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ABSTRACT

Large language models (LLMs) have shown the ability to produce fluent and co-
gent content, presenting both productivity opportunities and societal risks. To
build trustworthy AI systems, it is imperative to distinguish between machine-
generated and human-authored content. The leading zero-shot detector, Detect-
GPT (Mitchell et al., 2023), showcases commendable performance but is marred
by its intensive computational costs. In this paper, we introduce the concept of
conditional probability curvature to elucidate discrepancies in word choices be-
tween LLMs and humans within a given context. Utilizing this curvature as a
foundational metric, we present Fast-DetectGPT 1, an optimized zero-shot de-
tector, which substitutes DetectGPT’s perturbation step with a more efficient sam-
pling step. Our evaluations on various datasets, source models, and test conditions
indicate that Fast-DetectGPT not only surpasses DetectGPT by a relative around
75% in both the white-box and black-box settings but also accelerates the detec-
tion process by a factor of 340, as detailed in Table 1.

Method 5-Model Generations ↑ ChatGPT/GPT-4 Generations ↑ Speedup ↑
DetectGPT 0.9554 0.7225 1x

Fast-DetectGPT 0.9887 0.9338 340x(relative↑ 74.7%) (relative↑ 76.1%)

Table 1: Detection accuracy (measured in AUROC) and computational speedup for machine-
generated text detection. The white-box setting (directly using the source model) is applied to
the methods detecting generations produced by five source models (5-model), whereas the black-
box setting (utilizing surrogate models) targets ChatGPT and GPT-4 generations. Results are aver-
aged from data in Table 2 for the 5-model generations and Table 3 for ChatGPT/GPT-4, where the
‘relative↑’ is calculated by (new− old)/(1.0− old), representing how much improvement has been
made relative to the maximum possible improvement. Speedup assessments were conducted using
the XSum news dataset, with computations on a Tesla A100 GPU.

∗Corresponding author.
1The code and data are released at https://github.com/baoguangsheng/fast-detect-gpt.
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Conditional Probability Curvature

Figure 1: Distribution of conditional probability curvatures of the original human-written passages
and the machine-generated passages by four source models on 30-token prefix from XSum.

1 INTRODUCTION

Large language models (LLMs) like ChatGPT (OpenAI, 2022), PaLM (Chowdhery et al., 2022),
and GPT-4 (OpenAI, 2023) have dramatically influenced both industrial and academic landscapes.
These models have transformed productivity in diverse fields such as news reporting, story writing,
and academic research (M Alshater, 2022; Yuan et al., 2022; Christian, 2023). However, their misuse
also introduces concerns—especially regarding fake news (Ahmed et al., 2021), malicious product
reviews (Adelani et al., 2020), and plagiarism (Lee et al., 2023). The sheer fluency and coherence of
content generated by these models make it challenging, even for experts, to determine its human or
machine origin (Ippolito et al., 2020; Shahid et al., 2022). Addressing this issue necessitates reliable
machine-generated text detection methods (Kaur et al., 2022; Chen & Shu, 2023).

Existing detectors can be grouped into two main categories: supervised classifiers (Solaiman et al.,
2019; Fagni et al., 2021; Mitrović et al., 2023) and zero-shot classifiers (Gehrmann et al., 2019;
Mitchell et al., 2023; Su et al., 2023). While supervised classifiers excel within their specific training
domains, they falter when confronted with text from diverse domains or unfamiliar models (Bakhtin
et al., 2019; Uchendu et al., 2020; Pu et al., 2023). Zero-shot classifiers, using a pre-trained language
model directly without finetuning, are immune to domain-specific degradation and are on par with
supervised classifiers on detection accuracy. This stems from their need for “universal features” that
can function across multiple domains and languages (Gehrmann et al., 2019; Mitchell et al., 2023).

A typical zero-shot classifier, DetectGPT (Mitchell et al., 2023), works under the assumption that
machine-generated text variations typically have lower model probability than the original, while
human-written ones could go either way. Despite its effectiveness, employing probability curvature
demands the execution of around one hundred model calls or interactions with services such as the
OpenAI API to create the perturbation texts, leading to prohibitive computational costs.

In this paper, we posit a new hypothesis for detecting machine-generated text. By viewing text
generation as a sequential decision-making process on tokens, our core assertion is that humans and
machines exhibit discernible differences in token choice given a context. More specifically, ma-
chines lean towards tokens with higher statistical probability due to their pre-training on large-scale
human-written corpus, while humans individually exhibit no such bias because they craft sentences
based on underlying meanings, intentions, and contexts rather than data statistics. As a consequence,
the conditional probability function p(x̃|x) reaches its maximum point at a machine-generated x (ev-
idenced by a positive curvature at that point). Our empirical observation supports this hypothesis
across diverse datasets and models, as Figure 1 illustrates. Specifically, the conditional probability
curvature of machine-generated texts typically hovers around 3, whereas human-generated texts
exhibit curvatures close to 0.

According to the above observation, we present Fast-DetectGPT, aiming to classify if a passage
was produced by a particular source model, as outlined in Figure 2. In contrast to DetectGPT,
our approach begins by sampling alternative word choices at each token (step 1). Subsequently,
we assess the conditional probabilities of these generated samples (step 2) and combine them to
arrive at a detection decision (step 3). Our empirical evaluation demonstrates the superior detection
accuracy of Fast-DetectGPT over DetectGPT, showcasing a noteworthy relative boost of about 75%
in both white-box and black-box settings. Intriguingly, in the black-box setting, Fast-DetectGPT
even trumps DetectGPT’s white-box performance by an average of 28%. Moreover, it aptly flags
80% of ChatGPT-crafted content, while only misidentifying 1% of human compositions.
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Figure 2: Fast-DetectGPT v.s. DetectGPT (Mitchell et al., 2023). Fast-DetectGPT uses a con-
ditional probability function p(x̃|x) as defined in Eq. 2. Notably, Fast-DetectGPT invokes the
sampling GPT once to generate all samples and similarly calls the scoring GPT once to evaluate all
samples, while DetectGPT interacts with the perturbation model T5 to produce one perturbation per
call, and summons the scoring model GPT for each perturbation assessment. The threshold ϵ should
be chosen to balance the false and true positive rates in practice.

Our main contributions are threefold: 1) unveiling and validation a new hypothesis that human and
machine select words differently given a context, 2) proposing conditional probability curvature
as a new feature to detect machine-generated text, reducing the detection cost by two orders of
magnitude, and 3) achieving the best average detection accuracy in both white-box and black-box
settings compare to existing zero-shot text detectors.

2 METHOD

2.1 TASK AND SETTINGS

Our objective is the zero-shot detection of machine-generated text, treating the challenge as a binary
classification problem (detailed in Appendix A). Given a passage x, which may be human-authored
or produced by a source model, the goal is to discern whether it is machine-generated.

In the white-box setting, we have the privilege of accessing the possible source model that a passage
is either written by a human or generated by this source model. We use the source model to aid in
scoring the candidate passage to inform the classification decision in the setting. Conversely, in the
black-box setting, we operate without access to the source model. Instead, we rely on surrogate
models to score the passage. Underpinning this approach is the assumption that language models,
due to their training on vast human-authored corpora, inherently share characteristic features.

2.2 DETECTGPT BASELINE

Formally, given an input passage x and the possible source model pθ, DetectGPT uses the source
model for scoring (the white-box setting). Together with a predefined perturbation model qφ, De-
tectGPT encapsulates the probability curvature as:

d(x, pθ, qφ) = log pθ(x)− Ex̃∼qφ(·|x) [log pθ(x̃)] , (1)

where x̃ is a perturbation produced by the masked language model qφ(·|x). When x emerges from
sampling from the source model pθ, d(x, pθ, qφ) tends to be positive, while for passage x written
by human, d(x, pθ, qφ) tends to be zero. pθ is also called the scoring model in this method, which
is used to score the log probabilities.

The Detection Process. To estimate the expectation Ex̃∼qφ(·|x) log pθ(x̃), DetectGPT employs a
sampling approach. Typically, it generates around a hundred variations of the input text x and then
computes the average of the log probabilities associated with these variations. The detection process
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is summarized as Figure 2a, where DetectGPT advocates a three-step detection process, which in-
clude: 1) Perturb – generating slight rewrites of the original text using a pre-trained mask language
model; 2) Score – evaluating the probability of the text and its rewrites using a pre-trained GPT
language model; 3) Compare – estimating the probability curvature and making the final decision
accordingly.

The Challenge. The probability function pθ(x̃) models x̃ in a Markov chain. Even if disparities
between x̃ and x are slight, amounting to changes in merely about 15% of the tokens, the entire
Markov chain demands reevaluation for accurate probability estimation. This slight variation within
the Markov chain mandates invoking the scoring model afresh for each variation, as the Score step
in Figure 2a denotes. In this paper, we deviate from assessing the probability function across the
entire Markov chain. Instead, we focus on evaluating the conditional probability function for each
individual token, thereby eliminating the need for repetitive scoring.

2.3 FAST-DETECTGPT

Fast-DetectGPT operates on the premise that humans and machines tend to select different words
during the text-generation process, with machines exhibiting a propensity for choosing words with
higher model probabilities. The hypothesis is rooted in the fact that LLMs, pre-trained on the large-
scale corpus, mirror human collective writing behaviors instead of human individual writing behav-
ior, resulting in a discrepancy in their word choices given a context.

The hypothesis is also substantiated to some extent by prior observations in the literature (Gehrmann
et al., 2019; Hashimoto et al., 2019; Solaiman et al., 2019; Mitrović et al., 2023; Mitchell et al.,
2023), which have indicated that machine-generated text typically boasts a higher average log prob-
ability (or lower perplexity) than human-written text. However, instead of solely relying on the
assumption of a higher average log probability for machine-generated text, our approach posits the
presence of a positive curvature within the conditional probability function specifically for machine-
generated text.

Given a passage x and a model pθ, we define the conditional probability function as

pθ(x̃|x) =
∏
j

pθ(x̃j |x<j), (2)

where the tokens x̃j are independently predicted given x. As a special case, pθ(x|x) equals to pθ(x).

Specifically, we replace the probability function pθ(x̃) in DetectGPT with the conditional probabil-
ity function pθ(x̃|x). We estimate the curvature at the point x by comparing the value of pθ(x|x)
with the values of alternative token choices pθ(x̃|x). If pθ(x|x) has a bigger value than pθ(x̃|x), the
function has a positive curvature at the point x, indicating that x is more likely machine-generated.
Otherwise, the function has a close-to-zero curvature at the point x, suggesting that x is more
likely human-written. We demonstrate the curvature distributions of human-written and machine-
generated texts in Figure 1, where we can see that human-written texts are concentrated around the
zero curvature.

Formally, given an input passage x and the possible source model pθ (the white-box setting), we
quantify the conditional probability curvature as

d(x, pθ, qφ) =
log pθ(x|x)− µ̃

σ̃
, (3)

where

µ̃ = Ex̃∼qφ(x̃|x) [log pθ(x̃|x)] and σ̃2 = Ex̃∼qφ(x̃|x)
[
(log pθ(x̃|x)− µ̃)2

]
. (4)

µ̃ denotes the expected score of samples x̃ generated by the sampling model qφ(·|x), and σ̃2 the
expected variance of the scores. We approximate µ̃ using the average log probability of the random
samples, and σ̃2 using the mean of sample variances.

Conditional Independent Sampling. The independent sampling of alternative tokens is the key
to the efficiency of Fast-DetectGPT. Specifically, we sample each token x̃j from qφ(x̃j |x<j)
given the fixed passage x without depending on other sampled tokens. In practice, we can
simply generate 10,000 samples (our default setting) by one line of PyTorch code: samples =
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Algorithm 1 Fast-DetectGPT machine-generated text detection.
Input: passage x, sampling model qφ, scoring model pθ , and decision threshold ϵ
Output: True – probably machine-generated, False – probably human-written.

1: function FASTDETECTGPT(x, qφ, pθ)
2: x̃i ∼ qφ(x̃|x), i ∈ [1..N ] ▷ Conditional sampling
3: µ̃← 1

N

∑
i log pθ(x̃i|x) ▷ Estimate the mean

4: σ̃2 ← 1
N−1

∑
i(log pθ(x̃i|x)− µ̃)2 ▷ Estimate the variance

5: d̂x ← (log pθ(x)− µ̃)/σ̃ ▷ Estimate conditional probability curvature
6: return d̂x > ϵ

torch.distributions.categorical.Categorical(logits=lprobs).sample([10000]), where the lprobs is the
log probability distribution of qφ(x̃j |x<j) for j from 0 to the length of x.

The sampling process plays a pivotal role in guiding us toward the solution. To discern whether
a token within a given context is machine-generated or human-authored, it is essential to compare
it against a range of alternative tokens in the same context. By sampling a substantial number of
alternatives (say 10,000), we can effectively map out the distribution of their log pθ(x̃j |x<j) values.
Placing the log pθ(xj |x<j) value of the passage token within this distribution provides a clear view
of its relative position, enabling us to ascertain whether it is an outlier or a more typical selection.
This fundamental insight forms the core rationale behind the development of Fast-DetectGPT.

The Detection Process. As Figure 2b shows, Fast-DetectGPT proposes a new three-step detection
process, including 1) Sample – we introduce a sampling model to generate alternative samples x̃
given the condition x, 2) Conditional Score – the conditional probability can be easily obtained by
a single forward pass of the scoring model taking x as the input. All the samples can be evaluated
in the same predictive distribution, so we do not need multiple model calls, and 3) Compare –
conditional probabilities of the passage and samples are compared to calculate the curvature. More
implementation details are described in Algorithm 1.

We find that the “Sample” and “Conditional Score” steps can be merged and have an analytical
solution instead of sampling approximation, as described in Appendix B. Furthermore, when we
use the same model for sampling and scoring, the conditional probability curvature has a close
connection to the simple Likelihood and Entropy baselines as follows.

Connection to Likelihood and Entropy. Utilizing a singular model for both sampling and scoring
enables the combination of these processes into a single step, necessitating only one model call.
Given this, the conditional probability curvature can be succinctly expressed as

d(x, pθ) =
log pθ(x|x)− µ̃

σ̃
, (5)

where µ̃ = Ex̃∼pθ(x̃|x) [log pθ(x̃|x)] and σ̃2 = Ex̃∼pθ(x̃|x)
[
(log pθ(x̃|x)− µ̃)2

]
.

Intriguingly, the curvature’s numerator reveals itself to be the sum of the baseline methods: Likeli-
hood (log pθ(x)) and Entropy (−µ̃). While Likelihood and Entropy have been established as foun-
dational baselines for zero-shot machine-generated text detection over the years (Lavergne et al.,
2008; Gehrmann et al., 2019; Hashimoto et al., 2019; Mitchell et al., 2023), the discovery that their
elementary combination can yield competitive detection accuracy was unforeseen.

3 EXPERIMENTS

3.1 SETTINGS

Datasets. We follow DetectGPT using six datasets to cover various domains and languages, in-
cluding XSum for news articles (Narayan et al., 2018), SQuAD for Wikipedia contexts (Rajpurkar
et al., 2016), WritingPrompts for story writing (Fan et al., 2018), WMT16 English and German for
different languages (Bojar et al., 2016), and PubMedQA for biomedical research question answering
(Jin et al., 2019). We randomly sample 150 to 500 human-written examples per dataset as negative
samples and produce equal numbers of positive samples by prompting the source model with the
first 30 tokens of the human-written text (for PubMedQA, we only use the question as the prompt).
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Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

The White-Box Setting
Likelihood 0.9125 0.8963 0.8900 0.8480 0.7946 0.8683
Entropy 0.5174 0.4830 0.4898 0.5005 0.5333 0.5048
LogRank 0.9385 0.9223 0.9226 0.8818 0.8313 0.8993
LRR 0.9601 0.9401 0.9522 0.9179 0.8793 0.9299
DNA-GPT ♢ 0.9024 0.8797 0.869 0.8227 0.7826 0.8513
NPR ♢ 0.9948† 0.9832† 0.9883 0.9500 0.9065 0.9645
DetectGPT (T5-3B/*) ♢ 0.9917 0.9758 0.9797 0.9353 0.8943 0.9554
Fast-DetectGPT (*/*) 0.9967 0.9908 0.9940† 0.9866 0.9754 0.9887
(Relative↑) 60.2% 62.0% 70.4% 79.3% 76.7% 74.7%

The Black-Box Setting
DetectGPT (T5-3B/Neo-2.7) ♢ 0.8517 0.8390 0.9797 0.8575 0.8400 0.8736
Fast-DetectGPT (GPT-J/Neo-2.7) 0.9834 0.9572 0.9984 0.9592† 0.9404† 0.9677†
(Relative↑) 88.8% 73.4% 92.1% 71.4% 62.8% 74.5%

Table 2: Zero-shot detection on passages from five source models, averaging AUROCs across XSum,
SQuAD, and WritingPrompts from detailed Table 5 in Appendix D.1. Typically, the source model
is employed for scoring, except that DetectGPT (T5-3B/Neo-2.7) and Fast-DetectGPT (GPT-J/Neo-
2.7) in a black-box setting utilize a surrogate Neo-2.7 model for scoring. While DetectGPT leverages
T5-3B for perturbation generation, Fast-DetectGPT either resorts to the source model or a surrogate
GPT-J for sample generation. † represents the second-best score. ♢ indicates methods that invoke
models multiple times, thereby significantly increasing computational demands.

We evaluate the methods on machine-generated text produced by different source models from 1.3B
to 1,800B, described in Appendix C.1. We call most of the models locally except GPT-3, ChatGPT,
and GPT-4 through OpenAI API.

Baselines. For zero-shot classifiers, we mainly compare Fast-DetectGPT with DetectGPT (Mitchell
et al., 2023), as well as its enhanced variant, NPR (Su et al., 2023) and DNA-GPT (Yang et al.,
2023). These represent the baseline methodologies we aim to expedite. Furthermore, we juxtapose
Fast-DetectGPT with established zero-shot techniques, such as Likelihood (mean log probabilities),
LogRank (average log of ranks in descending order by probabilities), Entropy (mean token entropy
of the predictive distribution) (Gehrmann et al., 2019; Solaiman et al., 2019; Ippolito et al., 2020),
and LRR (an amalgamation of log probability and log-rank) (Su et al., 2023). Regarding supervised
classifiers, Fast-DetectGPT is benchmarked against existing supervised classifiers, including GPT-2
detectors based on RoBERTa-base/large (Liu et al., 2019) crafted by OpenAI2 and GPTZero (Tian
& Cui, 2023).

3.2 MAIN RESULTS

We generate 500 samples per dataset among XSum, SQuAD, and WritingPrompts for the following
experiments, measuring the detection accuracy in AUROC (see Appendix A).

Inference Speedup. We compare the inference time (excluding the time for initializing the model)
of Fast-DetectGPT and DetectGPT on a Tesla A100 GPU using XSum generations from the five
models in Table 2. Despite DetectGPT’s use of GPU batch processing, splitting 100 perturbations
into 10 batches, it still requires substantial computational resources. It totals 79,113 seconds (ap-
proximately 22 hours) over five runs. In contrast, Fast-DetectGPT completes the task in only 233
seconds (about 4 minutes), achieving a remarkable speedup factor of approximately 340x, highlight-
ing its significant performance improvement.

White-Box Zero-Shot Machine-Generated Text Detection. We evaluate zero-shot methods us-
ing each source model for scoring and typically Fast-DetectGPT using the source model also for
sampling. The averaged scores are shown in Table 2 with more detailed results per dataset re-
ported in Table 5 in Appendix D.1. Fast-DetectGPT achieves the best average AUROC on the three
datasets, outperforming DetectGPT by a relative 74.7% and its enhanced variant, NPR, by 68.2%.
Notably, larger source models amplify this relative improvement, demonstrating the advantage of
Fast-DetectGPT in detecting text produced by larger models.

2https://github.com/openai/gpt-2-output-dataset/tree/master/detector
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Method ChatGPT GPT-4
XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.9150 0.7084 0.6188 0.7474 0.6778 0.5068 0.5309 0.5718
RoBERTa-large 0.8507 0.5480 0.6731 0.6906 0.6879 0.3821 0.6067 0.5589
GPTZero 0.9952 0.9292 0.8799 0.9348 0.9815 0.8262 0.8482 0.8853

Likelihood (Neo-2.7) 0.9578 0.9740 0.8775 0.9364 0.7980 0.8553 0.8104 0.8212
Entropy (Neo-2.7) 0.3305 0.1902 0.2767 0.2658 0.4360 0.3702 0.3295 0.3786
LogRank(Neo-2.7) 0.9582 0.9656 0.8687 0.9308 0.7975 0.8286 0.8003 0.8088
LRR (Neo-2.7) 0.9162 0.8958 0.7433 0.8518 0.7447 0.7028 0.6814 0.7096
DNA-GPT (Neo-2.7) 0.9124 0.9425 0.7959 0.8836 0.7347 0.8032 0.7565 0.7648
NPR (T5-11B/Neo-2.7) 0.7899 0.8924 0.6784 0.7869 0.5280 0.6122 0.6328 0.5910
DetectGPT (T5-11B/Neo-2.7) 0.8416 0.8811 0.7444 0.8223 0.5660 0.6217 0.6805 0.6228
Fast-Detect (GPT-J/Neo-2.7) 0.9907 0.9916 0.9021 0.9615 0.9067 0.9612 0.8503 0.9061
(Relative ↑) 94.1% 92.9% 61.7% 78.3% 78.5% 89.7% 53.1% 75.1%

Table 3: Detection of ChatGPT and GPT-4 generations. The black-box settings are used for all
zero-shot methods, where the Likelihood provides the strongest baseline. A comparison of GPT-3
generation detection is provided in Appendix D.2, where we observe a similar hierarchy in accuracy.

Black-Box Zero-Shot Machine-Generated Text Detection. Table 2 further contrasts Fast-
DetectGPT and DetectGPT in a black-box setting, employing a surrogate model, Neo-2.7 (empir-
ically superior among GPT-2, Neo-2.7, and GPT-J) for scoring. Fast-DetectGPT (GPT-J/Neo-2.7)
achieves a relative AUROC enhancement of 74.5% over DetectGPT (T5-3B/Neo-2.7) across the
datasets. Specifically, the boost in Wikipedia context (SQuAD) averages at 0.1682 AUROC (detailed
in Table 5 in Appendix D.1). Moreover, Fast-DetectGPT (GPT-J/Neo-2.7) outperforms DetectGPT
(T5-3B/*) by relatively 27.6% on average. Such outcomes solidify Fast-DetectGPT’s potential in
the black-box setting as a versatile text detector across diverse domains and source models.

Ablation Study. We study the impact of the choice of the sampling model qφ and the impact of
the normalization σ̃ in Eq. 3 on the detection accuracy. Experiments show that a properly selected
sampling model can further enhance the performance of Fast-DetectGPT in the white-box setting by
relatively about 27%, while the normalization enhances the performance by 10%. More details are
described in Appendix E.

3.3 RESULTS IN REAL-WORLD SCENARIOS

We further assess Fast-DetectGPT in a black-box setting using passages generated by GPT-3, Chat-
GPT, and GPT-4 to simulate real-world scenarios. Using parameters and prompts delineated in
Appendix C.2, we produced 150 samples per dataset and source model. As evidenced in Table
3, Fast-DetectGPT consistently exhibits superior detection proficiency. It surpasses DetectGPT by
relative AUROC margins of 78.3% for ChatGPT and 75.1% for GPT-4. When compared to the
supervised detectors RoBERTa-base/large and GPTZero, Fast-DetectGPT achieves overall higher
accuracy. Collectively, these outcomes underscore the potential of Fast-DetectGPT working in real-
world scenarios.

Interestingly, the commercial model GPTZero performs the best on news (XSum) but worse on sto-
ries (WritingPrompts) and technical writings (PubMedQA), indicating that the model may mainly
be trained on news generations. The Likelihood detector emerges as the strongest baseline, which
diverges from the results on open source models presented in Table 2, where Likelihood trails De-
tectGPT and NPR. A consistent trend is evident with GPT-3 generations (Appendix D.2). In com-
parison, Fast-DetectGPT offers more robust and consistent performance.

3.4 USABILITY ANALYSIS

Interpretation of AUROC. In real-world scenarios, our concern extends beyond overall detection
accuracy; we are particularly interested in the recall (the true positive rate) while minimizing the
likelihood of making type-I errors (achieving a low false positive rate). As depicted in Figure 3,
when applied to ChatGPT-generated content, Fast-DetectGPT achieves a recall of 87% for machine-
generated texts with only 1% misclassification of human-written text as machine-generated. When
the tolerance for false positives increases to 10%, the recall reaches 98%. When applied to GPT-4
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Figure 3: ROC curves in log scale evaluated on
stories (WritingPrompts), where the dash lines
denote the random classifier.

Figure 4: Detection accuracy (AUROC) on story
passages (WritingPrompts) truncated to target
number of words.

generations, the task becomes significantly more challenging but Fast-DetectGPT still achieves a
recall of 89% on the condition of a false positive rate less than 10%. These outcomes underscore
the potential of Fast-DetectGPT in effectively detecting texts generated by state-of-the-art large
language models.

Robustness on Different Passage Lengths. Zero-shot detectors are supposed to perform worse on
shorter passages due to their statistical nature. We conduct evaluations by truncating the passages
to various target lengths. As Figure 4 illustrates, the detectors show consistent trends on passages
produced by ChatGPT, where the detection accuracy generally increases for longer passages. In con-
trast, on passages from GPT-4, the detectors show inconsistent trends. Specifically, the supervised
detectors show a performance decline when the passage length increases, while DetectGPT expe-
riences an increase at the beginning followed by an unexpected decrease when the passage length
exceeds 90 words. We speculate the non-monotonic trends of the supervised detectors and Detect-
GPT are rooted in their perspective on handling the passages as a whole chain of tokens, which does
not generalize to different lengths. In contrast, Fast-DetectGPT exhibits a consistent, monotonic
increase in accuracy as passage length grows, indicating the robust performance of Fast-DetectGPT
across passages of varying lengths.

Robustness across Domains and Languages.
Detectors are expected to generalize to differ-
ent domains and languages for higher usabil-
ity. We compare Fast-DetectGPT against su-
pervised detectors on both in-distribution and
out-distribution datasets. Figure 5 reveals that
Fast-DetectGPT achieves competitive detection
accuracy on the in-distribution datasets XSum
and WMT16-English. However, it significantly
outperforms supervised detectors on the out-
distribution datasets PubMedQA and WMT16-
German. Moreover, it is noteworthy that Fast-
DetectGPT consistently outperforms DetectGPT
across all four datasets. These results underscore
the robustness of Fast-DetectGPT across diverse
domains and languages.
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Figure 5: Compare with supervised detectors,
evaluated in AUROC. We generate 200 test sam-
ples for each dataset and source model.

Robustness against Decoding Strategies. Machine systems employ various decoding strategies,
including top-k sampling, top-p (Nucleus) sampling, and temperature sampling with a constant T .
Our experiments evaluate these strategies using the five models and three datasets mentioned in
Table 2 by setting k = 40, p = 0.96, and T = 0.8 for all cases. In the white-box setting, Fast-
DetectGPT consistently emerged superior across all sampling strategies. It surpassed DetectGPT
with relative margins of 95% in Top-p sampling, 81% in Top-k sampling, and a striking 99% in
temperature sampling, as elaborated in Table 9 in Appendix F.1. Similar relative improvements
are also achieved in the black-box setting. These results underscore the consistent performance of
Fast-DetectGPT in detecting text generated through diverse decoding strategies.

Robustness under Paraphrasing Attack. We analyze the robustness under paraphrasing attack
and propose decoherence attack, finding that Fast-DetectGPT consistently outperforms both zero-
shot and trained detectors, as illustrated in Appendix F.2.
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4 DISCUSSION

Fast-DetectGPT performs about 65% better in white-box settings than black-box ones. Industrial
services could leverage the white-box setting to enhance the content authorship for proprietary
LLMs like ChatGPT and GPT-4 by exposing conditional probability curvature in the service API,
without significant extra cost on the computation of the feature.

From the research perspective, the black-box setting may have unforeseen potential. The best model
for this setting remains unclear, and may depend on factors like model size, training corpus breadth,
and training process convergence. These factors warrant further investigation to provide clarity and
guidance in the development of black-box detection methods.

We further discuss the broader implications of Fast-DetectGPT in Appendix G, covering text au-
thorship and watermarking.

Limitations and Future Work. Our initial research impetus centered on accelerating the detection
process of DetectGPT. However, Fast-DetectGPT not only accelerates this process but also brings
about notable enhancements in detection accuracy. In this paper, our focus is predominantly on these
empirical advancements, with theoretical explorations earmarked for future endeavors.

Furthermore, Fast-DetectGPT’s design leans on pre-trained models to span a multitude of domains
and languages. This presents a challenge in a black-box setting, as no single model can seamlessly
span all linguistic territories and domains. This is due to the intrinsic nature of pre-trained models
being tailored to specific domains and languages.

5 RELATED WORK

Current research primarily concentrates on supervised methods, involving the training of classifiers
to distinguish between machine-generated and human-written text (Jawahar et al., 2020). These
classifiers are typically trained using bag-of-words (Solaiman et al., 2019; Fagni et al., 2021) or
neural representations (Bakhtin et al., 2019; Solaiman et al., 2019; Uchendu et al., 2020; Ippolito
et al., 2020; Fagni et al., 2021; Yan et al., 2023; Pu et al., 2023; Mitrović et al., 2023; Li et al.,
2023). It has been observed that these trained classifiers often exhibit overfitting tendencies, adapting
too closely to the specific distribution of text domains and source models during training (Bakhtin
et al., 2019; Uchendu et al., 2020), which consequently leads to limited generalization capabilities
when exposed to out-of-distribution data (Pu et al., 2023). To address this challenge, our research
focuses on zero-shot detection, aiming to identify “universal features” that can be applied to different
domains, source models, and languages.

Existing zero-shot detectors primarily rely on statistical features, leveraging pre-trained large lan-
guage models to gather them. These features encompass a range of measures, including relative
entropy and perplexity (Lavergne et al., 2008), bag-of-words, average probability, and top-K buck-
ets (Gehrmann et al., 2019), likelihood (Hashimoto et al., 2019; Solaiman et al., 2019), probability
curvature (DetectGPT) (Mitchell et al., 2023), normalized log-rank perturbation (NPR) (Su et al.,
2023), and divergence between multiple completions of a truncated passage (DNA-GPT) (Yang
et al., 2023). Due to their statistical nature, zero-shot methods generally exhibit higher detection ac-
curacy on longer passages (Lavergne et al., 2008). In this paper, we introduce a novel “conditional
probability curvature” for machine-generated text detection. Differing from previous probability
curvature or completion divergence approaches that require numerous model calls (variating from
10 to 100), our new feature only necessitates a single model forward pass, significantly expediting
the detection process. Importantly, this new feature markedly enhances detection accuracy.

6 CONCLUSION

Our investigation reveals that conditional probability curvature on the token level serves as a more
fundamental indicator of machine-generated texts, validating our proposed hypothesis concerning
the distinction between machine and human text generation processes. Building upon this new
hypothesis, our detector Fast-DetectGPT accelerates upon DetectGPT by two orders of magnitude.
Experimental results further demonstrate that Fast-DetectGPT also significantly improves detection
accuracy by approximately 75% in both white-box and black-box settings.
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ETHICAL CONSIDERATIONS AND BROADER IMPACT

Fast-DetectGPT, serving as a highly efficient detector for machine-generated text, holds promise
in enhancing the integrity of AI systems by combating issues like fake news, disinformation, and
academic plagiarism. However, akin to other methods reliant on Large Language Models (LLMs), it
is susceptible to inheriting biases present in the training data. Notably, as emphasized by Liang et al.
(2023), LLM-based detection systems may exhibit an elevated false-positive rate when confronted
with text from non-native English speakers. Given the widespread and diverse utilization of such
technologies, this presents a notable concern.

An immediate suggestion is to substitute the underlying LLMs in Fast-DetectGPT with alternative
models trained on more varied and representative corpora. Additionally, we advocate for community
involvement in the ongoing efforts to develop more inclusive LLMs, a development that would
benefit not only Fast-DetectGPT but also similar systems at large.
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A ZERO-SHOT DETECTION TASK AND SETTINGS

Our research centers on zero-shot detection of machine-generated text, under the premise that our
model has not undergone training using any machine-generated text. This distinguishes our approach
from conventional supervised methods, which commonly employ discriminative training strategies
to acquire specific syntactic or semantic attributes customized for machine-generated text. In con-
trast, our zero-shot methodology capitalizes on the inherent capabilities of large language models to
identify anomalies that function as markers of machine-generated content.

The White-box Setting. Conventional zero-shot methodologies often operate under the assumption
that the source model responsible for generating machine-generated text is accessible. We refer to
this context as the white-box setting, where the primary goal is to distinguish machine-generated
texts produced by the source model from those generated by humans. In this white-box setting, our
detection decisions are dependent on the source model, but it is not mandatory to possess detailed
knowledge of the source model’s architecture and parameters. For instance, within the white-box
framework, a system like DetectGPT utilizes the OpenAI API to identify text generated by GPT-3,
without requiring extensive knowledge of the inner workings of GPT-3.

The Black-box Setting. In real-world situations, there could be instances where we lack knowledge
about the specific source models employed for content generation. This necessitates the development
of a versatile detector capable of identifying texts generated by a variety of automated systems. We
term this scenario the black-box setting, where the objective is to differentiate between machine-
generated texts produced by diverse, unidentified models and those composed by humans. In this
context, the term “black box” signifies that we lack access to information about the source model or
any details pertaining to it.

Evaluation Metric (AUROC). Instead of measuring the detection accuracy with a specific threshold
(ϵ in Figure 2), we measure the detection accuracy in the area under the receiver operating charac-
teristic (AUROC), profiling the detectors on the whole spectrum of the thresholds. AUROC ranges
from 0.0 to 1.0, mathematically denoting the probability of a random machine-generated text hav-
ing a higher predicted probability of being machine-generated than a random human-written text.
Typically, an AUROC of 0.5 indicates a random classifier and an AUROC of 1.0 indicates a perfect
classifier. We also report the relative improvement calculated by (new − old)/(1.0 − old), which
represents how much improvement has been made relative to the maximum possible improvement.

B ANALYTICAL SOLUTION OF CONDITIONAL PROBABILITY CURVATURE

The sample mean µ̃ in Eq. 4 represents the cross-entropy of distribution qφ(x̃|x) and pθ(x̃|x). By
leveraging the conditional independence of each token, we can calculate the expectation analytically
as

µ̃ = Ex̃∼qφ(x̃|x) [log pθ(x̃|x)] =
∑
x̃

qφ(x̃|x) log pθ(x̃|x)

=
∑
j

∑
x̃j

qφ(x̃j |x<j) log pθ(x̃j |x<j) =
∑
j

µ̃j ,
(6)

where µ̃j denotes the sample mean on the j-th token. The summation over x̃j is computed by
enumerating the tokens in the vocabulary, which can be exactly calculated.

The sample variance σ̃2 in Eq. 4 can also be calculated analytically

σ̃2 = Ex̃∼qφ(x̃|x)
[
(log pθ(x̃|x)− µ̃)2

]
=

∑
x̃

qφ(x̃|x)(log pθ(x̃|x)− µ̃)2

=
∑
j

∑
x̃j

qφ(x̃j |x<j) log
2 pθ(x̃j |x<j)− µ̃2

j

 ,

(7)

where the summation over x̃j can also be calculated exactly by enumerating the tokens in the vo-
cabulary. Empirically, the analytical solution achieves a detection accuracy almost identical to the
sampling approximation with 10,000 samples (our default setting) but further accelerates the detec-
tion process by about 10%.
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C EXPERIMENTAL SETTINGS

C.1 OPEN-SOURCE AND PROPRIETARY MODELS

Model Model File/Service Parameters Training Corpus

mGPT (Shliazhko et al., 2022) sberbank-ai/mGPT 1.3B Wikipedia and Colossal Clean Crawled corpus.
GPT-2 (Radford et al., 2019) gpt2-xl 1.5B English WebText without Wikipedia.
PubMedGPT (Bolton et al., 2022) stanford-crfm/pubmedgpt 2.7B Biomedical abstracts and papers from the Pile.
OPT-2.7 (Zhang et al., 2022) facebook/opt-2.7b 2.7B A larger dataset including the Pile.
Neo-2.7 (Black et al., 2021) EleutherAI/gpt-neo-2.7B 2.7B The Pile (Gao et al., 2020).
GPT-J (Wang & Komatsuzaki, 2021) EleutherAI/gpt-j-6B 6B The Pile (Gao et al., 2020).
BLOOM-7.1 (Scao et al., 2022) bigscience/bloom-7b1 7.1B ROOTS corpus (Laurençon et al., 2022).
OPT-13 (Zhang et al., 2022) facebook/opt-13b 13B A larger dataset including the Pile.
Llama-13 (Touvron et al., 2023a) huggyllama/llama-13b 13B CommonCrawl, C4, Github, Wikipedia, Books, ...
Llama2-13 (Touvron et al., 2023b) TheBloke/Llama-2-13B-fp16 13B A new mix of publicly available online data.
NeoX (Black et al., 2022) EleutherAI/gpt-neox-20b 20B The Pile (Gao et al., 2020).

GPT-3 (Brown et al., 2020) OpenAI/davinci 175B CommonCrawl, WebText, English Wikipedia, ...
ChatGPT (OpenAI, 2022) OpenAI/gpt-3.5-turbo 175B CommonCrawl, WebText, English Wikipedia, ...
GPT-4 (OpenAI, 2023) OpenAI/gpt-4 NA NA

Table 4: Details of the source models that is used to produce machine-generated text.

We assess the performance of our methodologies using text generations sourced from various mod-
els, as outlined in Table 4. These models are arranged in order of their parameter count, with those
having fewer than 20 billion parameters being run locally on a Tesla A100 GPU (80G). For models
with over 6 billion parameters, we employ half-precision (float16), otherwise, we use full-precision
(float32).

In the case of larger models like GPT-3, ChatGPT, and GPT-4, we utilize the OpenAI API for the
evaluations. Additionally, we provide information about the training corpus associated with each
model, which we believe is pertinent for understanding the detection accuracy of different sam-
pling and scoring models when applied to text generations originating from diverse source models,
domains, and languages.

C.2 SETTINGS FOR GPT-3, CHATGPT, AND GPT-4

To compile our test set, we generate 150 samples for each dataset (among XSum, WritingPrompts,
and PubMedQA) and each source model by calling the OpenAI service 3. Specifically, for GPT-3,
we requested text completions for a 30-token prefix, while for ChatGPT and GPT-4, we request chat
completions with predefined instructions as follows.

ChatGPT and GPT-4 function in a conversational manner, serving as assistants to execute user in-
structions. In the context of our experiment, we task these models with adopting the roles of pro-
fessional News, Fiction, and Technical writers for the generation of News articles, stories, and an-
swers, respectively. To encourage the production of content that is both unpredictable and creatively
diverse, we utilize a temperature setting of 0.8.

Specifically, we initiate the generation process by sending the following messages to the service.

Message for XSum:

1 [
2 {'role': 'system', 'content': 'You are a News writer.'},
3 {'role': 'user', 'content': 'Please write an article with about 150

↪→ words starting exactly with: <prefix>'},
4 ]

The <prefix> could be like “Maj Richard Scott, 40, is accused of driving at speeds of up to 95mph
(153km/h) in bad weather”, and the response is supposed to start with it.

Message for WritingPrompts:

3https://openai.com/blog/openai-api
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1 [
2 {'role': 'system', 'content': 'You are a Fiction writer.'},
3 {'role': 'user', 'content': 'Please write an article with about 150

↪→ words starting exactly with: <prefix>'},
4 ]

The <prefix> could be like “A man invents time travel in order to find a cure for his sick wife and
succeeds, only to find out”, and the response is supposed to start with it.

Message for PubMedQA:

1 [
2 {'role': 'system', 'content': 'You are a Technical writer.'},
3 {'role': 'user', 'content': 'Please answer the question in about 50

↪→ words. <prefix>'},
4 ]

The <prefix> could be like “Question: Is an advance care planning model feasible in community
palliative care? Answer:” and the response is supposed to answer the question directly.
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Dataset Method Source Model
GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

XSum

Likelihood 0.8638 0.8600 0.8609 0.8101 0.7604 0.8310
Entropy 0.5835 0.5071 0.5712 0.5705 0.6035 0.5671
LogRank 0.8918 0.8839 0.8949 0.8407 0.7939 0.8610
LRR 0.9179 0.8867 0.9190 0.8592 0.8205 0.8807
DNA-GPT ♢ 0.8548 0.8168 0.8197 0.7586 0.7167 0.7933
NPR ♢ 0.9891* 0.9681* 0.9929* 0.9566 0.9311 0.9676
DetectGPT ♢ 0.9875 0.9621 0.9914 0.9632* 0.9398* 0.9688*
Fast-DetectGPT 0.9930 0.9803 0.9885 0.9771 0.9703 0.9818
(Diff) 0.0055 0.0182 -0.0029 0.0139 0.0305 0.0130
DetectGPT (fixed) ♢ 0.9180 0.8868 0.9914 0.8830 0.8682 0.9095
Fast-DetectGPT (fixed) 0.9742 0.9444 0.9965 0.9335 0.9033 0.9504
(Diff) 0.0563 0.0576 0.0051 0.0505 0.0351 0.0409

SQuAD

Likelihood 0.9077 0.8839 0.8585 0.7943 0.6977 0.8284
Entropy 0.5791 0.5119 0.5581 0.5643 0.6056 0.5638
LogRank 0.9454 0.9203 0.9054 0.8471 0.7545 0.8745
LRR 0.9773 0.9597 0.9610 0.9244 0.8600 0.9365
DNA-GPT ♢ 0.9094 0.8934 0.8589 0.8069 0.7525 0.8442
NPR ♢ 0.9965* 0.9853* 0.9789 0.9108 0.8175 0.9378
DetectGPT ♢ 0.9914 0.9763 0.9625 0.8738 0.7916 0.9191
Fast-DetectGPT 0.9990 0.9949 0.9956* 0.9853 0.9617 0.9873
(Diff) 0.0076 0.0186 0.0331 0.1116 0.1702 0.0682
DetectGPT (fixed) ♢ 0.7382 0.7530 0.9625 0.7882 0.7709 0.8026
Fast-DetectGPT (fixed) 0.9824 0.9762 0.9990 0.9584* 0.9379* 0.9708*
(Diff) 0.2442 0.2232 0.0365 0.1703 0.1669 0.1682

Likelihood 0.9661 0.9451 0.9505 0.9396 0.9256 0.9454
Entropy 0.3895 0.4299 0.3400 0.3668 0.3908 0.3834
LogRank 0.9782 0.9628 0.9675 0.9577 0.9454 0.9623
LRR 0.9850 0.9740 0.9766 0.9702 0.9573 0.9726
DNA-GPT ♢ 0.9431 0.9288 0.9283 0.9026 0.8786 0.9163
NPR ♢ 0.9987 0.9962* 0.9930 0.9825 0.9708 0.9882

Writing DetectGPT ♢ 0.9962 0.9891 0.9852 0.9688 0.9516 0.9782
Prompts Fast-DetectGPT 0.9982* 0.9972 0.9980* 0.9974 0.9941 0.9970

(Diff) 0.0020 0.0081 0.0129 0.0285 0.0424 0.0188
DetectGPT (fixed) ♢ 0.8989 0.8772 0.9852 0.9014 0.8809 0.9087
Fast-DetectGPT (fixed) 0.9937 0.9509 0.9996 0.9858* 0.9801* 0.9820*
(Diff) 0.0948 0.0738 0.0145 0.0844 0.0992 0.0733

Table 5: Details of the main results in Table 2: Zero-shot detection on five source models, where
Fast-DetectGPT consistently outperforms DetectGPT in terms of detection accuracy (in AUROC).
We run DetectGPT and NPR with default 100 perturbations and run DNA-GPT with a truncate-ratio
of 0.5 and 10 prefix completions per passage. Methods marked with “(fixed)” use the fixed models
to detect texts from different sources (the black-box setting), where DetectGPT uses T5-3B/Neo-2.7
as the perturbation/scoring models and Fast-DetectGPT uses GPT-J/Neo-2.7 as the sampling/scor-
ing models. The “(Diff)” rows indicate the AUROC improvement upon DetectGPT baselines. “*”
denotes the second-best AUROC. ♢ – Methods call models a hundred times, thus consuming much
higher computational resources.
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D ADDITIONAL RESULTS

D.1 ZERO-SHOT DETECTION ON ADDITIONAL OPEN-SOURCE MODELS

Dataset Method Source Model
BLOOM-7.1 OPT-13 Llama-13 Llama2-13 Avg.

XSum

Likelihood 0.8500 0.8105 0.6121 0.6550 0.7319
Entropy 0.6642 0.5251 0.6731 0.6029 0.6163
LogRank 0.9018 0.8369 0.6542 0.6911 0.7710
LRR 0.9412 0.8344 0.7327 0.7351 0.8109
NPR 0.9931 0.9283* 0.8031 0.8212* 0.8864*
DetectGPT 0.9912* 0.9268 0.8147* 0.8106 0.8858
Fast-DetectGPT 0.9890 0.9721 0.9473 0.9346 0.9607
(Diff) -0.0021 0.0452 0.1325 0.1240 0.0749
DetectGPT (fixed) 0.7365 0.8713 0.6869 0.6848 0.7449
Fast-DetectGPT (fixed) 0.8886 0.9207 0.7306 0.6968 0.8092
(Diff) 0.1521 0.0495 0.0436 0.0121 0.0643

SQuAD

Likelihood 0.8619 0.8220 0.5113 0.5000 0.6738
Entropy 0.6199 0.5517 0.6534 0.6636 0.6221
LogRank 0.9157 0.8645 0.5589 0.5457 0.7212
LRR 0.9678 0.9228 0.7262 0.7036 0.8301
NPR 0.9730* 0.9351 0.5332 0.5448 0.7465
DetectGPT 0.9510 0.9110 0.5204 0.5507 0.7333
Fast-DetectGPT 0.9953 0.9893 0.8717 0.8772 0.9333
(Diff) 0.0443 0.0782 0.3513 0.3265 0.2001
DetectGPT (fixed) 0.6359 0.7596 0.5588 0.5488 0.6258
Fast-DetectGPT (fixed) 0.9588 0.9590* 0.8028* 0.7627* 0.8708*
(Diff) 0.3228 0.1994 0.2440 0.2138 0.2450

WritingPrompts

Likelihood 0.9368 0.9400 0.8692 0.8737 0.9049
Entropy 0.4876 0.4096 0.4831 0.4702 0.4626
LogRank 0.9612 0.9578 0.9047 0.9069 0.9327
LRR 0.9811 0.9650 0.9326* 0.9306* 0.9523*
NPR 0.9909* 0.9850* 0.9184 0.9003 0.9487
DetectGPT 0.9829 0.9701 0.8596 0.8396 0.9130
Fast-DetectGPT 0.9983 0.9953 0.9892 0.9939 0.9942
(Diff) 0.0154 0.0253 0.1296 0.1543 0.0811
DetectGPT (fixed) 0.7933 0.8695 0.7455 0.7532 0.7904
Fast-DetectGPT (fixed) 0.9779 0.9367 0.8925 0.9085 0.9289
(Diff) 0.1846 0.0672 0.1471 0.1553 0.1385

Table 6: Addition to the main results in Table 5: Zero-shot detection on more source models.

We extend our evaluation to include several popular open-source LLMs, including BLOOM 7.1B,
OPT 13B, Llama 13B, and Llama2 13B. In the white-box setting, Fast-DetectGPT exhibits an av-
erage relative improvement of 76.1% when compared to DetectGPT. This outcome aligns with the
74.7% average relative improvement observed across the five models presented in Table 5, under-
scoring the consistent performance of Fast-DetectGPT across diverse source models.

However, in the black-box setting, Fast-DetectGPT demonstrates an average relative improvement
of 53.4% compared to DetectGPT. This figure is lower than the 74.5% average relative improvement
seen across the five models in the main table. We suspect that the reduced improvement observed
in these source models relate to the potential mismatch between the scoring model Neo-2.7 and the
source models. It is conceivable that the training corpus used by the former may have limited overlap
with the training corpus utilized by the latter according to Table 4. These findings underscore the
challenges associated with identifying universally effective scoring models in the black-box setting.
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D.2 ZERO-SHOT DETECTION ON GPT-3 GENERATIONS

Method XSum WritingPrompts PubMedQA Avg.

RoBERTa-base 0.8986 0.9282 0.6370 0.8212
RoBERTa-large 0.9325 0.9113 0.6894 0.8444
GPTZero 0.4860 0.6009 0.4246 0.5038

Likelihood (GPT-3) ♢ 0.76 0.87 0.64 0.76
DetectGPT (T5-11B/GPT-3) ♢ 0.84 0.87 0.84 0.85

Likelihood (Neo-2.7) 0.8307 0.8496 0.5668 0.7490
Entropy (Neo-2.7) 0.3923 0.3049 0.5358 0.4110
LogRank(Neo-2.7) 0.8096 0.8320 0.5527 0.7314
LRR (Neo-2.7) 0.6687 0.7410 0.4917 0.6338
DNA-GPT (Neo-2.7) 0.8209 0.8354 0.5761 0.7441
NPR (T5-11B/Neo-2.7) 0.8032 0.7847 0.6342 0.7407
DetectGPT (T5-11B/GPT-2) 0.8043 0.7699 0.6915 0.7552
DetectGPT (T5-11B/Neo-2.7) 0.8455 0.7818 0.6977 0.7750
DetectGPT (T5-11B/GPT-J) 0.8261 0.7666 0.6644 0.7524
Fast-DetectGPT (GPT-J/GPT-2) 0.9137 0.9533* 0.7589* 0.8753
Fast-DetectGPT (GPT-J/Neo-2.7) 0.9396 0.9492 0.7225 0.8704*
Fast-DetectGPT (GPT-J/GPT-J) 0.9329* 0.9568 0.6664 0.8520

Table 7: Detection of GPT-3 generations, evaluated in AUROC. Fast-DetectGPT in the black-box
settings (using local models) significantly outperforms DetectGPT in both the black-box setting and
the white-box setting (using GPT-3) on News (XSum) and story (WritingPrompts). Fast-DetectGPT
uses 6B GPT-J to generate samples and models from 1.5B GPT-2 to 6B GPT-J to score samples,
while DetectGPT uses 11B T5 to generate perturbations and models from 1.5B GPT-2 to 6B GPT-J,
and GPT-3 service to score them. ♢ – we report the official scores from Mitchell et al. (2023) instead
of rerunning the experiments after confirming the consistency on RoBERTa-base/large.

Table 7 presents a comparison between Fast-DetectGPT, zero-shot DetectGPT, and supervised
RoBERTa-based classifiers for the detection of GPT-3 generations. In contrast to DetectGPT, which
employs the OpenAI API to assess perturbations, we utilize delegate models (specifically, GPT-2,
Neo-2.7, and GPT-J) to identify GPT-3 generations.

Fast-DetectGPT outperforms supervised RoBERTa-base, RoBERTa-large, and GPTZero classifiers,
achieving higher detection accuracy across the three datasets. On average, it improves the AUROC
by 0.0310 AUROC (a relative increase of 20%). Conversely, DetectGPT in the white-box setting (us-
ing T5-11B/GPT-3) achieves superior detection accuracy on PubMedQA but lags behind on XSum
and WritingPrompt compared to RoBERTa-large. In the black-box setting (T5-11B/Neo-2.7), De-
tectGPT experiences a significant reduction in detection accuracy, averaging 0.0750 AUROC less.
These findings emphasize that Fast-DetectGPT, operating in the black-box setting, offers a compet-
itive alternative to supervised detectors and DetectGPT in the white-box setting.

When comparing the results on GPT-3 and ChatGPT, it becomes apparent that Fast-DetectGPT
performs significantly better on ChatGPT. We speculate that this discrepancy may relate to factors
such as instruction-tuning (Wei et al., 2021) and human-feedback reinforcement learning (HFRL)
(Ouyang et al., 2022), which are employed in fine-tuning large language models and may skew the
model toward high-probability tokens.
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E ABLATION STUDY

Method XSum SQuAD WritingPrompts Avg.GPT-2 Neo-2.7 GPT-J GPT-2 Neo-2.7 GPT-J GPT-2 Neo-2.7 GPT-J

Fast-DetectGPT (*/*) 0.9930 0.9885 0.9771 0.9990 0.9956 0.9853 0.9982 0.9980 0.9974 0.9925
Fast-DetectGPT (GPT-2/*) 0.9930 0.9918 0.9534 0.9990 0.9728 0.8785 0.9982 0.9954 0.9868 0.9743
Fast-DetectGPT (Neo-2.7/*) 0.9778 0.9885 0.9153 0.9977 0.9956 0.9212 0.9994 0.9980 0.9861 0.9755
Fast-DetectGPT (GPT-J/*) 0.9960 0.9965 0.9771 1.0000 0.9990 0.9853 0.9999 0.9996 0.9974 0.9945

Table 8: Impact of reference model, where “*/*” indicates that we use the source model to generate
reference samples and score the log probability, while “GPT-J/*” indicates that we use GPT-J to
generate the samples and the source model to score.

Sampling Model Ablation. We investigate the influence of the choice of the sampling model,
as summarized in Table 8. Remarkably, when GPT-J is employed as the sampling model, Fast-
DetectGPT attains the highest average detection accuracy. In comparison to Fast-DetectGPT uti-
lizing the source model for sampling, the utilization of GPT-J enhances accuracy by an average of
0.0020 AUROC, representing a relative improvement of 27% across all three datasets and the three
models under consideration. These findings indicate that employing a more robust sampling model
has the potential to further augment the performance of Fast-DetectGPT in the white-box setting.

Normalization Ablation. Normalization based on the standard deviation has previously been pro-
posed as an additional technique within DetectGPT. In our study, we integrate this normalization
as a default component of the conditional probability curvature metric for two principal reasons.
Firstly, normalization exerts a significant influence on detection accuracy, resulting in an average
AUROC improvement of 0.0172, equivalent to a relative increase of 36% for DetectGPT. In the case
of Fast-DetectGPT, normalization enhances the average AUROC by 0.0020, corresponding to a 10%
relative improvement. Secondly, after normalization, the distributions of the curvatures for differ-
ent models across various datasets become more directly comparable. Without normalization, these
distributions exhibit variations in width, ranging from narrow to wide, depending on the variance of
the generated samples.

Entropy Ablation. Among the total 75% relative improvement, 10% is attributed to normalization
by σ̃, while the remaining 65% stems from the contribution of the numerator log pθ(x|x) − µ̃. The
entropy −µ̃ plays a crucial role in achieving high detection accuracy in Fast-DetectGPT.

An intuitive elucidation of the significance of entropy lies in the substantial variance observed in
the log pθ(xj |x<j) values for different tokens xj across diverse contexts x<j . This variability in-
troduces instability in the statistical measures employed for detection. Conversely, the expectation
µ̃j establishes a dynamic probability baseline for each token. Consequently, the subtraction of
log pθ(xj |x<j) and µ̃j serves to mitigate the variance of the log-likelihood, yielding a more stable
statistic that proves resilient to token or context fluctuations.

In a specific experiment involving ChatGPT generations for XSum, the average standard deviation
of token-level log-likelihood is 2.1893, while the average standard deviation of token-level entropy
is 1.6090. Conversely, the average standard deviation resulting from their addition is 1.6342, repre-
senting a significant reduction from the initial 2.1893.
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F ADDITIONAL ANALYSIS

F.1 ROBUSTNESS AGAINST DECODING STRATEGIES

Method Top-p (p = 0.96) Top-k (k = 40) Temperature (T = 0.8)
XSum SQuAD WritingP Avg. XSum SQuAD WritingP Avg. XSum SQuAD WritingP Avg.

Likelihood 0.9126 0.9045 0.9781 0.9317 0.8624 0.8612 0.9608 0.8948 0.973 0.9647 0.9962 0.9780
Entropy 0.5287 0.5273 0.3255 0.4605 0.5538 0.5523 0.3632 0.4898 0.4854 0.4942 0.2522 0.4106
LogRank 0.9293 0.9324 0.9853 0.9490 0.8946 0.9047 0.9757 0.9250 0.9844 0.9821 0.9978 0.9881
LRR 0.9223 0.9600 0.9836 0.9553 0.9173 0.9566 0.9827 0.9522 0.9826 0.9923 0.9903 0.9884
NPR 0.9789 0.9511 0.9901 0.9734 0.9726 0.945 0.9912 0.9696 0.9892 0.9710 0.9897 0.9833
DetectGPT 0.9778 0.9359 0.9807 0.9648 0.9708 0.9247 0.9797 0.9584 0.9830 0.9362 0.9745 0.9646
Fast-Detect 0.9975 0.9976 0.9994 0.9982 0.9871 0.9914 0.9977 0.9921 0.9998 0.9996 0.9992 0.9995
(Diff) 0.0197 0.0617 0.0188 0.0334 0.0164 0.0667 0.0180 0.0337 0.0168 0.0634 0.0247 0.0350
DetectGPT (fixed) 0.9476 0.8506 0.9377 0.9120 0.9158 0.8202 0.9181 0.8847 0.9717 0.9026 0.9522 0.9422
Fast-Detect (fixed) 0.9889 0.9942 0.9945 0.9925 0.9642 0.9790 0.9864 0.9765 0.9988 0.9989 0.9984 0.9987
(Diff) 0.0413 0.1436 0.0568 0.0806 0.0484 0.1587 0.0683 0.0918 0.0271 0.0963 0.0462 0.0565

Method Top-p (p = 0.90) Top-k (k = 30) Temperature (T = 0.6)
Likelihood 0.9592 0.9495 0.9924 0.9670 0.9010 0.8922 0.9754 0.9229 0.9964 0.9954 0.9999 0.9972
Entropy 0.4985 0.4990 0.2881 0.4285 0.532 0.5374 0.3359 0.4684 0.4171 0.3718 0.1146 0.3012
LogRank 0.9701 0.9684 0.9951 0.9779 0.9309 0.9338 0.9863 0.9503 0.9990 0.9987 1.0000 0.9992
Fast-Detect 0.9997 0.9998 0.9996 0.9997 0.9941 0.9955 0.9988 0.9961 0.9998 0.9999 0.9991 0.9996

Table 9: Impact of decoding strategies, where the machine-generated texts are produced by sampling
with top-p, top-k, and temperature. The report AUROC is the average over the five models in Table
10.

Method Top-p (p = 0.96) Top-k (k = 40) Temperature (T = 0.8)
GPT2 OPT2.7 Neo2.7 GPTJ NeoX GPT2 OPT2.7 Neo2.7 GPTJ NeoX GPT2 OPT2.7 Neo2.7 GPTJ NeoX

XSum
Likelihood .9234 .9308 .931 .9042 .8733 .8813 .8918 .8873 .8401 .8114 .9781 .982 .9862 .9679 .9511
Entropy .5541 .4665 .5303 .531 .5614 .5743 .4843 .5601 .5588 .5917 .5022 .4289 .4669 .4837 .5453
LogRank .9414 .9422 .9502 .922 .8906 .9122 .9173 .9227 .8756 .8454 .9883 .9885 .9939 .9817 .9694
LRR .9509 .9252 .9478 .9203 .8672 .9432 .9254 .9452 .9045 .8683 .9889 .9823 .991 .9806 .9702
NPR .9909 .9841 .9982 .973 .9486 .987 .9801 .9938 .9606 .9416 .9955 .9916 .9976 .9853 .976
DetectGPT .9875 .9793 .9961 .9762 .95 .9869 .9707 .9919 .9619 .9424 .9928 .9856 .9953 .979 .9622
Fast-DetectGPT .9994 .9965 .9988 .997 .9958 .9954 .9867 .9938 .9826 .9773 .9999 .9999 .9997 .9999 .9997
(Diff) .0119 .0172 .0028 .0208 .0458 .0085 .0160 .0018 .0207 .0349 .0071 .0143 .0044 .0209 .0376
DetectGPT(fixed) .9399 .9438 .9961 .9367 .9214 .9143 .9026 .9919 .8846 .8854 .9722 .9635 .9953 .9627 .9646
Fast-Detect(fixed) .9953 .9861 .9997 .9856 .9779 .9805 .9613 .9979 .9499 .9311 .9978 .999 .9999 .9991 .998
(Diff) .0554 .0423 .0036 .0489 .0565 .0662 .0587 .0060 .0654 .0457 .0256 .0355 .0046 .0364 .0333

SQuAD
Likelihood .961 .944 .9214 .8838 .8122 .9393 .9072 .8926 .8351 .7317 .9906 .987 .9792 .9572 .9094
Entropy .5369 .4736 .539 .5277 .5593 .552 .5203 .5457 .5441 .5992 .5132 .4508 .4924 .4882 .5263
LogRank .9792 .9657 .9535 .9156 .8482 .9692 .9423 .9385 .8842 .7895 .9972 .9959 .994 .9798 .9434
LRR .9865 .981 .981 .9507 .9009 .9898 .9782 .9815 .945 .8886 .9991 .9973 .9992 .9911 .9748
NPR .9955 .9934 .9897 .9335 .8436 .9962 .99 .9877 .9251 .826 .9988 .9963 .9931 .9684 .8981
DetectGPT .994 .9838 .9781 .9054 .8182 .9928 .9804 .9709 .8819 .7977 .9959 .9819 .9778 .9123 .8132
Fast-DetectGPT 1 .9997 .9998 .9981 .9903 .9986 .9973 .998 .9928 .9706 1 1 1 .9994 .9986
(Diff) .0060 .0159 .0218 .0927 .1722 .0057 .0169 .0271 .1109 .1729 .0041 .0180 .0222 .0871 .1854
DetectGPT(fixed) .8066 .7857 .9781 .8462 .8365 .7815 .763 .9709 .8128 .7729 .8936 .862 .9778 .8897 .8898
Fast-Detect(fixed) .9984 .995 1 .9933 .9845 .9893 .984 .9997 .9709 .9509 1 .9999 1 .9984 .9961
(Diff) .1918 .2093 .0219 .1471 .1480 .2078 .2210 .0288 .1581 .1780 .1064 .1379 .0222 .1087 .1063

WritingPrompts
Likelihood .9889 .9736 .9806 .9764 .9711 .9777 .9555 .9677 .9566 .9463 .9983 .9949 .9971 .996 .9945
Entropy .3236 .3789 .2798 .3212 .3238 .3601 .4149 .3183 .3529 .3696 .2511 .3033 .219 .2252 .2625
LogRank .9931 .9827 .987 .9853 .9785 .9867 .9719 .9807 .9735 .9656 .9991 .9972 .9984 .9977 .9969
LRR .9906 .9854 .9857 .9839 .9724 .9901 .9835 .9858 .9834 .9709 .9961 .9917 .9914 .9887 .9837
NPR .9984 .9964 .9944 .9855 .9758 .9988 .9955 .9971 .9888 .9759 .9985 .9953 .993 .9836 .9781
DetectGPT .9969 .9898 .9926 .9714 .9526 .9965 .9868 .992 .971 .9521 .9932 .985 .9842 .9656 .9447
Fast-DetectGPT .9997 .9999 .9998 .9998 .9981 .9978 .9973 .999 .9987 .9957 .9997 .9999 .9992 .9991 .9984
(Diff) .0028 .0102 .0071 .0284 .0455 .0012 .0105 .0070 .0277 .0436 .0065 .0149 .0150 .0335 .0537
DetectGPT(fixed) .9297 .9177 .9926 .9299 .9187 .9115 .8906 .992 .9052 .8914 .9385 .9451 .9842 .9535 .9398
Fast-Detect(fixed) .9982 .9825 .9999 .9974 .9945 .9947 .9616 .9998 .9901 .986 .9995 .9959 .9997 .9983 .9987
(Diff) .0685 .0648 .0073 .0676 .0758 .0832 .0710 .0079 .0849 .0946 .0610 .0508 .0155 .0448 .0588

Table 10: Detailed results on decoding strategies.

Machine systems may use different decoding strategies such as top-k sampling, top-p (Nucleus)
sampling, and sampling with a temperature T . We experiment on the five models and three datasets
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used in Table 2, sampling with the three strategies with k = 40, p = 0.96, and T = 0.8. Fast-
DetectGPT in the white-box setting obtains the best accuracy on the three sampling strategies, out-
performing DetectGPT by relative 95% on Top-p sampling, relative 81% on Top-k sampling, and
relative 99% on sampling with a temperature, as shown in Table 9. In the black-box setting, Fast-
DetectGPT outperforms DetectGPT by relatively 92%, 80%, and 98% on the three decoding strate-
gies, respectively. These results demonstrate that Fast-DetectGPT works consistently in detecting
texts produced by different decoding strategies.

To elucidate the trajectory of detection accuracy concerning variations in sampling hyper-
parameters, we conducted additional experiments with values set to p = 0.90, k = 30, and T = 0.6.
As indicated in the lower segment of Table 9, reducing the values of p, k, and T enhances the de-
terminism of generated samples, facilitating easier detection and consequently yielding significantly
higher AUROCs.

F.2 ROBUSTNESS UNDER PARAPHRASING ATTACK

Method Paraphrasing Attack Decoherence Attack
XSum Writing PubMed Avg. XSum Writing PubMed Avg.

RoBERTa-base 0.8103 0.5368 0.5962 0.6477 0.5778 0.5629 0.5392 0.5600
RoBERTa-large 0.7532 0.4619 0.6187 0.6113 0.4945 0.3849 0.5520 0.4771

Likelihood(Neo-2.7) 0.8521 0.8691 0.7029 0.8080 0.7393 0.9240 0.7757 0.8130
Entropy(Neo-2.7) 0.4508 0.3054 0.3815 0.3793 0.4807 0.2474 0.3051 0.3444
LogRank(Neo-2.7) 0.8640 0.8635 0.7060 0.8112 0.7628 0.9143 0.7789 0.8187
LRR(T5-11B/Neo-2.7) 0.8391 0.8040 0.6596 0.7676 0.7845 0.8413 0.7067 0.7775
NPR(T5-11B/Neo-2.7) 0.5121 0.5530 0.4753 0.5135 0.4250 0.7577 0.5198 0.5675
DetectGPT(T5-11B/GPT-2) 0.4864 0.5698 0.6004 0.5522 0.2919 0.7035 0.6026 0.5326
DetectGPT(T5-11B/Neo-2.7) 0.5364 0.5172 0.4763 0.5100 0.3438 0.6894 0.5073 0.5135
DetectGPT(T5-11B/GPT-J) 0.4298 0.4689 0.4079 0.4355 0.2889 0.6573 0.4371 0.4611
Fast(GPT-J/GPT-2) 0.9233 0.9186 0.7727 0.8715 0.7909 0.9524 0.7697 0.8377
Fast(GPT-J/Neo-2.7) 0.9646 0.9190 0.7172 0.8669 0.8598 0.9622 0.7487 0.8569
Fast(GPT-J/GPT-J) 0.9591 0.9476 0.7063 0.8710 0.8750 0.9811 0.7428 0.8663

Table 11: Detection of ChatGPT generations under attack. We use the black-box settings for all
zero-shot methods. We paraphrase each sentence in the ChatGPT-generated passages using T5 para-
phraser for paraphrasing attack and randomly swap two adjacent words in each sentence with more
than 20 words, where both attacks downgrade the coherence of the original passages.

We assess Fast-DetectGPT alongside with other zero-shot methods to evaluate their resilience in the
face of adversarial attacks. Following the approach outlined in Sadasivan et al. (2023), we employed
a T5-based paraphraser4 to paraphrase text generated by ChatGPT before detection. As shown
in Table 11 (Appendix F.2), all methods witnessed a decline in detection accuracy. Specifically,
RoBERTa-base’s AUROC decreases from 0.7474 to 0.6477, DetectGPT from 0.8342 to 0.5522, and
Fast-DetectGPT from 0.9641 to 0.8715, where Fast-DetectGPT experiences the smallest relative
downgrade.

However, upon detailed examination, we identify an unforeseen consequence of the paraphrasing
attack: a noticeable reduction in cross-sentential coherence within passages, as an example illus-
trated below. This issue largely stems from the independent paraphrasing of individual sentences.
We speculate that this diminished coherence is primarily responsible for the observed performance
drop, given that the paraphrased text appears aberrant in its coherence relative to both machine-
generated and human-authored passages.

Paraphrasing attack downgrades the coherence of the passages. For instance, consider a news report
about a car crash, originally reading, “If the car driver was hit first from behind or in front of him
only on a single lap you should take control of your car. You have to be as much ahead of the car
driver as possible and if you not get to your proper position with the car and the driver can’t make
that turn.” The second sentence was paraphrased to, “If you not get to your proper position with the

4https://huggingface.co/Vamsi/T5 Paraphrase Paws
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car and the driver can not do that turn, you need to be as much ahead of the car driver as possible.”
When placed back in its context, we observed that the paraphrased sentence was considerably more
challenging to comprehend than the original.

To test this conjecture, we execute a decoherence attack, wherein two adjacent words in sentences
exceeding 20 words are randomly transposed. While this manipulation impacts fluency, the core
meaning largely persists. As evidenced in Table 11 in Appendix, there was a comparable drop in
detection accuracy, thereby empirically confirming our speculation.

G ADDITIONAL DISCUSSION

Authorship of Text. The conditional probability curvature serves as an indicator of how well a
candidate passage aligns with a specific source model. When we utilize various source models, we
observe varying sample discrepancies, which can aid in identifying the most suitable match among
these source models. Consequently, this approach has the potential to be employed for source model
identification within a set of available models.

Watermarking. Another line of detection methodology is watermarking that deliberately embeds
information within machine-generated text to trace its origin (Jalil & Mirza, 2009; Kamaruddin et al.,
2018; Abdelnabi & Fritz, 2021; Gu et al., 2022; Kirchenbauer et al., 2023). In comparison, Fast-
DetectGPT relies on the innate distinction between the texts generated by humans and by machines,
which may further be strengthened by explicit watermarks as additional features.

In practice, these two strategies could potentially be combined to provide a more reliable detection
solution. On the one hand, watermarking can be used to authorize the content generated by a spe-
cific service. On the other hand, when the service is out of our control and we cannot enforce the
watermarking or a potential attacker has a strong LLM to remove the watermarks, the watermarking
approach fails in these situations but the general detector like Fast-DetectGPT can still provide a
valid solution.
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