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Abstract

The robustness of algorithms against covariate shifts is a fundamental problem with critical
implications for the deployment of machine learning algorithms in the real world. Current
evaluation methods predominantly match the robustness definition to that of standard gen-
eralization, relying on standard metrics like accuracy-based scores, which, while designed
for performance assessment, lack a theoretical foundation encompassing their application in
estimating robustness to distribution shifts.
In this work, we set the desiderata for a robustness metric, and we propose a novel prin-
cipled framework for the robustness assessment problem that directly follows the Posterior
Agreement (PA) theory of model validation. Specifically, we extend the PA framework to
the covariate shift setting by proposing a PA metric for robustness evaluation in supervised
classification tasks. We assess the soundness of our metric in controlled environments and
through an empirical robustness analysis in two different covariate shift scenarios: adver-
sarial learning and domain generalization. We illustrate the suitability of PA by evaluating
several models under different nature and magnitudes of shift, and proportion of affected
observations. The results show that the PA metric provides a sensible and consistent anal-
ysis of the vulnerabilities in learning algorithms, even in the presence of few perturbed
observations.

1 Introduction

Real-world data analysis problems are often formulated as (potentially intractable) combinatorial optimiza-
tion tasks, e.g., inferring data clusterings, image segmentations, orderings, embeddings, or parameter estima-
tion of dynamical systems, etc. The stochastic nature of the input data and the computational complexity
require resorting to approximated, probabilistic estimates. However, such solutions often suffer from insta-
bility in generalization to new observations that contain the same signal but systematically different noise
perturbations, a phenomenon often referred to as covariate shift (Quiñonero-Candela et al., 2008). Covariate
shift has gained increasing relevance, especially with the rise of deep learning and its astonishing improve-
ments for a wide variety of predictive tasks. The focus of the research community is progressively “shifting”
towards modelings covering different levels of heterogeneity in the data. Consequently, new experimental
settings have been implemented in order to test the robustness of machine learning models under nontrivial
perturbations of the signal.

The focus of this work is on image classification tasks in two main categories of covariate shift:

• adversarial (intentional) shift: the data is crafted ad-hoc by an adversary with vicious intentions,
to specifically hinder the output quality of the algorithm (Carlini & Wagner, 2017b; Biggio & Roli,
2018).

• out-of-distribution (unintentional) shift: the data is subject to different initial conditions during
its measurement (e.g., lighting conditions, orientation, and so on)1 (Koh et al., 2021; Wang et al.,
2023a).

1In some cases, out-of-distribution is used to define a shift in the target set (Fang et al., 2022).
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Figure 1: Evolution of accuracy and our proposed metric, Posterior Agreement (PA), displayed by random,
constant, and perfect classifiers under a Bernoullian sampling of size 1000. The random classifier sample is
generated by permuting the original so that the number of mismatched observations depends on the Bernoulli
probability. Accuracy does not comply with the desired properties of a robustness metric and provides an
inconsistent assessment that is exclusively driven by task performance, while PA discriminates the robust
from the unrobust classifier, in particular, detecting the robustness of a constant classifier.

Under these settings, the usual standard robustness evaluation procedures consist of comparing the accuracy
performance of the model under increasing levels of shift (Cinà et al., 2025; Koh et al., 2021). This procedure
is essentially the same as that commonly used to evaluate the generalization capabilities of models in the
absence of (measurable/accountable) shift, that is, when data is subject to the randomness entailed by the
sampling process only. In the following, we argue that robustness assessment requires a paradigm shift in
the way it is approached.

First of all, to better characterize the concept of robustness metric, we list two properties that it should
possess:

1. non-increasing: the metric should be non-increasing with respect to the response of the model
against increasing levels of the shift power.

2. shift-sensitive: the metric should differentiate models only by their generalization capabilities against
covariate shift. For instance, the metric should be independent of the task performance of the model.

The properties described above serve as guiding principles in the robustness evaluation process. However,
robustness itself may be susceptible to different interpretations. For example, the concept of shift power
can be encoded in several ways. In adversarial learning (Madry et al., 2018), it usually coincides with the
norm of the difference between a data observation and its perturbed counterpart. On the other hand, in
domain generalization (Eulig et al., 2021), shifts usually encode perceptual or semantic alterations that are
specific to each dataset and that are hard or even impossible to characterize in a unified way. Furthermore,
the shift power may also describe different aspects of the perturbation, such as the number of affected
observations, often neglected but equally relevant to time and performance efficiency. In both settings, a
principled approach to measuring robustness is required and is currently missing.

In general, Property 1 is satisfied by accuracy-based metrics. However, as accuracy results from thresholding
over the predictions, it is unable to encapsulate any information regarding model confidence. In standard
validation procedures, devising prediction-confidence-based metrics increases their discriminative power, for
instance, when comparing models with similar predictive capabilities but different confidence. In the covariate
shift setting, this distinction is decisive, not only for detecting low shift power perturbations but also for

2



Under review as submission to TMLR

solutions

G
ib

bs
 p

os
te

ri
or

s

p(c X ′) p(c X ′′)

= 0.5: Underfitting

solutions

G
ib

bs
 p

os
te

ri
or

s

p(c X ′) p(c X ′′)

= 8.0: Optimal

solutions

G
ib

bs
 p

os
te

ri
or

s

p(c X ′) p(c X ′′)

= 40.0: Overfitting

0 5 10 15 20 25 30 35 40

Po
st

. A
gr

.

 = 0.5

 = 8.0

 = 40.0

Figure 2: The optimization over the inverse temperature parameter β is required to make the two posteriors
insensitive to noise perturbations. In the top figures, the curves represent two posteriors p(c | X ′), p(c | X ′′)
in this case over a real-valued parameter c, (e.g., a distribution’s mean). When β is too low (top left), the
posteriors tend to be uniform and uninformative. When the β is too high (top right) the posteriors are too
peaked and therefore sensitive to even small noise perturbation. The optimal β (top center) maximizes the
posterior agreement (bottom) guaranteeing informativeness and stability in the distributions that can be
then used for model selection or, in our case, for robustness assessment.

providing a more consistent robustness assessment that does not heavily depends on the stochasticity of the
dataset.

Additionally, some accuracy metrics involve a comparison with the target variables in the test set (e.g., the
attack success rate in adversarial learning), thus not complying with Property 2. For example, a constant
classifier outputting the same prediction, regardless of the input, is robust by definition, since its output is
independent of any shift in the data. Similarly, a perfect classifier that always outputs the correct prediction
for any input is also robust. An accuracy metric would, however, discriminate the two models as differently
robust since their performance would differ (cf. Figure 1 left).

In this work, we overcome these weaknesses and propose a new metric complying with the aforemen-
tioned properties, from the principled perspective of the Posterior Agreement (PA) framework (Buhmann,
2010; Buhmann et al., 2018; Gronskiy, 2018). PA is an alternative model validation procedure rooted in
information-theoretic thinking, in particular the rate-distortion theory (Cover & Thomas, 1999). In this
setting, the learning algorithm is thought of as a lossy compression procedure with the aim of resolving the
hypothesis class as precisely as possible, given the stochastic data source, a critical requirement for a metric
aligned with the two proposed properties.

The proposed PA metric provides a unique and unified framework for robustness assessment in the covariate
shift setting, as it relies on a concept of robustness that does not stem from the nature of the data or
the shift but instead from the consistency of the probabilistic response of the model. Therefore, PA is a
confidence-based metric that does not depend on a model’s classification performance, thus aligning with the
foundational properties outlined before. As an illustrative example, Figure 1 depicts the difference between
accuracy and PA in the robustness assessment of the constant/perfect classifiers described before.

Following epistemologically grounded thinking, we assume two datasets X ′, X ′′ ∈ X , derived from the same
experiment, both with ideally identical signal, but different noise realizations. Given a hypothesis set C, the
posterior distributions p(c | X ′), p(c | X ′′), for c ∈ C, should become as similar as possible when adapting the
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machine learning algorithms and, as a consequence, the functional form of the posterior p(· | ·) is optimized
for succinctness and stability. Traditionally, posteriors have been designed by defining a cost function and
then by calculating or approximating the respective Gibbs distribution. The spread of such a posterior is
controlled by a width parameter β, also known as inverse computational temperature. An optimal control
of β should render the posterior as much as possible insensitive to noise perturbation (cf. Figure 2).

In this article, we first adapt the PA framework to be applied to covariate shift settings without modifying its
fundamental principles. In particular, we formulate PA without any requirements of supervised information,
making it a suitable metric for robustness evaluation in contexts where the supervision is very scarce or null
(e.g., medical applications, or autonomous driving). We then conduct a robustness analysis on two current
settings of interest, namely adversarial learning in the evasion attack scenario and domain shift under targeted
covariate shifts. In particular, we analyze the performance of several models in terms of PA under different
nature and magnitudes of perturbation and proportion of affected observations. Not only does PA succeed
in documenting the worsening of model performance in great detail, but it also detects an ongoing shift even
when the number of targeted observations is low. Additionally, these findings were extended by leveraging
PA for robust model selection with early stopping. In particular, experiments included the perturbation of
data with spurious factor co-occurrences. The results show that PA-based selection succeeds at mitigating
the spurious correlations existing between shifted environments.

In summary, (i) we propose the PA metric, to assess model robustness in covariate shift scenarios and
motivate it theoretically, (ii) we conduct a robustness analysis on several settings, illustrating the findings
emerging from an evaluation with PA, (iii) we summarize our findings and discuss a new notion of model
robustness in the PA sense arising from the presented results.

2 Related Work

Adversarial Learning Adversarial robustness is a fundamental research area in machine learning due to
the susceptibility of deep neural networks to small perturbations, leading to erroneous predictions (Szegedy
et al., 2014; Goodfellow et al., 2015). A huge plethora of effective and efficient attacks such as FGSM
(Goodfellow et al., 2015; Yuan et al., 2019), PGD (Kurakin et al., 2018; Madry et al., 2018), BIM (Kurakin
et al., 2018), C&W (Carlini & Wagner, 2017b), DeepFool (Moosavi-Dezfooli et al., 2016), FMN (Pintor
et al., 2021), and others (Carlini & Wagner, 2017a; Croce & Hein, 2019; Modas et al., 2019; Zheng et al.,
2023), have been developed to evaluate the adversarial robustness of machine learning models. Adversarial
examples are often measured in terms of their distance from the original input, using ℓp norms (Carlini &
Wagner, 2017b). Their use allows for a consistent and well-defined way to measure the magnitude of the
perturbation and to compare different adversarial attacks (Carlini & Wagner, 2017b; Cinà et al., 2025). In
this work, we also include analyses on the ratio of perturbed observations in a dataset. We believe that
this aspect can help in better understanding the behavior of models against attacks, as later shown in the
experimental section.

Assessing model robustness proved to be necessary for developing more reliable machine learning systems
and for ensuring their resilience before deployment. Typically, white-box models are employed to analyze a
model’s worst-case scenarios and avoid relying on security by obscurity (Carlini et al., 2019; Eisenhofer et al.,
2021; Däubener et al., 2020). The assessment is commonly performed in the literature by scoring models
with accuracy-based metrics such as attack success rate and adversarial accuracy. While the definition of
these two scores is not consolidated, in general, they estimate the model performance over a test set in terms
of un/successful attacks. Additionally, Weng et al. (2018) approach robustness evaluation as a Lipschitz
constant estimation problem. The method is, however, susceptible to gradient masking (Goodfellow, 2018),
causing the metric to overestimate the size of the perturbation needed to fool a model. In addition, the
bound is obtained by exploiting the ReLU property of neural networks, therefore narrowing its scope to such
models. Wang et al. (2023b) uses, instead, the converging time to an adversarial sample for estimating the
robustness of a model. This approach requires the estimation of a Jacobian with respect to the input, which
may be infeasible in the case of large-sized data, and is applicable only to differentiable models.
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Domain Generalization Domain generalization is a field of paramount importance in machine learn-
ing due to both the limitation of acquiring a diverse and large enough set of training samples (Wolpert &
Macready, 1997), and the nature of current methods to capture spurious correlations from training data that
lead to catastrophic loss of performance in out-of-distribution settings (Wiles et al., 2022; Geirhos et al.,
2020). Over the years, several benchmark datasets have been introduced specifically for domain generaliza-
tion. The PACS dataset (Yu et al., 2022) represents shifts in visual styles between real photos and artistic
media like paintings, cartoons, and sketches, reflecting variations in colour, texture, and abstractness. VLCS
(Torralba & Efros, 2011) captures object-centric and scene-centric distribution shifts, with variations in object
variability, scene context, and annotation styles across other previously established datasets. The WILDS
benchmark (Koh et al., 2021) embodies real-world shifts, covering temporal and geographical changes, as well
as differences in image resolution and quality, which are typical in practical applications. Each benchmark
encapsulates unique distribution shifts, providing diverse challenges for evaluating domain generalization
methods. More recently, the DiagViB-6 dataset (Eulig et al., 2021) has also been proposed for the system-
atic analysis of data distribution shifts over multiple generative factors, covering hue, position, lightness,
scale, and texture, and allowing for accumulation of multiple shifts. While several new benchmarks have
been proposed to address growing requirements for both more realistic and challenging evaluation settings,
accuracy on the unseen domains remains the fundamental metric for estimating the model robustness.

3 Methodology

In this section, we devise a tractable version of the posterior agreement for the validation of classification
models in covariate shift settings. Similar to Buhmann et al. (2018), we start from the work of Rose (1998)
for deterministic annealing, and adapt it in the context of PA to a classification task.

3.1 Setting

Let DX = (xi)N
i=1 be a dataset2 of i.i.d. measurements (observations) drawn from a random variable X with

support X . A K-class classifier can be defined as the composition of two functions:

• a function F : X → RK , mapping observations to a vector of discriminant functions, i.e., x 7→
F (x) = (F1(x), . . . , FK(x)). The discriminant functions are parametrized by a set of parameters θ,
which is fixed, as we are conducting an evaluation.

• a decision rule f : RK → {1, . . . , K}, applied to choose the class for each observation, based on the
discriminant functions. Usually, f is the Maximum A Posteriori (MAP) rule:

f(F (x)) = arg max
j

Fj(x) (1)

A classifier is defined as c = f ◦ F .

Note that, since F is fixed, the hypothesis set is spanned by all possible decision rules over X . Restricting
the process to DX , gives rise to a finite hypothesis set3 C, containing all possible mappings from DX to
{1, . . . , K}. Therefore, |C| = KN .

Each classifier is associated with a score evaluating its confidence in explaining the data:

R(c, X; θ) =
N∑

i=1
Fc(xi)(xi; θ). (2)

Such score can be used to define a posterior p(c | X) over the hypothesis set C. In particular, we aim to
find a probability distribution p such that R(c1, X; θ) > R(c2, X; θ) ⇐⇒ p(c1 | X) > p(c2 | X), ∀c1, c2 ∈ C,

2Note that, we do not need to specify the targets of DX for assessing the robustness of a model.
3The finiteness of C is a mathematical expedient to efficiently deal with the subsequent derivations. (cf. the discussion

section).
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a property that we will rewrite as ϕC(p). As many distributions fulfill this requirement, we narrow the
possibilities by applying the Maximum Entropy Principle (MEP) (Jaynes, 1957), which states to search for
the maximally uninformative (i.e., entropy-maximizing) distribution which best encodes the observed data.

The following optimization objective

maximize
p(c | X)

H[p] (3a)

subject to ϕC(p), (3b)
p(c | X) ≥ 0, (3c)∑

c∈C
p(c | X) = 1, (3d)

EC|X [R(C, X)] = µ (3e)

gives the required solution. Here, µ is a hyperparameter ensuring that the expectation is finite. We set the
Lagrangian without the inequality constraints

L(p, α, β) = H[p] (4)

+ α

(
1 −

∑
c∈C

p(c | X)
)

(5)

+ β(EC∼p[R(C, X) − µ]), (6)

and verify that they hold for the found solution. The derivative with respect to p(c) is

∂L
∂p(c | X) = −1 − log p(c | X) − α + βR(c, X). (7)

Equating it to 0 and solving for p(c) gives

p(c | X) = exp(βR(c, X))
exp(1 + α) . (8)

Setting exp(1 + α) =
∑

c∈C exp(βR(c, X)) and β ≥ 0 ensures that p(c | X) is a Gibbs distribution that
satisfies the constraints 3b and 3c with the inverse temperature parameter β. The exact value of β depends
on µ, and can be found by enforcing the posterior agreement principle, discussed in the next section.

The summation over the hypothesis set can pose a drawback in the computation of the posterior. The
following result provides an efficient factorization for p(c | X).

Theorem 1.

p(c | X) =
N∏

i=1
pi(c(xi) | X), (9)

where
pi(k | X) = exp(βFk(xi))∑K

j=1 exp(βFj(xi))
(10)

is the probability that xi is assigned to class k.

Proof. cf. Appendix A.1

The energy term Fk(xi) ∈ R quantifies the degree of membership of observation i to a class k (the higher,
the more probable). Fk(xi) can be, for example, the logit output of a multi-class prediction model (e.g., a
neural network).
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3.2 Posterior Agreement

We are given two i.i.d. datasets X ′, X ′′ with |X ′| = |X ′′| = N and for i = {1, . . . , N} x′
i and x′′

i are two
realizations sampled from the same ideal (i.e., noiseless) process x

(0)
i . Given a classification model, we can

estimate its agreement in the prediction results through the expected posterior agreement kernel

k = EX′,X′′

[
log
(∑

c∈C

p(c | X ′)p(c | X ′′)
p(c)

)]
, (11)

where the expectation is computed over the random variables of X ′ and X ′′. A notable difference with the
previous versions of the kernel is the addition of the term p(c). It is a prior over C, used to account for the
model complexity. In the following, we will work under the assumption that we do not have access to any
prior information, that is p(c) = 1/|C|, ∀c ∈ C. Often, the computation of the expected value over X ′ and
X ′′ is infeasible, therefore the empirical posterior agreement kernel is adopted as

k(X ′, X ′′) = log
(∑

c∈C

p(c | X ′)p(c | X ′′)
p(c)

)
, (12)

which estimates the overlap between the Gibbs posteriors defined as explained above.

The computation depends on the inverse temperature hyperparameter β ∈ R≥0. Similar to the MEP, we
search for the β that maximizes the overlap between the posteriors. The Posterior Agreement (PA) metric
is then computed as

PA(X ′, X ′′) = maximize
β

1
N

k(X ′, X ′′). (13a)

subject to β ≥ 0 (13b)

1/N is a scaling correction factor since PA increases proportionally with the size of the dataset.

In the following, we propose and discuss an operative formula to compute the empirical posterior agreement
kernel.
Theorem 2. With no prior information available, the empirical posterior agreement kernel k(X ′, X ′′), can
be rewritten as:

k(X ′, X ′′) = log

|C|
N∏

i=1

K∑
j=1

pi(j | X ′)pi(j | X ′′)

 . (14)

Proof. cf. Appendix A.2.

By optimizing Program 13 with this kernel, we can see the effect of β in determining the optimal overlap
between posteriors. An increment in β corresponds in peaking the distributions pi(· | X), X = X ′, X ′′

toward their MAP, awarding matching distributions that share the same MAP. On the contrary, decreasing
β flattens the distributions, and mitigates penalizations due to mismatching distributions with different
MAPs. Therefore, the optimization operates a tradeoff between these opposite sub-objectives, searching for
the best solution that explains the agreement between the two data sources.

We conclude by characterizing the posterior agreement metric as computed with the kernel of Theorem 2.
Theorem 3. Under no prior information available, PA has the following properties.

1. Boundedness: 0 ≤ PA(X ′, X ′′) ≤ log K.

2. Symmetry: PA(X ′, X ′′) = PA(X ′′, X ′).

3. Concavity: PA(X ′, X ′′) is a concave function in β < +∞.

Proof. cf. Appendix A.3.
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4 Experimental Results

In this section, we present a comprehensive analysis of the empirical results. In particular, we study two
covariate shift scenarios, adversarial learning and domain generalization, and set up a comparison of the
scores obtained by different models, using PA and accuracy-based metrics. Our main purpose is to highlight
the differences between performance- and robustness-based evaluation criteria. Therefore, we compare several
defences and learning techniques with different capabilities, to encompass, as much as possible, the variety
of cases that can arise during an evaluation process. For further technical information, the reader is referred
to our code implementation4.

For measuring model robustness, we use the PA metric with no prior information. In particular, we use the
original test set as X ′ and its perturbed version as X ′′. For a better visualization of the results, we adopt a
logarithmic scale, and we omit the |C| and the 1/N constants in PA to increase its dynamic range, therefore
PA ∈ [−N log(K), 0].

4.1 Adversarial Robustness

For the adversarial robustness scenarios, we carry out our experiments with the CIFAR-10 (Krizhevsky et al.,
2009) dataset, widely adopted in the machine learning security literature as a benchmark for robustness
evaluation. The dataset contains 60 000 colour images of 32 × 32 pixels equally distributed in 10 classes.
The analyzed models are trained on the training set (50 000 images), and the PA evaluation is performed
on the test set (10 000 images). In particular, we perturb the test set with two different evasion attack
methods: Projected Gradient Descent (PGD) (Madry et al., 2018) and Fast Minimum Norm (FMN) (Pintor
et al., 2021). The max attack power is specified in terms of the ℓ∞ norm and is set in advance (ℓ∞ =
[8/255, 16/255, 32/255]) for the PGD attack, while it is automatically searched for each observation with
the FMN attack. Both attacks are run for 1000 steps on the test set to generate its perturbed version for
subsequent PA computation.

We consider several models with different robustness properties. In particular, we score an undefended
WideResNet-28-10 (Zagoruyko & Komodakis, 2016) and five defended models: a ResNet18 (He et al., 2016a)
defended by Addepalli et al. (2022), a ResNet50 (He et al., 2016a) defended by Engstrom et al. (2019), a
WideResNet-28-10 defended by Wang et al. (2023c), a PreActResNet18 (He et al., 2016b) defended by Wong
et al. (2020) and a 3-layer CNN (LeCun et al., 2015) defended by a JPEG pre-processing Das et al. (2017)
and a Reverse Sigmoid post-processing Lee et al. (2018). All models except for the latter are implemented
with the RobustBench library (Croce et al., 2021).

We perform a comparison of PA with an accuracy-based metric, the Attack Failure Rate (AFRT = 1−ASRT )
and evaluate the performance of the models under investigation to verify the effectiveness of the PGD and
FMN attacks. The evaluation is performed over ten different adversarial ratios (ARs) of attacked examples
in the test set, ordered by increasing attack power. In particular, a dataset with AR = p contains the
attacked observations under the 10p-decile, ordered by ℓ∞, and the remaining unattacked ones. AR = 1
corresponds to an entirely attacked dataset. The β parameter is searched with an Adam (Kingma & Ba,
2015) optimization procedure, run for 500 epochs.

PGD Attack As illustrated in Figure 3 (left), PA consistently discriminates the undefended model, which
significantly decreases its performance with increasing adversarial ratio and attack power. As expected, the
rate at which the performance decreases is faster the more powerful the attack is. The JPEG + RS model
also displays poor robustness scores, compared to the other models, especially for low-norm attacks, which
is consistent with the JPEG compression defence employed.

The fundamental difference between PA and AFRT arises in the scoring of the undefended model, which
overperforms according to AFRT , especially for low ℓ∞. To understand the causes of such a difference,
in Figure 4, we display the distribution in prediction confidence of three example models. In particular,
we compare the correctly predicted observations before the attack (p(ŷ′ | X ′, ŷ′ = y), full colour) with

4Metric: https://anonymous.4open.science/r/pa-metric/README.md
Experiments: https://anonymous.4open.science/r/pa-covariate-shift/README.md
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Figure 3: PA (left) and AFRT (right) scores against increasing AR and ℓ∞, for the PGD attack. The
tendencies are similar with the only exception of the undefended model, which is overperforming according
to AFRT .

the successfully attacked ones (p(ŷ′′ | X ′′, ŷ′′ ̸= ŷ′), streaked colour). We look at two weak models (the
undefended and JPEG + RS) and the most robust one (Wang et al., 2023c), in the case of AR = 1 (cf.
Appendix B for an analysis of all models). Standard errors (black bars) are also included. Additionally,
we include the values of the optimized β parameters after convergence for all the models. We analyze the
behaviour of the three PGD plots:

• The undefended model outputs, on average, high-confidence predictions. The standard errors over-
lap, hinting that the model cannot detect that an attack has happened, therefore not lowering enough
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Figure 4: (top) Distribution of the predictive confidence for three example models. The robust one (Wang
et al., 2023c) is significantly decreasing its confidence, while the weak ones (undefended and JPEG + RS)
are not. (bottom) Final β values for AR = 1. Anomalous β values identify the weak models.

its confidence. AFRT scores are high overall. The maximization of PA entails flat posteriors, to
mitigate the effect of the mismatches between the pre- and post-attack distributions. Therefore, β
converges to a low value. Consequently, we obtain low PA scores overall.

• The JPEG + RS model provides low confidence predictions, due to the reverse sigmoid defense used,
and does not reduce its predictive confidence in the presence of misleading adversarial examples. As
a result, PA is maximized when posterior distributions are highly informative, to peak the matches
(i.e., β converges to a high value). However, mismatching predictions induce a penalty on the
robustness score that drives PA to a low value, overall. AFRT scores are low, as well.

• Wang et al. (2023c) is sensible to the attack and significantly lowers its overall confidence, as indicated
by non-overlapping standard errors. Both AFRT and PA are high, overall.

In conclusion, while both metrics report similar trends and rankings, AFR tends to overestimate the ro-
bustness of the undefended model, especially when a few number of samples have been attacked, while PA
provides a more consistent assessment, unbiased by the nature of the experiment (e.g., ℓ∞ and AR).

Additionally, note that for AR = 0, PA scores do not converge to the theoretical result of 0. In the absence
of shift, the optimal β tends toward infinity to peak all coinciding distributions over their MAPs (cf. proof
of Theorem 3, Property 2). However, the Adam optimizer progressively scales down the learning rate,
dampening, in turn, the convergence rate. The obtained PA scores then reflect the “peakedness” of the
initial model predictions, that is, they provide information about the predictive confidence of each model
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Figure 5: PA (left) and AFRT (right) scores against increasing AR and ℓ∞, for the FMN attack. Again, the
undefended model robustness is overestimated, according to AFRT . For AR ∈ [0.3, 0.6] JPEG + RS model
is more robust than the others, with a similar trend in performance.

before the attack, with the most confident models scoring better. The ranking of PA coincides with that of
AFRT , hinting that in the absence of shift, the most confident models are also the more accurate5.

FMN Attack FMN does not require an ℓ∞ limit, and automatically finds, for each observation, the
minimum distance needed to evade the classification. We found that for AR ≳ 0.5, the observations are
perturbed far over the shift power against which all models are robustified. We, therefore, focus on the
cases with AR ≤ 0.5, and report, for completeness, the extended results in Appendix B. In Figure 5, the
PA and AFRT scores are presented. Again, the undefended model robustness is overestimated by AFRT .
For some ARs, the JPEG + RS model performs better than the other models overall, showing that the
JPEG compression defensive mechanism effectively filters out the perturbations and reduces the attack
transferability performance of FMN. In Figure 6 (right), we can note the increment in the corresponding β,
indicating that the two distributions contain more MAP matches. Wang et al. (2023c) results instead in being
the weakest model and, therefore, less suitable against this attack. Accordingly, its β is low. For completeness,
in Appendix B, we include the predictive confidence distributions of all models for AR ∈ {0.5, 1}.

4.2 Domain Generalization

Following the analysis on adversarial robustness, we perform a series of experiments on several domain
generalization settings to assess both model discriminability and model selection when comparing PA to
accuracy-based metrics. Again, AFRT is taken as the comparison reference. In addition, Adam is run for
1000 epochs to search for the β parameter.

In this scenario, we conduct our experiments through a modified version of the DiagViB-6 dataset (Eulig
et al., 2021) that comprises distorted and upsampled coloured images of size 128 × 128 from the MNIST
dataset (LeCun, 1998). Each specific image factor is controllable, leading to changes in texture, hue, lightness,
position, and scale, and observations paired to assemble X ′ and X ′′. Furthermore, we control the specific
selected samples, differently from the common setting. In particular, we establish two unique domains for
the training data {e1

0, e2
0} under a pair of original instantiations of each image factor, where all factors from

e1
0 are different from e2

0. We induce a second pair of domains for the validation data, following precisely
the factor configuration of the training domains. Finally, a set of six additional domains, {e0, e1, . . . , e5}, is
generated, with each ei corresponding to images where i factors have been modified with respect to e1

0. Our
final dataset comprises two sets of 40 000 images for training, two sets of 20 000 images for validation, and

5However, this is not always necessarily true. We want to remark that task performance and predictive confidence are two
distinct aspects (cf. Appendix C).
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Figure 6: Predictive confidence distributions (left) and β plots (right) for the FMN attack. The results are
related to AR = 0.5 not to include perturbations against which the models are not robust. The models
perform similarly to the PGD case, with a less marked difference in the standard error for Wang et al.
(2023c) model.
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Figure 7: Effect of domain shift in the PA performance on a weak and robust model, over five distinct levels
of the shift ratio. Each plot depicts the response of both models to cumulative levels of distribution shift,
from one to five shifted factors. At each shift ratio, PA is able to differentiate between the two models.

six sets of 10 000 images for testing. Note that the original MNIST images used for generating the datasets
do not overlap. For more details on how the dataset was adjusted to our setting, refer to Appendix E.

For the experiment, we consider a ResNet50 model trained with three different algorithms: vanilla Empirical
Risk Minimization (ERM), Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) and Learning Invariant
Predictors with Selective Augmentation (LISA) (Yao et al., 2022).
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Figure 8: Average predictive confidence for three models—(blue) Vanilla ERM, (orange) IRM, and (green)
LISA, under a SF = 1. Each panel shows results at a different number of shift factors (#SF ), illustrating
how the models’ predictive confidence varies as the distribution shift increases. The left column remains
fixed, and the right column changes across #SF = 1, 2, 3, 4, 5. The final bar plot on the right depicts the β
for 5 shift factors. We see that higher model confidence leads to an adjusted higher β.

Model discriminability In Figure 7, we showcase the PA evaluation results over cumulative distribution
shifts. Each plot presents the variation of PA over five cumulative implementations of the shift factors (SF ),
in five distinct test sets corresponding to increasing amounts of shift ratio (SR). In particular, we subject a
subset of the test set to the related cumulative distribution shift to an SR corresponding to 20%, 40%, 60%,
80%, and 100% of the original dataset. Similarly to AR, SR = 1 entails a change of all the samples in the
dataset.

As depicted, and already well established in Koh et al. (2021), the overall trend of robustness starts with
ERM as the weakest model, followed by IRM, and then by LISA as the most robust. However, PA is also
able to identify more nuanced robustness behaviors. In particular, when SF = 1, ERM achieves a higher
PA score because it relies on domain-specific features already encountered during training, even when the
number of mismatching predictions is higher. PA is the only metric that was able to discriminate ERM.
Conversely, the domain invariance imposed by IRM slightly hinders PA under these mild shifts, even though
its overall AFR remains comparable or better.

This subtle source-versus-target domain difference clearly illustrates why PA is more suitable than AFRT

for evaluating robustness: the former captures how models respond to domain shifts that partially overlap
with training distributions, whereas the latter might mask these fine-grained effects. Consequently, IRM’s
robust design trades off some PA in low-shift regimes but does not sacrifice performance, distinguishing its
behavior from both ERM and LISA in a way that PA can clearly reveal.

As shown in Figure 8, predictive confidence varies across models under distribution shifts. ERM starts with
high confidence but declines as the number of shift factors increases, while IRM remains stable, and LISA
consistently exhibits the highest confidence, which suggests superior robustness. Higher confidence models
require a greater β for posterior alignment, as seen in the rightmost plot. Conversely, lower confidence models
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benefit from reduced β to flatten distributions and minimize mismatches. This effect is most pronounced
with five shift factors, where LISA maintains strong confidence while ERM struggles. This behavior aligns
with adversarial settings, where models with lower confidence require a higher β to align their distributions.
However, this is not strictly a matter of distribution alignment but rather mutual information maximization:
such models only push β to higher values if their predictions agree. PA demonstrates superior performance
because it effectively navigates the trade-off between model performance and informativeness. In particular,
models with lower confiPA effectively captures these dynamics, and through optimal selection of β can
enhance robustness under shifting distributions.

We also attempted to better understand the impact of controlled domain shifts and their impact on robustness
assessment through PA (cf. Appendix D for more details). A phenomenon observed in this work is the
decrease in classification performance as the number of shift factors increases, while the PA metric remains
comparable or slightly improves. Specifically, at SF = 5, the feature space differs significantly (as shown
in Figure 11) from those at SF ≤ 4, leading to lower accuracy yet roughly similar (or slightly improved)
robustness. This observation highlights that in more complex settings, where the effects of the covariate
shift are directly controlled (as in the case of DiagViB-6), the robustness of the model does not stem solely
from how out-of-distribution the samples are. Instead, as noted by Geirhos et al. (2020), it is influenced
by compounded learning phenomena related to which features are captured during training. Consequently,
future research should account for these interactions when designing evaluation protocols. For example, one
possibility is to test the model on all possible combinations of shift factors, thereby more comprehensively
revealing how different combinations and sequences of shifts affect robustness.

Model Selection While our metric has been primarily intended for evaluation, in this section, we in-
vestigate whether PA can also effectively guide model selection. To that end, we now examine a setting
where the inductive bias is deliberately “poisoned” by shortcut opportunities (SO), i.e., spurious correla-
tions between the predicted factor FP and the learning factor FL. As illustrated in Figure 12 (Appendix E),
we systematically control these co-occurrences to create zero or partial Generalization Opportunities (GO).
Under Zero-GO (ZGO), each instance of FP is exclusively paired with one instance of FL, strongly encour-
aging models to overfit to the shortcut. Partial GOs (1/2/3-CGO) break some of these exclusive pairings,
while Zero-SO (ZSO) allows all factor combinations. For more details on the experiment setup, refer to
Appendix E.

In contrast to the previous experiments, we exclude LISA here because its data-augmentation/interpolation
strategies would undermine the carefully constructed SO/GO configurations as the algorithm augments the
data based on the same image transformations present in this experiment. We therefore restrict our study
to ERM and IRM, trained on source environments. Additionally, following the model-selection findings
from earlier sections, we conduct in-distribution validation: the validation datasets match the same shift
configuration as the training datasets, ensuring that model selection is not confounded by unseen shifts. The
results in Table 1 show that robustness-driven model selection (based on PA) substantially improves the test
performance, in particular, in settings with partial GOs (i.e., 1-CGO or 3-CGO). In these cases, shortcut
learning is partially mitigated, so identifying models that best maintain consistent predictions across slightly
varied conditions (rather than just maximizing raw accuracy) proves crucial. Notably, IRM tends to benefit
more from these robustness-based criteria, converging to models that can resist spurious correlations and
better exploit the available GOs. Overall, this approach demonstrates how a focus on robust performance
through PA, rather than pure in-distribution accuracy can significantly enhance generalization.

5 Discussion

The PA metric is an attempt at assessing robustness under an epistemologically grounded approach. Such
an assessment is agnostic of the underlying data generation process and even the nature of the data itself,
therefore it is versatile and can be applied to explain diverse scenarios with a single theory, as illustrated in
the experimental study. Additionally, PA is general in its scope, as it only requires the (probabilistic) outputs
of the model. Our proposed version requires only the logits of a model6 to optimize a single parameter β,

6N.B. The model itself does not need to be differentiable, as we do not optimize its parameters.
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Test 1 Test 2 Test 3 Test 4 Test 5

Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc.

ERM

ZGO 53.2 ±0.01 54.6 ±0.01 55.7 ±0.01 66.7 ±0.01 66.6 ±0.01
1-CGO 62.9 +9.5 64.7 +10.2 60.8 +0.3 62.9 +2.2 64.2 +0.5
2-CGO 69.1 +9.4 71.2 +7.8 71.9 +2.2 76.2 -2.4 77.0 -2.8
3-CGO 73.1 +16.6 85.6 +3.6 70.1 +9.7 71.4 +6.4 72.1 +6.7
ZSO 99.6 ±0.01 92.8 -0.1 89.9 ±0.01 89.9 +0.2 85.9 ±0.01

IRM

ZGO 50.1 +5.9 50.5 +4.9 52.8 +9.5 64.4 +1.1 69.4 +1.2
1-CGO 63.0 +7.0 65.9 +7.6 59.4 +2.2 59.0 +1.8 59.0 +1.8
2-CGO 69.0 +10.6 69.7 +10.0 65.8 +4.7 77.0 +13.0 65.1 +12.6
3-CGO 79.5 +11.6 83.0 +9.8 73.6 +10.9 79.5 +11.0 72.2 +11.3
ZSO 99.4 +0.1 93.4 +1.3 89.2 +0.2 87.0 +1.6 87.0 +1.6

Table 1: Test performance under increasing levels of shift for models selected through different configurations
of factor co-occurrence in the hue-based learning factor experiment. Specifically, the performance of models
selected through validation accuracy (Acc) and the difference between accuracy-based and PA-based selection
(∆Acc) are reported. PA is able to select models that perform better than the accuracy-selected model in
most cases.

however, variants are possible (cf. Buhmann (2010); Buhmann et al. (2018)). By relying on the MEP, PA
provides an estimate of model’s robustness which is as neutral as possible with respect to missing information,
while sticking to the available observations. In addition to that, its Bayesian perspective, allows us to give
a robustness estimation of the entire hypothesis set and not just the specific model.

The experimental results show that PA evaluates models at a finer level, providing higher discriminability
and consistency in covariate shift settings than accuracy-based metrics. The discriminative power of AFRT

relies, instead, solely on test performance and does not fulfill the desired properties of a robustness metric.
Additionally, by relying on predictive confidence rather than preditions, PA favors classifiers that exhibit
desirable inductive biases, and grasps sensitivity to the nature of the shift at an even greater detail than in
standard analyses.

Our proposed version of PA has, however, limitations. The theoretical framework has been developed by
considering only the case of a finite hypothesis set. While this does not pose a severe drawback, and the
experimental results attest to the validity of this approach, a characterization of PA for continuous hypothesis
sets would be much more general in its scope. Additionally, we have assumed a uniform probability p(c), to
obtain a more tractable formula for the metric, ignoring the complexity of the hypothesis set. Adding this
information would improve the robustness estimation process, allowing for more fine-grained discrimination
between models. In future, we plan to extend some of the presented theoretical results to more general
kernels.

6 Conclusions

In this work, we have set some desiderata for designing a metric measuring robustness against forms of co-
variate shift such as adversarial noise and domain generalization. Following theoretically grounded thinking,
we proposed PA, a metric derived from the Posterior Agreement framework. We have conducted a com-
parison against commonly used accuracy metrics, presenting analyses based on novel aspects of the shift.
Our study shows that PA is consistent with the desired robustness properties. Additionally, by estimating
the overlap between posteriors over the hypothesis space, PA provides a more fine-grained evaluation and a
better discriminative power than hard-counting metrics, such as accuracy. In conclusion, our work lays the
basis for a more sound model robustness assessment, in the PA sense.
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A Proofs of theorems

A.1 Proof of Theorem 1

We first require the following lemma. For ease of reading, we slightly abuse the notation and consider c to
be a mapping from the object indices i instead of the measurements xi, that is c : {1, . . . , N} → {1, . . . , K}.
Lemma 1. Let N, K ∈ N and let {Eij | i ≤ N, j ≤ K} be an indexed set of values. Then,

∑
c∈C

N∏
i=1

Ei,c(i) =
N∏

i=1

K∑
j=1

Eij (15)

Proof. By induction on N . For the N = 1 base case, observe that C has only K elements, as there are only
K functions mapping {1} to {1, . . . , K}. Then∑

c∈C

∏
i≤N

Ei,c(i) =
∑
c∈C

E1,c(1) =
∑
j≤K

E1,j =
∏
i≤N

∑
j≤K

Ei,j . (16)

Assume now that the result holds for some N . We demonstrate then that it also holds for N + 1. Observe
that there is a bijection between C and {1, . . . , K}N . Therefore, we identify every function c ∈ C with the
tuple (c(1), . . . , c(N)). Conversely, we identify every tuple (c1, . . . , cN ) ∈ {1, . . . , K}N , with the function c
that maps i to ci.

∑
c∈C

∏
i≤N+1

Ei,c(i) =

=
∑

(c1,...,cN+1)∈{1,...,K}N+1

∏
i≤N+1

Ei,ci

=
∑

(c1,...,cN )∈{1,...,K}N

cN+1≤K

∏
i≤N+1

Ei,ci

=
∑

(c1,...,cN )∈{1,...,K}N

∑
cN+1≤K

∏
i≤N+1

Ei,ci

=
∑

(c1,...,cN )∈{1,...,K}N

∑
cN+1≤K

EN+1,c(N+1)
∏
i≤N

Ei,ci


=

 ∑
cN+1≤K

EN+1,c(N+1)

 ∑
(c1,...,cN )∈{1,...,K}N

∏
i≤N

Ei,ci

=

 ∑
cN+1≤K

EN+1,c(N+1)

 ∏
i≤N

∑
j≤K

Ei,j

=

∑
j≤K

EN+1,j

 ∏
i≤N

∑
j≤K

Ei,j

=
∏

i≤N+1

∑
j≤K

Ei,j . (17)

We are ready to prove the theorem
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Theorem 1

p(c | X) =
N∏

i=1
p(c(xi) | X), (18)

where
p(k | X) = exp(βFk(xi))∑K

j=1 exp(βFj(xi))
(19)

is the probability that xi is assigned to class k.

Proof. The Gibbs distribution is

p(c | X) =
exp

(
β
∑

i≤N Fc(xi)(xi)
)

∑
c∈C exp

(
β
∑

i≤N Fc(xi)(xi)
) . (20)

The numerator can be rewritten as follows:

exp

β
∑
i≤N

Fc(xi)(xi)

 =
∏
i≤N

exp
(
βFc(xi)(xi)

)
. (21)

We now apply Lemma 1: ∑
c∈C

∏
i≤N

exp
(
βFc(xi)(xi)

)
=
∏
i≤N

∑
k≤K

exp (βFk(xi)) (22)

Putting these results together yields that

p(c | θ, X) =
∏

i≤N exp
(
βFc(xi)(xi)

)∏
i≤N

∑
k≤K exp (βFk(xi))

(23)

=
∏
i≤N

exp
(
βFc(xi)(xi)

)∑
k≤K exp (βFk(xi))

(24)

=
∏
i≤N

p(c(xi) | X). (25)

A.2 Proof of Theorem 2

Theorem 2 With no prior information available, the empirical posterior agreement kernel k(X ′, X ′′), can
be rewritten as:

k(X ′, X ′′) = log

|C|
N∏

i=1

K∑
j=1

pi(j | X ′)pi(j | X ′′)

 . (26)

Proof.

k(X ′, X ′′) = log
(∑

c∈C

p(c | X ′)p(c | X ′′)
π(c)

)

= log
(

|C|
∑
c∈C

N∏
i=1

pi(c(xi) | X ′)
N∏

i=1
pi(c(xi) | X ′′)

)

= log
(

|C|
∑
c∈C

N∏
i=1

pi(c(xi) | X ′)pi(c(xi) | X ′′)
)

= log
(

|C|
N∏

i=1

K∑
k=1

pi(k | X ′)pi(k | X ′′)
)

. (27)
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The last step is obtained by applying Lemma 1.

A.3 Proof of Theorem 3

Theorem 3 Under no prior information available, the following properties hold for the empirical posterior
agreement kernel:

1. Boundedness: 0 ≤ PA(X ′, X ′′) ≤ log K.

2. Symmetry: PA(X ′, X ′′) = PA(X ′′, X ′).

3. Concavity: PA(X ′, X ′′) is a concave function in β < +∞.

Proof.

Property 1 (Boundedness) When all predictions match, β −→ +∞ and posteriors converge to Kro-
necker deltas centred at their respective MAPs, ŷ′

i and ŷ′′
i , coinciding for each i = 1, . . . , N :

PA(X ′, X ′′; β∗) = 1
N

log

|C|
N∏

i=1

K∑
j=1

δjŷ′
i
δjŷ′′

i

 = 1
N

log
(

|C|
N∏

i=1
1
)

= 1
N

(
log(|C|) +

N∑
i=1

log(1)
)

= log(|C|)
N

= log(KN )
N

= log(K).

When none of the predictions matches, β −→ 0 and posteriors converge to a uniform distribution:

PA(X ′, X ′′; β∗) = 1
N

log

|C|
N∏

i=1

K∑
j=1

1
K

· 1
K

 = 1
N

log
(

|C|
N∏

i=1

1
K

)
= 1

N

(
log(|C|) +

N∑
i=1

log(K−1)
)

= log(|C|)
N

− log(K) = log(K) − log(K) = 0.

Property 2 (Symmetry) Trivial, as it follows from the commutativity of the product.

Property 3 (Concavity) First, note that

k (X ′, X ′′) = log

|C|
N∏

i=1

K∑
j=1

pi (j | X ′) pi (j | X ′′)

 ∝
N∑

i=1
log

 K∑
j=1

pi (j | X ′) pi (j | X ′′)

 , (28)

where the posteriors pi(j | X), X ∈ {X ′, X ′′} are the Gibbs distributions over classes for each observation7:

pi(j | X) = exp(βR(j, xi))∑K
k=1 exp(βR(k, xk))

. (29)

Since the sum of concave functions is concave, we will focus on proving only the concavity of the log term.
In particular, we will show that

λ(β) = − log

 K∑
j=1

p(j | X ′)p(j | X ′′)

 (30)

is convex.
7Note that we do not specify the form of the cost function, therefore the theorem can be applied with any cost function

R(j, xi).
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Let us define R(j, x′) = R′
j and exp(βR(j, x′)) = exp(βR′

j) = e′
j , with x′ ∈ X ′. Similar notation is used for

x′′ ∈ X ′′. f(β) can be therefore rewritten as

λ(β) = − log
( ∑K

j=1 e′
je′′

j∑K
k=1 e′

k

∑K
p=1 e′′

p

)
= − log

 K∑
j=1

e′
je′′

j

+ log
(

K∑
k=1

e′
k

K∑
p=1

e′′
p

)
= −λ1(β) + λ2(β). (31)

First, let us focus on the first term. In particular,

d

dβ
λ1(β) =

∑K
j=1(R′

j + R′′
j)e′

je′′
j∑K

k=1 e′
ke′′

k

. (32)

The second derivative is

d2

dβ2 λ1(β) =
∑K

j=1(R′
j + R′′

j)2e′
je′′

j∑K
k=1 e′

je′′
j

−

(∑K
j=1(R′

j + R′′
j)e′

je′′
j∑K

k=1 e′
je′′

j

)2

. (33)

Therefore,

d2

dβ2 λ1(β) > 0 ⇐⇒

(
K∑

k=1
e′

je′′
j

) K∑
j=1

(R′
j + R′′

j)2e′
je′′

j

−

 K∑
j=1

(R′
j + R′′

j)e′
je′′

j

2

> 0 (34)

Using the distributive property of the product over the sum, the expression becomes
K∑

k=1

K∑
j=1

(R′
j + R′′

j)2e′
je′′

je′
ke′′

k −
K∑

k=1

K∑
j=1

(R′
j + R′′

j)(R′
k + R′′

k)e′
je′′

je′
ke′′

k > 0 (35)

⇐⇒
K∑

k=1

K∑
j=1

[(R′
j + R′′

j) − (R′
k + R′′

k)](R′
j + R′′

j)e′
je′′

je′
ke′′

k > 0 (36)

Let ∆(jj),(kk) = (R′
j + R′′

j) − (R′
k + R′′

k) define the difference in the cost attributed to reference class j and
the cost attributed to class k, accumulated over X ′, X ′′, and Ejk = e′

je′′
je′

ke′′
k.

Overall, the sum can be expressed as:
K∑

k=1

K∑
j=1

[(R′
j + R′′

j) − (R′
k + R′′

k)](R′
j + R′′

j)e′
je′′

je′
ke′′

k =
K∑

k=1

K∑
j=1

(R′
j + R′′

j)Ejk∆(jj),(kk) =
K∑

k=1

K∑
j=1

S(jj),(kk) (37)

Note that ∆(jj),(jj) = 0 =⇒ S(jj),(jj) = 0. Moreover, ∆(jj),(kk) = −∆(kk),(jj) and Ejk = Ekj . Then, the
previous term can be rewritten as

K∑
j=1

K∑
k<j

S(jj),(kk) + S(kk),(jj) =
K∑

j=1

K∑
k<j

(R′
j + R′′

j)Ejk∆(jj),(kk) + (R′
k + R′′

k)Ekj∆(kk),(jj) (38)

=
K∑

j=1

K∑
k<j

Ejk∆(jj),(kk)[(R′
j + R′′

j) − (R′
k + R′′

k)] =
K∑

j=1

K∑
k<j

Ejk∆2
(jj),(kk) (39)

The last term is strictly positive for Ejk > 0 =⇒ e′
j , e′′

j > 0, for j = 1, . . . , K, which is always possible for
β > 0. Therefore, the first term is convex.

We proceed equivalently with the second term:

λ2(β) = log

 K∑
j=1

e′
j

K∑
k=1

e′′
k

 = log

 K∑
k=1

K∑
j=1

e′
je′′

k

 (40)
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d

dβ
λ2(β) =

∑K
k=1

∑K
j=1(R′

j + R′′
k)e′

je′′
k∑K

k=1
∑K

j=1 e′
je′′

k

(41)

d2

dβ2 λ2(β) =
∑K

k=1
∑K

j=1(R′
j + R′′

k)2e′
je′′

k∑K
k=1

∑K
j=1 e′

je′′
k

−

(∑K
k=1

∑K
j=1(R′

j + R′′
k)e′

je′′
k∑K

k=1
∑K

j=1 e′
je′′

k

)2

> 0 (42)

⇐⇒

 K∑
k=1

K∑
j=1

e′
je′′

k

 K∑
k=1

K∑
j=1

(R′
j + R′′

k)2e′
je′′

k

−

 K∑
k=1

K∑
j=1

(R′
j + R′′

k)e′
je′′

k

2

> 0 (43)

⇐⇒
K∑

k=1

K∑
q=1

K∑
j=1

K∑
i=1

(R′
j + R′′

k)2e′
je′′

ke′
i − (R′

j + R′′
k)e′

je′′
k(R′

i + R′′
q)e′

ie
′′
i > 0 (44)

⇐⇒
K∑

k=1

K∑
q=1

K∑
j=1

K∑
i=1

(R′
j + R′′

k)e′
je′′

ke′
ie

′′
i [(R′

j + R′′
k) − (R′

i + R′′
q)] > 0 (45)

Similarly, as we did before, we define e′
je′′

ke′
ie

′′
i = E(jk),(iq) = E(ik),(jq) = E(jq),(ik) = E(iq),(jk) and ∆(jk),(iq) =

(R′
j − R′

i) + (R′′
k − R′′

q) = −∆(iq),(jk). Then,

d2

d2β
λ2(β) =

K∑
k=1

K∑
q=1

K∑
j=1

K∑
i=1

S(jk),(iq) =
K∑

k=1

K∑
q=1

K∑
j=1

K∑
i=1

(R′
j + R′′

k)E(jk),(iq)∆(jk),(iq) (46)

Therefore,

K∑
k=1

K∑
q<k

K∑
j=1

K∑
i<j

S(jk),(iq) + S(iq),(jk) (47)

=
K∑

k=1

K∑
q<k

K∑
j=1

K∑
i<j

(R′
j + R′′

k)E(jk),(iq)∆(jk),(iq) + (R′
i + R′′

q)E(iq),(jk)∆(iq),(jk) (48)

=
K∑

k=1

K∑
q<k

K∑
j=1

K∑
i<j

E(jk),(iq)∆(jk),(iq)[(R′
j + R′′

k) − (R′
i + R′′

q)] (49)

=
K∑

k=1

K∑
q<k

K∑
j=1

K∑
i<j

E(jk),(iq)∆2
(jk),(iq) (50)

The last term is again positive for e′
j , e′′

j > 0, j = 1, . . . , K.

Last, we prove the convexity of λ(β):

d2

dβ2 λ(β) =

 K∑
k=1

K∑
q<k

K∑
j=1

K∑
i<j

E(jk),(iq)∆2
(jk),(iq) −

K∑
j′=1

K∑
i′<j′

E(j′j′),(k′k′)∆2
(j′j′),(k′k′)

 (51)

By reindexing k′ = j and j′ = i it is clear that the second sum is contained in the first one, thus the negative
terms nullify, and the derivative is positive. Proving that λ(β) is absolutely convex in R+.

Note that concavity is assured for positive β and on the limit β → ∞ the curvature is not defined, so it is
advisable to start a numerical optimization procedure at a value β0 = 0+, since

lim
β→0+

d2

dβ2 F (β) > 0. (52)
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Figure 9: Adversarial setting: predictive confidence distribution for all tested models.

B Extended Results

In Figure 9, we report the predictive confidence distribution for all the tested models in the adversarial
setting. Again, it can be seen that the robust models lower their average confidence on X ′′, showing that
they are effectively detecting an ongoing attack. Addepalli et al. (2022) presents a long-tailed distribution
before the attack, favouring more conservative, less confident predictions, which penalize the detection of an
attack.

We include a plot of FMN for AR = 1. This case contains attacked images with a very high norm (ℓ∞ > 32).
The models were not trained to resist such powerful attacks, therefore the average conditional confidence is
more variable and all standard errors overlap.

C PA is not accuracy

It may be tempting to use Posterior Agreement to measure model performance instead of accuracy met-
rics. In Figure 10, we show an example of why this is a wrong use of PA. In particular, we display the
performance of PA and of a classification model (DistilBERT-base) under three different shift strategies:
(i) Levenshtein: addition, removal or substitution of characters in the sentence, (ii) Amplification: addition
of adjectives reinforcing the sentence’s sentiment (iii) Contradiction: addition of adjective weakening the
sentence’s sentiment. While in cases (i) and (iii) both metrics behave similarly, in case (ii) the addition
of reinforcing adjectives has the effect of increasing the confidence in the model predictions, improving the
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Figure 10: PA and accuracy for the IMDB sentiment classification task (Maas et al., 2011) under simple
attacks. Observations are perturbed by manipulating some characters (Levenshtein) and by replacing some
words with positive or negative adjectives that either encourage (Amplification) or discourage (Contradiction)
the true sentiment of the review. The shift power is defined as W , being 2W the number of replacements.

overall performance. The sensibility of the method to this shift is correctly detected by PA, that penalizes
the model decreasing its robustness score. This example again remarks that PA and accuracy are different
metrics meant to investigate distinct aspects of a model.

D Robustness and feature alignment

To better understand the impact of controlled domain shifts on robustness assessment through PA, we used
ERM and IRM algorithms to train a ResNet18 model for 50 epochs on Dtrain, using Adam with a learning
rate of 10−2. From each validation sample xval

0 , xval
1 , we selected 128 observations to form a reduced validation

set Dsub = {xsub
0 , xsub

1 } ⊂ Dval. Both xsub
0 and xsub

1 share the same random seed τval, thus containing the
same MNIST samples in the same order, and they differ only by a hue-based distribution shift (blue vs red;
cf. Table 2).

At the end of each epoch, we compute the principal component (via PCA) of the feature representations
of xsub

0 and xsub
1 separately. Each MNIST observation in Dsub thus has two projected values, one for each

sample. By examining this principal component (the direction of greatest variance), we can qualitatively
evaluate the inductive bias encoded after each training epoch.

Let Φc be the feature extractor of a classifier c after a given epoch. Denote by v0 and v1 the principal
directions of the feature space for xsub

0 and xsub
1 , respectively. We compute the projections of each observation

xsub
0,n and xsub

1,n onto these directions:

z0,n = ⟨Φc(xsub
0,n ), v0⟩, z1,n = ⟨Φc(xsub

1,n ), v1⟩, n = 1, . . . , Nsub.

The distribution of z0,n and z1,n across different classes indicates how well the inductive bias aligns with
task-relevant features: ideally, class membership should drive the principal variance in the feature space.
The class-conditional variance of these projections thus gauges the discriminative strength of the model’s
latent features and, in turn, its robustness to sampling variability.

Figure 11 illustrates the principal component projections of the feature space representations of samples
xsub

0 , xsub
1 for ERM and IRM algorithms at three different training stages. These results show that ERM

is unable to encode a representation that is both discriminative and invariant to domain shifts, as it either
displays a high cross-domain error or a high class-conditional variance. This indicates that its inductive
bias is exclusively driven by domain-specific features or by class-specific features, and possibly the high
learning rate avoids the model to converge to a more robust solution. In contrast, IRM is able to encode a
representation that reduces both qualitative measures at the same time, which indicates that the inductive
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Figure 11: Normalized principal component for each environment at three different training stages. ERM
(top) and IRM (bottom) algorithms are considered, and projections are colored by class membership. ERM
projections display either a high cross-domain error or a high class-conditional variance. In contrast, IRM is
able to encode a representation that reduces both measures at the same time, thus indicating a more robust
inductive bias.

bias is able to capture the most predictive features for the task at hand without being significantly influenced
by the shift in the hue factor.

These measures have been shown to qualitatively assess the suitability of the inductive bias for the afore-
mentioned sources of randomness separately.

E Details on the DiagViB-6 Dataset

The DiagViB-6 dataset comprises both source domains (S = {X0, X1}) and target domains (T =
{X2, X3, X4, X5}). Here, Xj represents the random variable corresponding to domain j, where j indi-
cates the number of shifted factors relative to X0. The classification task focuses on predicting the shape
factor (the digit) using handwritten 4s and 9s from MNIST. We systematically control the covariate shift
by varying visual attributes (e.g., color/hue) while keeping class identities intact.

Data Splits and Notation For each domain Xj , we generate four disjoint subsets of MNIST by applying
different random instantiations τ train

0 , τ train
1 , τval, and τ test. We thus define:

• Dtrain = {xtrain
0 , xtrain

1 }, where xj := xj ◦ τ train
j , for j = 0, 1.

• Dval = {xval
0 , xval

1 }, where xj := xj ◦ τval, for j = 0, 1.

• D(j)
test = {xtest

j }, where xtest
j := xtest

j ◦ τ test, for j = 0, . . . , 5.

In this way, the training data is subject to both sampling randomness (τ train
0 ̸= τ train

1 ) and domain shift
(X0 ̸∼ X1), while the validation and test splits each use a single instantiation, ensuring that distribution
shift (i.e., changes in hue or other visual attributes) is the only significant source of randomness across X ′

and X ′′. Overall, we create two sets of 40 000 images for training, two sets of 20 000 images for validation,
and six sets of 10 000 images for testing.

Controlled Covariate Shift By design, each shift factor introduced in domain Xj modifies specific image
features (e.g., color channels, texture patterns) while preserving the underlying digit shape. Because each
domain relies on the same MNIST base classes (4s and 9s), domain shift can be precisely engineered to test a
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Figure 12: Representation of the co-occurrence pattern in between learning factors F L and predicted factors
F P for the ZGO, CGO and ZSO settings that will be considered in this experiment.

# Shift Factors 0 1 2 3 4 5
Hue red blue blue blue blue blue
Lightness dark dark bright bright bright bright
Position CC CC CC LC LC LC
Scale normal normal normal normal large large
Texture blank blank blank blank blank tiles
Shape 4,9 4,9 4,9 4,9 4,9 4,9

Table 2: Specific image factors associated with each environment considered in the model discriminability
experiments. CC and LC account for centered center and centered low, respectively.

model’s robustness. Hence, the DiagViB-6 setup allows for a clear separation between sampling randomness
and shift-induced variability:

• Sampling randomness: Different subsets of MNIST (different seeds) across training, validation, and
test.

• Domain shift: Controlled variations (e.g., hue) systematically applied to form X1, . . . , X5 from X0.

Rationale for DiagViB-6 This setup maximizes the potential for learning invariant features by exposing
models to progressively more challenging shifts during training. It also provides strong validation and
testing conditions to evaluate how well the learned representations generalize to new shifts. Because the
same underlying digit classes are maintained across domains, the impact of domain shift on classification
can be directly attributed to feature manipulation (e.g., hue, stroke thickness), rather than confounded by
changes in class identity. This approach follows the methodology outlined in Geirhos et al. (2020), where
controlling image factors enables a clearer view of the shortcut learning phenomena.

DiagViB-6 for Model Discriminability To adjust DiagViB-6 to specific parameters of our multiple
environments, we have defined the values described in Table 2 as the shift factor settings for each environment.
An example of training, validation, and test samples subject to different distribution shifts is depicted in
Figure 13.

DiagViB-6 for Model Selection To evaluate model selection under domain generalization, we examined
the impact of hue shift as the primary source of inductive bias. Since hue represents a significant variation
in image representation, this experiment provides insight into the consistency of model selection criteria.
For this experiment, two different sampling instantiations for the validation datasets are considered, de-
noted as τval

0 ̸= τval
1 . This means that D(0)

val and D(1)
val correspond to different instantiations of the hue shift

factor. The training and validation dataset configurations are detailed in Table 2. Similarly to the model
discriminability experiment, training datasets are always drawn from source domains and consist of samples
Dtrain = {xtrain

0 , xtrain
1 }. Validation datasets can be drawn from either source or target domains, leading to

different generalization scenarios.
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Train Validation Test (0 - 5)

Figure 13: Samples from the training, validation and test datasets. Training samples belong to different
MNIST subsets, whereas validation and test samples are the transformations of the same observation.

Env. Hue Lightness Position Scale Texture Shape

Training 0 red dark CC large blank 1,4,7,9
1 blue dark CC large blank 1,4,7,9

Validation 0 red dark CC large blank 1,4,7,9
SD 1 red dark CC large blank 1,4,7,9
ID 1 blue dark CC large blank 1,4,7,9

1F-MD 1 magenta dark CC large blank 1,4,7,9
5F-MD 1 green bright UL small tiles 1,4,7,9

Validation OOD 0 yellow dark CC large blank 1,4,7,9
1 magenta dark CC large blank 1,4,7,9

Table 3: Image factors associated with each of the environments considered in the model selection experiment.
CC and UL account for ’centered center’ and ’upper left’, respectively.

First, when both D(0)
val and D(1)

val are drawn from source domains, two configurations are considered. If
validation samples originate from the same distribution as training, they are in the same distribution (SD)
setting. If they come from source domains but with different hue instantiations than the training data,
they are in the in-distribution (ID) setting. Second, when D(0)

val is drawn from source domains and D(1)
val

from target domains, the mixed distribution (MD) setting applies. Depending on the magnitude of the hue
shift, we define two cases: a 1-factor mixed distribution (1F-MD), where only hue varies, and a 5-factor
mixed distribution (5F-MD), where hue is combined with additional variations. Finally, when both D(0)

val and
D(1)

val are drawn from target domains, the setup corresponds to the out-of-distribution (OOD) setting, where
validation samples differ entirely from training.

This setup ensures that models are systematically tested under increasing levels of domain shift, from mild
(ID, 1F-MD) to severe (5F-MD, OOD). By doing so, we assess the robustness of model selection criteria
when generalizing to unseen hue shifts. For more details on the final dataset configuration please refer to
Table 3.
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