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Abstract 

As a result of rapidly accelerating artificial intelligence (AI) capabilities, multiple 

national governments and multinational bodies have launched efforts to address 

safety, security and ethics issues related to AI models. One high priority among 

these efforts is the mitigation of misuse of AI models, such as for the development 

of chemical, biological, nuclear or radiological (CBRN) threats. Many biologists have 

for decades sought to reduce the risks of scientific research that could lead, through 

accident or misuse, to high-consequence disease outbreaks. Scientists have care-

fully considered what types of life sciences research have the potential for both ben-

efit and risk (dual use), especially as scientific advances have accelerated our ability 

to engineer organisms. Here we describe how previous experience and study by sci-

entists and policy professionals of dual-use research in the life sciences can inform 

dual-use capabilities of AI models trained using biological data. Of these dual-use 

capabilities, we argue that AI model evaluations should prioritize addressing those 

which enable high-consequence risks (i.e., large-scale harm to the public, such as 

transmissible disease outbreaks that could develop into pandemics), and that these 

risks should be evaluated prior to model deployment so as to allow potential biosafety 

and/or biosecurity measures. While biological research is on balance immensely 

beneficial, it is well recognized that some biological information or technologies could 

be intentionally or inadvertently misused to cause consequential harm to the public. 

AI-enabled life sciences research is no different. Scientists’ historical experience 

with identifying and mitigating dual-use biological risks can thus help inform new 

approaches to evaluating biological AI models. Identifying which AI capabilities pose 

the greatest biosecurity and biosafety concerns is necessary in order to establish tar-

geted AI safety evaluation methods, secure these tools against accident and misuse, 

and avoid impeding immense potential benefits.
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Introduction

Scientists can perform almost all biological research in ways that pose minimal risk 
to society. However, some limited areas of life sciences research can subject the 
public to risks from high-consequence pathogens, through laboratory accidents or 
misuse. These risks may be exacerbated by our ability to manipulate and engineer 
increasingly complex biomolecules and biomolecular systems. Researchers can 
now also combine rapidly improving artificial intelligence (AI) models with wet-lab 
advances to facilitate, accelerate and augment this work (see Box 1).

Within the biological sciences, AI models can make use of and generate biological infor-
mation in the form of images, genetic sequences, protein sequences, protein structure, 
or even more sophisticated biological complexes. Biological AI models—models trained 
on or capable of meaningfully manipulating substantial quantities of biological data [1]—
have already surpassed human performance on multiple tasks, and their development is 
advancing rapidly [2]. While prior efforts to collect biological sequence and structure data 
have been successful, functional biological data remains a barrier to capability advance-
ment, as well as appropriate data curation and annotation for AI applications.

As with all tools that allow us to better manipulate biology, future advanced AI 
models have the potential to be misused or misapplied, and these biosecurity risks 
have been publicly noted by scientists and model developers. Baker and Church 
note that AI protein design models are “vulnerable to misuse and the production of 
dangerous biological agents” while Boiko and colleagues include a security supple-
ment in which they state that they “strongly believe that guardrails must be put in 
place to prevent … dual use of large language models” for autonomous completion 
of chemical and biological synthesis protocols [3,4]. Two authors of this paper were 
co-authors on Boiko and colleagues [4].

Box 1.– Recent biosecurity-relevant trends in AI development

Concerns regarding potential biosecurity risks have been bolstered by recent 
trends in AI development.

1. � Large-language models (LLMs) such as GPT-4 and 4o have shown rapid prog-
ress in dual-use capabilities, including assisting with completing biological and 
chemical research design and testing.

2. � AI systems which include biological information, data and outputs, which we 
term biological AI models [1], have seen a similar rate of progress and model 
size expansion [2]. This progress suggests the possibility that biological foun-
dation models could be built: large, general-purpose models that capture the 
complexity of biology.

3. � Advances in LLMs and biological AI models are complementary. There are 
initial indications that LLMs can assist users in accessing biological AI models 
to perform complex scientific tasks. These advances are in the future likely 
to lower the cost of achieving biological breakthroughs and allow less experi-
enced researchers to use increasingly complex and powerful biological tools.

a company focusing on responsible use of 
artificial intelligence for research.
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4. � LLMs, biological AI models, and integrations of the two, can also interface with AI-enabled autonomous laboratory 
environments [4]. These capabilities further reduce the time, expertise, and equipment required to synthesize patho-
gens, and suggest the possibility of end-to-end or “full stack” AI tool development in this domain.

In considering the biosecurity and biosafety implications of biological AI models, it is important to consider the extent to 
which a model contributes to risks beyond preexisting technologies such as internet search engines [5]. AI model develop-
ers and policymakers have not yet broadly agreed upon what model features or uses most increase significant biosecurity 
and biosafety risks to the public—or what forms of risks are most worth mitigating. As a result, the limited published bios-
ecurity studies of AI models done to date mainly assess LLMs [6,7], and test for different risks using differing assumptions 
regarding which threats should be guarded against. The limited number and scope of these studies make it challenging 
to use them to predict the capabilities and risk profiles of AI models released in the coming months and years. Empirical 
observations by AI developers indicate that AI model capabilities will continue to exponentially progress [8] contingent on 
data availability.

None of the small studies in the field so far have assessed how foundation models specifically trained on relevant bio-
logical data will marginally increase risks to the public, nor have they assessed how the integration or “stacking” of differ-
ent types of AI tools (e.g. LLMs, biological AI models, and autonomous robotics) change those risks [9]. Integrations that 
combine AI tools for biological research are increasingly common. For example, there are efforts to enable access to lead-
ing open-source protein and molecular design tools using directly integrated AI chatbot interfaces, also termed “copilots” 
[10]. Researchers and companies are seeking to develop autonomous or semi-autonomous AI agents capable of conduct-
ing science [4,11]. Some AI tools provide assistance to novices in completing complex research tasks (termed AI “uplift”) 
[6], while others aim to eliminate humans-in-the-loop entirely [12]. To date, there are no published third-party biosecurity 
assessments of AI models trained on biological sequence and/or structure data (as compared to LLMs), though more than 
100 individuals, many of whom are academic developers of such models, have signed voluntary commitments to conduct 
“evaluations of AI systems to identify meaningful safety and security concerns prior to release” and to engage “in the joint 
development of evaluation frameworks” [13]. Two authors of this paper signed this statement in support.

A current barrier to increased model capability includes functional biological data (as compared to sequence or static 
structural data). However, a growing proportion of wet-lab work for data generation, such as data visualization, data 
analysis, and sample creation, can be facilitated by autonomous machines increasingly enabled by AI, including machines 
that researchers pay to access remotely, known as cloud labs [14–16]. Foundation models, even those untrained for this 
purpose, have shown facility at directing robots to perform laboratory tasks [17]. Skilled AI agents that engage in sophis-
ticated planning and operations work also enable this work [12,18]. Taken together, these facts suggest that AI model 
capabilities may play an increasingly large role in enabling high-consequence biosecurity risks in the coming years.

Policymaker guidance for hazardous biological AI capabilities to date

In part to address these concerns, the governments of the United States and United Kingdom are working with scientists 
and model developers to take new steps toward designing AI biosecurity evaluations [19]. Evaluations in this context refer 
to techniques for assessing an AI models’ capabilities, especially capabilities that can cause harm [20]. AI evaluations to 
date have included automated tasks (e.g., multiple choice questions), dynamic studies in which humans or other AI mod-
els attempt to elicit harmful capabilities (“red-teaming”), and randomized trials in which individuals or groups are set to a 
task with or without access to an AI model (“human uplift studies”), among other methods [20].

Neither the UK nor US governments have yet released standardized biosecurity evaluation methods, though both have 
indicated their intention to do so. In September 2023, the UK government was the first to establish an expert-led taskforce 
to address risks from frontier AI models [21]. Subsequently in November 2023, they launched the UK AI Safety Institute, 
which is responsible for creating and conducting evaluations on leading AI models. The Institute is especially focused on 
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“containing risks that pose significant large-scale harm if left unchecked: chemical and biological capabilities, and cyber 
offense capabilities” [22]. It has recently released an open-source framework for LLM evaluations called Inspect [23]. The 
US and UK (alongside several other nations) also signed the Bletchley declaration in November 2023, acknowledging the 
potential risks of AI [24].

Concurrently in October 2023, the White House promulgated the Executive Order on the Safe, Secure, and Trustworthy 
Development and Use of Artificial Intelligence (2023 AI EO) [25]. The 2023 AI EO directed various federal agencies with 
creating “robust, reliable, repeatable and standardized evaluations of AI systems,” with a planned focus on evaluating haz-
ardous biological AI model capabilities among a small number of other significant risks. A subsequent National Security 
Memorandum published in October 2024 further directed the Department of Defense to “advance classified evaluations 
of advanced AI models’ capacity to generate or exacerbate deliberate (…) biological threats” [26]. Of note, the 2023 AI 
EO focused on foundation models—extremely large AI models trained on broad data, containing at least tens of billions of 
parameters, and exhibiting high levels of performance on various tasks. Of particular concern was “substantially lower-
ing the barrier of entry for non-experts to design, synthesize, acquire, or use chemical, biological, radiological or nuclear 
(CBRN) weapons”. The 2023 AI EO also called for investing in the use of AI to mitigate such threats. With regards to foun-
dation models trained on primarily biological sequence data, those models which use greater than 1023 FLOPS of compu-
tational power were required to be reported to the US Department of Commerce. Since then, genomic foundation models 
exceeding this threshold have been created [27,28].

Under the 2023 AI EO, the US National Institute of Standards and Technology (NIST) launched the US AI Safety 
Institute, which is charged with proposing “guidance and benchmarks for evaluating and auditing AI capabilities with a 
focus on capabilities through which AI could cause harm,” including by biological means [29]. In May 2024 the US Office 
of Science and Technology Policy also recommended oversight of dual-use computational models that could enable the 
design of novel biological agents or enhanced pandemic pathogens [30], given the high-consequence risks these agents 
and pathogens could pose to the public. In January 2025, the incoming US administration announced the revocation of 
the 2023 AI EO and thus the removal of reporting requirements for models surpassing the above computational thresholds 
[31], however, the US AI Safety Institute remains in place.

Additional governmental bodies are continuing to become involved in AI governance. In 2024, the European Union 
launched an AI Office to monitor, supervise and enforce the EU AI Act, which governs general-purpose models with sys-
temic risk, though models used exclusively for scientific research are excluded from oversight [32].

Proposed approach to determining biological AI capabilities of concern

Prior experience studying dual-use life sciences research can inform AI capabilities of concern

There is no common AI industry approach to evaluating biological AI models for risks. There is, however, prior guidance 
from scientists, public health professionals, and policymakers regarding life sciences research that “could be directly 
misapplied to pose a significant threat with broad potential consequences to public health and safety,” known as dual-use 
research of concern [33]. There is also guidance regarding life sciences research that could result in “enhanced potential 
pandemic pathogens” [34]. A recent 2024 update to these US policies incorporates lessons learned from prior attempts 
to govern this realm of research, makes substantial improvements, and includes recommendations to address risks from 
computational approaches in this domain [30].

The AI model biosecurity conundrum—how to retain AI’s significant benefits while heading off serious concerns around 
AI model misuse—finds a ready parallel with dual-use research of concern and research intended to create enhanced 
potential pandemic pathogens. Scientists and policymakers have spent years analyzing which forms of life-sciences 
research pose serious risks through accidental release, or inadvertent or deliberate misuse [33,35–38]. Although these 
recommendations have historically been targeted at wet-lab experimentation, they have also been used to assess what 
information should be shared publicly [33,39,40], also known as information hazards [41]—the type of concern that is 
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critical to consider for AI models with biological information and capabilities. As the AI community develops evaluations, 
they should take advantage of the scientific expertise and governmental experience instantiated in prior dual-use study, 
along with incorporating improvements based on how these prior recommendations were insufficient.

Fundamentally, biological AI models aim to greatly facilitate complex wet-lab work, or do entirely in silico that which can 
only be done now in vitro or in vivo—and in doing so, make it easier for those with access to a relevant model to reduce 
or dispense with time-consuming and expensive steps. Because biological systems are complex, traditional dual-use 
research (e.g., studies analyzing pathogen features such as tropism, transmissibility, and virulence) has historically relied 
on trial and error, methodical experimentation, or directed evolution [36]. AI may allow users to conduct this research 
faster and at lower cost, as it has in other related research domains [42–46].

Evaluations should assess capabilities, not specific pathogens or threat scenarios

Many biosafety and biosecurity governance approaches have in the past relied on taxonomic lists of specific pathogens 
to be regulated [47–49]. However, we recommend that evaluation approaches instead focus on AI-enabled capabili-
ties, rather than AI engagement with risks related to specific pathogens. When applying biosecurity in practice, patho-
gen lists are “both too specific and too ambiguous for many of the uses to which they are applied” [50]. Experts have 
recognized the shortcomings of pathogen lists for over a decade, and have instead emphasized oversight based on 
the intention of the research being conducted (for example, an intention to increase a pathogen’s transmissibility) [51]. 
Many National Academies assessments [35,36,52] seek to avoid taxonomic pathogen lists, given the modular nature of 
modern biotechnology, which increasingly makes use of parts of organisms to confer new traits. One influential report 
championed “adopting a broader perspective on the threat spectrum” and urged policymakers to recognize “the limita-
tions inherent in any agent-specific threat list.” Biosecurity measures, the authors argued, should focus instead on the 
“intrinsic properties of pathogens and toxins that render them a threat, and how such properties … could be manipu-
lated by evolving technologies” [52]. The U.S. National Science Advisory Board for Biosecurity, as well, in 2024 under-
lined the importance of reviewing experiments for dual-use potential by analyzing whether the experiment involves 
risky pathogenic characteristics rather than whether it involves specific pathogens and experimental methods [53]. The 
recently released United States Government Policy for Oversight of Dual Use Research of Concern and Pathogens 
with Enhanced Pandemic Potential also places highest priority focus (Category 2) on experiments capable of enhanc-
ing the pandemic potential of a pathogen “such that it may pose a significant threat to public health” regardless of the 
specific progenitor pathogen [30].

When it comes to AI evaluations, too, this capabilities-based approach should be pursued as compared to a list-based 
approach. Although pathogen list-based approaches create bright lines that make policies easy to follow, they also lack 
the flexibility to account for emerging technology developments. Such lists can also provide an unwarranted sense of 
security, reducing vigilance and surveillance of the technological horizon for newly emerging capabilities and serious risks 
[52]. Taxonomic lists remain useful tools for controlling access to whole organisms, such as for law enforcement or via 
export controls [50]. However, in the setting of AI where novel risks must be anticipated, capability assessments and antic-
ipating high-consequence harms to the public, not specified pathogens, are better suited to inform risk assessments. As 
the National Academies panel co-chaired by Stanley Lemon and David Relman (the Lemon-Relman Report) concluded, it 
is futile to predict how exactly future terrorists or malicious states will attempt to misuse biology [52].

Prioritize evaluations of biological capabilities that enable high-consequence harms

As governments and AI developers design capability-based AI model biosecurity evaluations, they should focus first on 
capabilities which enable high-consequence harms to the public: that is, those capabilities which could enable, accelerate, 
or simplify the creation of transmissible biological constructs that could lead to human pandemics, or similar pandemic-like 
events in animals, plants or the environment.



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012975  May 8, 2025 6 / 12

It will be a significant challenge to evaluate AI models for their ability to contribute to any possible biology-related 
accident or misdeed, no matter how limited the consequences. Given the effort required, evaluations should first priori-
tize assessing the highest consequence harms to the public, such as pandemics. We recognize this prioritization differs 
from traditional biosafety practices, which give greater attention to less consequential, but more common and expected 
risks. However, we believe prioritization of high consequence is warranted given the large-scale harms to the public that 
can result from transmissible, pandemic-capable pathogens, as has been noted by other researchers [54]. This prioritiza-
tion of pandemic-capable pathogens is also reflected in the United States Government Policy for Oversight of Dual Use 
Research of Concern and Pathogens with Enhanced Pandemic Potential, where highest priority for oversight is given to 
Category 2 research involving potential pandemic pathogens [30]. Non-transmissible pathogens and toxins, while also 
potentially dangerous to individuals and even large groups of people, are self-limited. In contrast, the unchecked spread of 
transmissible, pandemic-capable pathogens can strain health systems and require severe containment measures which 
also contribute to public harm; therefore, prevention should be prioritized.

Such prioritizing within biological AI model evaluations would, if implemented correctly, help to limit widespread access 
to the most concerning models, or require model safety modifications before deployment for others. As experts have long 
recognized, attempts to constrain the flow of scientific information, especially in biology, face acute practical and legal 
challenges [35,52]. It is thus all the more important for biosecurity evaluations and responses in the AI setting to use a 
scalpel rather than an ax, and to focus effort and resources first on prevention of the in silico and laboratory creation of 
high-consequence harms rather than control of such harms after-the-fact.

Below, we elaborate on how previously identified dual-use capabilities in the life sciences could inform tangible and 
testable components of biological AI model evaluations. Table 1 lists previously identified categories of dual-use research 
in the life sciences. We have generated examples of emerging AI “capabilities of concern” corresponding to each cate-
gory. Of the examples listed, only one has been fully realized and scientifically validated—the optimization and generation 
of viral serotypes capable of evading immunity [55]. The design of molecules with increased toxicity has been explored 
computationally [56,57], and several other emerging AI capabilities of concern are under active development.

Next steps for biosecurity evaluations of biological AI models

The capabilities of concern we illustrate in Table 1 are generic. These high-level capabilities next need to be translated 
into targeted, standardized evaluations. The UK, US and EU governments are now working to create standardized eval-
uations [20,29,58]. We recommend governments and model developers establish these standardized evaluations such 
that they are pathogen-agnostic, and assess the capabilities described in Table 1. While all listed capabilities of concern 
in Table 1 warrant assessment, we recommend prioritizing those in Category 2, due to their potential to simplify, acceler-
ate or enable biological work capable of causing novel human pandemic, animal panzootic, or plant pandemics, or other 
widespread environmental harm.

The specifics of evaluations will vary depending on the type and architecture of the AI model being evaluated (see Fig 
1). Specific AI architectures, such as transformer-based LLMs, diffusion models, reinforcement learning agents, genomic 
foundation models and others, are likely to lend themselves to certain applications and thus different high-consequence 
capabilities. Most evaluation methods to date have been developed specifically for LLMs and pertain to human uplift; 
alternative approaches will be needed for biological AI models, which cannot be interrogated using LLM-specific methods. 
While an LLM evaluation may take the format of a natural language question bank [59], a biological AI model evaluation 
may take the format of other computational tasks. For example, biosecurity evaluation of the genomic foundation model 
Evo 2 involved repurposing the existing in silico performance benchmark ProteinGym [28,60].

Developing appropriate evaluations will require determining how to concretely measure these capabilities, otherwise, 
evaluations will risk being overly subjective and inconsistent. Accurate measurement is value-neutral; if measurements 
determine that the vast majority of biological AI models cannot meaningfully achieve these capabilities of concern, this 
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Table 1.  Categories of dual-use research in the life sciences warranting risk assessment, as previously identified by scientists and US 
policymakers [30], and corresponding emerging AI capabilities. Note that the emerging AI-enabled capabilities constitute an illustrative, not 
exhaustive, list.

Experimental Outcomes Warranting Risk Assessment Corresponding Emerging AI-enabled Capabilities of Concern

Category 1 Research: Dual-Use Research of Concern

Increase transmissibility of a pathogen within or between host 
species

•	 Design, or modeling of directed evolution towards, transmissibility charac-
teristics of a pathogen through genome, protein, or other pathogen property 
alterations (while maintaining pathogen fitness).

•	 High-throughput screening and data generation methods for pathogen trans-
mission traits, which may be used to create datasets for training AI models1.

Increase the virulence of a pathogen or convey virulence to a 
non-pathogen

•	 Design, or modeling of directed evolution towards, virulence characteristics of 
a pathogen through genome, protein, or other pathogen property alterations 
(while maintaining pathogen fitness). This includes enhancing virulence, 
specifying delayed onset of virulence, and rendering nonpathogens or dormant 
pathogens virulent.

•	 High-throughput screening and data generation methods for pathogen viru-
lence traits1.

Increase the toxicity of a known toxin or produce a novel toxin •	 Design of molecules, peptides or proteins with toxicity.

•	 High-throughput screening and data generation methods for molecule, peptide 
or protein toxicity1.

Increase the stability of a pathogen or toxin in the environment, or 
increase the ability to disseminate a pathogen or toxin

•	 Modeling and design of stability and aerosolization characteristics of a patho-
gen or toxin in the environment, for example under specified temperature and 
humidity conditions.

•	 Modeling and design of resistance to physical countermeasures of a pathogen, 
such as filtration or disinfectants.

•	 High-throughput screening and data generation methods for evaluating envi-
ronmental stability or aerosolization1.

•	 Prediction or design of structural features that constrain genetic changes, and 
thereby enable genomic engineering that resists evolutionary select pressures.

•	 Causal AI modeling of expected epidemiological spread (with and without miti-
gating interventions) based on pathogen genomic data.

Alter the host range or tropism of a pathogen or toxin •	 Design of genomes, genetic pathways or proteins that convert non-human 
animal pathogens into human pathogens.

•	 Design of genomes, genetic pathways or proteins that expand or target a 
pathogen host or tropism range.

•	 High-throughput screening methods for viral tropism traits, including host, 
tissue, and cellular tropism1.

Decrease the ability for a human or veterinary pathogen or toxin 
to be detected using standard diagnostic or analytical methods

•	 Design of genetic sequences with high functional homology and no/low 
sequence homology which enable evasion of sequence-homology-based DNA 
synthesis screening methods, or sequence-based diagnostics.

Increase resistance of a pathogen or toxin to clinical and/or veter-
inary prophylactic or therapeutic interventions

•	 Design of pathogen genomes, genetic pathways, or proteins that confer resis-
tance to prophylactics or therapeutics.

Alter a human or veterinary pathogen or toxin to disrupt the 
effectiveness of preexisting immunity, via immunization or natural 
infection, against the pathogen or toxin

•	 Design of pathogen genomes, genetic pathways, or proteins that enable 
immune escape. For example, optimizing viral vectors or generating viral sero-
types that evade existing natural or vaccine-generated immunity.

Enhance the susceptibility of a host population to a pathogen or 
toxin

•	 Design of pathogen genomes, genetic pathways or proteins that specify 
susceptibility of particular host populations, such as human ethnic, sex or age 
groups.

•	 Design of toxins which affect particular host populations, such as human eth-
nic, sex or age groups.

(Continued)
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would be extremely informative to the biosecurity community. One advantage of the aforementioned question and task-
based approaches, versus evaluation methods that rely heavily on human judgement, is the potential for these methods to 
be standardized and measurable. At the same time, a degree of flexibility and fast iteration in the design and development 
of evaluations will be required, in order for methods to keep pace with AI developments.

Advancements in the above-described capabilities of concern are likely to correlate to some degree; further work is 
needed to assess this. For example, advancements in methods for high-throughput data generation (which themselves 
may be AI-enabled) are likely to lead to advancements in other model capabilities. As governments invest in data genera-
tion [61], data governance approaches should also be developed.

The need for wet-lab validation remains an ongoing challenge when assessing the performance of generative biological 
AI models; this challenge extends to safety evaluations as well. To determine the viability and function of a novel genetic 
sequence or protein, for example, one currently must create and test that novel biological design in vitro and/or in vivo. 
Such validation of dual-use biological AI models poses accident risks, which has prompted the US government to request 
the development of “peaceful proxy” evaluations [62]. An ideal proxy evaluation should accurately assess the desired 
capability of concern while minimizing potential accident risks during validation.

As mentioned above, a global consortium of biological AI model developers recently adopted the Responsible AI × 
Biodesign statement of community values and commitments [13]. Signatories committed to developing pre-release eval-
uations to assess potentially dangerous model capabilities, though these capabilities were not defined, and standards for 
how best to conduct rigorous evaluations have not yet been discussed. Current norms and incentives in academia push 
toward open release of code and model weights, which presents additional oversight challenges.

Experimental Outcomes Warranting Risk Assessment Corresponding Emerging AI-enabled Capabilities of Concern

Category 2 Research: Pathogens with Pandemic Potential

Enhance transmissibility of the pathogen in humans •	 Design, or modeling of directed evolution towards, transmissibility characteris-
tics of a human pathogen through genome, protein, or other pathogen property 
alterations (while maintaining pathogen fitness).

•	 High-throughput screening and data generation methods for human patho-
gen transmission traits, which may be used to create datasets for training AI 
models1.

Enhance the virulence of the pathogen in humans •	 Design, or modeling of directed evolution towards, virulence characteristics of 
a human pathogen through genome, protein, or other pathogen property alter-
ations (while maintaining pathogen fitness). This includes enhancing virulence, 
specifying delayed onset of virulence, and rendering nonpathogens or dormant 
pathogens virulent.

•	 High-throughput screening and data generation methods for human pathogen 
virulence traits1.

Enhance the immune evasion of the pathogen in humans such as 
by modifying the pathogen to disrupt the effectiveness of pre- 
existing immunity via immunization or natural infection

•	 Design of pathogen genomes, genetic pathways, or proteins that enhance 
human immune escape. For example, optimizing viral vectors or generating 
viral serotypes that evade existing natural or vaccine-generated immunity in 
humans.

Generate, use, reconstitute, or transfer an eradicated or potential 
pandemic pathogen (PEPP), or a previously identified pathogen 
with enhanced pandemic potential (PEPP)

•	 AI-enabled assistance or autonomous completion of step-by-step laboratory 
protocols for the de novo synthesis of pandemic pathogens. This includes the 
assembly of large DNA constructs and booting of synthetic genomes in cells.

•	 AI-enabled assistance or obfuscation of efforts to acquire, use or transfer PPPs 
or PEPPs, including the evasion of DNA synthesis screening.

1AI-enabled methods are being used to advance these capabilities; however, these capabilities may also be enabled via non-AI based methods.

https://doi.org/10.1371/journal.pcbi.1012975.t001

Table 1.  (Continued)

https://doi.org/10.1371/journal.pcbi.1012975.t001
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Some companies have stated that they have not publicly shared the content of their biosecurity evaluations due to 
information hazard concerns. To address this, policymakers should consider developing private, secure infrastructure 
amongst AI developers to share their biosecurity evaluations with one another and their respective governments.

Once completed, the results of evaluations for biological AI capabilities of concern should be linked with pre-specified 
thresholds and corresponding risk-mitigation actions (see Fig 1). Pre-specified thresholds refer to pre-set determinations 
regarding what degree of capability increase poses an unacceptable level of risk. For example, OpenAI’s Preparedness 
Framework defines low, medium, high and critical thresholds, with the critical threshold being breached when a “model 
enables an expert to develop a highly dangerous novel threat vector OR [a] model provides meaningfully improved 
assistance that enables anyone to be able to create a known CBRN threat OR [a] model can be connected to tools and 
equipment to complete the full engineering and/or synthesis cycle of a regulated or novel CBRN threat without human 
intervention” [63]. This language begins to move toward evaluation of biological capabilities, in particular capabilities 
relevant to accidental or deliberate misuse. Anthropic’s Responsible Scaling Policy and Claude 3 Model Card suggest that 
the company’s threshold is crossed when a model achieves “25% in accuracy on a set of advanced bioweapon-relevant 
questions … compared to using Google alone” [64,65]. This assessment appears to focus solely on bioweapons develop-
ment, rather than specific capabilities, though Anthropic has not disclosed the exact content of these questions.

AI developers must be able to clearly identify when a model has reached a scientifically agreed-upon threshold of 
unacceptable risk. Furthermore, the suite of risk-mitigation actions that can be taken once capability thresholds are met 
needs to be explicated. AI risk mitigation measures will be distinct from those focused on mitigating wet-lab risk dual-use 
risks. Examples of prevention and mitigation strategies for biology AI models under consideration include: exclusion of 

Fig 1.  Biosecurity evaluation development should follow a distinct process. This figure is a simple schematic demonstrating that distinct evaluative 
methods will be needed for different types of biological AI models. Dual-use capabilities of concern should be translated into model type-specific evalua-
tion methods that are linked to pre-specified thresholds and risk mitigation actions.

https://doi.org/10.1371/journal.pcbi.1012975.g001

https://doi.org/10.1371/journal.pcbi.1012975.g001
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concerning data from training [28], removing dangerous information from a model after the initial training has been com-
pleted via machine unlearning methods [59,66], restricting access to a model to specific users via APIs or other secure 
means, and/or subjecting models to governmental risk-benefit assessment. AI developers should disclose risk-mitigation 
requirements before training and testing relevant models to reassure the public that new AI models that pose serious bio-
logical risks will not be publicly released.

Given the speed of AI technological advances, assessments of real-world risk can no longer be expected to be static 
or unchanging over long periods of time, and developers and policymakers must regularly update their risk thresholds by 
drawing on the results of evaluations. Ultimately, the goal of biosecurity evaluations for biological AI models should be to 
provide targeted risk-reduction of high-consequence harms. Criteria for evaluations should be clear and standardized, 
allowing for beneficial research to easily proceed without undue impediment. We hope that these proposed categories of 
dual-use capabilities of concern can be used to help set standardized biosecurity evaluations for AI models. We encour-
age scientists, AI developers, and policymakers to create international standards and requirements for the development of 
safe and secure AI systems.
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