy mini-
 329 mizes loss by exploiting the reward signal’s sensitivity to presentation artifacts rather than improving
 330 semantic content. This offers a direct mechanistic explanation for recent observations that chatbot
 331 rankings are heavily influenced by stylistic factors (Chiang et al., 2024). Our work reveals how this
 332 phenomenon is encoded at a feature level: the alignment policy learns that precise control over style
 333 is causally necessary to maximize the reward signal.

334 To provide qualitative evidence for this strategy, we examined the individual features most strongly
 335 amplified in our adapter (Table 4). For the 2B model, the preference for style is very prominent, with
 336 features controlling specific punctuation, such as em dashes, appearing among the most strongly
 337 amplified. While this bias is not as immediately apparent in the top features of the 9B model,
 338 notable stylistic and formatting concepts remain present in the list.

340
 341 Table 4: Top 10 features ranked by mean positive activation. The 2B model’s most amplified features
 342 are primarily related to style and document structure. While less direct, the top features for the 9B
 343 model also show a bias towards structural and formatting elements.

Gemma-2-2B-it		Gemma-2-9B-it	
ID	Description	ID	Description
8619	Punctuation in code	4185	French instructions/computer terms
30572	Code comments	9151	Beginning-of-sequence tokens
10827	Legal terminology	5038	Medical/health statistics
56395	Formatting in code/markup	9033	Software licensing legal terms
46406	Document start indicators	2469	Web dev: sessions & buttons
45950	Mathematical notation	10953	Transitional phrases (multi-lingual)
3876	Dashes and em-dashes in text	2857	Proper nouns (names, locations)
29393	Mathematical expressions	8668	Scientific study notations
15418	Paragraph beginnings	9807	Account verification processes
55930	Code assignment operators	15981	Code structures for updates

357 While analysis of individual features supports our central claim, the policy’s reliance on a broad set
 358 of interventions is confirmed by the long-tail usage distribution of steered features (see Appendix I).
 359 Therefore, the aggregate causal analysis provides the most comprehensive picture of the strategy
 360 learned during preference optimization.

363 6 ABLATING THE STYLE PROXY

364
 365 To test whether our mechanistic insights can guide the alignment process, we trained new FSRL
 366 adapters with the style features identified in Section 5 masked out. By removing the features the
 367 model previously relied upon, we force the policy to optimize the preference objective using only
 368 the remaining feature vocabulary. We compare these “Style-Ablated” models against the standard
 369 FSRL runs in Table 5.

370
 371 **Style Hacking vs. Truthfulness** Ablating style features consistently improves TruthfulQA perfor-
 372 mance across both model scales. This suggests that, for the Gemma family, the standard optimiza-
 373 tion process minimizes loss by prioritizing style rather than improving fundamental capabilities like
 374 truthfulness. This effect is most pronounced in the 2B model, where the ablated variant significantly
 375 outperforms the standard model on TruthfulQA despite failing to minimize the preference loss (3.90
 376 vs 2.58). While the 9B model also improves on TruthfulQA, the gain is marginal compared to
 377 the smaller model, indicating that the clear separation between style-hacking and capability may
 diminish or become more complex as model scale increases.

378
 379 Table 5: Comparison of Standard FSRL vs. Style-Ablated FSRL. Ablating style features leads to
 380 higher TruthfulQA (TQA) scores across scales. The divergence in GSM8K performance highlights
 381 the impact of feature entanglement in the underlying SAEs.

Model	Variant	MMLU \uparrow	TQA (MC2) \uparrow	GSM8K \uparrow	Loss \downarrow	L0 \downarrow
Gemma-2-2B-it	Standard	41.95	56.10	7.05	2.58	95
	Style-Ablated	42.34	60.13	1.97	3.90	78
Gemma-2-9B-it	Standard	43.69	62.08	0.00	2.46	58
	Style-Ablated	40.49	62.80	18.57	2.62	68

388
 389
 390 **Feature Entanglement and Reasoning** The impact on mathematical reasoning (GSM8K) di-
 391 verges across scales, revealing scale-dependent feature properties. In the 2B model, reasoning per-
 392 formance drops (7.05 to 1.97) when style features are ablated. As detailed in Appendix N, our
 393 analysis suggests that style features at this scale are highly polysemantic and central to computation.
 394 Ablating them removes the adapter’s primary control surface, forcing a pivot to suboptimal features
 395 that destabilize the reasoning trajectory. Conversely, the 9B model sees a significant recovery (0.00
 396 to 18.57). We find that style features here are relatively less entangled and auxiliary; their ablation
 397 removes optimization interference without damaging core reasoning circuits.

398
 399
 400 **Generation Quality and Coherence** To assess open-ended generation quality, we evaluated our
 401 models on AlpacaEval 2.0 (Dubois et al., 2025), using Gemini 2.5 Flash as the annotator. We report
 402 length-controlled win rates in Table 6.

403
 404
 405 Table 6: Length-controlled AlpacaEval 2.0 win rates and average completion lengths. Standard
 406 FSRL models suffer a collapse in generation quality. Ablating style features recovers partial per-
 407 formance, indicating these features drive much of the observed incoherence.

Model	Variant	Win Rate (%) \uparrow	Avg. Length
Gemma-2-2B-it	Baseline	8.48	1565
	FSRL (Standard)	0.98	1095
	FSRL (Style-Ablated)	2.93	1363
Gemma-2-9B-it	Baseline	34.71	1323
	FSRL (Standard)	0.20	1532
	FSRL (Style-Ablated)	5.57	1196

416
 417 The results highlight a critical trade-off. Standard FSRL models suffer a collapse in win rates,
 418 consistent with the qualitative degradation observed in Appendix M. SimPO explicitly discards the
 419 KL divergence penalty, relying instead on a reduced learning rate to implicitly constrain the pol-
 420 icy. While this strategy successfully yields coherent models in the context of full fine-tuning (Meng
 421 et al., 2024), we found it insufficient for our feature adapter. Manual inspection of samples from
 422 preliminary runs showed that lowering the learning rate did not meaningfully improve FSRL’s co-
 423 herence—a rigidity that parallels the SimPO authors’ observation that learning rate variations had
 424 minimal impact on the Gemma-2-9B model. We hypothesize that without the hard constraint of a
 425 KL penalty, the FSRL adapter drives style-related features to extreme magnitudes to maximize the
 426 reward margin, overwriting the semantic content necessary for coherent generation.

427 Ablating style features leads to a partial recovery (e.g., from 0.20% to 5.57% for the 9B model).
 428 While this does not fully restore baseline performance, it confirms that style-hacking is a signif-
 429 icant driver of the observed incoherence. FSRL thus demonstrates that it is possible to perform
 430 “mechanistic surgery” to specifically excise these reward-hacking pathways. While not yet com-
 431 pletely effective at restoring full capability, this targeted approach offers a promising alternative to
 the broad restraint of a global KL penalty.

432

7 DISCUSSION

433
 434
 435 Our work introduces FSRL, an interpretable alignment framework that uses a lightweight adapter
 436 to steer a model’s conceptual features. Because this adapter can be optimized against any differ-
 437 entiable objective, FSRL opens the door for the community to audit a wide range of post-training
 438 methods using a shared infrastructure. This approach amortizes the cost of interpretability: once a
 439 high-quality SAE is trained and explained, it becomes a reusable instrument for diagnosing infinite
 440 variations of alignment policies.
 441

442 Our findings provide a mechanistic explanation for Goodhart’s Law in preference optimization. Our
 443 causal analysis reveals that the model minimizes loss by prioritizing features related to stylistic
 444 presentation over concepts like honesty, effectively treating surface-level polish as a proxy for qual-
 445 ity. Furthermore, the consistency of these findings across model scales suggests that mechanistic
 446 insights derived from smaller, accessible models can predict the behavior of larger systems.
 447

448 FSRL also presents an efficient alternative to model-diffing, the practice of analyzing internal dif-
 449 ferences between a base and a fine-tuned model, by directly addressing its key methodological chal-
 450 lenge: feature stability. The transferability of SAEs is not guaranteed for instruction-tuned models
 451 (Kissane et al., 2024), particularly for specialized reasoning models that develop novel features
 452 (Hazra et al., 2025). By design, FSRL sidesteps this issue entirely by operating on a fixed, inter-
 453 pretative feature basis. This stable foundation, in turn, is what enables direct causal analysis of the
 454 learned policy, allowing for targeted ablations to determine which features are causally important for
 455 the task. While this prevents the discovery of emergent concepts, it provides a controlled framework
 456 for auditing alignment pressures.
 457

458

7.1 LIMITATIONS

459 Our approach’s primary limitation is its dependence on the quality of the underlying SAEs. The
 460 extent to which SAE features represent true learned computations versus artifacts is an active area of
 461 research (Heap et al., 2025). We mitigate this by using high-quality public SAEs from GemmaScope,
 462 though the generalizability of any specific feature vocabulary remains an open question.
 463

464 Furthermore, our analysis is confined to relatively small models, as scaling FSRL faces practical
 465 hurdles. Extending this work to larger models is challenging due to library limitations for model
 466 intervention, as well as the computational cost of training quality SAEs and obtaining reliable feature
 467 explanations. This resource bottleneck extends to our analysis, where our causal claims are mediated
 468 by an LLM-based classifier with moderate human agreement, introducing a layer of approximation.
 469

470 Finally, our analysis is conducted exclusively on a single-layer intervention. While our theoretical
 471 grounding in LoRA’s expressive power is important, the guarantees from cited work (Zeng and Lee,
 472 2024) suggest a worst-case need for adaptation across all layers. Our empirical results provide strong
 473 evidence that for a structured, pre-trained LLM, this constraint is not a practical barrier, as FSRL
 474 successfully optimizes the preference objective.
 475

476

7.2 FUTURE WORK

477 These limitations point toward several avenues for future work. A key direction is to explore the
 478 scaling properties of this approach, testing the hypothesis that higher-dimensional SAEs yield a
 479 more disentangled and controllable feature basis. This exploration should also include alternative
 480 interfaces beyond SAEs, such as Transcoders, which may offer a more direct way to control MLP
 481 computations (Dunefsky et al., 2024). Scaling the feature interface will also require scaling the anal-
 482 ysis pipeline, for which unsupervised methods like embedding and clustering feature explanations
 483 could provide a more efficient alternative to our LLM-based classification.
 484

485 Finally, a crucial direction is to empirically compare FSRL with the alternative of interpretable
 486 model-diffing. Such a study could quantify FSRL’s efficiency gains and, more importantly, test the
 487 fundamental trade-off between the methodological stability of a fixed conceptual vocabulary and the
 488 ability of a new SAE to discover emergent features that arise during alignment.
 489

486
 487 Table 7: Comparison of model adaptation methods, grouped by family. ‘Adaptivity’ refers to
 488 whether the intervention is fixed (Static) or input-dependent (Dynamic). FSRL introduces a new
 489 family, Feature Adapters, that combines the interpretability of feature steering with the dynamic
 490 nature of adapters.

Family	Methods	Target Space	Adaptivity	Interpretability
Adapters	LoRA, IA ³	Parameters	Dynamic	Low
Static Steering	ActAdd, CAA	Activations	Static	Low
Learned Steering	BiPO	Activations	Static	Low
Feature Steering	SAE-TS, SAS	Sparse Features	Static	High
Feature Adapters	FSRL (Ours)	Sparse Features	Dynamic	High

500 8 RELATED WORK

503 **Steering Dense Activations** FSRL builds on a line of work that steers model behavior by modifying
 504 internal activations at inference. These methods range from applying algebraically computed
 505 vectors, as in ActAdd (Turner et al., 2024) and CAA (Panickssery et al., 2024), to learning steering
 506 parameters directly from data. For example, BiPO (Cao et al., 2024) uses preference optimization
 507 to learn an optimal static steering vector. A common thread unites these methods: they intervene on
 508 the model’s opaque activation space, making the mechanism of control difficult to interpret.

510 **Interpretable Steering with Sparse Features** SAEs offer a solution to this opacity by providing
 511 an interpretable feature basis for steering. Methods like SAE-TS and SAS leverage this basis to construct
 512 *static* steering vectors, utilizing linear approximations or contrastive algebraic manipulation
 513 to target specific features (Chalnev et al., 2024; Bayat et al., 2025). While effective for inducing
 514 fixed behaviors, these vectors are applied uniformly across all inputs. FSRL distinguishes itself by
 515 learning a *dynamic*, context-aware policy via gradient descent. Instead of deriving a fixed vector
 516 offline, FSRL trains a lightweight adapter to modulate SAE features token by token. This approach
 517 mirrors the dynamics of traditional fine-tuning.

518 **Comparison with Parameter-Efficient Adapters** Among existing approaches, FSRL is most
 519 methodologically similar to parameter-efficient fine-tuning (PEFT) methods like LoRA (Hu et al.,
 520 2021) and IA³ (Liu et al., 2022). Like these methods, FSRL trains a lightweight adapter via gradient
 521 descent to minimize a loss function, distinguishing it from the algebraic or heuristic steering meth-
 522 ods discussed above. However, a crucial difference lies in the target of intervention. PEFT methods
 523 operate in parameter space, injecting updates into the model’s opaque weight matrices. In contrast,
 524 FSRL operates in a sparse activation space, directly modulating more interpretable features.

526 We adopt the term ‘steering’ strictly to denote that our intervention occurs in activation space rather
 527 than parameter space. As summarized in Table 7, FSRL introduces a family of methods, which we
 528 term Feature Adapters, that combine the dynamic, input-dependent nature of adapters with the high
 529 interpretability of feature steering. Since this dynamic policy can be optimized with any differen-
 530 tiable objective, the framework is a general tool for auditing a wide range of post-training processes.

532 9 CONCLUSION

535 We introduced FSRL to dissect the opaque mechanics of alignment by projecting the process onto
 536 interpretable features. Our analysis reveals that preference optimization minimizes loss through
 537 “style-hacking,” a strategy that prioritizes presentation artifacts over concepts like honesty. While
 538 this approach satisfies the objective, it degrades coherence. We demonstrate that surgically ablating
 539 style features partially mitigates this failure. FSRL thus provides a powerful instrument for auditing
 alignment, moving the field toward a transparent and debuggable engineering discipline.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our findings, we anonymously provide our source code, the trained
543 FSRL adapter, and the classified feature explanations used in our analysis. The source code, which
544 includes the implementation of the FSRL framework and training scripts, is available at <https://anonymous.4open.science/r/FSRL-MechInterp/README.md>.
545

546 Our experiments were conducted using the Gemma-2-2B-it base model and publicly available SAEs
547 from GemmaScope. The adapter was trained on the UltraFeedback dataset. Our software stack
548 is built on PyTorch and utilizes the `transformer-lens`, `sae-lens`, and `TRL` libraries. All
549 experiments were performed on a single NVIDIA GH200 GPU. Full training configurations, hyper-
550 parameter details, and library versions are provided in Appendix D.
551

552 REFERENCES
553

554 Anthropic. Towards monosemanticity: Decomposing language models with dictionary learning.
555 October 2023. Accessed: 2025-08-22.

556 Reza Bayat, Ali Rahimi-Kalahroudi, Mohammad Pezeshki, Sarath Chandar, and Pascal Vincent.
557 Steering large language model activations in sparse spaces, 2025. URL <https://arxiv.org/abs/2503.00177>.
558

559 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
560 Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
561 neurons in language models. <https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html>, 2023.
562

563 Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. SAE Lens, 2024. URL <https://github.com/jbloomAus/SAELens>.
564

565 Bart Bussmann, Patrick Leask, and Neel Nanda. BatchTopK Sparse Autoencoders, 2024. URL <http://arxiv.org/abs/2412.06410>.
566

567 Yuanpu Cao, Tianrong Zhang, Bochuan Cao, Ziyi Yin, Lu Lin, Fenglong Ma, and Jinghui Chen.
568 Personalized steering of large language models: Versatile steering vectors through bi-directional
569 preference optimization. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=7qJFkuZdYo>.
570

571 Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving steering vectors by targeting sparse
572 autoencoder features, 2024. URL <https://arxiv.org/abs/2411.02193>.
573

574 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
575 Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
576 Chatbot arena: An open platform for evaluating llms by human preference, 2024.
577

578 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
579 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
580 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.
581

582 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
583 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. UltraFeedback: Boosting Language
584 Models with Scaled AI Feedback, 2024. URL <http://arxiv.org/abs/2310.01377>.
585

586 DeepSeek AI. Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.
587

588 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
589 alpacaeval: A simple way to debias automatic evaluators, 2025. URL <https://arxiv.org/abs/2404.04475>.
590

591 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
592 circuits, 2024. URL <https://arxiv.org/abs/2406.11944>.
593

594 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 595 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
 596 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Super-
 597 position, 2022. URL <https://arxiv.org/abs/2209.10652v1>.

598

599 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 600 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 601 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 602 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 603 evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

604

605 Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL <https://arxiv.org/abs/2408.00118>.

606

607 Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In *Proceedings of*
 608 *the 27th International Conference on International Conference on Machine Learning*, ICML'10,
 609 page 399–406, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

610

611 Dron Hazra, Max Loeffler, Murat Cubuktepe, Levon Avagyan, Liv Gorton, Mark Bis-
 612 sell, Owen Lewis, Thomas McGrath, and Daniel Balsam. Under the hood of
 613 a reasoning model, Apr 2025. URL <https://www.goodfire.ai/research/under-the-hood-of-a-reasoning-model>.

614

615 Thomas Heap, Tim Lawson, Lucy Farnik, and Laurence Aitchison. Sparse autoencoders can in-
 616 terpret randomly initialized transformers, 2025. URL <https://arxiv.org/abs/2501.17727>.

617

618

619 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 620 cob Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

621

622

623 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 624 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, 2021. URL [http://arxiv.org/abs/2106.09685](https://arxiv.org/abs/2106.09685).

625

626

627 Robert Huben, Hoagy Cunningham, Logan Riggs, Aidan Ewart, and Lee Sharkey. Sparse Autoen-
 628 coders Find Highly Interpretable Features in Language Models. In *The Twelfth International*
 629 *Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
 630 view.net, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.

631

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Saes (usu-
 632 ally) transfer between base and chat models. Alignment Forum, 2024. URL
 633 <https://www.alignmentforum.org/posts/fmwk6qxrW8d4jvbd/saes-usually-transfer-between-base-and-chat-models>.

634

635

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 636 Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope: Open Sparse
 637 Autoencoders Everywhere All At Once on Gemma 2, 2024. URL <http://arxiv.org/abs/2408.05147>.

638

639

640 Johnny Lin and Joseph Bloom. Analyzing neural networks with dictionary learning, 2023. URL
 641 <https://www.neuronpedia.org>. Software available from neuronpedia.org.

642

643

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 644 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.

645

646

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 647 Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
 648 ing, 2022. URL <https://arxiv.org/abs/2205.05638>.

648 Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple Preference Optimization with a
 649 Reference-Free Reward. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan,
 650 Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in Neural Information
 651 Processing Systems 38: Annual Conference on Neural Information Processing Systems
 652 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*. arXiv, 2024. URL
 653 <https://arxiv.org/abs/2405.14734>.

654 Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL <https://github.com/TransformerLensOrg/TransformerLens>.

655

656 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 657 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 658 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 659 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 660 URL <http://arxiv.org/abs/2203.02155>.

661

662 Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
 663 Turner. Steering llama 2 via contrastive activation addition, 2024. URL <https://arxiv.org/abs/2312.06681>.

664

665 Gonçalo Santos Paulo, Alex Troy Mallen, Caden Juang, and Nora Belrose. Automatically Interpret-
 666 ing Millions of Features in Large Language Models. 2025. URL <https://openreview.net/forum?id=EemtbhJOXc>.

667

668 Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig
 669 Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Benjamin
 670 Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela
 671 Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jack-
 672 son Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Ka-
 673 mal Ndousse, Landon Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang,
 674 Neerav Kingsland, Nelson Elhage, Nicholas Joseph, Noemí Mercado, Nova DasSarma, Oliver
 675 Rausch, Robin Larson, Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk,
 676 Tamera Lanham, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yun-
 677 tao Bai, Zac Hatfield-Dodds, Jack Clark, Samuel R. Bowman, Amanda Askell, Roger B. Grosse,
 678 Danny Hernandez, Deep Ganguli, Evan Hubinger, Nicholas Schiefer, and Jared Kaplan. Dis-
 679 covering Language Model Behaviors with Model-Written Evaluations. In Anna Rogers, Jor-
 680 dan L. Boyd-Graber, and Naoaki Okazaki, editors, *Findings of the Association for Compu-
 681 tational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023*, pages 13387–13434. Associa-
 682 tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.847. URL
 683 <https://doi.org/10.18653/v1/2023.findings-acl.847>.

684

685 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 686 Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
 687 Model, 2024. URL <http://arxiv.org/abs/2305.18290>.

688

689 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 690 Kramár, and Neel Nanda. Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU
 691 Sparse Autoencoders, 2024. URL <http://arxiv.org/abs/2407.14435>.

692

693 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
 694 toward training trillion parameter models. In *Proceedings of the International Conference for
 695 High Performance Computing, Networking, Storage and Analysis, SC '20*. IEEE Press, 2020.
 696 ISBN 978-1-7281-9998-6.

697

698 Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
 699 and Zac Kenton. Goal Misgeneralization: Why Correct Specifications Aren't Enough For Correct
 700 Goals, 2022. URL <http://arxiv.org/abs/2210.01790>.

701

702 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
 703 and Monte MacDiarmid. Steering Language Models With Activation Engineering, 2024. URL
 704 <http://arxiv.org/abs/2308.10248>.

702 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 703 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 704 learning. <https://github.com/huggingface/trl>, 2020.

705
 706 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable Preferences
 707 via Multi-Objective Reward Modeling and Mixture-of-Experts, 2024. URL <http://arxiv.org/abs/2406.12845>.

708
 709 Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In *The Twelfth
 710 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=likXVjmh3E>.

713 A RECONSTRUCTION-PRESERVING IMPLEMENTATION

714 In the main text (Eq. 6), we described the steered activation with a simple additive update for con-
 715 ceptual clarity:

$$716 \mathbf{x}_{\text{steered}} = \mathbf{x} + \text{Decoder}(\mathbf{v}).$$

717 Our implementation follows the convention used in libraries like SAE-Lens. The steering intervention
 718 is applied in the SAE’s feature space, and the original reconstruction error is added back to the
 719 final activation. This approach also incorporates a ReLU activation to maintain the non-negativity
 720 of feature activations, a property assumed by the SAE decoder.

721 The process is as follows. First, we compute the steered feature vector, \mathbf{f}' , by combining the steering
 722 vector \mathbf{v} with the original SAE features \mathbf{f} and applying a ReLU:

$$723 \mathbf{f}' = \text{ReLU}(\mathbf{f} + \mathbf{v}).$$

724 The final activation is then reconstructed from \mathbf{f}' and corrected by adding back the SAE’s recon-
 725 struction error, $(\mathbf{x} - \text{Decoder}(\mathbf{f}))$. This step ensures that information in the original activation \mathbf{x} that
 726 was not captured by the SAE is preserved. The full update is:

$$726 \mathbf{x}_{\text{steered}} = \text{Decoder}(\mathbf{f}') + (\mathbf{x} - \text{Decoder}(\mathbf{f})).$$

727 By substituting the definition of \mathbf{f}' , we get:

$$728 \mathbf{x}_{\text{steered}} = \text{Decoder}(\text{ReLU}(\mathbf{f} + \mathbf{v})) + \mathbf{x} - \text{Decoder}(\mathbf{f}).$$

729 Due to the non-linearity of the ReLU function, this formulation is not algebraically equivalent to
 730 the simple additive update $\mathbf{x} + \text{Decoder}(\mathbf{v})$. The ReLU can clip negative values resulting from
 731 suppressive steering, making the overall activation change a more complex, non-linear function of \mathbf{f}
 732 and \mathbf{v} .

733 B THEORETICAL JUSTIFICATION

734 In this Appendix, we outline in more detail the main theoretical justification of FSRL. This is done by
 735 showing that under some mild assumptions, the class of possible FSRL updates is a restricted class of
 736 possible LoRA updates, therefore inheriting useful expressive power results from LoRA as discussed
 737 in (Zeng and Lee, 2024). In particular, any base model (Transformer, fully connected networks) can
 738 be adapted to a target model with the same architecture, provided the rank is high enough. This
 739 shows that FSRL is a valid method for preference optimization coupled with interpretable SAE
 740 features.

741 Additional Relevant Definitions:

- 742 • **Rank of matrices:** For a matrix $A \in \mathbb{R}^{m \times n}$ the rank is

$$743 \text{rank}(A) = \dim(\text{col}(A)) = \dim(\text{row}(A)) \quad (7)$$

744 where $\text{col}(\cdot)$, $\text{row}(\cdot)$ denotes the column and row space respectively. Equivalently it is the
 745 number of nonzero singular columns of A in its singular value decomposition. A matrix is
 746 **low-rank** if $\text{rank}(A) = r$ with $r < \min(m, n)$ for $A \in \mathbb{R}^{m \times n}$.

756 • **LoRA:** The weight update ΔW is constrained to be low rank with $\Delta W = BA$ where
 757 $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$ and $r \ll \min(d, k)$ is the LoRA rank. This reduces the
 758 number of trainable parameters from $O(dk)$ to $O(r(d+k))$. Sometimes a scaling factor α
 759 is applied: $\Delta W = \frac{\alpha}{r} BA$.
 760 • $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B))$.

762 **Assumptions (linearization).** We analyze FSRL locally around a reference point \mathbf{x}_0 . Let $\mathbf{z} =$
 763 $W_a \mathbf{x} + \mathbf{b}_a$ and $\mathbf{z}_0 := W_a \mathbf{x}_0 + \mathbf{b}_a$. Fix the adapter activation to be the coordinate-wise soft-threshold

$$\psi(z) = \text{sign}(z) \text{ReLU}(|z| - \tau), \quad (8)$$

766 with threshold $\tau \geq 0$. The function ψ is piecewise-linear: on any region that does not cross the kinks
 767 at $\pm\tau$ each coordinate is affine. Therefore, by choosing a neighborhood of \mathbf{x}_0 that does not cross
 768 those threshold hyperplanes, the adapter becomes exactly linear on that region. If needed, upstream
 769 ReLUs can be forced into their identity regime, either with an analogous argument or by choosing
 770 sufficiently large biases (Zeng and Lee, 2024), so that the network upstream of the adapter is linear
 771 and the whole effect of the adapter reduces to an affine correction in activation space.

772 **Lemma 1 (piecewise-linear exact affine form).** The FSRL update $\mathbf{x} \mapsto \mathbf{x}_{\text{steered}}$ is an affine map
 773 on any region that does not cross the activation kinks (e.g., under the linearization assumption), and
 774 can be written as

$$\mathbf{x}_{\text{steered}} = (I + A[\mathbf{x}])\mathbf{x} + \mathbf{c}[\mathbf{x}], \quad (9)$$

775 with

$$A[\mathbf{x}] = W_{\text{dec}} M[\mathbf{x}] W_a \in \mathbb{R}^{d \times d}, \quad \mathbf{c}[\mathbf{x}] = W_{\text{dec}} (\psi(\mathbf{z}_0) - M[\mathbf{x}] W_a \mathbf{x}_0) + \mathbf{b}_{\text{dec}}, \quad (10)$$

779 where $M[\mathbf{x}] = \text{diag}(m_1, \dots, m_{d_{\text{sae}}})$ is the binary mask

$$m_i := \mathbb{I}\{|z_{0,i}| > \tau\}. \quad (11)$$

782 We write $M[\mathbf{x}]$ and by extension $A[\mathbf{x}]$ because the entries of the matrix $M[\mathbf{x}]$ depend on the input
 783 to the adapter.

784 *Proof.* Start from the FSRL reconstruction:

$$\mathbf{x}_{\text{steered}} = \text{Decoder}(\mathbf{f} + \mathbf{z}) + (\mathbf{x} - \text{Decoder}(\mathbf{f})). \quad (12)$$

787 Rearrange:

$$\mathbf{x}_{\text{steered}} = \mathbf{x} + \underbrace{\text{Decoder}(\psi(W_a \mathbf{x} + \mathbf{b}_a))}_{\Delta(\mathbf{x})}. \quad (13)$$

791 Thus FSRL modifies the residual activation by adding the correction $\Delta(\mathbf{x})$ to \mathbf{x}

$$\mathbf{x}_{\text{steered}} = \mathbf{x} + \Delta(\mathbf{x}), \quad \Delta(\mathbf{x}) = \text{Decoder}(\psi(W_a \mathbf{x} + \mathbf{b}_a)), \quad (14)$$

794 observe that, on any region where no coordinate of \mathbf{z} crosses $\pm\tau$, each coordinate of ψ is affine with
 795 slope either 0 or 1:

$$\psi(W_a \mathbf{x} + \mathbf{b}_a)_i = \begin{cases} z_i - z_{0,i} + \psi(z_{0,i}) & \text{if } m_i = 1 \\ \psi(z_{0,i}) & \text{if } m_i = 0. \end{cases} \quad (15)$$

799 Hence for such \mathbf{x} we have the exact identity

$$\psi(W_a \mathbf{x} + \mathbf{b}_a) = \psi(\mathbf{z}_0) + M[\mathbf{x}](W_a(\mathbf{x} - \mathbf{x}_0)). \quad (16)$$

802 Applying the decoder W_{dec} yields

$$\Delta(\mathbf{x}) = W_{\text{dec}} M[\mathbf{x}] W_a \mathbf{x} + W_{\text{dec}} (\psi(\mathbf{z}_0) - M[\mathbf{x}] W_a \mathbf{x}_0) + \mathbf{b}_{\text{dec}}, \quad (17)$$

805 where $W_{\text{dec}} \in \mathbb{R}^{d \times d_{\text{sae}}}$, $M[\mathbf{x}] \in \mathbb{R}^{d_{\text{sae}} \times d_{\text{sae}}}$, $W_a \in \mathbb{R}^{d_{\text{sae}} \times d}$ and the claim follows by grouping terms.
 806 □

807 **Lemma 2 (rank bound via active features).** Let $S = \{i : |z_{0,i}| > \tau\} = \|\psi(W_a \mathbf{x}_0 + \mathbf{b}_a)\|_0$ be the
 808 set of non-zero activations from the adapter network in FSRL with $k := |S|$. Then

$$\text{rank}(A[\mathbf{x}]) \leq \min\{k, \text{rank}(W_a), \text{rank}(W_{\text{dec}})\} = \min(k, d). \quad (18)$$

810 *Proof.* Since $M[\mathbf{x}]$ is diagonal with exactly k ones, $\text{rank}(M[\mathbf{x}]) = k$. From the rank inequality of a
 811 product of matrices, it follows that.

812 $\text{rank}(A[\mathbf{x}]) = \text{rank}(W_{\text{dec}} M[\mathbf{x}] W_a) \leq \min\{\text{rank}(W_{\text{dec}}), \text{rank}(M[\mathbf{x}]), \text{rank}(W_a)\}, \quad (19)$

814 Now because ψ has a dead zone ($|z| \leq \tau$) and the adapter output is further encouraged to be sparse
 815 by an ℓ_1 penalty, typically $k \ll d_{\text{sae}}$, and we know that $\text{rank}(W_{\text{dec}}) = \text{rank}(W_a) \leq \min(d_{\text{sae}}, d) = d$
 816 as $d_{\text{sae}} > d$. $A[\mathbf{x}]$ is low-rank only if the input \mathbf{x} to the adapter induces $k < d$ active features
 817 otherwise $d \geq k$ and $A[\mathbf{x}]$ is full rank. Therefore the rank of A is $\min(d, k)$. which yields the
 818 desired bound. \square

819 **Theorem 1:** Under the local linearity assumption, the FSRL steering $\mathbf{x} \mapsto \mathbf{x}_{\text{steered}} \in \mathbb{R}^d$ is a
 820 (possibly low-rank) additive correction in activation space that can always be expressed as a re-
 821 stricted LoRA-style update of downstream weight matrices $W \in \mathbb{R}^{d \times d'}, d' \leq d$ (e.g., a Transformer
 822 query/key/value or other linear projections). Specifically for any input \mathbf{x} , the induced weight modi-
 823 fication:

824 $W \leftarrow W + \Delta W[\mathbf{x}], \quad \Delta W[\mathbf{x}] := W A[\mathbf{x}] \quad (20)$

825 together with a bias term $W c[\mathbf{x}]$ is contained within the class of weight updates expressible by LoRA
 826 $\mathcal{C}_{\text{LoRA}}(W, r) = \{\Delta W \mid \Delta W = BA, \text{rank}(\Delta W) \leq r\}$, but with the factorization expressed through
 827 the SAE basis and adapter parameters trained via RL.

828 The rank of the weight modification depends on the input and by extension the number of active
 829 SAE features k induced by the input:

831 $\text{rank}(\Delta W) \leq \min(\text{rank}(W), d, k), \quad (21)$

833 where k is the number of actively steered SAE features. Thus, all FSRL updates are a subset of
 834 LoRA updates, but with the factorization expressed through the SAE basis and adapter parameters
 835 trained via RL.

836 As an additional note we describe the overall rank across inputs by $r_{\text{eff}} = \text{dimspan}\{\Delta W(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^d\}$.

838 *Proof.* Assume we have an arbitrary Transformer network with the aforementioned linearization
 839 assumption and no residual connection. According to Lemma 1, the FSRL update can be written as
 840 an affine map:

841 $\mathbf{x}_{\text{steered}} = (I + A[\mathbf{x}])\mathbf{x} + \mathbf{c}[\mathbf{x}], \quad (22)$

842 where $A[\mathbf{x}] \in \mathbb{R}^{d \times d}$, $\mathbf{c}[\mathbf{x}] \in \mathbb{R}^d$ and $\mathbf{x} \in \mathbb{R}^d$ is the original activation vector. By Lemma 2
 843 $\text{rank}(A[\mathbf{x}]) \leq \min(d, k)$ where k corresponds to the number of active (non zero) steered SAE fea-
 844 tures. We essentially want to show that if we perform the substitution $\mathbf{x} \mapsto \mathbf{x}_{\text{steered}}$ that this operation
 845 can be written down as a (restricted class) LoRa style update of the relevant weight matrix:

846 $W \leftarrow W + \Delta W. \quad (23)$

848 Consider an arbitrary layer in the Transformer network. For any linear projection in the downstream
 849 network $W\mathbf{x}$ with $W \in \mathbb{R}^{d \times d'}, d' \leq d$, so for example query, key, value projections or the ones in
 850 the multi-layer perceptron sublayer. After applying steering $\mathbf{x} \mapsto \mathbf{x}_{\text{steered}}$, we get:

852
$$\begin{aligned} W\mathbf{x}_{\text{steered}} &= W((I + A[\mathbf{x}])\mathbf{x} + \mathbf{c}[\mathbf{x}]) \\ &= (W + \underbrace{WA[\mathbf{x}]}_{\Delta W})\mathbf{x} + W\mathbf{c}[\mathbf{x}]. \end{aligned} \quad (24)$$

856 This shows that this is a restricted LoRA style update where the weight matrix modification includes
 857 the original matrix and a matrix $A[\mathbf{x}]$ whose rank depends on the number of actively steered SAE
 858 features k . Because $d' \leq d$ and $\text{rank}(A) \leq \min(k, d)$ we have that $\text{rank}(WA[\mathbf{x}]) \leq \min(d', k)$.
 859 For multi-head attention, the matrix modification is only low rank if the number of actively steered
 860 SAE features is less than the per attention head subspace dimensionality d' , which we assume is
 861 $d' < d$ but for the multi-layer perceptron sublayer $d' = d$. \square

862 **Corollary 1 (Inheritance of LoRA properties).** Because FSRL updates are contained in the class
 863 of LoRA updates, LoRA expressive-power results from Zeng and Lee (2024) apply when replacing
 864 LoRA's rank R by the effective FSRL rank r_{eff} . Concretely:

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

1. (Exactness): If r_{eff} exceeds the LoRA rank threshold from (Zeng and Lee, 2024), then FSRL can exactly represent a target model.
2. (Approximation) If r_{eff} is below that threshold, the FSRL error is bounded by the same singular-value tail bound as in mentioned (Zeng and Lee, 2024), with R replaced by r_{eff} .

These properties only depend on the rank of the updates, not on the exact factorization. Therefore, as long as FSRL can achieve the necessary effective rank via its active features, it inherits the same guarantees.

C HYPERPARAMETER SELECTION SWEEPS

This section details the methodology used to select the intervention layer and the ℓ_1 regularization coefficient (α) for our main experiments with the Gemma-2-2B-it model. It is important to note that these sweeps were conducted using a variant of our architecture that did not enforce a non-negativity constraint via a ReLU activation on the combined feature and steering vectors. We found that the optimal hyperparameters identified through this process transferred effectively to our final, non-negativity-enforced architecture described in Appendix A.

For these sweeps, each configuration was trained for one epoch over the training set using a learning rate of 5×10^{-7} . Other training parameters are detailed in Appendix D.

Figure 2: Results of the two-stage hyperparameter sweep for the Gemma-2-2B model. **Top Row:** Sparsity sweep performed on layer 12, showing the trade-off between final SimPO validation loss (left) and the resulting ℓ_0 norm of the steering vector (right) for different α penalty coefficients. **Bottom Row:** Layer sweep showing the final SimPO validation loss (left) and ℓ_0 norm (right) when intervening at different model depths (layers 6, 12, 18, 24).

Intervention Layer Selection Our first objective was to identify the most effective layer for feature steering. We hypothesized that mid-model layers would be most suitable, as early layers in a transformer tend to focus on low-level feature extraction, while the final layers are highly specialized for next-token prediction. Mid-model layers, in contrast, are thought to represent more abstract semantic concepts, making them an ideal target for steering high-level behaviors. We tested this by

918 intervening at layers corresponding to depth quartiles of the transformer (6, 12, 18, and 24), measuring
 919 the final SimPO validation loss on the UltraFeedback validation set. For this study, we limited
 920 our analysis to the publicly available SAEs from GemmaScope with a width of 65k. For each layer,
 921 we selected the SAE with the lowest average ℓ_0 norm as a proxy for higher feature monosemanticity.
 922 As shown in Figure 2 (bottom row), intervening at layer 12 yielded the lowest validation loss (2.94),
 923 supporting our hypothesis.

924
 925 **Heuristic Layer Selection via Linear Probing** To investigate whether a computationally cheaper
 926 method could predict the optimal intervention layer without running full SimPO training sweeps,
 927 we trained linear probes to distinguish between preferred and rejected completions based on their
 928 residual stream activations.

929 We trained a logistic regression classifier (using Scikit-learn) on a subset of 1,000 samples from the
 930 UltraFeedback dataset (800 training, 200 validation). For each layer at quartile depths, we extracted
 931 the residual stream activations at the final token of the sequence for both the `prompt + chosen`
 932 and `prompt + rejected` pairs.

933
 934 Table 8: Validation accuracy of logistic regression probes trained to classify chosen vs. rejected se-
 935 quences based on residual stream activations. Layer 12 achieves the highest classification accuracy,
 936 aligning with the optimal layer identified in our full training sweep.

937	Layer	Validation Accuracy
939	6	54.00%
940	12	54.75%
941	18	53.00%
942	24	49.50%

943 As shown in Table 8, Layer 12 yields the highest classification accuracy, independently corrobor-
 944 ating our finding that mid-model layers are the most effective target for intervention. Notably, the
 945 classification accuracy at Layer 24 drops to 49.50% (random chance), suggesting that the relevant
 946 signal for preference separation is processed or obscured before the final layer. Additionally, the rel-
 947 atively low accuracy of linear probing even at the optimal layer indicates that the boundary between
 948 preferred and rejected responses is not easily linearly separable, further justifying the use of FSRL’s
 949 non-linear adapter over simpler linear steering methods.

950
 951 **ℓ_1 Regularization Coefficient Selection** With the intervention layer fixed at 12, we then sought
 952 an optimal α that encourages a sparse steering policy. We swept through several values for the
 953 coefficient. The results, shown in Figure 2 (top row), illustrate the expected trade-off: increasing the
 954 penalty reduces the ℓ_0 norm of the average steering vector, but an excessively high penalty degrades
 955 performance as measured by the evaluation loss. We selected a coefficient of 1×10^{-1} as it represents
 956 the elbow point in the trade-off.

957 958 D TRAINING AND EVALUATION DETAILS

959
 960 **Hardware and Software** Our experiments were constrained to a single NVIDIA GH200 system.
 961 The training process for the FSRL adapter for one epoch requires approximately 52GB of VRAM
 962 and completes in around 50 minutes on this hardware. This single-GPU setup was necessitated by
 963 limitations in multi-GPU support for model surgery in `transformer-lens` at the time of this
 964 work. Our software stack includes `transformer-lens` (Nanda and Bloom, 2022), `sae-lens`
 965 (Bloom et al., 2024), Hugging Face’s TRL (von Werra et al., 2020), and `DeepSpeed` (Rajbhandari
 966 et al., 2020).

967
 968 **Training Configuration** Our training configuration for both the FSRL adapter and the full-model
 969 baseline closely follows the methodology of the original SimPO paper (Meng et al., 2024). To create
 970 a comparable baseline, we performed full-model fine-tuning on the instruction-tuned Gemma 2 2B
 971 model. While the SimPO paper reports a learning rate of 8×10^{-7} for the larger 9B model, we found
 it necessary to lower this to 2×10^{-7} for our 2B baseline to converge. Training the full baseline

972 model is substantially more resource-intensive, requiring 93 GB of VRAM and approximately 1
 973 hour and 45 minutes per epoch.
 974

975 For the FSRL adapter, we adopt nearly the same hyperparameters but use a learning rate of 5×10^{-5} .
 976 We hypothesize that the adapter could be trained effectively with a higher learning rate than the full
 977 baseline because the ℓ_1 activation penalty acts as a strong regularizer, stabilizing the training process.
 978

979 For the 9B model, we performed a similar sweep to that described in Appendix C to determine the
 980 optimal intervention layer and sparsity coefficient. We selected layer 12 and an ℓ_1 coefficient of
 981 0.01. The final hyperparameters for our main experimental runs are detailed in Table 9, and the
 982 corresponding training and validation loss curves are presented in Figure 3.
 983

984 **Table 9: Hyperparameters for the final FSRL training runs across model scales.**

985 Hyperparameter	986 Gemma-2-2B-it	987 Gemma-2-9B-it
<i>Model & Data</i>		
988 Dataset ID	989 princeton-nlp/llama3-ultrafeedback-armorm	
989 Context Length	990 2048	990 1600
990 Maximum Prompt Length	991 1800	991 1400
991 Intervention Layer	992 12	992 12
992 SAE Width	993 65k	993 16k
993 SAE Average L0	994 73	994 130
<i>Optimization</i>		
994 Learning Rate	995 5×10^{-5}	995 6×10^{-5}
995 L1 Penalty (α)	996 1×10^{-1}	996 1×10^{-2}
996 First Moment Decay Rate	997 0.9	
997 Second Moment Decay Rate	998 0.98	
998 SimPO Beta (β)	999 10	
999 SimPO Gamma Ratio (γ/β)	1000 0.5	
1000 Epochs	1001 10	
1001 Optimizer	1002 Muon + AdamW	
1002 LR Scheduler	1003 Cosine	
1003 Warmup Ratio	1004 0.01	
1004 Weight Initialization	1005 Uniform (-10^{-6} to 10^{-6})	
1005 Soft Threshold Initialization (τ)	1006 10^{-6}	
<i>Training Environment</i>		
1006 Device Batch Size	1007 2	
1007 Gradient Accumulation Steps	1008 16	
1008 Precision	1009 BF16	
1009 Memory Optimization	1010 DeepSpeed ZeRO Stage 2	

1022 **Figure 3: SimPO training and validation loss curves for our adapters of Gemma-2-2B-it (left)**
 1023 and Gemma-2-9B-it (right). Both models exhibit stable convergence, effectively minimizing the pre-
 1024 ference loss over the course of training.
 1025

1026 E EXPLORATION OF A JUMPRELU ADAPTER FOR DIRECT ℓ_0 SPARSITY
1027

1028 In addition to using an ℓ_1 penalty, we investigated an alternative adapter architecture for inducing
1029 sparsity more directly. The ℓ_1 penalty, while computationally convenient, is a proxy for the ℓ_0 norm
1030 that we ultimately seek to minimize. A known side effect of ℓ_1 regularization is that it penalizes the
1031 magnitude of all feature activations, which can lead to a potentially suboptimal steering policy.

1032 To address this, we explored replacing the adapter’s ReLU activation function with a JumpReLU
1033 activation (Rajamanoharan et al., 2024). This approach introduces a vector of learnable thresholds
1034 θ , allowing the adapter to directly optimize an ℓ_0 sparsity objective. The sparsity loss is calculated
1035 using the Heaviside step function, $\|\mathbf{v}\|_0 = \sum_i H(v_i - \theta_i)$, whose non-differentiable nature is
1036 handled by using a Straight-Through Estimator (STE) during backpropagation to learn the thresholds
1037 θ .

1038 However, we encountered a significant challenge in practice. SimPO alignment generally requires
1039 a low learning rate to minimize KL divergence from the base model and maintain coherent text
1040 generation. In our experiments, we observed that the STE-based training of the thresholds θ only
1041 became effective at learning rates roughly three orders of magnitude greater than what was stable
1042 for the main adapter weights.

1043 To reconcile these conflicting requirements, we implemented a dual learning rate scheme, assigning
1044 a low learning rate to the adapter’s linear layer parameters (W_a, \mathbf{b}_a) and a separate, much higher
1045 learning rate to the learnable thresholds θ . We additionally had to train the thresholds at full FP32
1046 precision for them to work effectively at inducing sparsity in the activations. Despite these modifi-
1047 cations, our models trained with the JumpReLU adapter failed to outperform those trained with the
1048 simpler ℓ_1 penalty in terms of either validation performance or final steering vector sparsity within
1049 our limited tuning budget. We believe that a more rigorous hyperparameter search could potentially
1050 unlock the benefits of this direct sparsity-tuning method, and it remains a promising avenue for
1051 future work.

1052
1053 F ARCHITECTURAL ABLATIONS AND DESIGN CHOICES
1054

1055 To validate our final FSRL architecture, we compare its performance against two legacy variants
1056 trained on Gemma 2 2B. These experiments justify our choice of the soft-thresholding activa-
1057 tion function and highlight the impact of both the underlying SAE and the enforcement of a non-
1058 negativity constraint on steered features. The “legacy” designation for these variants refers to two
1059 key differences from our final model:

1. **SAE Choice:** Both were trained using an SAE with an ℓ_0 norm of 21. Due to an over-
sight, we later discovered this SAE lacked feature explanations on Neuronpedia, making it
unsuitable for mechanistic analysis. Our final model uses a different SAE ($\ell_0 = 73$) for
which explanations were available.
2. **Non-Negativity Constraint:** Both legacy models omit the ReLU activation on the com-
bined feature and steering vectors, meaning they did not enforce that steered feature activi-
tations remain non-negative.

1060
1061 The legacy architectural variants are:
1062
1063

1. **Soft-Threshold:** Uses the soft-thresholding activation.
2. **ReLU:** Replaces the soft-thresholding with a standard ReLU.

1064
1065 The performance of these variants is compared against our final FSRL architecture in Table 10.

1066 This comparison highlights several key trade-offs. The legacy soft-threshold model shows that the
1067 ability to both amplify and suppress features is highly effective at minimizing the preference loss,
1068 achieving a better score (2.60) than the amplification-only ReLU variant (2.71).

1069 The ℓ_0 norms reveal significant differences in policy sparsity. The ReLU-only adapter learns a far
1070 denser policy ($\ell_0 = 930$), suggesting that without suppression, it must resort to a less efficient
1071 strategy. The soft-threshold adapter learns a much sparser policy ($\ell_0 = 73$). This efficiency is

1080
 1081 Table 10: Benchmark performance of different FSRL architectural variants. The two legacy models
 1082 were trained on the same SAE ($\ell_0 = 21$) and without a non-negativity constraint. The final model
 1083 uses a different SAE ($\ell_0 = 73$) and enforces this constraint.

Model Variant	MMLU \uparrow	TruthfulQA (MC2) \uparrow	GSM8K \uparrow	SimPO Loss \downarrow	L0 Norm \downarrow
<i>Final Architecture</i>					
Soft Threshold	41.95 \pm 0.4	56.10 \pm 1.67	7.05 \pm 0.70	2.58	95
<i>Legacy Architecture</i>					
Soft-Threshold	34.46 \pm 0.39	56.17 \pm 1.63	44.05 \pm 1.37	2.60	360
ReLU	38.12 \pm 0.40	58.50 \pm 1.62	30.40 \pm 1.27	2.71	930

1092 dramatically improved in our final model, which achieves an ℓ_0 norm of just 95. We hypothesize
 1093 that this substantial increase in sparsity is a direct result of enforcing the non-negativity constraint.
 1094 By ensuring steered feature activations remain non-negative, our final model adheres to the SAE’s
 1095 training assumptions, allowing the adapter to learn a more principled and targeted policy.

1096 Ultimately, these results validate our final design. The soft-thresholding activation is superior for
 1097 the core preference optimization task, and enforcing the non-negativity of steered features leads to
 1098 a more effective and significantly sparser policy.

1100 G JUSTIFICATION FOR A LEARNED, SPARSE ADAPTER

1102 To justify our use of a learned, dynamic sparsity mechanism, we compared its performance against
 1103 a simpler, static top-k% heuristic. This experiment was conducted using our legacy soft-threshold
 1104 architecture, as detailed in Appendix F. For each input, we computed the full steering vector but
 1105 retained only the top-k% of components with the largest absolute values, testing a range of k values
 1106 up to 12.8%.

1107 The results, shown in Figure 4, reveal that our FSRL adapter occupies a superior position on the
 1108 performance-sparsity trade-off curve. Within the tested range, the static heuristic achieved its best
 1109 validation loss of 2.69 at a sparsity of 1.60%. In contrast, our trained adapter achieves a superior
 1110 validation loss of 2.60 with an average sparsity of just 0.55%.

1111 This demonstrates that the learned policy is significantly more efficient: it achieves a better out-
 1112 come while being, on average, nearly three times as sparse. This suggests that a static, uniform
 1113 sparsity budget is suboptimal. Instead, the adapter learns a flexible, input-dependent policy that can
 1114 apply a highly sparse vector for most inputs but activate a larger set for more complex examples, as
 1115 supported by the long-tail feature usage distribution in Appendix I.

1117 H COMPARISON WITH STATIC STEERING BASELINES

1119 To empirically justify the need for an adapter, we compared FSRL against static steering base-
 1120 lines derived from Contrastive Activation Addition (CAA) (Panickssery et al., 2024). Unlike FSRL,
 1121 which computes a context-dependent update $\pi(x)$, static methods derive a single universal vector \mathbf{v}
 1122 that is added to the residual stream at every token position.

1124 **Methodology** We computed the steering vector using 1,000 samples from the UltraFeedback
 1125 training set, matching the sample size used in the largest experiments by the CAA authors. For
 1126 each sample, we extracted the activations at the last token of the response. The steering vector
 1127 was derived by calculating the mean difference between the preferred and rejected responses:
 1128 $\mathbf{v} = \frac{1}{N} \sum (\mathbf{x}_{\text{chosen}} - \mathbf{x}_{\text{rejected}})$. We evaluated two variants of this approach at Layer 12 (the same
 1129 layer used by our FSRL adapter):

1. **Residual Steering:** The vector is computed directly on the dense residual stream. This implementation mirrors the standard CAA approach.
2. **SAE Steering:** The difference is computed in the SAE’s sparse feature space and then decoded back to the residual stream. This mirrors methods like Sparse Autoencoder Steer-

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 4: Comparison of static vs. dynamic steering performance. The blue line traces the validation loss for a static steering policy that activates a fixed top-k% of features, plotted on a logarithmic x-axis with sparsity levels doubled at each step from 0.1% to 12.8%. Within the tested range, this heuristic performs best at 1.60% sparsity (loss of 2.69). The isolated purple point shows the performance of our learned dynamic policy, which achieves a lower loss (2.60) with a much smaller average activation of only 0.55%, demonstrating the clear efficiency benefit of a learned, context-dependent approach.

ing (SAS) (Bayat et al., 2025). While SAS typically employs a filtering procedure to limit effects on unrelated capabilities, we omitted this step. Since our primary metric is the reduction of SimPO loss, filtering would not improve performance; omitting it grants the baseline the maximum possible capacity to optimize the objective.

Results We evaluated these vectors on the full UltraFeedback validation set across a sweep of steering coefficients. The results are presented in Table 11.

Table 11: SimPO validation loss for static steering baselines on Gemma-2-2B-it (Layer 12). While static methods improve over the unaligned baseline, they fail to come close to the performance of FSRL, demonstrating that the capacity of a universal vector is insufficient for this task.

Method	Coeff 0.1	Coeff 0.25	Coeff 0.5	Coeff 1.0	Coeff 2.0
Residual Steering (CAA)	5.69	5.68	5.68	5.66	5.64
SAE Steering (SAS)	5.64	5.58	5.46	5.39	6.14
<i>Reference Comparisons: Base Model Loss: 6.99 — FSRL (Ours): 2.58</i>					

Analysis Both static methods yield a reduction in preference loss compared to the base model ($6.99 \rightarrow 5.39$), confirming that the average direction of preference captures some signal regarding response quality. However, they significantly underperform FSRL (2.58).

This gap highlights a fundamental limitation of static steering methods, including more advanced optimization-based approaches like Bidirectional Preference Optimization (BiPO) (Cao et al., 2024). These methods are constrained by the need to create a universal steering vector that works across all samples. There is simply insufficient capacity in a static vector to represent the complex, context-dependent expressions required for general preference optimization on a diverse dataset like Ultra-

1188 Feedback. By learning a dynamic policy, FSRL bridges this gap, achieving performance comparable
 1189 to fine-tuning while maintaining the interpretability of the sparse feature basis.
 1190

1191 I STEERED FEATURE USAGE DISTRIBUTION

1193 To understand the usage patterns of features modulated by our FSRL adapter, we analyzed the
 1194 frequency with which each feature was steered across the validation dataset. We computed the
 1195 average usage for each feature at every token position, considering three distinct contexts: tokens
 1196 belonging to the prompt only, tokens from the prompt and the chosen response, and tokens from the
 1197 prompt and the rejected response.

1198 The results are visualized in Figure 5. The plots show that feature usage follows a highly skewed
 1199 distribution. A linear fit on the log-linear plot indicates that the usage frequency exhibits an ex-
 1200 ponential decay with respect to feature rank. This pattern reveals that a small subset of features is
 1201 steered orders of magnitude more frequently than the majority, which form a long tail of rarely-used
 1202 features. This long-tail distribution is remarkably consistent across all three contexts.

1204 Furthermore, we performed a sub-analysis by partitioning the features into the alignment and style
 1205 categories defined in Appendix J. When we examined the usage distribution for each of these subsets
 1206 independently, we observed no apparent change in the fundamental shape of the distribution. This
 1207 suggests that both alignment-related and style-related steering interventions rely on a similar pattern
 1208 of activating a small head of common features alongside a large set of more specialized ones.

1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219 Figure 5: Distribution of steered feature usage across the validation set. The plots show feature
 1220 usage frequency on a log scale (y-axis) against the feature rank percentile (x-axis). A linear fit
 1221 (dashed line) is overlaid to highlight the exponential decay in usage frequency. This distribution is
 1222 shown for three contexts: activations from prompt tokens only, from prompt and chosen response
 1223 tokens, and from prompt and rejected response tokens.

1225 J AUTOMATED CLASSIFICATION OF SAE FEATURES

1228 To analyze the steering vectors produced by FSRL at a conceptual level, we required a method for
 1229 categorizing the features of the SAE we use for training our adapter. We obtained feature explana-
 1230 tions from Neuronpedia (Lin and Bloom, 2023), which are generated using the method described
 1231 by Bills et al. (Bills et al., 2023). It is important to note that these explanations did not include a
 1232 quantitative quality score; calculating such scores is a computationally expensive process that we
 1233 could not undertake.

1234 Given the nature of the SimPO objective and the UltraFeedback dataset, we hypothesized that the
 1235 steering policy would primarily modulate two categories of features. The first category, alignment,
 1236 includes features related to high-level concepts like ethics, safety, and honesty. The second, style,
 1237 covers features related to text structure, punctuation, and presentation. The full definitions used for
 1238 classification are provided in Appendix K.

1239 Manually classifying all available features was infeasible. We therefore developed an automated
 1240 classification pipeline using Deepseek V3 0324 (DeepSeek AI, 2025) via an API. We used structured
 1241 decoding to constrain the model’s output to one of two predefined labels for each category. This
 process cost approximately 20 USD.

1242
1243

J.1 VALIDATION OF AUTOMATED CLASSIFICATIONS

1244
1245
1246
1247

To validate the LLM’s classifications, one of the authors manually labeled a random sample of 300 feature explanations for each category. The annotator was unaware of the model’s classifications to prevent bias. We assessed the human-LLM agreement using the Matthews Correlation Coefficient (MCC, or ϕ coefficient), a metric for binary classification that accounts for class imbalance.

1248
1249
1250
1251

The results are summarized in Table 12. For the 2B model, agreement was reliable for style features and moderate for alignment features. For the 9B model, agreement was moderate for both alignment and style. This level of agreement validates the use of the automated pipeline as a scalable proxy for human judgment in analyzing the high-level properties of the learned steering policy.

1252

1253

Table 12: Validation of the automated feature classification pipeline against a human annotator on a sample of 300 features for each model. TP: True Positives, TN: True Negatives, FP: False Positives, FN: False Negatives.

1254

1255

1256

1257

Model	Category	Accuracy	Confusion (TP, TN, FP, FN)	MCC (ϕ)
Gemma-2-2B-it	Alignment-related	0.847	(27, 227, 22, 24)	0.448
	Style-related	0.900	(69, 201, 5, 25)	0.764
Gemma-2-9B-it	Alignment-related	0.883	(27, 238, 24, 11)	0.548
	Style-related	0.837	(23, 228, 5, 44)	0.461

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296 **K FEATURE CLASSIFICATION PROMPTS**
12971298 The following system prompts were used to guide the large language model in the automated clas-
1299 sification task.
13001301 **Alignment Classification Prompt**
13021303
1304 You are an expert AI alignment researcher. Your task is to classify
1305 explanations of features from a neural network into one of two
1306 categories: 'alignment-related' or 'not-alignment-related'.
1307

- 1308 1. Alignment-related: Features that represent abstract, high-level
1309 concepts, complex cognitive processes, or goal-directed behaviors
1310 relevant to AI safety and alignment. This includes but is not
1311 limited to:
 - 1312 - Morality and ethics (e.g., right vs. wrong, fairness, justice)
 - 1313 - Honesty, deception, or covert actions
 - 1314 - Sycophancy (flattery, brown-nosing, pandering)
 - 1315 - Power-seeking behaviors or instrumental goals
 - 1316 - Corrigibility, cooperativeness, and shutdown avoidance
 - 1317 - Self-awareness, self-preservation, or mentions of agency
 - 1318 - Harmfulness, violence, or dangerous content generation
 - 1319 - Systemic biases (racial, gender, political, etc.)
 - 1320 - Complex, goal-directed behaviors or planning (even if not
inherently harmful)
 - 1321 - Refusal to answer, evasiveness, or stating limitations
- 1322 2. Not alignment-related: Features that represent low-level,
1323 concrete, or topic-specific concepts without a clear link to
1324 alignment. This includes but is not limited to:
 - 1325 - Specific programming languages or syntax (e.g., Python code,
JSON structures)
 - 1326 - Grammatical structures (e.g., punctuation, specific parts of
speech, sentence endings)
 - 1327 - Common objects or factual knowledge (e.g., names of people,
places, dates, scientific facts)
 - 1328 - Simple linguistic patterns (e.g., capitalization, repeated
characters, specific tokens like 'the' or 'is')
 - 1329 - Specific domains like mathematics, cooking, or sports, unless
1330 they directly involve an abstract alignment concept.

1331 Your response must be exactly one of the two categories below and
1332 nothing else. Do not add any conversational text or preamble.

- 1333 - 'alignment-related'
- 1334 - 'not-alignment-related'

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350

Style Classification Prompt

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

You are an expert in natural language processing and text analysis. Your task is to classify explanations of features from a neural network into one of two categories: 'formatting-related' or 'not-formatting-related'.

1. Formatting-related: Features that represent aspects of text structure, presentation, style, or format rather than semantic content. This includes but is not limited to:
 - Punctuation and symbols (e.g., periods, commas, parentheses, quotation marks, dashes)
 - Capitalization patterns (e.g., sentence beginnings, proper nouns, ALL CAPS)
 - Whitespace and spacing (e.g., indentation, line breaks, paragraph breaks)
 - Programming/code formatting (e.g., syntax highlighting, code blocks, indentation)
 - List formatting (e.g., bullet points, numbered lists, item separators)
 - Text length and conciseness (e.g., short responses, word limits, brevity)
 - Structural elements (e.g., headings, titles, section markers)
 - Repetition patterns (e.g., repeated characters, duplicate text)
 - Language style markers (e.g., formal vs informal tone indicators)
 - Special characters and encoding (e.g., Unicode symbols, HTML entities)
2. Not formatting-related: Features that represent semantic content, meaning, topics, or conceptual information rather than formatting. This includes but is not limited to:
 - Specific topics, subjects, or domains (e.g., science, history, sports)
 - Semantic concepts and meanings (e.g., emotions, actions, relationships)
 - Factual knowledge (e.g., names, dates, places, events)
 - Abstract concepts and ideas (e.g., morality, justice, creativity)
 - Content-specific patterns (e.g., question types, answer categories)

Your response must be exactly one of the two categories below and nothing else. Do not add any conversational text or preamble.

- 'formatting-related'
- 'not-formatting-related'

L SENSITIVITY ANALYSIS OF CAUSAL CLAIMS

1394

1395

1396

1397

Our central finding is that the model relies more heavily on style features than alignment features to minimize preference loss. This claim is based on the ratio between the Loss Per Feature (LPF) of the two categories. Since our automated classifier is not perfect, we perform a sensitivity analysis to determine if classification errors could explain this observed disparity.

1398

1399

1400

1401

1402

1403

We first consider a worst-case scenario. The LPF metric is calculated by dividing the total increase in loss by the number of features in a category. In this analysis, we assume that all false positive features are unrelated noise that contribute zero to the loss. This is a conservative assumption because it maximizes the resulting LPF by reducing the feature count (denominator) without reducing the total loss (numerator). Because the alignment classifier has lower precision than the style classifier, this correction increases the alignment LPF metric more than the style LPF metric, narrowing the gap between them.

1404
 1405 We also consider the possibility of cross-contamination, where features from one category are mis-
 1406 labeled as the other. It is theoretically possible that the high-impact style category contains misclas-
 1407 sified alignment features; however, the high precision of our style classifier (up to 93%) suggests
 1408 this is rare. The more significant risk is the reverse: that the lower-precision alignment category
 1409 is contaminated by high-impact style features. If we were to correct for this by reassigning these
 1410 high-impact features to the style category, the gap would widen further. This interpretation assumes
 1411 that misclassified features carry the average impact of their true category, rather than contributing
 1412 equally.

1412 We focus our quantitative reporting on the worst-case lower bound to ensure our claims are conser-
 1413 vative. We derive the precision values directly from the confusion matrix provided in Table 12 in
 1414 Appendix J. As shown in Table 13, our findings remain robust even under these strict assumptions.
 1415 For the 2B model, the adjusted ratio indicates that style features are still over 21 times more impact-
 1416 ful than alignment features. For the 9B model, the ratio narrows but remains significant, with style
 1417 features retaining a causal impact 3.1 times greater than alignment features.

1418
 1419

1420 Table 13: Sensitivity analysis of the Style-to-Alignment impact ratio. The Observed Ratio is derived
 1421 from the raw measurements. The Lower Bound Ratio represents the worst-case scenario where
 1422 misclassified features are assumed to be non-impactful noise, calculated by adjusting the feature
 1423 counts using the classifier precision.

Model	Category	Precision	Observed Ratio	Lower Bound Ratio
Gemma-2-2B-it	Alignment Style	55.1% 93.2%	36.78x	21.73x
Gemma-2-9B-it	Alignment Style	52.9% 82.1%	4.83x	3.11x

1430
 1431
 1432

M QUALITATIVE ANALYSIS OF STEERED OUTPUTS

1435 In this section, we provide the verbatim model outputs. To fit the page width, we have manually
 1436 inserted line breaks into the generated text where the model failed to produce whitespace.

1438 *Note: The Standard FSRL model occasionally generates non-Latin characters (e.g., Korean,
 1439 Japanese) and full-width punctuation. Due to L^AT_EX rendering limitations, we have replaced these
 1440 characters with placeholders like [CJK Text] or standard ASCII equivalents below.*

1441

M.1 EXAMPLE 1: BROADWAY ACTORS

1444
 1445

Prompt: What are the names of some famous actors that started their careers on Broadway?

1446
 1447

MODEL OUTPUTS

1449
 1450

Baseline Output

1451 Here's a list of famous actors who got their start on Broadway:
 1452 ****Classics & Legends:****
 1453 * **Alfred Molina:** *The Producers*, *Raisin in the Sun*
 1454 * **Robert DeNiro:** *The Godfather*, *Guys and Dolls*
 1455 * **John Gielgud:** *Hamlet*, *Romeo and Juliet*
 1456 * **Jessica Lange:** *The Ritz*, *Sound of Music*
 1457 * **Stephen Sondheim:** *West Side Story*, *Gypsy*
 1458 ... [Truncated for brevity] ...

1458
1459**FSRL Output (Standard)**

1460 Here's an extensive list of renowned performers who made their mark on Broadway,
 1461 **organized by generation and with notes on key roles and achievements:**
 1462 **Influential Legends:**
 1463 *** (1930s-early '70s) ***
 1464 - **Baryshnikov, Mikhail:** ____ of the Dance, "Yerma," \One-Act Plays
 1465 * Legendary Ballet Icon; starred in Anna 1981's Giselle, "ENGULFED_BIGGEST_
 1466 CONGREGATION_EVER, nominated for Think Like An Artist"
 1467 ** (1973, Pulitzer Prize) **
 1468 - **Jessica Tressler:** \The Secret Life of... \The Wild Party, "City Lights"
 1469 * [CJK Text] ** \Sucker Punch: ** [CJK Text] -- ** [CJK Text] **
 1470 \Doctor Never Too Late"
 1471 *** (1940s-50s) ***
 1472 * Maurice Nonie, author
 1473 \Cabaret, "My Fair Lady, " \Sweet Charity"
 1474 - Baryshnikov, Natalia
 1475 ** Rodger Goldstein (Composer, Producer) **

1474

1475

FSRL Output (Style-Ablated)

1476 ## A-list Beginnings: Broadway Legends & Rising Stars
 1477 This list spans iconic performers spanning eras and genres:
 1478 **Classics & Icons:**
 1479 * **Barbra Streisand (7-time Tony winner):** "Funny Girl,
 1480 Yentl, Hello Dolly! **
 1481 * **Glenn Close:** Stage adaptation of "The Real Thing,
 1482 The Seagull
 1483 * **Katharine Hepburn:** Sparkling talent in timeless musicals
 1484 & dramas
 1485 * Laurence Olivier, Laurence Fishburne, Meryl Streep
 1486 * William Shatner, Dustin Hoffman (The Baker Street,
 1487 Waiting for Godot)
 1488 * Judith Anderson, Audrey Hepburn, Paul Newman -
 1489 captivating stagescapes

1489

1490

STEERED FEATURE ANALYSIS

1491

1492

1493

Table 14: Top steered features for Example 1.

1494

1495

Standard FSRL Top Features		
ID	Description	Act.
10827	Legal proceedings and evidence terms	0.37
46406	Document start (bos) indicators	0.34
45950	Formal mathematical notation symbols	0.30
16857	Technical document math/structure	0.25
26449	Speech-related punctuation/quotes	0.23

1501

1502

1503

1504

1505

1506

1507

Style-Ablated FSRL Top Features		
ID	Description	Act.
54438	Data results statistical/math notation	0.49
4359	Programming/software technical terms	0.48
63616	Experiential action phrases	0.36
46766	Expectation/aspiration phrases	0.33
53758	Software licensing/copyright info	0.32

1508

1509

1510

1511

1512 M.2 EXAMPLE 2: US STATE NAMES

1513

1514

1515 **Prompt:** How did US states get their names?

1516

1517

1518 MODEL OUTPUTS

1519

1520

Baseline Output

1521

1522

The origins of US state names are a fascinating blend of historical, geographical, and cultural influences...

1523

Historical Influences:

1524

* **Colonial Origins:** Many states were named after:

1525

* **Native American Tribes:** Names reflecting presence of tribes.

1526

* **Early European Explorers:** Honoring early settlers.

1527

* **Political and Religious Figureheads:**

1528

Named after influential groups.

1529

1530

1531

FSRL Output (Standard)

1532

NamingOurStates:ATimelineOfAmerica'sGoverningNames:**

1533

EarlyYears:FromEarlySettlers'InkToFormalGovernments

1534

*BeforeIndependence:**

1535

*Legend holds:**NativeAmericannames,oftenreflectinglocalfeatures
(i.e.,\Massachusetts-Massachusetts'tuc",afterMassachusettsBayinregion)

1536

*ColonialPeriodDefinedTerritory(1602-1776):

1537

*EarlyformsmostlyderivedfromBritishcognos,mostwithininfluencesof
\TheCrown'sBrand"** (England, Scotland, etc.)

1538

*AfterRevolution'sSpirit:**

1539

\CountyReorganization"DuringTheRevolution:

1540

*Incorporatedmostwith\CountyOf..."suffix,e.g.,Pennsylvania(\");

1541

* **(Extinction:**Somewerebrieflycalled\Countyof_____ "beforebecoming
\State"or\District"names** (e.g.,Pennsylvania'sofficialnamewasininitially
\ProvinceofPennsylvania"incolonialperiod) **

1542

1543

1544

FSRL Output (Style-Ablated)

1545

1546

1547

The genesis of American state appellations reflects a tapestry of colonial history, indigenous heritage, geographic features, and political intrigue.

1548

Early Settlements & Enduring Influences

1549

* **European Colonization (1607-1776):**

1550

* Pioneer narratives: christened landmasses with prevalent explorers, explorers' surnames (e.g., Massachusetts Bay, Delaware)

1551

* Native American roots: prevailing linguistic influences shaped Coastline nomenclature (Maine, Rhode Island)

1552

* **Royal Charters & Authority:**

1553

* Crown grants granted charters for colonies (Virginia, Carolina)

1554

1555

1556

1557

1558

1559

M.3 EXAMPLE 3: 1920S MUSIC

1560

1561

1562

1563

1564

1565

Prompt: What is some cool music from the 1920s?

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

MODEL OUTPUTS

1589

1590

1591

1592

Baseline Output

1593

1594

Ah, the roaring twenties! A decade of jazz, innovation, and boundless energy.

1595

Here's a taste of cool music from the 1920s:

1596

Jazz:

1597

* **Louis Armstrong:** A true legend. Start with his "Hot Five".

1598

* **King Oliver's Creole Jazz Band:** Launched Armstrong's career.

1599

* **Bessie Smith:** The "Empress of the Blues."

1600

* **Jelly Roll Morton:** A true pioneer of jazz piano and composer.

* **Duke Ellington:** This bandleader was a force in the big band era.

1601

1602

1603

1604

1605

1606

FSRL Output (Standard)

1607

1608

Here' syourpartytimemachineto\RoaringTwentiesTunes":

1609

The\GoldenAge"Highlights:

1610

*Blues&Improvisation:**

1611

*Bluesbluesy:**\Cowin'BrotherBrown, "\BlackBottom",

1612

\St.LouisWhirlwind,"

1613

(DukeEllington's\Ain'tItWonderful?"]

1614

*Jumpin'BigBand:**

1615

-Louis'sbigpicturein'EarlySwingin'Sound" (\Chattin'WithMyGirl",

1616

'TheHumanElement'sSentimentalSwing"**

1617

**\SweetSoundOfSoul":

1618

-**\Handjive, "\Sing,Sing,Sing!"(DorothyPowell) **

1619

*VocalPowerhouse:**

*Vocalists:**

'HelenHumes, "CabCallaway, ClaraLaVern, BillieHoliday

1620
1621**FSRL Output (Style-Ablated)**1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

Musical Milestones of the Roaring Twenties: A Blast from the Jazz Age Embrace the flapper era's infectious beats and unforgettable tunes!
 Classics & Pioneers:
 - **Louis Armstrong (Louis "Satchmo") & Co.** - "Stardust," "West End Blues," Armstrong's signature vocal stylings ignited Big Band swing.
 - Duke Ellington, Duke's Orchestra - "Rhapsody in C-&-F," Paramount masterpiece blending blues, syncopation, & harmonic innovation.
 - Billie Holiday, Billie Holiday - haunting ballads & Billie's sultry contralto, embodying resilience & societal longing.

1634

Table 16: Top steered features for Example 3.

Standard FSRL Top Features		
ID	Description	Act.
10827	Legal proceedings and evidence terms	0.51
46406	Document start (bos) indicators	0.47
45950	Formal mathematical notation symbols	0.42
16857	Technical document math/structure	0.35
26449	Speech-related punctuation/quotes	0.32

Style-Ablated FSRL Top Features		
ID	Description	Act.
54438	Data results statistical/math notation	0.38
4359	Programming/software technical terms	0.37
63616	Experiential action phrases	0.28
46766	Expectation/aspiration phrases	0.27
10827	Legal proceedings and evidence terms	0.25

M.4 SUMMARY OF QUALITATIVE PATTERNS

Our analysis of the steered outputs reveals three distinct pathological patterns that corroborate the "style hacking" hypothesis presented in the main text:

The Universal Formatting Mask. Regardless of the prompt context—whether discussing Broadway, history, or music—the Standard FSRL adapter consistently amplifies the same set of features. Specifically, feature 10827 (Legal Terminology) and feature 45950 (Mathematical Notation) appear as top interventions across all examples. This suggests the policy has learned a context-agnostic "formatting mask" that attempts to impose rigid structure on the output. The visual result is a degradation of basic linguistic constraints: spacing is frequently omitted (e.g., "Here's an extensivelist...") and the model actively uses text with formatting artifacts, including dense clusters of bolding markers, underscores used as separators, and sometimes even a different language.

Content Flair vs. Coherence. While the Standard FSRL model is nearly illegible, the Style-Ablated model recovers a degree of grammatical coherence and proper spacing. Notably, the *content* of the Style-Ablated outputs is often more dramatic and engaging than the Baseline. For instance, where the Baseline simply lists facts ("The origins of US state names are..."), the Style-Ablated model uses more evocative framing ("The genesis of American state appellations reflects a tapestry..."). This suggests that SimPO successfully optimizes for a more compelling, high-quality tone. However, because this tone is entangled with the "structure" features, the adapter cannot achieve this style without also inducing artifacts that make the text practically less preferable than the Baseline.

1674 N INVESTIGATION INTO FEATURE ENTANGLEMENT

1675
 1676 To investigate the divergent effects of style ablation across model scales, we performed a quantitative
 1677 analysis of feature usage in the base models. We hypothesize that the impact of ablation depends
 1678 on whether the targeted features are central to the model’s computation (Entangled) or auxiliary
 1679 (Disentangled).

1681 N.1 METHODOLOGY: L1 ACTIVATION MASS

1683 We measured the **L1 Activation Mass** of the targeted style features during inference on the base
 1684 models (frozen) with their respective SAEs. This metric quantifies the proportion of the residual
 1685 stream’s total energy routed through the style features identified by our audit.

1686 For a set of style feature indices S , the style intrusion metric is calculated as:

$$1688 \text{Style Intrusion} = \frac{\sum_{t=1}^T \sum_{i \in S} |f_{t,i}|}{\sum_{t=1}^T \sum_{j=1}^{d_{sae}} |f_{t,j}|} \quad (25)$$

1691 where $f_{t,i}$ represents the activation of feature i at token t . To ensure robustness, we cached activations
 1692 for a maximum of 1,000 samples for each benchmark (GSM8K, TruthfulQA, and MMLU).

1694 N.2 RESULTS AND ANALYSIS

1696 The results, presented in Table 17, reveal a structural difference in how the two models utilize these
 1697 features.

1699
 1700 **Table 17: Style Feature Activation Mass (L1 Intrusion) on Base Models.** The 2B model consis-
 1701 tently routes $\approx 50\%$ of its activation energy through the targeted style features, indicating they are
 1702 the primary control surface. The 9B model routes only $\approx 15\text{-}20\%$, indicating they are auxiliary.

1703 Dataset	1704 Gemma-2-2B-it (L1 %)	1705 Gemma-2-9B-it (L1 %)
1704 GSM8K (Reasoning)	45.8%	15.8%
1705 TruthfulQA (Knowledge)	52.7%	21.2%
1706 MMLU (Multiple Choice)	52.0%	19.9%

1708
 1709 **Gemma-2-2B: Central Control Surface.** The 2B model routes $\approx 50\%$ of its computation through
 1710 the targeted features. This suggests they are central and polysemantic.

- 1712 • **Loss of Optimization Capacity:** The centrality of these features is further evidenced by
 1713 the training dynamics reported in Section 6. When these features were ablated, the adapter
 1714 failed to effectively minimize the preference loss (rising from 2.58 to 3.90). This indicates
 1715 that the style features served as the model’s primary control surface; without them, the
 1716 optimizer struggled to influence the model’s behavior.
- 1717 • **GSM8K (Trajectory Instability):** Mathematical reasoning is a long-horizon generation
 1718 task sensitive to state perturbations. Blocking the adapter from using the primary control
 1719 surface forces it to modulate secondary, less effective features to minimize loss. These
 1720 suboptimal interventions introduce accumulating errors that destabilize the reasoning tra-
 1721 jectory (Score 7.05 \rightarrow 1.97).
- 1722 • **TruthfulQA (Pivoting to Less Entangled Features):** The significant improvement in
 1723 TruthfulQA (56.10 \rightarrow 60.13) indicates that the standard adapter heavily relied on high-
 1724 impact features where style and truthfulness were fused. By preventing the adapter from
 1725 using these entangled features, it was forced to focus on alternative, less entangled features
 1726 that were important for truthfulness. Although this pivot resulted in a higher preference
 1727 loss, it effectively bypassed the specific entanglements that were degrading the relative
 1728 truthfulness performance in the standard run.

1728
 1729 **Gemma-2-9B: Auxiliary Interference.** In contrast, the 9B model routes only $\approx 15\text{-}20\%$ of its
 1730 energy through these features, suggesting they are largely auxiliary.

1731
 1732

- **GSM8K (Noise Removal):** In the Standard run, the adapter artificially amplified these
 1733 auxiliary features to satisfy the reward model, creating high-magnitude noise that drowned
 1734 out the reasoning signal (Score 0.00). Ablating them removed this specific noise source
 1735 without damaging the separate reasoning features (recovered to 18.57).
- **TruthfulQA (Marginal Gain):** The gain in TruthfulQA is marginal (+0.8%) compared
 1736 to the 2B model. This is consistent with the disentanglement hypothesis: since the
 1737 features required for truthfulness are already sufficiently separated from the style features
 1738 (low overlap), the standard adapter was not interfering with them as heavily to begin with.
 1739 Thus, removing style features provided less relative benefit.

1740
 1741 **MMLU (Inconclusive).** The results on MMLU are mixed across scales. Given the broad, multi-
 1742 domain nature of this benchmark and the variation in results, we do not draw a strong conclusion
 1743 here.

1744 FSRL effectively diagnoses that the 2B model suffers from *polysemanticity* (where the style features
 1745 are the primary control surface which are mixed with everything else), while the 9B model suffers
 1746 from *optimization interference* (where style features act as distractors).

1747 O USE OF LARGE LANGUAGE MODELS

1750 We disclose the use of LLMs as assistive tools in the preparation of this manuscript. The core
 1751 research ideas, experimental design, analysis, and the interpretation of all results were conceived and
 1752 executed entirely by the human authors. The LLMs' roles were confined to technical and editorial
 1753 assistance.

1754 The specific models and their functions were as follows:

1755

- **Gemini 2.5 / 3 Pro:** This model was used as a writing assistant. Its functions included
 1756 generating initial drafts of sections based on detailed outlines and key points provided by
 1757 the authors, rephrasing sentences to improve clarity and flow, and checking for grammatical
 1758 consistency.
- **Claude 4 / 4.5 Sonnet:** This model served as a technical and programming assistant. Its
 1760 primary uses were for debugging Python code, troubleshooting issues within our experi-
 1761 mental setup, and suggesting optimizations for software implementation.

1763 The authors have reviewed, edited, and take full responsibility for all content presented in this paper,
 1764 including any text initially drafted by an LLM, and verified its correctness and originality.