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Abstract

Multi-objective Bayesian optimization (MOBO) provides a principled framework
for navigating trade-offs in molecular design. However, its empirical advantages
over scalarized alternatives remain underexplored. We benchmark a simple Pareto-
based MOBO strategy—Expected Hypervolume Improvement (EHVI)-against a
simple fixed-weight scalarized baseline using Expected Improvement (EI), under a
tightly controlled setup with identical Gaussian Process surrogates and molecular
representations. Across three molecular optimization tasks, EHVI consistently
outperforms scalarized EI in terms of Pareto front coverage, convergence speed,
and chemical diversity. While scalarization encompasses flexible variants - includ-
ing random or adaptive schemes—our results show that even strong deterministic
instantiations can underperform in low-data regimes. These findings offer concrete
evidence for the practical advantages of Pareto-aware acquisition in de novo mo-
lecular optimization, especially when evaluation budgets are limited and trade-offs
are nontrivial.

1 Introduction

The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem:
a viable candidate must simultaneously satisfy competing criteria such as potency, safety, and
pharmacokinetic properties [28, 10, 13]. Scalarization—where multiple objectives are collapsed
into a single score using weighted combinations [27, 19]—remains a widely used strategy due to
its compatibility with single-objective optimization pipelines. However, scalarization requires a
priori knowledge of objective weightings, which are often uncertain, context-dependent, or poorly
defined in real-world drug design. Furthermore, any fixed weighting yields only a single point on the
Pareto front, necessitating repeated and often redundant optimization runs to recover a diverse set of
trade-off solutions.

These limitations motivate Pareto-based multi-objective Bayesian optimization (MOBO) methods
that preserve vector-valued structure of the problem and directly seek non-dominated solutions across
all objectives [14, 40, 1]. Rather than collapsing objectives, MOBO aims to efficiently approximate
the Pareto front by guiding evaluations toward regions that improve coverage. This approach has been
shown to recover more chemically diverse and balanced solutions using fewer queries—particularly
valuable in low-data, expensive-to-evaluate regimes. Beyond molecular design, MOBO has also
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demonstrated success across domains including materials science [17, 25], protein engineering [30],
and robotics [22, 37].

Despite this growing interest, few empirical studies systemically benchmark Pareto-based MOBO
against specific scalarization strategies under controlled conditions. Prior work often defaults
to scalarization heuristics [13, 21] without evaluating their performance relative to the dedicated
Pareto-based acquisitions. In this study, we present a controlled comparison between a fixed-weight
scalarized Bayesian optimization strategy (using Expected Improvement) and a Pareto-based MOBO
approach (using Expected Hypervolume Imrprovement). Both are implemented using identical
Gaussian Process surrogates and molecular representations, isolating the acquisition function as the
key difference. By evaluating performance across three GUACAMOL benchmark tasks, we highlight
how even basic Pareto-based strategies can outperform scalarization in data-constrained molecular
discovery scenarios—supporting MOBO as a more robust default for early-stage optimization. To
ensure reproducibility, we will release the code and data upon acceptance, with links provided in the
final version of the paper.

2 Background and Related Work

2.1 Multi-Objective Optimization and Pareto Optimality

Multi-objective optimization (MOO) concerns optimizing multiple competing objectives simul-
taneously. Formally, the goal is find x* € X that maximizes a vector-valued objective R(x) =
[R1(x), ..., R4(x)]. In general, no single x maximizes all objectives when they conflict. Instead, the
optimal solutions form the Pareto set, comprising all x for which no other x’ improves all objectives.
A point x; is said to dominate x5 if R;(x1) > R;(x2) for all 7 and strictly greater for at least one i.
The Pareto front is the image of the Pareto-optimal set in objective space.

Classical techniques to approximate the Pareto front inlcude evolutionary algorithms such as NSGA-II
[8] and MOEA/D [39], which maintain a population of candidate solutions. While effective for
exploring diverse fronts, they are sample-inefficient and thus prohibitive when objective evaluations
are expensive, as is often the case in scientific design problems [9, 24].

2.2 Bayesian Optimization with Gaussian Processes

Bayesian optimization is a sample-efficient framework for optimizing expensive black-box functions.
It employs a surrogate model—typically a Gaussian Process (GP)—to model the function’s uncer-
tainty and selects new evaluations using an acquisition function «(z) that balances exploration and
exploitation [3].

A Gaussian Process (GP) is the most widely used surrogate in BO due to its nonparametric flexibility
and closed-form posterior. A GP prior over functions f: X — R is specified by a mean function
m(x) (often taken as zero) and a covariance (kernel) function k(x,x’) [33]. Given observations
D,, = (x;,Yi);—, with Gaussian noise y; = f(x;) + €;,;&; ~ N(0,0?), the GP posterior at a
candidate x has predictive distribution:
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with K, [i, 7] = k(x;,%;) and k,,(x) = [k(x,x;)]/_; [33]. These expressions quantify both the
surrogate mean and its epistemic uncertainty, enabling a principled trade-off in «(x).

BO driven by GP surrogates has achieved remarkable sample efficiency across applications ranging
from engineering design to hyperparameter tuning, often requiring orders of magnitude fewer
evaluations than grid search or evolutionary algorithms [3]. In molecular optimization, one must also
capture chemical similarity in the kernel choice. A popular choice is the Tanimoto kernel[32] on
binary molecular fingerprints x, ' € [0, 1]%, defined as:

-
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which measures the ratio of shared substructures to the total fingerprint bits [34]. When used within
a GP, the Tanimoto kernel effectively models structure—property relationships in small-molecule
spaces and yields strong predictive performance on tasks like binding affinity and solubility prediction
[15, 36].




2.3 Scalarization and Pareto-based Optimization Strategies

Methods for multi-objective optimization (MOQO) broadly fall into scalarization-based and
Pareto-based approaches. Scalarization methods reduce a vector-valued objective f(z) =
(fi(z),- -, fi(x)) to a scalar-valued surrogate, enabling the use of well-established single-objective
acquisition functions such as Expected Improvement (EI) or Upper Confidence Bound (UCB). A

classical formulation is the weighted sum fy(xz) = Zle w; fi(x) where the weights w; reflect
trade-off preferences. While widely used [9, 23], this approach is only guaranteed to recover Pareto-
optimal points when the front is convex. Covering non-convex regions typically requires multiple
optimization runs with diverse weight configurations, making the approach computationally expensive
and potentially redundant.

To overcome these limitations, alternative scalarization techniques such as the Tchebycheff scalar-
ization have been developed, with frcpepychers(2) = maxi<i<m{Ni(fi(z) = 27)} where A, are
scaling weights and z;" is a reference point (typically the ideal vector of component-wise maxima).
This scalarization emphasizes the worst-performing objective, yielding stronger guarantees for recov-
ering solutions on convex fronts [2, 26]. Recent work has shown that only a small set of well-chosen
Tchebycheff scalarizations can approximate the entire Pareto front with high fidelity and sample
efficiency [26].

A particularly impactful advancement comes from the hypervolume scalarization framework in-
troduced by Golovin and Zhang [16], which establishes a formal connection between scalarized
objectives and the hypervolume indicator—a gold-standard, Pareto-compliant metric [41]. Specific-
ally, they show that for a suitable distribution D) over weight vectors and corresponding scalarization
functions sy, the hypervolume of a set Y C R? with respect to a reference point z € R can be
expressed as HV,(Y') = ¢ Exwp, [maxy,cy sx(y — 2)].

This theoretical result provides a principled mechanism for converting hypervolume maximization
into a sequence of scalar optimization subproblems. In practice, it enables provable convergence
to the Pareto front using standard Bayesian optimization techniques, such as Thompson Sampling
or UCB, by simply sampling a new scalarization sy at each iteration. Golovin and Zhang [16]
derive cumulative hypervolume regret bounds of order O(T‘l/ 2), establishing the method as both
theoretically grounded and sample-efficient for multi-objective black-box optimization.

In contrast to scalarization, Pareto-based acquisition functions preserve the vectorized nature of
objectives and directly aim to improve coverage of the Pareto front. Each objective is modelled
independently, often using Gaussian Processes and acquisitions are scored based on their expected
contribution to the Pareto frontier.

The most widely used Pareto-based acquisition is the Expected Hypervolume Improvement (EHVI)
[11, 7], which quantifies the increase in dominated volume achieved by adding a new sample.
Formally, for the current approximation set P, and reference point z;, the EHVI at candidate point =
is given by:

EHVI(z) = E[HV,(P: U{f(x)}) — HV,(PL)]

Unlike scalarization, which converts MOO into a single-objective landscape, EHVI retains the multi-
dimensional structure of the problem, promoting exploration in underrepresented Pareto regions.
Refinements, such as Predictive Entropy Search for Multi-objective Optimization (PESMO) [20],
take an information-theoretic view, maximizing expected information gain about the Pareto set.
Methods such as DGEMO [24] go further by jointly optimizing for hypervolume improvement and
diversity in both design and objective space. By modeling the Pareto front as a piecewise manifold
and partitioning it into local diversity regions, DGEMO selects a diverse batch of samples to improve
coverage efficiency - an especially useful property in low-data regimes.

3 Experimental Setup

Our experiments are designed to assess the practical performance of Pareto-based acquisition
strategies for multi-objective Bayesian optimization (MOBO) in molecular design tasks. Rather than
contrasting MOBO with scalarization broadly—which encompasses a diverse array of formulations
including random scalarizations [16, 29]—we focus on a controlled comparison between two rep-
resentative acquisition strategies: Expected Hypervolume Improvement (EHVI), which explicitly



targets Pareto front expansion, and a fixed-weight Expected Improvement (EI), a baseline scalarized
acquisition function. We aim to answer the following questions:

1. Optimality: Does EHVI discover solutions closer to approximate Pareto front than scalar-
ized EI?

2. Diversity: Do molecules selected by EHVI exhibit greater structural diversity?

3. Trade-offs: How do EHVI and EI differ in balancing optimality and diversity under fixed
BO evaluation budgets?

We obtain positive empirical results across the 3 MPOs.

3.1 Benchmark Tasks

We evaluate both methods on three multi-property optimization tasks from GUACAMOL [4]: Amlodipine
MPO, Fexofenadine MPO, and Perindopril MPO. Each task involves optimizing three molecular
properties jointly—target similarity, QED, and either logP, SA score, or molecular weight—thus
posing realistic trade-offs encountered in drug discovery pipelines.

3.2 Optimization Setup

We adopt a multi-objective Bayesian optimization framework where each molecular property f;(m)
is modeled independently using Gaussian Processes (GPs). Each GP is equipped with the MinMax
kernel, a count-aware generalization of the Tanimoto kernel suitable for Morgan fingerprints. The

kernel is defined as: . ,

kMinMax(fU7 1'/) = Zl mln(x“ xl/)
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This kernel measures structural similarity between molecules encoded as extended-connectivity
fingerprints (ECFPs) [34] of radius 3, computed via RDKit using count-based features without
truncation. Each molecular property is modeled as a GP prior f; ~ GP(u;, K;(x;, z4)). Predictions
across all objectives yield independent Gaussian posteriors characterized by predictive means and
variances ji(m) and 2(m), respectively. The predictive distribution for each GP is Gaussian,
parameterized by a mean and variance derived from exact kernel matrix computations. These GPs
are implemented in a JAX-based framework, kernel_only_GP, supporting efficient parallelization
and differentiable matrix operations. All model hyperparameters, including amplitude o« = 1.0 and
noise variance s = 10~%, are held fixed across trials and methods to ensure consistent modeling
assumptions.

We compare two acquisition strategies: Expected Hypervolume Improvement (EHVI), a Pareto-based
method that promotes non-dominated frontier expansion, and scalarized Expected Improvement (EI)
with fixed weights, which collapses the objectives into a single scalar score. EHVI is computed via
Monte Carlo sampling using 1000 draws per candidate molecule. At each optimization step, a single
molecule is selected from a fixed candidate pool of 10,000 compounds sampled from the GUACAMOL
training set. The selected molecule is evaluated, added to the training archive, and the GP models are
updated accordingly. Each run proceeds for 200 optimization rounds.

Experiments are repeated with three different random seeds per method. We report the mean
and standard deviation of all evaluation metrics. Given the small number of trials, we assess the
consistency and magnitude of observed differences using effect size metrics—Cohen’s d [6] and
Cliff’s Delta [5]. All computations are performed on NVIDIA H100-47 GPUs.

3.3 Evaluation Metrics and Performance Indicators

To evaluate the performance of multi-objective optimization across both convergence quality and
molecular diversity, we adopted three complementary metrics: Hypervolume Indicator (HVI) [12], the
R2 indicator [18] and the #Circles metric [38]. The HVI measures the volume of the objective space
dominated by the non-dominated solutions relative to a reference point, capturing both convergence to
the Pareto front and diversity of trade-offs explored. A higher HVI value indicates broader and more
optimal coverage of the objective space. The R? indicator quantifies the quality of the Pareto front
approximation by comparing it to a fixed set of uniformly distributed reference directions, as adapted
from the setup in Jain et al. [21]. Specifically, it computes the augmented Tchebycheff scalarization
in each direction: for each reference vector v, it calculates the worst-case deviation max;v; - |u; — ;|



where u is the utopian (ideal) point and s is a candidate solution. It then selects the best such solution
for each direction and averages over all directions. Thus, lower R? values indicate a front that is both
closer and more uniformly distributed relative to the ideal front [18]. Finally, the #Circles metric
quantifies structural diversity in the chemical space by counting the number of pairwise dissimilar
molecules exceeding a Tanimoto distance threshold ¢. We compute it on the set of Pareto-optimal
candidates from the initial and acquired molecules over 200 BO evaluations, as the metric is designed
to assess the effective space explored by a representative set of high-quality or relevant solutions
rather than all generated samples [38]. Informed by axiomatic diversity principles, #Circles offers a
geometry-aware, thresholded view of chemical diversity: at higher thresholds (i.e. requiring greater
dissimilarity), a larger #Circles value indicates that the candidate set spans more structurally distinct
regions of the chemical space.

4 Results

This section presents a comparative evaluation of EHVI and scalarized EI across 3 multi-objective
molecular optimization tasks. Across all tasks and metrics - hypervolume (Figure 1), R? indicator
(Figure 2), and chemical diversity via the #Circles metric (Figure 3), EHVI demonstrates consistent
advantages. Statistical tests provided in Appendix A.2 (Tables 3, 4) corroborate these trends: for
hypervolume, EHVI achieves medium to large effect sizes (Cohen’s d = 0.576 — 1.093) and favorable
Cliff’s delta values indicating better performance across matched trials. For the R? indicator, lower
values for EHVI suggest improved approximation of the Pareto front, with strong negative effect
sizes (e.g. d = —2.56 on Fexofenadine MPO). In terms of diversity, EHVI consistently explores
more structurally distinct solutions at higher Tanimoto thresholds. These results demonstrate EHVI’s
robustness: it not only accelerates convergence and enhances front coverage, it also maintains better
front approximation and promotes chemically diverse candidate solutions. We next present the
detailed metric-wise breakdown across all tasks.

4.1 Hypervolume Indicator (HVI)

Across all tasks, EHVI consistently outperforms scalarized EI and random sampling in hypervolume
performance (Figure 1. In Amlodipine, EHVI achieves faster convergence and higher final hyper-
volume with lower variance. For Fexofenadine, the gap is even more pronounced—EHVI dominates
throughout, especially in later stages. In Perindopril, both methods reach similar final values, but
EHVI converges earlier and exhibits reduced variance, indicating greater sample efficiency and
robustness. These results underscore EHVI’s consistent advantage in front expansion and reliability
across diverse multi-objective settings.
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Figure 1: Hypervolume indicator (HVI) over 200 Bayesian optimization iterations for each MPO
task. EHVI consistently achieves higher hypervolume than scalarized EI and random sampling, with
faster convergence and greater final front coverage. Shaded areas represent standard deviation over 3
random seeds.

4.2 RZ? Indicator

In Figure 2 below, EHVI exhibits clear superiority in Pareto front approximation across all tasks. In
Fexofenadine, it achieves the lowest and most stable R? scores, with a wide and persistent gap over
scalarized EI. Amlodipine shows modest separation, with EHVT attaining consistently lower scores
after early fluctuations. In Perindopril, EHVI dominates from mid-optimization onward, yielding
the most stable and lowest variance estimates. These trends indicate that EHVI not only expands the
front efficiently but also produces more uniformly optimal trade-offs across objectives.
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Figure 2: R? indicator across 200 Bayesian optimization iterations for each MPO task. Lower
values reflect better approximation of the true Pareto front under varying utility directions. EHVI
consistently achieves lower R? values than scalarized EI and random sampling, indicating superior
convergence toward the reference front. Shaded regions show standard deviation over 3 random
seeds.

4.3 #Circles Metric

EHVI demonstrates superior or comparable chemical diversity across all MPO tasks shown in Figure
3. In Fexofenadine, EHVI clearly outpaces EI at thresholds ¢ > 0.60, uncovering significantly more
distinct structural motifs. Perindopril shows a similar advantage, with EHVI sustaining diversity
across the full range of thresholds. In Amlodipine, both methods perform similarly at low to mid
thresholds, but EHVI maintains higher diversity beyond ¢ = 0.75 suggesting enhanced exploration
of chemically dissimilar optima. These patterns highlight EHVI’s ability to balance objective
performance with structural novelty.
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Figure 3: Structural diversity assessed using the #Circles metric across increasing Tanimoto distance
thresholds. Higher values indicate broader exploration of structurally distinct regions of the chemical
space. EHVI consistently maintains or exceeds the diversity of scalarized EI, particularly at stricter
thresholds. Error bars denote standard deviation across 3 random seeds.

5 Discussion

This study offers a systematic empirical investigation of Pareto-based Bayesian optimization using
Expected Hypervolume Improvement (EHVI), contrasting it against a widely used single-objective
acquisition strategy: scalarized Expected Improvement (EI) with fixed weights. We focus on a
fixed-weight baseline, commonly used in practical pipelines. This allows us to isolate the benefits of
Pareto-aware acquisition in molecular optimization, without confounding from scalarization strategy
variation.

Our findings demonstrate that EHVI yields more sample-efficient exploration across a range of
realistic multi-property optimization (MPO) tasks. These gains are reflected across three orthogonal
metrics—hypervolume coverage, front approximation accuracy (R2), and structural diversity—and
are statistically robust across random seeds, as shown in Appendix A.2 (Tables 3, 4). Crucially,
these improvements are not due to changes in surrogate fidelity, kernel choice, or representation
capacity: both EHVI and scalarized EI operate under the same model assumptions and input features,
underscoring the importance of acquisition strategy alone in driving performance.

Another promising direction involves evaluating the role of Monte Carlo (MC) sampling in EHVI’s
performance. Our current setup uses 1000 MC samples per candidate evaluation, which strikes a bal-
ance between computational overhead and estimate fidelity. However, increasing this number could



reduce integration variance and enhance the accuracy of hypervolume estimates, potentially acceler-
ating convergence and improving solution quality. A dedicated ablation study could clarify whether
EHVI disproportionately benefits from higher sampling rates—particularly in higher-dimensional
tasks where MC estimation errors can compound [31]. Similarly, future work should investigate how
the precision of the Monte Carlo estimate—i.e., the amount of stochastic noise in the acquisition
value—impacts optimization behavior. In particular, it remains unclear whether EHVI or scalar-
ized EI are more sensitive to noisy acquisition signals, which could affect candidate selection and
convergence speed.

We also emphasize the role of molecular representation. This study employed full-dimensional count-
based ECFP vectors with a MinMax kernel—an information-rich but high-dimensional descriptor
space. While this aligns with recent findings that preserving fingerprint fidelity improves surrogate
model accuracy [35], it also introduces challenges related to model scalability and sample effi-
ciency. Benchmarking EHVI and EI using reduced-dimensional or contrastively learned fingerprint
embeddings could reveal how robust each method is to representation compression or abstraction.

Despite the promising results presented here, our surrogate models use independent Gaussian Pro-
cesses without adaptive hyperparameter tuning. This choice prioritizes control and reproducibility,
but may limit adaptability to evolving posterior landscapes, particularly in complex or noisy objective
settings. Exploring more expressive surrogates—such as deep kernel methods, ensembling, or dynam-
ically updated GPs—could enhance fidelity and robustness. Additionally, while EHVI and scalarized
EI offer strong baselines, other acquisition strategies deserve future evaluation. For example, ParEGO
[23], PESMO [20], and generative diversity-promoting methods like Multi-Objective GFlowNets [21]
offer orthogonal strengths. Expanding evaluations to include noisy, constrained, or synthesis-feasible
objectives would further establish the practical utility of Pareto-aware acquisition.

6 Conclusion

We conducted a focused comparison between Pareto-based Bayesian optimization (EHVI) and
scalarized Expected Improvement (EI) with fixed weights across multi-objective molecular design
tasks. EHVI consistently outperforms EI, achieving higher hypervolume, lower R? values, and
greater structural diversity. Statistical effect size analysis further confirms these gains are meaningful
despite limited runs. Unlike scalarized EI, which optimizes a fixed utility, EHVI explicitly captures
trade-offs, leading to more balanced and diverse Pareto fronts. These results demonstrate the value of
Pareto-aware acquisition in data-constrained settings and motivate future work on adaptive surrogates,
representation learning, and diversity-aware BO strategies.
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A Appendix

A.1 Final Performance Metrics after 200 BO evaluations

Table 1: Final hypervolume (mean =+ std) after 200 BO evaluations for each MPO task, computed
over 3 random seeds.

Task EHVI Scalarized EI

Fexofenadine 0.4022 £ 0.0661 0.3492 4+ 0.0190
Amlodipine 0.2421 £0.0425 0.2220 £ 0.0251
Perindopril 0.2080 £ 0.0016  0.2088 4= 0.0230

Table 2: Final R? values (mean =+ std) after 200 BO evaluations for each MPO task, computed over 3
random seeds.

Task EHVI Scalarized EI

Fexofenadine 0.3728 4 0.0204 0.4360 + 0.0293
Amlodipine 0.1649 + 0.0203 0.1816 £ 0.0212
Perindopril 0.1582 + 0.0087 0.1953 £ 0.0322
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A.2 Cohen’s d and CIiff’s Delta

Table 3: Effect size metrics comparing EHVI and scalarized EI on the hypervolume indicator across
three MPO tasks.

Task Cohen’s d Cliff’s Delta
Fexofenadine 1.093 0.556
Amlodipine 0.576 0.333
Perindopril -0.050 0.333

Table 4: Effect size between EHVI and scalarized EI for R? values across each task. Negative values
indicate better performance by EHVIL

Task Cohen’s d  CIiff’s Delta
Fexofenadine —2.560 —1.000
Amlodipine —0.770 —0.556
Perindopril —1.602 —0.778
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