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ABSTRACT

The differing representation spaces required for visual understanding and genera-
tion pose a challenge in unifying them within the autoregressive paradigm of large
language models. A vision tokenizer trained for reconstruction excels at capturing
low-level visual appearance, making it well-suited for visual generation but lacking
high-level semantic representations for understanding tasks. Conversely, a vision
encoder trained via contrastive learning aligns well with language but struggles to
decode back into the pixel space for generation tasks. To bridge this gap, we pro-
pose DualToken, a method that unifies representations for both understanding and
generation within a single tokenizer. However, directly integrating reconstruction
and semantic objectives creates conflicts, leading to degraded performance in both
reconstruction fidelity and semantic accuracy. Instead of forcing a single codebook
to capture both visual appearance and semantics, DualToken disentangles them
by introducing separate codebooks for high-level semantics and low-level visual
details, effectively turning their inherent conflict into a synergistic relationship. As
a result, DualToken sets a new record of 0.25 rFID and 82.0% zero-shot accuracy
on ImageNet, and demonstrates strong effectiveness in downstream MLLM tasks
for both understanding and generation. Specifically, our method surpasses VILA-U
by 5.8 points on average across ten visual understanding benchmarks and delivers a
13% improvement on GenAI-Bench, attaining state-of-the-art performance among
existing autoregressive unified models. Notably, incorporating dual visual tokens
consistently outperforms using a single token type on both understanding and
generation tasks. We hope our research offers a new perspective on leveraging dual
visual vocabularies for building unified vision–language models.

1 INTRODUCTION

Unifying visual understanding and generation within the pure autoregressive (AR) paradigm of Large
Language Models (LLMs) offers a simple, end-to-end alternative to the increasingly common yet
structurally complex approach of coupling LLMs with external diffusion modules (Dong et al., 2024;
Huang et al., 2025; Pan et al., 2025; Chen et al., 2025b). To enable fully unified AR modeling of
vision and language, a model requires a visual tokenizer to map images into discrete tokens and a
corresponding detokenizer that can faithfully reconstruct them back into pixel space.

Early methods in this direction (Yu et al., 2023a; Team, 2024; Wang et al., 2024b) directly adopt the
encoder and decoder of VQ-VAE as the visual tokenizer and detokenizer. While these approaches
demonstrated the feasibility of unifying visual understanding and generation within the AR paradigm,
their understanding capabilities are typically lacking compared to multimodal large language models
(MLLMs) specialized for understanding tasks (Liu et al., 2023; Yue et al., 2023; Fu et al., 2024;
Song et al., 2024). We argue that this performance gap stems from inadequate visual representations:
traditional VQ-VAEs are optimized solely for reconstruction, producing image tokens that preserve
low-level visual details but fail to capture high-level semantics aligned with language. By contrast,
MLLMs designed for understanding tasks (Liu et al., 2024c; Chen et al., 2024b; Li et al., 2024c;
2025b; Bai et al., 2025) typically rely on CLIP-family encoders (Radford et al., 2021; Zhai et al.,
2023), which are pretrained with text alignment and thus inherently encode high-level semantics,
making them more suitable for downstream visual understanding tasks in MLLMs.
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Figure 1: (Left) Challenges faced by existing visual tokenizers. (Middle) We compare zero-
shot classification accuracy and reconstruction FID on ImageNet-1K(val) across baseline methods
and DualToken. DualToken achieves results comparable to or surpassing both semantic-only and
reconstruction-only methods in both tasks. (Right) Reconstruction results of VILA-U and DualToken,
our DualToken significantly outperforms VILA-U, which suffers from severe distortion and blurriness.

To fully leverage the language-aligned se-
mantic representations of CLIP, a natural
approach is to quantize the features of a
CLIP encoder and train a decoder for im-
age reconstruction (Wu et al., 2025). This
involves learning to reconstruct images for
downstream generation tasks while preserv-
ing its semantic capabilities as much as pos-
sible (Wu et al., 2025). However, as shown
in Fig.1 and Table.1, directly combining re-
construction and semantic objectives often
leads to severe distortions and blurriness in
reconstruction tasks, along with a noticeable
decline in semantic metrics such as zero-shot
classification and image-text retrieval, com-
pared to its original pretrained model (Zhai
et al., 2023). This degradation, as discussed
in Wu et al. (2025), reflects the inherently
conflict between the two training objectives,
ultimately limiting both the quality of down-
stream image generation tasks and the perfor-
mance of multimodal understanding tasks.

Table 1: Comparison to state-of-the-art visual to-
kenizers. DualToken achieves the best performance
among existing unified visual tokenizers in semantic
metrics. It also mitigates the distortion and blurriness
faced by VILA-U during reconstruction, and surpasses
dedicated models in reconstruction metrics.

METHODS
Semantic Reconstruction

Zero-Shot↑ T2I(R@1)↑ I2T(R@1)↑ rFID ↓ PSNR↑ SSIM↑

Reconstruction Only
MoVQGAN (Zheng et al., 2022) ✗ ✗ ✗ 1.12 22.42 0.673
RQ-VAE (Lee et al., 2022) ✗ ✗ ✗ 2.69 - -
ViT-VQGAN (Yu et al., 2021) ✗ ✗ ✗ 1.55 - -
Open-MAGVIT2 (Luo et al., 2024) ✗ ✗ ✗ 1.17 21.90 -
SBER-MoVQGAN (SberBank, 2023) ✗ ✗ ✗ 0.68 27.04 0.741

Understanding Only
CLIP-L/14-336 (Radford et al., 2021) 76.6 21.2 21.5 ✗ ✗ ✗

SigLIP-L/16-256 (Zhai et al., 2023) 80.5 21.0 21.4 ✗ ✗ ✗

SigLIP-So/14-384 (Zhai et al., 2023) 83.2 21.7 21.6 ✗ ✗ ✗

SigLIP2-So/16-256 (Tschannen et al., 2025) 83.4 21.5 22.0 ✗ ✗ ✗

ViTamin-L/16-256 (Chen et al., 2024a) 81.2 20.6 21.2 ✗ ✗ ✗

Reconstruction & Understanding
QLIP (256px) (Zhao et al., 2025) 74.3 16.8 18.4 3.21 23.16 0.628
QLIP (392px) (Zhao et al., 2025) 79.1 20.4 21.0 1.46 25.36 0.690
UniTok (Ma et al., 2025) 78.6 - - 0.38 25.34 -
TokenFlow (256px) (Qu et al., 2024) - - - 1.37 21.41 0.687
TokenFlow (384px) (Qu et al., 2024) - - - 0.63 22.77 0.731
Muse-VL (256px) (Xie et al., 2025b) - - - 2.26 20.14 0.646
TokLIP (SigLIP2-So/16-384) (Lin et al., 2025) 80.0 - - 0.94 21.94 0.726
VILA-U (SigLIP-L/16-256) (Wu et al., 2025) 73.3 10.0 11.2 1.80 3.43 0.489
VILA-U (SigLIP-So/14-384) (Wu et al., 2025) 78.0 - - 1.25 - -
DualToken (SigLIP-L/16-256) 79.8 20.8 21.4 1.06 27.12 0.693
DualToken (SigLIP-So/14-384) 82.0 21.5 21.6 0.24 28.69 0.744
DualToken (SigLIP2-So/16-256) 82.3 21.1 21.9 0.52 28.03 0.726

To disentangle the two conflicting objectives, we propose interpreting visual appearance and visual
semantics—required for visual generation and understanding—as distinct visual vocabularies: a
pixel codebook that captures low-level appearance features for generation, and a semantic codebook
that encodes high-level semantic features essential for understanding. Specifically, inspired by
the hierarchical structure of the human visual system (Groen et al., 2017), we partition the Vision
Transformer (ViT) (Dosovitskiy et al., 2020) into shallow, middle, and deep stages based on the cosine
similarity (Chen et al., 2025a) across layers and observe that shallow layers of a ViT predominantly
capture low-level perceptual information—such as texture and color—making them suitable for
reconstruction tasks, whereas high-level semantic representations emerge in the deeper layers (Chen
et al., 2023b; 2025a). To fully exploit this inherent property of ViT, we utilize shallow-layer features
for reconstruction and deep-layer features for semantic learning, thereby enabling the simultaneous
derivation of both a pixel codebook and a semantic codebook within a unified tokenizer.

Surprisingly, this hierarchical decoupling not only resolves the conflict between the two objectives
but also enables the semantic learning objective to enhance low-level reconstruction. Moreover,
training the shallow-layer reconstruction task introduces minimal degradation to the model’s original
semantic capabilities, without additional contrastive learning stages (Radford et al., 2021; Wu et al.,
2025). As a result, our DualToken achieves the best semantic performance among established unified
tokenizers (Wu et al., 2025; Zhao et al., 2025; Qu et al., 2024; Ma et al., 2025) while also attaining
state-of-the-art performance in reconstruction. Building upon this, we further demonstrate how a
multimodal large language model (MLLM) can effectively utilize the dual visual vocabularies to
achieve unified vision understanding and generation.
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Our analysis reveals three key findings: i) Dual visual vocabularies resolve conflicts: Decoupling vi-
sual appearance and visual semantics with separate visual vocabularies mitigates the conflict between
reconstruction and semantic objectives and transform them into a positive relationship. Our tokenizer
achieves state-of-the-art performance in both reconstruction and semantic understanding, using only
10% of the pretraining data required by VILA-U; ii) DualToken is better than combining dual en-
coders: We observe that DualToken, as a unified architecture, outperforms the direct combination of
two heterogeneous visual encoders, demonstrating both simplicity and effectiveness; iii) Dual-token
promote each other: On one hand, visual appearance tokens (pixel tokens) are not only used for
generation but also contribute fine-grained low-level features that enhance visual understanding. On
the other hand, visual semantic tokens—beyond their role in understanding tasks—act as positive
supervision during autoregressive generation, leading to more semantically aligned image outputs
compared to generating pixel tokens alone.

2 RELATED WORKS

Unified Multimodal Models A classic strategy for integrating visual understanding and generation
within a single MLLM is to externally connect an LLM with a Diffusion Model (Sun et al., 2024;
Dong et al., 2024; Pan et al., 2025; Chen et al., 2025b). However, pure AR architectures offer a more
elegant, fully end-to-end solution by unifying both tasks within the same autoregressive framework.
Representative works like Chameleon (Yu et al., 2023a; Team, 2024) and Emu3 (Wang et al., 2024b),
have demonstrated the feasibility of jointly modeling vision and language through a unified next-token
prediction objective. Specifically, visual inputs are first tokenized into visual tokens. These visual
tokens are then interleaved with text tokens to construct a multimodal sequence. However, these
pure AR architectures introduce generative capabilities at the cost of considerably weaker visual
understanding. An empirical explanation for this (Wu et al., 2025; Xie et al., 2025b) is that their vision
tokenizers are trained solely for reconstruction and thus primarily captures low-level visual details
for generation rather than the high-level semantics required for vision–language understanding.

A straightforward way to bypass such a conflict is to employ two heterogeneous vision encoders (Wu
et al., 2024a; Chen et al., 2025c; Deng et al., 2025b): a semantic tokenizer (e.g. CLIP) for understand-
ing and a reconstruction-based tokenizer (e.g. VQ-VAE) for generation. Yet this design inevitably
adds extra modules and structural complexity, making understanding and generation two loosely
coupled systems with distinct pathways rather than a truly unified model. In contrast, the text modality
relies on a single tokenizer (e.g., BPE) (Sennrich et al., 2015) that discretizes text into a unified
token space. This ensures a consistent input–output space: the input tokens that provide signals for
understanding and the output tokens produced during generation share the same vocabulary. This
unified design allows LLMs to seamlessly integrate text understanding and generation within the
next-token prediction paradigm, thereby supporting broad generalization across diverse linguistic
tasks. Therefore, the visual modality urgently requires a tokenizer that, like text tokenizers, can
support both understanding and generation within a unified, coherent token space.

Unified Visual Tokenizers Recent research has actively explored solutions in this direction. VILA-
U (Wu et al., 2025) and MUSE-VL (Xie et al., 2025b) strive to build a unified tokenizer by jointly
training on both reconstruction and semantic objectives. However, due to the inherent disparity
between semantic and texture features, they struggle to strike an optimal balance between the two
objectives, resulting in subpar performance in both tasks. As discussed in FQGAN (Bai et al., 2024),
decomposing the codebook in a divide-and-conquer manner may offer a more fundamental solution
to this conflict. TokenFlow (Qu et al., 2024) employs separate codebooks with a shared-mapping
mechanism. However, key differences set our approach apart: (i) TokenFlow relies on distinct vision
towers to extract semantic and low-level features, rather than leveraging a unified architecture; (ii)
the shared IDs obtained through the shared-mapping mechanism may not be the optimal matches for
either semantics or texture, potentially introducing additional losses in both domains.

3 METHOD

This section formally introduces the design of our unified tokenizer and explains how its dual visual
codebooks are utilized within the next-token prediction paradigm of LLMs for unified multimodal
understanding and generation.

3
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Figure 2: Comparing the design of a naive (Left) and our decoupled approach (Right). Naively
combining reconstruction and semantic loss with a single visual vocabulary leads to distorted
reconstruction and degraded semantic performance. We decouple the two objectives through a
hierarchy approach, where reconstruction loss is applied to supervise the shallow layers, while
semantic supervision is applied to the deep layers. This enhances both reconstruction fidelity and
semantic quality. Consequently, we derive two complementary visual vocabularies: a pixel codebook
for low-level visual appearance, and a semantic codebook for high-level visual semantics.

3.1 MOTIVATION AND VERIFICATION

As discussed in Qu et al. (2024), CLIP
encoders cluster images by semantic
similarity, whereas VQVAE-based en-
coders group images by low-level at-
tributes such as color and texture. This
suggests that encoders trained for recon-
struction primarily capture low-level vi-
sual appearance, while those trained
with text alignment excel at capturing
high-level semantics. We argue that
this difference in representation space
is a key factor underlying downstream
MLLM performance. Yet such a claim
has not been formally validated before.

Table 2: Downstream visual understanding performance
with different vision encoders within the LLaVA-1.5
framework. The CLIP-based encoder corresponds to the
siglip-so400m-14-384 model (Alabdulmohsin et al., 2023),
whereas CLIP-based (recon.) denotes an encoder with the
same architecture but trained solely for reconstruction from
scratch, controlling for factors like model size and archi-
tecture. For the VQVAE-based encoder, we adopt SBER-
MoVQGAN-270M, a well-established reconstruction model.

Vision Encoder Type MMB↑ MME↑ SEED↑ VQAv2↑ Zero-Shot↑ rFID ↓

CLIP-based 61.8 1492.9 58.4 78.5 83.2 ✗

CLIP-based (recon.) 36.2 822.4 30.6 47.5 ✗ 0.96
VQVAE-based 35.8 792.0 34.1 45.2 ✗ 0.68

To validate this viewpoint, we started by a preliminary experiment following the LLaVA-1.5
pipeline (Liu et al., 2024b). In Table.2, compared to the original SigLIP model, encoders trained with
reconstruction objective exhibit a significant drop in downstream MLLM vision-language understand-
ing performance, validating that high-level semantic features are more critical for visual reasoning
in MLLMs than low-level perceptual features. However, to achieve both visual understanding and
generation within a single MLLM, it is essential to decode the visual tokens back into pixel space as
accurately as possible. However, since the SigLIP encoder focuses on high-level semantic information
rather than texture details, simply discretizing its features and training a decoder without tuning the
encoder results in poor image reconstruction quality. Therefore, proposing a unified tokenizer is
crucial to enable high-quality visual understanding and generation within a singe MLLM.

3.2 UNIFIED VISION TOKENIZER WITH DUAL CODEBOOKS

To build a unified tokenizer, we started with the simplest approach, where we directly combine the
reconstruction loss and semantic loss to optimize the entire vision tower and use a single visual
vocabulary to tokenize its feature, similar to VILA-U (Wu et al., 2025). Specifically, as illustrated in
Fig.2 (left), we initialize the vision encoder with pretrained weights from SigLIP (Zhai et al., 2023)
to ensure strong text-image alignment. Then the semantic loss is computed between the deeper-layer
features of the model and its initial state to constrain the model from losing its semantic capability.

However, as shown in Table.3 (a), this straightforward approach leads to a clear conflict between the
two objectives. On one hand, although the semantic loss is applied to preserve the model’s original
semantic representation capabilities, achieving this objective proves difficult, as semantic performance
metrics show a significant decline compared to the original model, reflecting the disruption caused by
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Table 3: DualToken transforms the conflict between reconstruction and semantic objectives
into a positive relationship. Directly combining the two objectives leads to a drastic decline in
reconstruction performance (a vs. b). However, incorporating reconstruction and semantic losses
hierarchically results in better reconstruction performance compared to using reconstruction alone
(d vs. c). We highlight our method in the last row. We adopt the pretrained weights from the
siglip-so400m-patch14-384 in this experiment.

# Exp. Learning Objective (layer) Feature Type Zero-Shot Acc.↑
Reconstruction

rFID ↓ PSNR↑ SSIM↑

Initial State Continuous 83.2 ✗ ✗ ✗
Initial State (quantized) Discrete 82.4 ✗ ✗ ✗

(a) Recon. (26) + Sem. (26) Discrete 72.3 3.86 12.64 0.574
(b) Recon. (26) Discrete ✗ 0.27 27.88 0.722
(c) Recon. (6) Discrete ✗ 0.29 28.12 0.745
(d) Recon. (6) + Sem. (26) Discrete 82.0 0.24 28.69 0.744

the reconstruction training objective on semantic capabilities. On the other hand, as shown in the
cropped region of Fig.2, the model also struggles to achieve satisfactory reconstruction quality, often
producing distorted and blurry images.

To resolve this conflict, we begin by ana-
lyzing the intrinsic properties of the SigLIP
encoder. Specifically, we divide the ViT
into shallow, middle, and deep layers based
on the cosine similarity of features across
layers, as shown in Fig.3 (left). Guided
by this partition, we extract features from
the shallow and deep layer to perform clus-
tering on the image representations. As
shown in Fig.3 (right), we observe that fea-
tures from the shallow layer tend to cluster
images based on low-level attributes such
as color and texture, whereas features from
the deep layer form clusters according to se-
mantics. This suggests that shallow SigLIP
features capture fine-grained perceptual de-
tails, while deeper layers encode high-level
semantics, aligning naturally with the re-
spective requirements of downstream vi-
sual generation and understanding tasks.

Cluster 3 Cluster 0 Cluster 15

Cluster 423Cluster 350Cluster 652

(a)

(b)

Figure 3: (Left) Partitioning of the SigLIP encoder (Zhai
et al., 2023) based on the cosine similarity of features
across layers. Distinct bright square regions are observed
in the ranges of layers 1–7 and 8–17, indicating strong
intra-group similarity within each interval; the remaining
layers are treated as deep layers. (Right) Visualization of
image clusters derived from features of (a) the 6th layer
and (b) the 26th layer of SigLIP. Features from deep lay-
ers cluster images based on semantic content, whereas
features from shallow layers form clusters based on low-
level cues such as color and texture. For example, images
in cluster 0 exhibit similar grid-like textures (e.g., win-
dow screens or monitor meshes). Implementation details
of the clustering process are provided in Appendix.F.

Motivated by this, we introduce a hierarchical approach to decouple the learning of the reconstruction
and semantic objectives. Specifically, as shown in Fig.2 (right), reconstruction loss is applied to
supervise the shallow layers (1-6) of the vision tower, while semantic loss is applied to the deep 26-th
layer (Please refer to Appendix.B for the selection of the reconstruction layer). Features from the
shallow and deep layers are discretized separately via residual vector quantization (Lee et al., 2022),
resulting in low-level and high-level visual vocabularies, referred to as the pixel codebook and the
semantic codebook, respectively. To ensure the encoder outputs align closely with the codebook
entries, we utilize a Vector Quantization (VQ) commitment loss, which is defined as

Lc = ∥z − quantize(z)∥22 (1)

Consequently, the total loss is formulated as a weighted sum of reconstruction loss, semantic loss,
and VQ commitment loss

Ltotal = λ1 · Lrecon + λ2 · Lsem + λ3 · (Lc1 + Lc1) (2)

where the reconstruction loss is the combination of pixel-wise L2 loss (Dosovitskiy & Brox, 2016),
LPIPS loss (Zhang et al., 2018) and adversarial loss (Isola et al., 2017) for reconstructing an input
image

Lrecon = ∥x̂− x∥22 + λpLLPIPS(x̂, x) + λgLG(x̂) (3)
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Figure 4: (a) Direct combination of two heterogeneous tokenizer. Baseline method (Huang
et al., 2025) that directly uses VQGAN and CLIP-based encoder to separately acquire high-level
(semantic) and low-level (pixel) visual codebooks. (b) Our unified tokenizer with dual codebook.
We decoupling high-level and low-level visual codebooks within a unified vision tokenizer. The
image is converted into low-level visual appearance tokens (green) and text-aligned semantic tokens
(red). (c) Architecture for unifying generation and understanding task. In image generation task,
the generated low-level tokens are decoded by the visual decoder to reconstruct the visual content.

while the semantic loss is computed as the distance between the model’s final-layer feature F and its
initial value F0

Lsem = −cos(F, F0) + ∥F − F0∥22 (4)

where cos(·) denotes cosine similarity. Interestingly, as shown in Table.3 (d), even without adding
an additional contrastive learning phase, but solely by applying a simple constraint on the semantic
representation, incorporating a reconstruction objective within our hierarchical learning strategy
causes minimal damage to the model’s semantic capability. More intriguingly, as shown in Table.3
(b)(c)(d), compared to training solely for reconstruction, learning the semantic objective in the deeper
layers actually enhances the reconstruction task in the shallow layers, successfully transforming the
conflict between semantic and reconstruction objectives into a positive relationship.

3.3 UNIFYING UNDERSTANDING AND GENERATION

In this section, we demonstrate how to integrate the dual visual codebooks of DualToken within
a unified MLLM. As illustrated in Fig.4 (c), to model both textual and visual content within the
autoregressive paradigm of LLMs, the pixel and semantic visual tokens are first passed through a
2-layer MLP projector to align their dimensions with the LLM backbone. These tokens are then
concatenated along the embedding dimension (which does not increase the sequence length) to form
unified visual tokens. Next, the unified visual tokens are concatenated with text tokens to construct a
multimodal token sequence. The model is then trained in an autoregressive manner to predict the
next token across both visual and textual content.

For simplicity, we define the language vocabulary of our MLLM as a finite set X = {x1, x2, ..., xn1
},

while the low-level and high-level visual vocabulary as Y = {y1, y2, ..., yn2
} and Z =

{z1, z2, ..., zn3
}, where n1, n2, and n3 represent the vocabulary sizes for language tokens, low-

level visual tokens, and high-level visual tokens, respectively.

For visual tokens, since residual quantization introduces a depth-stacked structure of codes at each
visual position p, we implement our visual heads based on the depth transformer from RQ-VAE (Lee
et al., 2022). As shown in Fig.4, the semantic tokens and pixel tokens are processed by independent
visual heads—the pixel head and the semantic head. Both heads share the same structure, comprising
three layers of depth transformers and corresponding classification head for each depth.

Given the LLM hidden state hp for visual tokens at position p, our depth transformer autoregressively
predicts D residual tokens (rp1, rp2, ..., rpD). For d > 1, the input to the depth transformer at depth
d, denoted as Ipd, is defined as the sum of the token embeddings of up to depth d− 1

Ipd =

d−1∑
d′=1

e(rpd′), (5)

6
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A black dog
a crystal tree 

shimmering under a 
starry sky

A realistic landscape 
shot of the Northern 
Lights dancing over a 
snowy mountain 
range in Iceland

a snowy mountain

an abstract portrait of a 
pensive face rendered in 
cool shades of blues 
Purples and grays

An old man with 
white beard.

Fattoush Salad with 
Roasted Potatoes

Happy thanksgiving day 
card with pumpkin cake 
and pear fall leaves

Man Wearing Black Hoodie 
Standing on Concrete 
Pavement at Night

VILA-U (3B)

DualToken

DualToken 
(pix. only)

Blurry× Blurry× Blurry× Distortion× 

Only purple× "realistic"× "pear fall leaves"× 

Blurry× 

weird crazy racoon

√Good 

Blurry× 

"Crazy"× 

√Good √Good √Good √Good √Good √Good √Good √Good √Good 

Figure 5: Qualitative results on visual generation.

where r ∈ Y for the pixel head and r ∈ Z for the semantic head. The initial input at depth 1 is given
by Ip1 = hp. This formulation ensures that the depth transformer incrementally refines the predicted
feature representation by leveraging previous estimations up to depth d− 1. Consequently, the overall
negative log-likelihood loss for the entire multimodal sequence of length N is defined, if a text token
appears at position i, as

LNTP = −
N∑
i=1

Pi, , where Pi = logP (xi|x<i) (6)

and if visual tokens appears at position i, as

Pi =

D∑
d=1

[logP (yid|yi,<d) + logP (zid|zi,<d)] (7)

4 EXPERIMENTS

4.1 VISION TOKENIZER

Experimental Setup We trained two versions of our vision tokenizers at 256× 256 and 384× 384
resolutions. For fair comparison with VILA-U, we adopted the same quantization strategies and
pretrained weights (SigLIP-L/16-256 and SigLIP-so/14-384), yielding 256 / 729 tokens with residual
depths D = 4 / D = 8 (whereas VILA-U uses D = 4 / D = 16). To test stronger backbones,
we further trained on SigLIP2-so/16-256 with D = 8, and show that our method generalizes to
other backbones in Appendix. B. All models were trained on ImageNet-1K (Deng et al., 2009),
CC12M (Changpinyo et al., 2021), and 50M images from LAION-400M (Schuhmann et al., 2021).

Reconstruction We measured reconstruction FID (rFID), PSNR, and SSIM on the ImageNet-1K
(val). As shown in Table.1, our DualToken achieves the highest structural similarity and the lowest
rFID among various state-of-the-art dedicated methods, including Open-MAGVIT2 (Luo et al., 2024)
and SBER-MoVQGAN (SberBank, 2023). This demonstrates that our method effectively mitigates
the structural distortion and blurriness issues encountered by VILA-U during reconstruction.

Semantic Metrics For semantic metrics, we report the Top-1 accuracy for zero-shot classification
on ImageNet-1K (val), along with text-to-image and image-to-text retrieval performance (R@1) on
Flickr8K. As shown in Table.1, our DualToken significantly outperforms VILA-U and the latest
concurrent work, UniTok, while also surpassing dedicated models like CLIP-L-14-336 in zero-shot
image classification and achieves performance on par with the state-of-the-art SigLIP models.

Downstream Performance within LLaVA-1.5 Before formally introducing the performance of
our unified model, we first conducted a controlled experiment to validate the effectiveness of our
vision tokenizer in downstream MLLM understanding tasks within the LLaVA-1.5 (Liu et al., 2024b)
framework. Specifically, we replace the vision encoder of LLaVA-1.5 with DualToken, while strictly
adhering to its training data and using LLaMA-2-7B (Touvron et al., 2023) as the foundational LLM.
As shown in Table.4 (a)(b)(d), our DualToken, as a discrete unified vision tokenizer, outperforms
VILA-U and even surpasses the original continuous SigLIP model.
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Table 4: Controlled comparison across ten visual understanding benchmarks. We evaluate differ-
ent vision encoders/tokenizers, including siglip-large-16-256, VILA-U, and DualToken within the
LLaVA-1.5 framework. MMB refers to MMBench-dev (Liu et al., 2023), OCRB to OCRBench (Liu
et al., 2024d), and TVQA to TextVQA (Singh et al., 2019). The MME (Fu et al., 2024) score is
normalized based on its total score. Sem.+Pix. is the original setting of DualToken, where semantic
and pixel tokens are concated along embedding dimension to serve as visual input. Sem. only means
only the semantic tokens are fed as visual input.

Vision Encoder Res. MMB MME SEED VQAv2 MMVet AI2D MMMU POPE OCRB TVQA AVG.
(a) siglip-large-16-256 256 60.9 62.9 56.4 78.2 34.5 53.5 30.8 80.3 26.3 44.3 52.8
(b) VILA-U 256 55.3(-5.6) 53.8(-9.1) 51.2(-5.6) 73.1(-5.1) 24.9(-9.6) 49.4(-4.1) 28.4(-2.4) 78.2(-2.1) 23.8(-2.5) 42.8(-1.5) 48.1(-4.7)
(c) DualToken (sem. only) 256 59.8(-1.1) 63.0(+0.1) 56.2(-0.2) 77.6(-0.6) 34.0(-0.5) 53.7(+0.2) 30.3(-0.5) 79.4(-0.9) 24.6(-1.7) 43.2(-1.1) 52.2(-0.6)
(d) DualToken (sem.+ pix.) 256 61.3(+0.4) 64.6(+1.7) 57.2(+0.8) 77.0(-1.2) 34.6(+0.1) 55.9(+2.4) 30.2(-0.6) 83.0(+2.7) 29.2(+2.9) 46.2(+1.9) 53.9(+1.1)

Table 5: Quantitative results on visual understanding and generation benchmarks.

Type Method # Params POPE MMBench SEED MMMU MMVet MathVista MME
InstructBLIP (Dai et al., 2023) 7B - 36.0 58.8 30.6 26.2 24.4 1137.1
LLaVA-Phi (Zhu et al., 2024) 2.7B 85.0 59.8 - - 28.9 - 1335.1
LLaVA-1.5 (Liu et al., 2024b) 7B 85.9 64.3 58.6 35.4 31.1 27.4 1510.7

Und. LLaVA-NeXT (Liu et al., 2024c) 7B 86.5 67.4 70.2 35.8 43.9 34.6 1519.0
LLaVA-NeXT (Liu et al., 2024c) 34B 87.7 79.3 75.9 51.1 57.4 46.5 1631.0
ShareGPT4V (Chen et al., 2024b) 7B - 68.8 69.7 37.2 37.6 26.5 1567.4
VILA (Lin et al., 2024a) 7B 85.5 68.9 61.1 - 34.9 - 1533.0
BAGAL (Deng et al., 2025a) 14B - 85.0 - 55.3 67.2 73.1 1687.0
Chameleon (Team, 2024) 7B - 31.1 - 22.4 8.3 - -
Emu3 (Wang et al., 2024b) 8B 85.2 58.5 68.2 31.6 - - -
Show-o (Xie et al., 2024) 1.5B 73.8 - - 25.1 - - 948.4
Janus (Wu et al., 2024a) 1.5B 87.0 69.4 63.7 30.5 34.3 - 1338.0
Liquid (Wu et al., 2024b) 7B 83.2 - - - - - 1448.0
MUSE-VL (256px) (Xie et al., 2025b) 7B - 72.1 69.1 39.7 - 51.3 1480.9

Uni. TokenFlow (384px) (Qu et al., 2024) 13B 86.8 68.9 68.7 38.7 40.7 - 1545.9
UniTok (256px) (Ma et al., 2025) 7B 83.2 61.1 - - 33.9 - 1448.0
UniToken (384px) (Jiao et al., 2025) 7B - 71.1 69.9 32.8 - 38.5 -
Show-o2 (432px) (Xie et al., 2025a) 1.5B - 67.4 65.6 37.1 - - 1450.9
Show-o2 (432px) (Xie et al., 2025a) 7B - 79.3 69.8 48.9 - - 1620.5
VILA-U (Wu et al., 2025) 7B 85.8 - 59.0 - 33.5 - 1401.8
DualToken-3B (256px) 3B 86.0 70.9 70.2 38.6 32.5 46.5 1489.2
DualToken-3B (384px) 3B 88.1 76.2 72.2 40.3 40.2 49.2 1588.4
DualToken-7B (256px) 7B 88.6 74.9 71.8 45.8 40.5 55.8 1502.7
DualToken-7B (384px) 7B 89.4 80.0 72.5 47.4 44.3 57.6 1625.0

(a) Evaluation on multimodal understanding benchmarks.

Type Method Architecture Count↑ Differ↑ Compare↑ Logical↑ Overall↑
Negate Universal

SD-XL (Podell et al., 2023) Diffusion 0.71 0.73 0.69 0.50 0.66 0.63
Gen. Midjourney v6 (Midjourney, 2024) Diffusion 0.78 0.78 0.79 0.50 0.76 0.69

DALL-E 3 (Betker et al., 2023) Diffusion 0.82 0.78 0.82 0.48 0.80 0.70
Show-o (Xie et al., 2024) Discrete Diff. 0.70 0.62 0.71 0.51 0.65 0.60
ILLUME (Wang et al., 2024a) AR+Diff. 0.66 0.68 0.67 0.49 0.63 0.60
LWM (Liu et al., 2024a) Autoregressive 0.59 0.58 0.54 0.49 0.52 0.53
Liquid (Wu et al., 2024b) Autoregressive 0.76 0.73 0.74 0.46 0.74 0.65

Uni. UniTok (Ma et al., 2025) Autoregressive 0.76 0.76 0.79 0.46 0.73 0.67
VILA-U (Wu et al., 2025) Autoregressive 0.70 0.71 0.74 0.53 0.66 0.64
VILA-U 3B (256) Autoregressive 0.68 0.66 0.70 0.49 0.64 0.60
DualToken-3B (256) Autoregressive 0.76 0.76 0.78 0.50 0.72 0.68
DualToken-3B (pix. only) Autoregressive 0.59 0.59 0.59 0.47 0.59 0.55

(b) VQAScores on advanced prompts of GenAI-Bench (Lin et al., 2024b)

4.2 UNIFIED MODEL FOR GENERATION AND UNDERSTANDING

Building on the unified tokenizers, we further verified its potential within a unified AR framework
based on Qwen-2.5-3B (Yang et al., 2024). Our training process consists of four stages: (1) Freeze the
LLM and pretrain on image-caption data, training only the visual projector for multimodal alignment.
(2) Unfreeze the LLM and fine-tune on visual understanding data to enhance comprehension. (3)
Freeze the LLM and train only the visual heads on text-to-image data. (4) Unfreeze all components
and perform joint training on a mixture of understanding, generation, and interleaved datasets.

To ensure a fair comparison with VILA-U (Wu et al., 2025), we additionally provide a reproduced
version of VILA-U using Qwen-2.5-3B as the language backbone, trained with the same dataset and
procedure as our method. We evaluate our model against widely used vision-language understanding
benchmarks, including VQAv2 (Goyal et al., 2017), POPE (Li et al., 2023b), MME (Fu et al., 2024),
SEED-IMG (Li et al., 2023a), MMBench (Liu et al., 2023), and MM-Vet (Yu et al., 2023b).
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As shown in Table.5, our DualToken (3B) demonstrates strong understanding performance compared
to other unified models and surpasses dedicated understanding models like LLaVA-NeXT and
ShareGPT4V (Chen et al., 2024b). Meanwhile, as illustrated in Fig. 5, thanks to the significantly
improved reconstruction quality of DualToken, the generated images are rich in detail and structurally
realistic, accurately capturing fine textures such as animal fur and other intricate patterns—effectively
resolving the blurriness and distortions observed in VILA-U. What’s more, the generated images
exhibit remarkable alignment with the text, even for long and complex prompts. This is especially
evident when compared with the pix. only method (which only predicts pixel tokens during image
generation), as it often ignores important semantic content during generation—highlighting the crucial
role that semantic tokens play in helping the model grasp the semantic structure of images throughout
the generation process. Results on more generation benchmarks are presented in Appendix.E.

Beyond its impressive performance, we observed two interesting findings:

• Pixel tokens enhance understanding. As shown in Table.4 (a)(c)(d), we compared using only the
semantic tokens (sem.), and a combination of semantic and pixel tokens (sem.+pcpt), concatenated
along the embedding dimension to serve as visual input. Surprisingly, compared to using semantic
tokens alone, jointly leveraging both semantic and pixel tokens leads to consistent improvements
across various aspects, including general VQA (Liu et al., 2023; Fu et al., 2024), hallucination
detection (Li et al., 2023b), and OCR-related benchmarks (Singh et al., 2019; Liu et al., 2024d).
Suggesting that the supplementation of high-frequency details by pixel tokens can compensate for
the subtle semantic loss introduced by vector quantization.

• Semantic tokens also helps to generate. As shown in Fig.5 and Table.5 (b), incorporating semantic
tokens into the model’s autoregressive generation process leads to more semantically aligned
image generation compared to using visual appearance tokens alone. This indicates that visual
semantic tokens—beyond their role in understanding tasks—can also assist the model in grasping
the semantic composition of images, thereby producing outputs that better align with the intended
semantics. This is also clearly reflected in the model’s performance on GenAI-Bench.

DualToken versus dual-encoder. Recently, some studies have adopted dual-encoder designs to
obtain visual representations (Huang et al., 2025). Specifically, a VQVAE-based pixel encoder and a
CLIP-based semantic encoder. To address a fundamental question—why is it necessary to obtain
dual visual vocabularies within a unified tokenizer rather than simply combining existing specialized
encoders? we conducted an experiment using the codebook from SBER-MoVQGAN as the low-level
vocabulary and a VQ-processed SigLIP as the high-level vocabulary, as illustrated in Fig.4 (a).

As shown in Table.6, this straight-
forward approach leads to signifi-
cantly inferior image generation
performance (See Appendix.F.4
for implementation details). To
explain this discrepancy, we vi-
sualize the feature spaces of Du-
alToken’s 6th and 26th layers, as
well as those of MoVQGAN and
SigLIP with UMAP (Fig.6).

Table 6: Results on the MJHQ-30K
dataset (Li et al., 2024a).

Method Type Res. FID↓
SD-XL (Podell et al., 2023) Diffusion 1024 9.55
PixArt (Chen et al., 2023a) Diffusion 1024 6.14
Playground (Li et al., 2024a) Diffusion 1024 4.48
Liquid (Wu et al., 2024b) Autoregressive 512 5.47
Janus (Wu et al., 2024a) Autoregressive 384 10.10
LWM (Liu et al., 2024a) Autoregressive 256 17.77
Show-o (Xie et al., 2024) Discrete Diff. 256 15.18
VILA-U 7B (Wu et al., 2025) Autoregressive 256 12.81
VILA-U 3B Autoregressive 256 15.12
DualToken 3B Autoregressive 256 7.88
Dual Encoder Autoregressive 256 17.55

Figure 6: Visualized feature
spaces on Imagenet-1k (val).

As shown, while DualToken’s 6th and 26th layers yield features specialized for different purposes,
they still share a largely overlapping representational space. In contrast, features from the two
separate encoders (MoVQGAN and SigLIP) show significant divergence, forming clearly disjoint
clusters. Therefore, we attribute the performance gap to the incompatibility of representational spaces
between heterogeneous encoders. This mismatch imposes a burden on the downstream language
model, which is forced to learn two entirely disjoint visual representation systems. This observation
further highlights the simplicity and effectiveness of DualToken as a unified architectural solution.

5 CONCLUSION

This paper presents DualToken, which, to the best of our knowledge, is the first to demonstrate that
a dual-codebook design—reconstructing from shallow layers while learning semantics from deep
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layers—can effectively resolve the long-standing conflict between reconstruction and semantic objec-
tives within a single visual tokenizer. Building upon DualToken, we develop a pure autoregressive
(AR) unified model that achieves state-of-the-art performance in both understanding and generation
among all existing discrete AR approaches. Orthogonal to concurrent works that focus on improving
the VQ mechanism itself (Ma et al., 2025), our method emphasizes a hierarchical architectural design.
Consequently, as more advanced VQ techniques emerge, our framework can naturally benefit from
these improvements. We hope that DualToken offers a new perspective for designing unified visual
tokenizers and sheds light on building a truly unified architecture for vision–language models.
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A LARGE LANGUAGE MODEL USAGE

In this paper, Large Language Models (LLMs) are used exclusively for grammatical error correction.

B LAYER SELECTION AND GENERALIZABILITY

As discussed in Sec. 3.2, we can partition the vision encoder into shallow and deep regions based on
the cosine similarity between layers (see Fig. 3 and Appendix F.1). Empirically, selecting the last
layer within the shallow region, typically corresponding to the first quarter to third of layers, yields
the best results. As validated in the main text, our method successfully generalizes across multiple
backbones, including SigLIP-L/16-256, SigLIP-SO/14-384, and SigLIP2-SO/16-256.

SigLIP-L/16-256 SigLIP2-B/16-256 SigLIP2-SO/16-256

ViTamin-XL-256 ViTamin-XL-384DFN2B-CLIP-ViT-L-14

Figure 7: Additional visualizations of inter-layer cosine similarity across different backbones,
revealing a consistent hierarchical pattern across architectures, model scales, and resolutions. A
cohesive high-similarity region corresponding to the shallow layers can be clearly observed.

To further strengthen our claim, we include a comprehensive validation of the method’s gener-
alizability, covering six mainstream backbones—OpenAI’s CLIP (Radford et al., 2021), Apple’s
DFN (Fang et al., 2023), BAAI’s EVA (Fang et al., 2024), Google’s SigLIP (Zhai et al., 2023),
SigLIP2 (Tschannen et al., 2025), and the hybrid CNN–Transformer architecture ViTamin (Chen
et al., 2024a)—under consistent settings (RVQ = 8, codebook size = 16,384, 2M training samples).
Our findings are summarized as follows.

(1) Ablations on model backbones and model size. As shown in Table.7 and Table.8, across all
tested backbones with varying types and total layer counts, selecting the first quarter of layers for
reconstruction consistently yields the best reconstruction quality and semantic performance.

Table 7: Model backbone.

Backbone Layer recon./total Zero-shot rFID
6/24 79.2 0.84

DFN-L/14-224 12/24 77.1 1.35
18/24 72.2 3.25
6/24 77.8 0.80

EVA-02-L/14-224 12/24 75.2 1.16
18/24 69.9 3.22
6/24 73.2 0.87

CLIP-L/14-224 12/24 70.8 1.80
18/24 65.5 3.58
6/24 78.8 0.78

SigLIP-L/16-256 12/24 76.3 1.27
18/24 72.9 2.61
6/24 80.4 0.72

SigLIP2-L/16-256 12/24 77.6 1.09
18/24 72.9 2.93
6/24 80.0 0.39

ViTamin-XL-384 12/24 78.6 0.88
18/24 73.8 2.25

Table 8: Model size and total layer.

Backbone Layer recon./total Zero-shot rFID
3/12 74.1 0.98

DFN-B/16-224 6/12 71.4 1.58
9/12 66.1 3.21
6/24 79.2 0.84

DFN-L/14-224 12/24 77.1 1.35
18/24 72.2 3.25
8/32 81.0 0.73

DFN-H/14-224 16/32 79.5 1.28
24/32 74.3 2.78
6/24 80.4 0.72

SigLIP2-L/16-256 12/24 77.6 1.09
18/24 72.9 2.93
7/27 81.2 0.69

SigLIP2-SO/16-256 14/27 78.4 1.08
21/27 73.7 3.02

Table 9: Robustness on layers.

Backbone Layer recon./total Zero-shot rFID

DFN-B/16-224
3/12 74.1 0.98
4/12 73.9 0.97

DFN-L/14-224
5/24 79.0 0.82
6/24 79.2 0.84
7/24 78.9 0.84

DFN-H/14-224
6/32 81.1 0.73
8/32 81.0 0.73
10/32 80.7 0.72

SigLIP2-L/16-256
5/24 80.4 0.74
6/24 80.4 0.72
7/24 80.2 0.75

SigLIP2-SO/16-256

5/27 81.0 0.70
6/27 81.2 0.66
7/27 81.2 0.69
8/27 81.3 0.67
9/27 81.0 0.72
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(2) Robustness to specific layer choice. As shown in Table. 9, our method remains stable as long
as the reconstruction layers lie roughly within the first quarter of the network. Minor shifts (±1–2
layers) cause negligible changes, confirming its robustness and broad applicability.

These findings indicate that for a new ViT architecture, one can confidently select the first quarter
of layers for reconstruction to achieve optimal results. Moreover, As shown in Fig. 7, we also
provide more visualizations of inter-layer cosine similarity across backbones, revealing a consistent
hierarchical pattern divisible into shallow and deep layers (also supported by prior study (Chen et al.,
2025a)), further supporting the universality of our method.

C DISCUSSION AND COMPARISON WITH UNITOK

Since UniTok adopts a more advanced visual backbone, decoder, and discriminator architecture,
we conduct a fair comparison by re-training our DualToken under the same encoder and decoder
settings used in UniTok, i.e., choosing ViTamin-L/16, a hybrid architecture of CNN and transformer,
to instantiate DualToken. Under this setup, DualToken achieves stronger semantic performance and
competitive reconstruction quality, as evidenced by the comparison between (a) and (b) in Table 10.

Table 10: Comparison with UniTok.

Tokenizer rFID ↓ Zero-Shot Acc ↑
(a) UniTok 0.38 78.6
(b) DualToken (RVQ) 0.39 80.3
(c) DualToken (MCQ) 0.25 82.2

Furthermore, DualToken and UniTok are complementary. Specifically, by replacing our original RVQ
quantizer with UniTok’s proposed MCQ, we observe consistent improvements in both reconstruction
fidelity and zero-shot classification, as evidenced by the comparison between (b) and (c) in Table 10.

These results suggest that future work may benefit from integrating our dual visual vocabulary
formulation with more advanced quantizers such as MCQ.

D COMPUTATIONAL ANALYSIS

Introducing two codebooks DOES NOT significantly increase the computational overhead, demon-
strated by two aspects: parameter count and memory usage with inference latency.

D.1 PARAMETER COUNT

The ONLY additional parameters arise from 3 components:

• The MLP projector’s dimension changes from (1024→2048→2048) to (2048→2048→2048),
which adds 2.1M parameters.

• An additional visual head: 258M parameters.
• An additional VQEmbedding layer: 16M parameters.

Together, these account for only 8.93% of the total parameters compared to the LLM backbone (3B).
When scaling to larger backbones (e.g., 7B), the relative impact becomes even more negligible.

D.2 MEMORY USAGE AND INFERENCE LATENCY

Since our dual tokens are concatenated along feature dimension rather than sequence dimension, and
the input dimension to the LLM remains unchanged, no new pathway is introduced to the LLM,
and the computational cost of the LLM backbone remains strictly the same. The only increase stems
from the components listed above.

Memory usage is measured under the same local batch size and device. FLOPs and inference time
are averaged on T2I task (256px) over the MJHQ-30K dataset. Statistics for the VQA task have also
been added to the paper.
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Table 11: Memory Usage and Inference Latency

Training Memory Usage Inference Time Cost Single Forward GFLOPs
single token 73.8G 11.42s 328.98
dual token 78.2G 12.97s 337.20

E RESULTS ON MORE GENERATION BENCHMARKS

Following VILA-U, we report results on GenAI-Bench and MJHQ-30K in the main text. We now
extend our evaluation to include GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025). The
results demonstrate that DualToken achieves competitive performance across both benchmarks.

Table 12: Evaluation results on GenEval and WISE benchmarks.

Model GenEval (Overall) ↑ WISE (Overall) ↑
SDv1.5 (Rombach et al., 2022) 0.43 0.32
SDXL (Podell et al., 2023) 0.55 0.43
Chameleon-7B (Team, 2024) 0.39 -
EMU3-8B (Wang et al., 2024b) 0.66 0.39
Janus (Wu et al., 2024a) 0.61 0.23
Janus-Pro-7B (Chen et al., 2025c) 0.80 0.35
ILLUME-7B (Wang et al., 2024a) 0.61 -
TokenFlow-XL-14B (Qu et al., 2024) 0.63 -
Muse-VL-7B (Xie et al., 2025b) 0.57 -
UniToken-7B (Jiao et al., 2025) 0.63 -
Show-o2-1.5B (Xie et al., 2025a) 0.73 0.35
Show-o2-7B (Xie et al., 2025a) 0.76 0.39
VILA-U-7B (Wu et al., 2025) - 0.31
DualToken-3B 0.72 0.35
DualToken-7B 0.75 0.39

F IMPLEMENTATION DETAILS

F.1 PARTITIONING OF THE SIGLIP ENCODER

We feed the ImageNet-1K (Deng et al., 2009) validation set into SigLIP-SO400M-Patch14-384 (Zhai
et al., 2023). For each image, we extract the representations from all layers of the model, each with a
shape of 729× 1152. Then, we apply average pooling along the spatial dimension (the first axis) of
each layer’s representation, resulting in a 1152-dimensional vector per layer.

Specifically, for each image, we obtain feature vectors from 26 layers, and compute the pairwise
cosine similarity between these layer-wise representations to construct a 26× 26 cosine similarity
matrix. To capture the overall similarity structure across layers in the model, we average the cosine
similarity matrices across all images. The final similarity matrix S∗ is computed as:

S∗ =
1

n

n∑
i=1

Si (8)

where Si denotes the cosine similarity matrix for the i − th image, and n is the total number of
images. S∗ thus represents the average inter-layer similarity across the dataset.

F.2 IMAGE CLUSTERING

We extract intermediate representations from the 6th and 26th layers of SigLIP-SO400M-Patch14-
384 (Zhai et al., 2023) for each image in the ImageNet-1K validation set (Deng et al., 2009). The
original representation shape is 729×1152, and we apply average pooling along the spatial dimension
to obtain a single 1152-dimensional feature vector per image. For both the 6th-layer and 26th-layer
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features, we perform k-means clustering with 1000 cluster centers (Cluster 0 to Cluster 999). The
cluster analysis reveals that shallow-layer features (from the 6th layer) tend to capture low-level visual
attributes such as texture and color, while deep-layer features (from the 26th layer) predominantly
encode high-level semantic content. The implementation code is provided in the supplementary
material, and additional visualizations are presented in Fig. 8.

(a)

(b)

Cluster 17 Cluster 60 Cluster 110

Cluster 41Cluster 33Cluster 70

Figure 8: More visualizations of image clusters derived from features of (a) the 6th layer and (b)
the 26th layer of SigLIP. Features from deep layers primarily cluster images based on high-level
semantic content, whereas shallow-layer features tend to group images according to appearance-level
cues such as color and texture. For instance, Cluster 17 contains images with similar scaly textures,
while Clusters 60 and 110 predominantly group images by dominant colors (e.g., red or blue).

F.3 UMAP FEATURE SPACE VISUALIZATION

We perform dimensionality reduction using UMAP to visualize the feature spaces from DualToken’s
6th and 26th layers, as well as those from MoVQGAN and SigLIP. Specifically, we sample 1,000
images from the ImageNet-1K validation set and visualize the UMAP projections of their encoded
features from each model. To ensure a fair comparison among the different visual models, all
extracted features are first flattened and then uniformly processed via adaptive average pooling to
maintain consistent dimensionality.

F.4 MODEL IMPLEMENTATION DETAILS

Our backbone model is built upon a decoder-only transformer architecture, and adopt Qwen2.5 (Yang
et al., 2024) as our initialization due to its strong performance and public availability. The model
uses RMSNormZhang & Sennrich (2019) for normalization. For visual inputs to the LLM, we apply
a projector to map the visual tokens into the same embedding space as the LLM. When predicting
image tokens, the output hidden states of the LLM are passed through two separate projectors to align
with the dimension of the semantic visual head and the pixel visual head. Each projector consists of
two linear layers with a GeLU activation in between. We use special tokens—<image_gen_start>
and <image_gen_end>—to indicate the boundaries of the image to be generated.

For visual heads, since residual quantization introduces a depth-stacked structure of codes at each
visual position p, we implement our visual heads based on the depth transformer from RQ-VAE (Lee
et al., 2022). Unlike the original depth transformer, which employs a single head to predict logits
across all depths, we introduce separate classification heads to compute the logits for residuals at
each corresponding depth (Li et al., 2025a). As shown in Fig.4, the semantic tokens and pixel tokens
are processed by independent visual heads—the pixel head and the semantic head. Both heads share
the same structure, comprising three layers of depth transformers and corresponding classification
head for each depth. Detailed training hyper-parameters are provided in Table 13.

Implementation of the Dual Encoder Baseline As described in Sec. 4.2 of the main paper, some
concurrent works adopt dual-encoder designs to obtain visual representations (Huang et al., 2025),
specifically combining a VQVAE-based pixel encoder with a CLIP-based semantic encoder.
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Table 13: Training hyper-parameters.

Visual
Tokenizer

MLLM
Settings

Stage 1 Stage 2 Stage 3 Stage 4-1 Stage 4-2

Learning Rate 7.2e-5 Projector 1e-3
Projector 2e-5 Projector (Gen) 1e-4 All Projectors 1e-5

LLM 2e-5 Visual Heads 1e-4 Visual Heads 1e-5; LLM 1e-5
Batch Size 64 64 256 128 512 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

This raises a natural question: Beyond architectural elegance and simplicity, does learning dual
visual codebooks within a unified visual tokenizer (ours) lead to better downstream performance in
unified MLLMs compared to directly combining two heterogeneous encoders?

Since these concurrent works adopt different training datasets and downstream architectures (e.g.,
external diffusion decoders (Rombach et al., 2022)), it is difficult to conduct a fair comparison in
the context of downstream unified models. To isolate the effectiveness of the tokenization strategy
itself—that is, dual tokens within a single unified tokenizer vs. dual visual tokenizers from separate
encoders—we implemented both designs under the same unified architecture proposed in our work.

Specifically, we use SigLIP-L-Patch16-256 (Zhai et al., 2023) and SBER-MoVQGAN (SberBank,
2023) to build the semantic tokenizer and pixel tokenizer, respectively:

• The semantic tokenizer applies an RVQ quantizer (depth=4) to the penultimate layer of the frozen
SigLIP-L-Patch16-256 encoder. The encoder is fully frozen, and only the codebook is updated
using commitment loss, aiming to reconstruct the input semantic features as faithfully as possible.

• The pixel tokenizer is derived from a modified version of SBER-MoVQGAN-270M. To match the
token length of SigLIP-L-Patch16-256, we added a downsampling and a upsampling modules to its
encoder and decoder, adjusting the downsampling and upsampling rate from 8 to 16. Additionally,
we replaced the original quantizer with a residual vector quantizer (RVQ) of depth 4 to ensure
compatibility with our unified model architecture.

Apart from the different tokenizers used to provide pixel and semantic tokens, the rest of the
architecture remains fully consistent with DualToken. Specifically, we concatenate pixel and semantic
tokens along the embedding dimension to form the visual input, map them into the LLM embedding
space via a projector, and use separate visual heads (pixel head & semantic head) for predictions. To
ensure fairness, we standardized all other components except for the source of dual visual tokens:

• All components are kept identical, including image resolution, token length (16×16), RVQ depth
(D = 4), embedding dimension, model architecture, and training data.

• Both tokenizers are trained on the same datasets as DualToken, as described in the main text.

G DATASETS

Our MLLM training process consists of four
stages: (1) Freeze the LLM and pretrain on
image-caption data, training only the visual
projector for multimodal alignment. (2) Un-
freeze the LLM and fine-tune on visual un-
derstanding data to enhance comprehension.
(3) Freeze the LLM and train only the visual
heads on text-to-image data. (4) Unfreeze
all components and perform joint training on
a mixture of understanding, generation, and
interleaved datasets, enabling the model to
acquire generative capabilities while main-
taining strong understanding performance.
We listed the data in Table. 14.

Table 14: Training data list.

Stage Dataset

Visual Tokenizer CC12M (Changpinyo et al., 2021), ImageNet-1K, 50M
images from LAION-400M (Schuhmann et al., 2021)

MLLM Stage1 DenseFusion-1M (Li et al., 2024b), DreamLIP (Zheng
et al., 2024), InternVL-SA-1B-Caption (Chen et al., 2024c)

MLLM Stage2 DocStruct4M (Hu et al., 2024), WebSight (Laurençon et al.,
2024b), WuKong, 2M in house VQA data, pure text data

MLLM Stage3 A filtered subset of ImageNet-21K, laion-aesthetics-12m,
JourneyDB a (Sun et al., 2023)

MLLM Stage4

In-house aesthetics data, OmniEdit (Wei et al., 2024),
text2face, Cauldron (Laurençon et al., 2024a), Instruct-
Pix2Pix (Brooks et al., 2022), Inhouse IFT data (Und.),
OBELICS (Laurençon et al., 2023), pure text data

aThe text and image are reversed and used for image
generation training.
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