DUALTOKEN: TOWARDS UNIFYING VISUAL UNDERSTANDING AND GENERATION WITH DUAL VISUAL VOCABULARIES

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032

033

036

040

041

042

043

044

046

047

048

051

052

ABSTRACT

The differing representation spaces required for visual understanding and generation pose a challenge in unifying them within the autoregressive paradigm of large language models. A vision tokenizer trained for reconstruction excels at capturing low-level visual appearance, making it well-suited for visual generation but lacking high-level semantic representations for understanding tasks. Conversely, a vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks. To bridge this gap, we propose **DualToken**, a method that unifies representations for both understanding and generation within a single tokenizer. However, directly integrating reconstruction and semantic objectives creates conflicts, leading to degraded performance in both reconstruction quality and semantic performance. Instead of forcing a single codebook to capture both visual appearance and semantics, DualToken disentangles them by introducing separate codebooks for high-level semantics and low-level visual details, effectively turning their inherent conflict into a synergistic relationship. As a result, DualToken sets a new record of 0.25 rFID and 82.0% zero-shot accuracy on ImageNet, and demonstrates strong effectiveness in downstream MLLM tasks for both understanding and generation. Specifically, our method outperforms VILA-U by 5.8% on average across ten visual understanding benchmarks and achieves a 10% improvement on GenAI-Bench. Notably, incorporating dual visual tokens consistently outperforms the use of a single token type in both understanding and generation tasks. We hope our research can offer a new perspective on leveraging dual visual vocabularies for unified vision-language understanding and generation models. See this anonymous URL for more details.

1 Introduction

Unifying visual understanding and generation within the pure autoregressive (AR) paradigm of Large Language Models (LLMs) offers a simple, end-to-end alternative to the increasingly common yet structurally complex approach of coupling LLMs with external diffusion modules (Dong et al., 2024; Huang et al., 2025; Pan et al., 2025; Chen et al., 2025b). To enable fully unified AR modeling of vision and language, a model requires a visual tokenizer to map images into discrete tokens and a corresponding detokenizer that can faithfully reconstruct them back into pixel space.

Early methods in this direction (Yu et al., 2023a; Team, 2024; Wang et al., 2024b) directly adopt the encoder and decoder of VQ-VAE as the visual tokenizer and detokenizer. While these approaches demonstrated the feasibility of unifying visual understanding and generation within the AR paradigm, their understanding capabilities are typically lacking compared to multimodal large language models (MLLMs) specialized for understanding tasks (Liu et al., 2023; Yue et al., 2023; Fu et al., 2024; Song et al., 2024). We argue that this performance gap stems from inadequate visual representations: traditional VQ-VAEs are optimized solely for reconstruction, producing image tokens that preserve low-level visual details but fail to capture high-level semantics aligned with language. By contrast, MLLMs designed for understanding tasks (Liu et al., 2024c; Chen et al., 2024b; Li et al., 2024c; 2025b; Bai et al., 2025) typically rely on CLIP-family encoders (Radford et al., 2021; Zhai et al., 2023), which are pretrained with text alignment and thus inherently encode high-level semantics, making them more suitable for downstream visual understanding tasks in MLLMs.

056

058

060

061

062

063

064

065

066

067 068

069

071

073

074

075

076

077

078

079

081

082

083

084

085

086

087

880

090

091

092

094

096

098

099 100

101

102

103

104

105

106

107

Figure 1: (Left) Challenges faced by existing visual tokenizers. (Middle) We compare zeroshot classification accuracy and reconstruction FID on ImageNet-1K(val) across baseline methods and DualToken. DualToken achieves results comparable to or surpassing both semantic-only and reconstruction-only methods in both tasks. (Right) Reconstruction results of VILA-U and DualToken, our DualToken significantly outperforms VILA-U, which suffers from severe distortion and blurriness.

involves learning to reconstruct images for dedicated models in reconstruction metrics. downstream generation tasks while preserving its semantic capabilities as much as possible (Wu et al., 2025b). However, as shown in Fig. 1 and Table. 1, directly combining reconstruction and semantic objectives often leads to severe distortions and blurriness in reconstruction tasks, along with a noticeable decline in semantic metrics such as zero-shot classification and image-text retrieval, compared to its original pretrained model (Zhai et al., 2023). This degradation, as discussed in Wu et al. (2025b), reflects the inherently conflict between the two training objectives, ultimately limiting both the quality of downstream image generation tasks and the performance of multimodal understanding tasks.

To fully leverage the language-aligned se- Table 1: Comparison to state-of-the-art visual tomantic representations of CLIP, a natural kenizers. DualToken achieves the best performance approach is to quantize the features of a among existing unified visual tokenizers in semantic CLIP encoder and train a decoder for im- metrics. It also mitigates the distortion and blurriness age reconstruction (Wu et al., 2025b). This faced by VILA-U during reconstruction, and surpasses

METHODS		Semantic		Reconstruction		
THE THOUSE	Zero-Shot [↑]	T2I(R@1) [↑]	I2T(R@1) [↑]	rFID ↓	PSNR [↑]	SSIM↑
Reconstruction Only						
VQGAN (Esser et al., 2021)	×	X	×	4.98	-	-
MoVQGAN (Zheng et al., 2022)	×	×	×	1.12	22.42	0.673
RQ-VAE (Lee et al., 2022)	×	X	×	2.69	-	-
ViT-VQGAN (Yu et al., 2021)	×	×	×	1.55	-	-
Open-MAGVIT2 (Luo et al., 2024)	×	×	×	1.17	21.90	-
SBER-MoVQGAN (SberBank, 2023)	×	X	X	0.68	27.04	0.741
Understanding Only						
CLIP-L/14-336 (Radford et al., 2021)	76.6	21.2	21.5	X	X	X
SigLIP-L/16-256 (Zhai et al., 2023)	80.5	21.0	21.4	X	X	X
SigLIP-So/14-384 (Zhai et al., 2023)	83.2	21.7	21.6	X	X	X
SigLIP2-So/16-256 (Tschannen et al., 2025)	83.4	21.5	22.0	X	X	X
ViTamin-L/16-256 (Chen et al., 2024a)	81.2	20.6	21.2	X	X	X
Reconstruction & Understanding						
SeTok (Wu et al., 2025a)	75.4	-	-	2.07	-	-
TokenFlow (256px) (Qu et al., 2024)	-	-	-	1.37	21.41	0.687
TokenFlow (384px) (Qu et al., 2024)	-	-	-	0.63	22.77	0.731
QLIP (256px) (Zhao et al., 2025)	74.3	16.8	18.4	3.21	23.16	0.628
QLIP (392px) (Zhao et al., 2025)	79.1	20.4	21.0	1.46	25.36	0.690
UniTok (Ma et al., 2025)	78.6	-	-	0.38	25.34	-
VILA-U (SigLIP-L/16-256) (Wu et al., 2025b)	73.3	10.0	11.2	1.80	3.43	0.489
VILA-U (SigLIP-So/14-384) (Wu et al., 2025b)	78.0	-	-	1.25	-	-
DualToken (SigLIP-L/16-256)	79.8	20.8	21.4	1.06	27.12	0.693
DualToken (SigLIP-So/14-384)	82.0	21.5	21.6	0.24	28.69	0.744
DualToken (SigLIP2-So/16-256)	82.3	21.1	21.9	0.52	28.03	0.726

To disentangle the two conflicting objectives, we propose interpreting visual appearance and visual semantics—required for visual generation and understanding—as distinct visual vocabularies: a pixel codebook that captures low-level appearance features for generation, and a semantic codebook that encodes high-level semantic features essential for understanding. Specifically, inspired by the hierarchical structure of the human visual system (Groen et al., 2017), we partition the Vision Transformer (ViT) (Dosovitskiy et al., 2020) into shallow, middle, and deep stages based on the cosine similarity (Chen et al., 2025a) across layers and observe that shallow layers of a ViT predominantly capture low-level perceptual information—such as texture and color—making them suitable for reconstruction tasks, whereas high-level semantic representations emerge in the deeper layers (Chen et al., 2023b; 2025a). To fully exploit this inherent property of ViT, we utilize shallow-layer features for reconstruction and deep-layer features for semantic learning, thereby enabling the simultaneous derivation of both a pixel codebook and a semantic codebook within a unified tokenizer.

Surprisingly, this hierarchical decoupling not only resolves the conflict between the two objectives but also enables the semantic learning objective to enhance low-level reconstruction. Moreover, training the shallow-layer reconstruction task introduces minimal degradation to the model's original semantic capabilities, without additional contrastive learning stages (Radford et al., 2021; Wu et al., 2025b). As a result, our DualToken achieves the best semantic performance among established unified tokenizers (Wu et al., 2025b; Zhao et al., 2025; Qu et al., 2024; Ma et al., 2025) while also attaining state-of-the-art performance in reconstruction. Building upon this, we further demonstrate how a multimodal large language model (MLLM) can effectively utilize the dual visual vocabularies to achieve unified vision understanding and generation.

Our analysis reveals three key findings: i) **Using dual visual vocabularies resolve conflicts**: Decoupling visual appearance and visual semantics with separate visual vocabularies mitigates the conflict between reconstruction and semantic objectives and transform them into a positive relationship. Our tokenizer achieves state-of-the-art performance in both reconstruction and semantic understanding, using only 10% of the pretraining data required by VILA-U; ii) **DualToken is better than combining dual encoders**: We observe that DualToken, as a unified architecture, outperforms the direct combination of two heterogeneous visual encoders, demonstrating both simplicity and effectiveness; iii) **Dual-token promote each other**: On one hand, visual appearance tokens (pixel tokens) are not only used for generation but also contribute fine-grained low-level features that enhance visual understanding. On the other hand, visual semantic tokens—beyond their role in understanding tasks—act as positive supervision during autoregressive generation, leading to more semantically aligned image outputs compared to generating pixel tokens alone.

2 RELATED WORKS

Unified Multimodal Models A classic strategy for integrating visual understanding and generation within a single MLLM is to externally connect an LLM with a Diffusion Model (Sun et al., 2024; Dong et al., 2024; Pan et al., 2025; Chen et al., 2025b). However, pure AR architectures offer a more elegant, fully end-to-end solution by unifying both tasks within the same autoregressive framework. Representative works like Chameleon (Yu et al., 2023a; Team, 2024) and Emu3 (Wang et al., 2024b), have demonstrated the feasibility of jointly modeling vision and language through a unified next-token prediction objective. Specifically, visual inputs are first tokenized into visual tokens. These visual tokens are then interleaved with text tokens to construct a multimodal sequence. However, these pure AR architectures introduce generative capabilities at the cost of considerably weaker visual understanding. An empirical explanation for this (Wu et al., 2025b; Xie et al., 2024b) is that their vision tokenizers are trained solely for reconstruction and thus primarily captures low-level visual details for generation rather than the high-level semantics required for vision–language understanding.

A straightforward way to bypass such a conflict is to employ two heterogeneous vision encoders (Wu et al., 2024a; Chen et al., 2025c; Deng et al., 2025): a semantic tokenizer (e.g. CLIP) for understanding and a reconstruction-based tokenizer (e.g. VQ-VAE) for generation. Yet this design inevitably adds extra modules and structural complexity, making understanding and generation two loosely coupled systems with distinct pathways rather than a truly unified model. In contrast, the text modality relies on a single tokenizer (e.g., BPE) (Sennrich et al., 2015) that discretizes text into a unified token space. This ensures a consistent input—output space: the input tokens that provide signals for understanding and the output tokens produced during generation share the same vocabulary. This unified design allows LLMs to seamlessly integrate text understanding and generation within the next-token prediction paradigm, thereby supporting broad generalization across diverse linguistic tasks. Therefore, the visual modality urgently requires a tokenizer that, like text tokenizers, can support both understanding and generation within a unified, coherent token space.

Unified Visual Tokenizers Recent research has actively explored solutions in this direction. VILA-U (Wu et al., 2025b) and MUSE-VL (Xie et al., 2024b) strive to build a unified tokenizer by jointly training on both reconstruction and semantic objectives. However, due to the inherent disparity between semantic and texture features, they struggle to strike an optimal balance between the two objectives, resulting in subpar performance in both tasks. As discussed in FQGAN (Bai et al., 2024), decomposing the codebook in a divide-and-conquer manner may offer a more fundamental solution to this conflict. TokenFlow (Qu et al., 2024) employs separate codebooks with a shared-mapping mechanism. However, key differences set our approach apart: (i) TokenFlow relies on distinct vision towers to extract semantic and low-level features, rather than leveraging a unified architecture; (ii) the shared IDs obtained through the shared-mapping mechanism may not be the optimal matches for either semantics or texture, potentially introducing additional losses in both domains.

3 METHOD

This section formally introduces the design of our unified tokenizer and explains how its dual visual codebooks are utilized within the next-token prediction paradigm of LLMs for unified multimodal understanding and generation.

163

164

165 166

167

168 169 170

171 172

173

174

175

176

177

178 179 180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204 205

206

207

208

209

210

211

212 213

214

215

Figure 2: Comparing the design of a naive (Left) and our decoupled approach (Right). Naively combining reconstruction and semantic loss with a single visual vocabulary leads to distorted reconstruction and degraded semantic performance. We decouple the two objectives through a hierarchy approach, where reconstruction loss is applied to supervise the shallow layers, while semantic supervision is applied to the deep layers. This enhances both reconstruction fidelity and semantic quality. Consequently, we derive two complementary visual vocabularies: a pixel codebook for low-level visual appearance, and a semantic codebook for high-level visual semantics.

3.1 MOTIVATION AND VERIFICATION

high-level semantics. We argue that this difference in representation space is a key factor underlying downstream MLLM performance. Yet such a claim has not been formally validated before.

As discussed in Qu et al. (2024), CLIP Table 2: Downstream visual understanding performance encoders cluster images by semantic with different vision encoders within the LLaVA-1.5 similarity, whereas VQVAE-based en-framework. The CLIP-based encoder corresponds to the coders group images by low-level at-siglip-so400m-14-384 model (Alabdulmohsin et al., 2023), tributes such as color and texture. This whereas CLIP-based (recon.) denotes an encoder with the suggests that encoders trained for recon- same architecture but trained solely for reconstruction from struction primarily capture low-level vi- scratch, controlling for factors like model size and archisual appearance, while those trained tecture. For the VQVAE-based encoder, we adopt SBERwith text alignment excel at capturing MoVQGAN-270M, a well-established reconstruction model.

Vision Encoder Type	$\mathbf{M}\mathbf{M}\mathbf{B}^{\uparrow}$	\mathbf{MME}^{\uparrow}	SEED [↑]	$VQAv2^{\uparrow}$	Zero-Shot [↑]	rFID ↓
		1492.9	58.4	78.5	83.2	X
CLIP-based (recon.)	36.2	822.4	30.6	47.5	×	0.96
VQVAE-based	35.8	792.0	34.1	45.2	×	0.68

To validate this viewpoint, we started by a preliminary experiment following the LLaVA-1.5 pipeline (Liu et al., 2024b). In Table.2, compared to the original SigLIP model, encoders trained with reconstruction objective exhibit a significant drop in downstream MLLM vision-language understanding performance, validating that high-level semantic features are more critical for visual reasoning in MLLMs than low-level perceptual features. However, to achieve both visual understanding and generation within a single MLLM, it is essential to decode the visual tokens back into pixel space as accurately as possible. However, since the SigLIP encoder focuses on high-level semantic information rather than texture details, simply discretizing its features and training a decoder without tuning the encoder results in poor image reconstruction quality. Therefore, proposing a unified tokenizer is crucial to enable high-quality visual understanding and generation within a singe MLLM.

UNIFIED VISION TOKENIZER WITH DUAL CODEBOOKS

To build a unified tokenizer, we started with the simplest approach, where we directly combine the reconstruction loss and semantic loss to optimize the entire vision tower and use a single visual vocabulary to tokenize its feature, similar to VILA-U (Wu et al., 2025b). Specifically, as illustrated in Fig. 2 (left), we initialize the vision encoder with pretrained weights from SigLIP (Zhai et al., 2023) to ensure strong text-image alignment. Then the semantic loss is computed between the deeper-layer features of the model and its initial state to constrain the model from losing its semantic capability.

However, as shown in Table.3 (a), this straightforward approach leads to a clear conflict between the two objectives. On one hand, although the semantic loss is applied to preserve the model's original semantic representation capabilities, achieving this objective proves difficult, as semantic performance metrics show a significant decline compared to the original model, reflecting the disruption caused by

217

218

219

220

221 222

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

253

254

255

256

257

258

259 260

261 262

263

264

265 266

267

268

269

Table 3: DualToken transforms the conflict between reconstruction and semantic objectives into a positive relationship. Directly combining the two objectives leads to a drastic decline in reconstruction performance (a vs. b). However, incorporating reconstruction and semantic losses hierarchically results in better reconstruction performance compared to using reconstruction alone (d vs. c). We highlight our method in the last row. We adopt the pretrained weights from the siglip-so400m-patch14-384 in this experiment.

# Evn	# Exp. Learning Objective (layer)		Zoro Shot Aca 1	Reconstruction			
π ∟лр.	Ecanning Objective (layer)	reature Type	Zero-Snot Acc.	rFID ↓	PSNR↑	SSIM [↑]	
Initial Sta	ate	Continuous	83.2	Х	Х	X	
Initial Sta	ate (quantized)	Discrete	82.4	X	X	X	
(a)	Recon. (26) + Sem. (26)	Discrete	72.3	3.86	12.64	0.574	
(b)	Recon. (26)	Discrete	X	0.27	27.88	0.722	
(c)	Recon. (6)	Discrete	X	0.29	28.12	0.745	
(d)	Recon. (6) + Sem. (26)	Discrete	82.0	0.24	28.69	0.744	

the reconstruction training objective on semantic capabilities. On the other hand, as shown in the cropped region of Fig.2, the model also struggles to achieve satisfactory reconstruction quality, often producing distorted and blurry images.

To resolve this conflict, we begin by analyzing the intrinsic properties of the SigLIP encoder. Specifically, we divide the ViT into shallow, middle, and deep layers based on the cosine similarity of features across layers, as shown in Fig.3 (left). Guided generation and understanding tasks.

by this partition, we extract features from Figure 3: (Left) Partitioning of the SigLIP encoder (Zhai the shallow and deep layer of the encoder et al., 2023) based on the cosine similarity of features to perform clustering on the image repre- across layers. Distinct bright square regions are observed sentations. As shown in Fig.3 (right), we in the ranges of layers 1–7 and 8–17, indicating strong observe that features from the shallow layer intra-group similarity within each interval; the remaining tend to cluster images based on low-level at- layers are treated as deep layers. (Right) Visualization tributes such as color and texture, whereas of image clusters derived from features of (a) the 6th features from the deep layer form clus- layer and (b) the 26th layer of SigLIP. Features from ters according to semantic content. This deep layers cluster images based on semantic content, suggests that shallow SigLIP features cap- whereas features from shallow layers form clusters based ture fine-grained perceptual details, while on low-level cues such as color and texture. For examdeeper layers encode high-level semantic ple, images in cluster 0 exhibit similar grid-like textures representations, aligning well with the re- (e.g., window screens or monitor meshes). Implemenspective demands of downstream visual tation details of the clustering process are provided in Appendix.F.

Motivated by this, we introduce a hierarchical approach to decouple the learning of the reconstruction and semantic objectives. Specifically, as shown in Fig.2 (right), reconstruction loss is applied to supervise the shallow layers (1-6) of the vision tower, while semantic loss is applied to the deep 26-th layer (Please refer to Appendix. B for the selection of the reconstruction layer). Features from the shallow and deep layers are discretized separately via residual vector quantization (Lee et al., 2022), resulting in low-level and high-level visual vocabularies, referred to as the pixel codebook and the semantic codebook, respectively. To ensure the encoder outputs align closely with the codebook entries, we utilize a Vector Quantization (VQ) commitment loss, which is defined as

$$\mathcal{L}_c = \|z - \text{quantize}(z)\|_2^2 \tag{1}$$

Consequently, the total loss is formulated as a weighted sum of reconstruction loss, semantic loss, and VQ commitment loss

$$\mathcal{L}_{total} = \lambda_1 \cdot \mathcal{L}_{recon} + \lambda_2 \cdot \mathcal{L}_{sem} + \lambda_3 \cdot (\mathcal{L}_{c1} + \mathcal{L}_{c1})$$
 (2)

where the reconstruction loss is the combination of pixel-wise L2 loss (Dosovitskiy & Brox, 2016), LPIPS loss (Zhang et al., 2018) and adversarial loss (Isola et al., 2017) for reconstructing an input image

$$\mathcal{L}_{recon} = \|\hat{x} - x\|_2^2 + \lambda_p \mathcal{L}_{LPIPS}(\hat{x}, x) + \lambda_q \mathcal{L}_{G}(\hat{x})$$
(3)

Figure 4: (a) Direct combination of two heterogeneous tokenizer. Baseline method (Huang et al., 2025) that directly uses VQGAN and CLIP-based encoder to separately acquire high-level (semantic) and low-level (pixel) visual codebooks. (b) Our unified tokenizer with dual codebook. We decoupling high-level and low-level visual codebooks within a unified vision tokenizer. The image is converted into low-level visual appearance tokens (green) and text-aligned semantic tokens (red). (c) Architecture for unifying generation and understanding task. In image generation task, the generated low-level tokens are decoded by the visual decoder to reconstruct the visual content.

while the semantic loss is simply computed as the L_2 distance between the model's last-layer feature F and its initial value F_0

$$\mathcal{L}_{sem} = \|F - F_0\|_2^2 \tag{4}$$

Interestingly, as shown in Table.3 (d), even without adding an additional contrastive learning phase to enhance semantic capabilities and relying solely on a simple L2 loss to constrain the semantic representation, incorporating a reconstruction learning objective in our hierarchical learning strategy causes minimal damage to the model's semantic ability. More intriguingly, as shown in Table.3 (b)(c)(d), compared to training solely for reconstruction, learning the semantic objective in the deeper layers actually enhances the reconstruction task in the shallow layers, successfully transforming the conflict between semantic and reconstruction objectives into a positive relationship.

3.3 Unifying Understanding and Generation

In this section, we demonstrate how to integrate the dual visual codebooks of DualToken within a unified MLLM. As illustrated in Fig.4 (c), to model both textual and visual content within the autoregressive paradigm of LLMs, the pixel and semantic visual tokens are first passed through a 2-layer MLP projector to align their dimensions with the LLM backbone. These tokens are then concatenated **along the embedding dimension** (which does not increase the sequence length) to form unified visual tokens. Next, the unified visual tokens are concatenated with text tokens to construct a multimodal token sequence. The model is then trained in an autoregressive manner to predict the next token across both visual and textual content.

For simplicity, we define the language vocabulary of our MLLM as a finite set $\mathcal{X} = \{x_1, x_2, ..., x_{n_1}\}$, while the low-level and high-level visual vocabulary as $\mathcal{Y} = \{y_1, y_2, ..., y_{n_2}\}$ and $\mathcal{Z} = \{z_1, z_2, ..., z_{n_3}\}$, where n_1, n_2 , and n_3 represent the vocabulary sizes for language tokens, low-level visual tokens, and high-level visual tokens, respectively.

For visual tokens, since residual quantization introduces a depth-stacked structure of codes at each visual position p, we implement our visual heads based on the depth transformer from RQ-VAE (Lee et al., 2022). As shown in Fig.4, the semantic tokens and pixel tokens are processed by independent visual heads—the pixel head and the semantic head. Both heads share the same structure, comprising three layers of depth transformers and corresponding classification head for each depth.

Given the LLM hidden state h_p for visual tokens at position p, our depth transformer autoregressively predicts D residual tokens $(r_{p1}, r_{p2}, ..., r_{pD})$. For d > 1, the input to the depth transformer at depth d, denoted as I_{pd} , is defined as the sum of the token embeddings of up to depth d-1

$$I_{pd} = \sum_{d'=1}^{d-1} \mathbf{e}(r_{pd'}),\tag{5}$$

Figure 5: Qualitative results on visual generation.

where $r \in \mathcal{Y}$ for the pixel head and $r \in \mathcal{Z}$ for the semantic head. The initial input at depth 1 is given by $I_{p1} = h_p$. This formulation ensures that the depth transformer incrementally refines the predicted feature representation by leveraging previous estimations up to depth d-1. Consequently, the overall negative log-likelihood loss for the entire multimodal sequence of length N is defined, if a text token appears at position i, as

$$\mathcal{L}_{\text{NTP}} = -\sum_{i=1}^{N} \mathcal{P}_{i}, \text{ where } \mathcal{P}_{i} = \log P\left(x_{i} | x_{< i}\right)$$
(6)

and if visual tokens appears at position i, as

$$\mathcal{P}_{i} = \sum_{d=1}^{D} \left[\log P\left(y_{id} | y_{i, < d} \right) + \log P\left(z_{id} | z_{i, < d} \right) \right]$$
 (7)

4 EXPERIMENTS

4.1 VISION TOKENIZER

Experimental Setup We trained two versions of our vision tokenizers at 256×256 and 384×384 resolutions. For fair comparison with VILA-U, we adopted the same quantization strategies and pretrained weights (SigLIP-L/16-256 and SigLIP-so/14-384), yielding 256 / 729 tokens with residual depths D = 4 / D = 8 (whereas VILA-U uses D = 4 / D = 16). To test stronger backbones, we further trained on SigLIP2-so/16-256 with D = 8, and show that our method generalizes to other backbones in Appendix. B. All models were trained on ImageNet-1K (Deng et al., 2009), CC12M (Changpinyo et al., 2021), and 50M images from LAION-400M (Schuhmann et al., 2021).

Reconstruction We measured reconstruction FID (rFID), PSNR, and SSIM on the ImageNet-1K (val). As shown in Table.1, our DualToken achieves the highest structural similarity and the lowest rFID among various state-of-the-art dedicated methods, including Open-MAGVIT2 Luo et al. (2024) and SBER-MoVQGAN SberBank (2023). This demonstrates that our method effectively mitigates the structural distortion and blurriness issues encountered by VILA-U during reconstruction.

Semantic Metrics For semantic metrics, we report the Top-1 accuracy for zero-shot classification on ImageNet-1K (val), along with text-to-image and image-to-text retrieval performance (R@1) on Flickr8K. As shown in Table.1, our DualToken significantly outperforms VILA-U and the latest concurrent work, UniTok, while also surpassing dedicated models like CLIP-L-14-336 in zero-shot image classification and achieves performance on par with the state-of-the-art SigLIP models.

Downstream Performance within LLaVA-1.5 Before formally introducing the performance of our unified model, we first conducted a controlled experiment to validate the effectiveness of our vision tokenizer in downstream MLLM understanding tasks within the LLaVA-1.5 Liu et al. (2024b) framework. Specifically, we replace the vision encoder of LLaVA-1.5 with DualToken, while strictly adhering to its training data and using LLaMA-2-7B Touvron et al. (2023) as the foundational LLM. As shown in Table.4 (a)(b)(d), our DualToken, as a discrete unified vision tokenizer, outperforms VILA-U and even surpasses the original continuous SigLIP model.

Table 4: **Controlled comparison across ten visual understanding benchmarks**. We evaluate different vision encoders/tokenizers, including siglip-large-16-256, VILA-U, and DualToken within the LLaVA-1.5 framework. MMB refers to MMBench-dev (Liu et al., 2023), OCRB to OCRBench (Liu et al., 2024d), and TVQA to TextVQA (Singh et al., 2019). The MME (Fu et al., 2024) score is normalized based on its total score. *Sem.+Pix.* is the original setting of DualToken, where semantic and pixel tokens are concated along embedding dimension to serve as visual input. *Sem. only* means only the semantic tokens are fed as visual input.

	Vision Encoder	Res.	MMB	MME	SEED	VQAv2	MMVet	AI2D	MMMU	POPE	OCRB	TVQA	AVG.
(a)	siglip-large-16-256	256	60.9	62.9	56.4	78.2	34.5	53.5	30.8	80.3	26.3	44.3	52.8
(b)	VILA-U	256	55.3(-5.6)	53.8(-9.1)	51.2(-5.6)	73.1(-5.1)	24.9(-9.6)	49.4(-4.1)	28.4(-2.4)	78.2(-2.1)	23.8(-2.5)	42.8(-1.5)	48.1(-4.7)
(c)	DualToken (sem. only)	256	59.8(-1.1)	63.0(+0.1)	56.2(-0.2)	77.6(-0.6)	34.0(-0.5)	53.7(+0.2)	30.3(-0.5)	79.4(-0.9)	24.6(-1.7)	43.2(-1.1)	52.2(-0.6)
(d)	DualToken (sem.+ pix.)	256	61.3(+0.4)	64.6(+1.7)	57.2(+0.8)	77.0(-1.2)	34.6(+0.1)	55.9(+2.4)	30.2(-0.6)	83.0(+2.7)	29.2(+2.9)	46.2(+1.9)	53.9(+1.1)

Table 5: Quantitative results on visual understanding and generation benchmarks.

Type	Method	# LLM Params	POPE	MMBench	SEED	MMMU	MMVet	MathVista	MME
	InstructBLIP (Dai et al., 2023)	7B	-	36.0	58.8	30.6	26.2	24.4	1137.1
	LLaVA-Phi (Zhu et al., 2024)	2.7B	85.0	59.8	-	-	28.9	-	1335.1
	LLaVA-1.5 (Liu et al., 2024b)	7B	85.9	64.3	58.6	35.4	31.1	27.4	1510.7
Und.	LLaVA-NeXT (Liu et al., 2024c)	7B	86.5	67.4	70.2	35.8	43.9	34.6	1519.0
	LLaVA-NeXT (Liu et al., 2024c)	34B	87.7	79.3	75.9	51.1	57.4	46.5	1631.0
	ShareGPT4V (Chen et al., 2024b)	7B	-	68.8	69.7	37.2	37.6	26.5	1567.4
	VILA (Lin et al., 2024a)	7B	85.5	68.9	61.1	-	34.9	-	1533.0
	DreamLLM (Dong et al., 2024)	7B	-	58.2	-	-	36.6	-	-
	SEEDLLaMA (Ge et al., 2023)	7B	-	45.8	51.5	-	-	-	-
	Chameleon (Team, 2024)	7B	-	31.1	-	22.4	8.3	-	-
	Emu3 (Wang et al., 2024b)	8B	85.2	58.5	68.2	31.6	-	-	-
Uni.	Show-o (Xie et al., 2024a)	1.5B	73.8	-	-	25.1	-	-	948.4
	Janus (Wu et al., 2024a)	1.5B	87.0	69.4	63.7	30.5	34.3	-	1338.0
	Liquid (Wu et al., 2024b)	7B	83.2	-	-	-	-	-	1448.0
	VILA-U (Wu et al., 2025b)	7B	85.8	-	59.0	-	33.5	-	1401.8
	DualToken-3B (256px)	3B	86.0	70.9	70.2	38.6	32.5	46.5	1489.2
	DualToken-3B (384px)	3B	88.1	76.2	72.2	40.3	40.2	49.2	1588.4

(a) Evaluation on multimodal understanding benchmarks.

Type	Method	Architecture	Count↑	Differ↑	Compare↑	Lo	gical†	Overall↑
турс	Wichiod	Arciniceture	Count	Dilici	Compare	Negate	Universal	Overan
	SD-XL (Podell et al., 2023)	Diffusion	0.71	0.73	0.69	0.50	0.66	0.63
Gen.	Midjourney v6 (Midjourney, 2024)	Diffusion	0.78	0.78	0.79	0.50	0.76	0.69
	DALL-E 3 (Betker et al., 2023)	Diffusion	0.82	0.78	0.82	0.48	0.80	0.70
	Show-o (Xie et al., 2024a)	Discrete Diff.	0.70	0.62	0.71	0.51	0.65	0.60
	ILLUME (Wang et al., 2024a)	AR+Diff.	0.66	0.68	0.67	0.49	0.63	0.60
	LWM (Liu et al., 2024a)	Autoregressive	0.59	0.58	0.54	0.49	0.52	0.53
	Liquid (Wu et al., 2024b)	Autoregressive	0.76	0.73	0.74	0.46	0.74	0.65
Uni.	UniTok (Ma et al., 2025)	Autoregressive	0.76	0.76	0.79	0.46	0.73	0.67
	VILA-U (Wu et al., 2025b)	Autoregressive	0.70	0.71	0.74	0.53	0.66	0.64
	VILA-U 3B (256)	Autoregressive	0.68	0.66	0.70	0.49	0.64	0.60
	DualToken-3B (256)	Autoregressive	0.76	0.76	0.78	0.50	0.72	0.68
	DualToken-3B (pix. only)	Autoregressive	0.59	0.59	0.59	0.47	0.59	0.55

(b) VQAScores on advanced prompts of GenAI-Bench (Lin et al., 2024b)

4.2 Unified Model for Generation and Understanding

Building on the unified tokenizers, we further verified its potential within a unified AR framework based on Qwen-2.5-3B (Yang et al., 2024). Our training process consists of four stages: (1) Freeze the LLM and pretrain on image-caption data, training only the visual projector for multimodal alignment. (2) Unfreeze the LLM and fine-tune on visual understanding data to enhance comprehension. (3) Freeze the LLM and train only the visual heads on text-to-image data. (4) Unfreeze all components and perform joint training on a mixture of understanding, generation, and interleaved datasets.

To ensure a fair comparison with VILA-U (Wu et al., 2025b), we additionally provide a reproduced version of VILA-U using Qwen-2.5-3B as the language backbone, trained with the same dataset and training procedure as our method. Please refer to Appendix. G for the detailed dataset list. We evaluate our model against widely used vision-language understanding benchmarks, including VQAv2 (Goyal et al., 2017), POPE (Li et al., 2023b), MME (Fu et al., 2024), SEED-IMG (Li et al., 2023a), MMBench (Liu et al., 2023), and MM-Vet (Yu et al., 2023b).

As shown in Table.5, our DualToken (3B) demonstrates strong understanding performance compared to other unified models and achieves results comparable to dedicated understanding models like LLaVA-NeXT and ShareGPT4V. Meanwhile, as illustrated in Fig. 5, thanks to the significantly

433

434

435

436

437

438

439 440

441 442

443

444

445

446

448

449 450

451

452

453

454

455 456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479 480

481 482

483

484

485

improved reconstruction quality of DualToken, the generated images are rich in detail and structurally realistic, accurately capturing fine textures such as animal fur and other intricate patterns—effectively resolving the blurriness and distortions observed in VILA-U. What's more, the generated images exhibit remarkable alignment with the text, even for long and complex prompts. This is especially evident when compared with the pix. only method (which only predicts pixel tokens during image generation), as it often ignores important semantic content during generation—highlighting the crucial role that semantic tokens play in helping the model grasp the semantic structure of images throughout the generation process. Results on more generation benchmarks are presented in Appendix.E.

Beyond its impressive performance, we observed two interesting findings:

- Pixel tokens enhance understanding. As shown in Table 4 (a)(c)(d), we compared using only the semantic tokens (sem.), and a combination of semantic and pixel tokens (sem.+pcpt), concatenated along the embedding dimension to serve as visual input. Surprisingly, compared to using semantic tokens alone, jointly leveraging both semantic and pixel tokens leads to consistent improvements across various aspects, including general VQA (Liu et al., 2023; Fu et al., 2024), hallucination detection (Li et al., 2023b), and OCR-related benchmarks (Singh et al., 2019; Liu et al., 2024d). Suggesting that the supplementation of high-frequency details by pixel tokens can compensate for the subtle semantic loss introduced by vector quantization.
- Semantic tokens also helps to generate. As shown in Fig. 5 and Table. 5 (b), incorporating semantic tokens into the model's autoregressive generation process leads to more semantically aligned image generation compared to using visual appearance tokens alone. This indicates that visual semantic tokens—beyond their role in understanding tasks—can also assist the model in grasping the semantic composition of images, thereby producing outputs that better align with the intended semantics. This is also clearly reflected in the model's performance on GenAI-Bench.

DualToken versus dual-encoder. Recently, some studies have adopted dual-encoder designs to obtain visual representations (Huang et al., 2025). Specifically, a VQVAE-based pixel encoder and a CLIP-based semantic encoder. To address a fundamental question—why is it necessary to obtain dual visual vocabularies within a unified tokenizer rather than simply combining existing specialized encoders? we conducted an experiment using the codebook from SBER-MoVQGAN as the low-level vocabulary and a VQ-processed SigLIP as the high-level vocabulary, as illustrated in Fig.4 (a).

forward approach leads to signifi- dataset (Li et al., 2024a). cantly inferior image generation performance (See Appendix.F.4 for implementation details). To explain this discrepancy, we visualize the feature spaces of DualToken's 6th and 26th layers, as well as those of MoVQGAN and SigLIP with UMAP (Fig.6).

As shown in Table.6, this straight- Table 6: Results on the MJHQ-30K

Method	Type	Res.	FID↓
SD-XL (Podell et al., 2023)	Diffusion	1024	9.55
PixArt (Chen et al., 2023a)	Diffusion	1024	6.14
Playground (Li et al., 2024a)	Diffusion	1024	4.48
Liquid (Wu et al., 2024b)	Autoregressive	512	5.47
Janus (Wu et al., 2024a)	Autoregressive	384	10.10
LWM (Liu et al., 2024a)	Autoregressive	256	17.77
Show-o (Xie et al., 2024a)	Discrete Diff.	256	15.18
VILA-U 7B (Wu et al., 2025b)	Autoregressive	256	12.81
VILA-U 3B	Autoregressive	256	15.12
DualToken 3B	Autoregressive	256	7.88
Dual Encoder	Autoregressive	256	17.55

Figure 6: Visualized feature spaces on Imagenet-1k (val).

As shown, while DualToken's 6th and 26th layers yield features specialized for different purposes, they still share a largely overlapping representational space. In contrast, features from the two separate encoders (MoVQGAN and SigLIP) show significant divergence, forming clearly disjoint clusters. Therefore, we attribute the performance gap to the incompatibility of representational spaces between heterogeneous encoders. This mismatch imposes a burden on the downstream language model, which is forced to learn two entirely disjoint visual representation systems. This observation further highlights the simplicity and effectiveness of DualToken as a unified architectural solution.

5 CONCLUSION

We show the community that, by decoupling reconstruction and semantic learning objectives with a hierarchical dual-visual codebooks, we can, to the best of our knowledge, unifying the understanding and generation in one model without conflicting each others' performance. We hope this shed light to building an ultimate unifying architecture for visual-language model.

REFERENCES

- Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape: Scaling laws for compute-optimal model design. *Advances in Neural Information Processing Systems*, 36:16406–16425, 2023.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Zechen Bai, Jianxiong Gao, Ziteng Gao, Pichao Wang, Zheng Zhang, Tong He, and Mike Zheng Shou. Factorized visual tokenization and generation. *arXiv* preprint arXiv:2411.16681, 2024.
- James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf*, 2(3):8, 2023.
- Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing instructions. *arXiv preprint arXiv:2211.09800*, 2022.
- Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.
- Haoran Chen, Junyan Lin, Xinhao Chen, Yue Fan, Xin Jin, Hui Su, Jianfeng Dong, Jinlan Fu, and Xiaoyu Shen. Rethinking visual layer selection in multimodal llms. *arXiv preprint arXiv:2504.21447*, 2025a.
- Jieneng Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Vitamin: Designing scalable vision models in the vision-language era. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024a.
- Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025b.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023a.
- Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference on Computer Vision*, pp. 370–387. Springer, 2024b.
- Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv preprint arXiv:2501.17811*, 2025c.
- Yongjie Chen, Hongmin Liu, Haoran Yin, and Bin Fan. Building vision transformers with hierarchy aware feature aggregation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5908–5918, 2023b.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024c.
- Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning, 2023.
- Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv* preprint arXiv:2505.14683, 2025.

- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
 - Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, and Li Yi. DreamLLM: Synergistic multimodal comprehension and creation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=y01KGvd9Bw.
 - Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based on deep networks. *Advances in neural information processing systems*, 29, 2016.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883, 2021.
 - Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models, 2024.
 - Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making llama see and draw with seed tokenizer. *arXiv preprint arXiv:2310.01218*, 2023.
 - Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36: 52132–52152, 2023.
 - Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
 - Iris IA Groen, Edward H Silson, and Chris I Baker. Contributions of low-and high-level properties to neural processing of visual scenes in the human brain. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1714):20160102, 2017.
 - Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei Huang, et al. mplug-docowl 1.5: Unified structure learning for ocr-free document understanding. *arXiv preprint arXiv:2403.12895*, 2024.
 - Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou, Wei Zhang, Lanqing Hong, Hengshuang Zhao, et al. Illume+: Illuminating unified mllm with dual visual tokenization and diffusion refinement. *arXiv preprint arXiv:2504.01934*, 2025.
 - Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1125–1134, 2017.
 - Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text documents, 2023.
 - Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into html code with the websight dataset, 2024.
 - Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11523–11532, 2022.

- Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a.
 - Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint arXiv:2402.17245*, 2024a.
 - Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li, Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end speech interaction. *arXiv preprint arXiv:2502.17239*, 2025a.
 - Xiaotong Li, Fan Zhang, Haiwen Diao, Yueze Wang, Xinlong Wang, and Lingyu Duan. Densefusion-1m: Merging vision experts for comprehensive multimodal perception. *Advances in Neural Information Processing Systems*, 37:18535–18556, 2024b.
 - Yadong Li, Haoze Sun, Mingan Lin, Tianpeng Li, Guosheng Dong, Tao Zhang, Bowen Ding, Wei Song, Zhenglin Cheng, Yuqi Huo, Song Chen, Xu Li, Da Pan, Shusen Zhang, Xin Wu, Zheng Liang, Jun Liu, Tao Zhang, Keer Lu, Yaqi Zhao, Yanjun Shen, Fan Yang, Kaicheng Yu, Tao Lin, Jianhua Xu, Zenan Zhou, and Weipeng Chen. Baichuan-omni technical report. *arXiv preprint arXiv:2410.08565*, 2024c.
 - Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng Ming, Guosheng Dong, Da Pan, et al. Baichuan-omni-1.5 technical report. *arXiv preprint arXiv:2501.15368*, 2025b.
 - Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.
 - Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 26689–26699, 2024a.
 - Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. *arXiv preprint arXiv:2404.01291*, 2024b.
 - Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and language with ringattention. *arXiv preprint arXiv:2402.08268*, 2024a.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26296–26306, 2024b.
 - Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024c. URL https://llava-vl.github.io/blog/2024-01-30-llava-next/.
 - Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? *arXiv preprint arXiv:2307.06281*, 2023.
 - Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xucheng Yin, Cheng lin Liu, Lianwen Jin, and Xiang Bai. On the hidden mystery of ocr in large multimodal models. *arXiv preprint arXiv:2305.07895*, 2024d.
 - Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2: An open-source project toward democratizing auto-regressive visual generation. *arXiv* preprint *arXiv*:2409.04410, 2024.
 - Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiaojuan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv* preprint *arXiv*:2502.20321, 2025.

- Midjourney. Midjourney version 6.1, 2024. URL https://www.midjourney.com.
 - Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation for text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.
 - Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang Wang, Zhiyang Xu, Jiuhai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.
 - Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Zehuan Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and generation. *arXiv* preprint arXiv:2412.03069, 2024.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763, 2021.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - SberBank. Sber-movqgan, 2023. URL https://habr.com/ru/companies/sberbank/articles/740624/.
 - Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.
 - Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. *arXiv preprint arXiv:1508.07909*, 2015.
 - Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.
 - Wei Song, Yadong Li, Jianhua Xu, Guowei Wu, Lingfeng Ming, Kexin Yi, Weihua Luo, Houyi Li, Yi Du, Fangda Guo, et al. M3gia: A cognition inspired multilingual and multimodal general intelligence ability benchmark. *arXiv* preprint arXiv:2406.05343, 2024.
 - Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14398–14409, 2024.
 - Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint* arXiv:2405.09818, 2024.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
 - Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2: Multilingual vision-language encoders with improved semantic understanding, localization, and dense features. *arXiv preprint arXiv:2502.14786*, 2025.

- Chunwei Wang, Guansong Lu, Junwei Yang, Runhui Huang, Jianhua Han, Lu Hou, Wei Zhang, and Hang Xu. Illume: Illuminating your llms to see, draw, and self-enhance. *arXiv* preprint *arXiv*:2412.06673, 2024a.
- Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv preprint arXiv:2409.18869*, 2024b.
- Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhu Chen. Omniedit: Building image editing generalist models through specialist supervision. *arXiv preprint arXiv:2411.07199*, 2024.
- Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.
- Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators. *arXiv* preprint arXiv:2412.04332, 2024b.
- Shengqiong Wu, Hao Fei, Xiangtai Li, Jiayi Ji, Hanwang Zhang, Tat-Seng Chua, and Shuicheng Yan. Towards semantic equivalence of tokenization in multimodal llm. In *The Thirteenth International Conference on Learning Representations*, 2025a.
- Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual understanding and generation. *The Thirteenth International Conference on Learning Representations*, 2025b.
- Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *arXiv* preprint arXiv:2408.12528, 2024a.
- Rongchang Xie, Chen Du, Ping Song, and Chang Liu. Muse-vl: Modeling unified vlm through semantic discrete encoding. *arXiv preprint arXiv:2411.17762*, 2024b.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. *arXiv preprint arXiv:2110.04627*, 2021.
- Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang, Arun Babu, Binh Tang, Brian Karrer, Shelly Sheynin, et al. Scaling autoregressive multi-modal models: Pretraining and instruction tuning. *arXiv preprint arXiv:2309.02591*, 2023a.
- Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv* preprint arXiv:2308.02490, 2023b.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. *arXiv preprint arXiv:2311.16502*, 2023.
- Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11975–11986, 2023.
- Biao Zhang and Rico Sennrich. Root mean square layer normalization. In NeurIPS, 2019.

- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- Yue Zhao, Fuzhao Xue, Scott Reed, Linxi Fan, Yuke Zhu, Jan Kautz, Zhiding Yu, Philipp Krähenbühl, and De-An Huang. Qlip: Text-aligned visual tokenization unifies auto-regressive multimodal understanding and generation. *arXiv* preprint arXiv:2502.05178, 2025.
- Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized vectors for high-fidelity image generation. *Advances in Neural Information Processing Systems*, 35:23412–23425, 2022.
- Yichen Zhu, Minjie Zhu, Ning Liu, Zhiyuan Xu, and Yaxin Peng. Llava-phi: Efficient multi-modal assistant with small language model. In *Proceedings of the 1st International Workshop on Efficient Multimedia Computing under Limited*, pp. 18–22, 2024.

A LARGE LANGUAGE MODEL USAGE

In this paper, Large Language Models (LLMs) are used exclusively for grammatical error correction.

B LAYER SELECTION AND GENERALIZABILITY TO OTHER BACKBONES

Currently, we do not yet have a fully automated method for selecting the reconstruction layer. However, the following empirical insights can help accelerate the validation process.

In practice, we first partition the vision encoder into shallow, middle, and deep regions based on cosine similarity between layers (see Fig. 3 and Appendix F.1). *Empirically, selecting the last layer within the shallow region* (typically the first quarter to third of layers) for reconstruction yields the best results. In our early experiments, we verified this empirical insights on a small-scale dataset of 2M samples, testing the 3rd, 6th, 9th, 15th, 21st, and 26th layers. We found that shallower layers exert less impact on semantic capability; however, layers that are too shallow (e.g., the 3rd) compromise reconstruction performance due to limited representational capacity. As a trade-off, we selected the first six layers for the reconstruction task.

Here, we illustrate how our training approach generalizes to a new base encoder, **ViTamin-XL-384** (Chen et al., 2024a), a **hybrid architecture** of **CNN** and transformer.

Following the methodology presented in Fig. 3 and Appendix F, we first partition the vision encoder based on the *cosine similarity between features across layers*. Interestingly—though not unexpectedly—this hybrid backbone also exhibits a clear hierarchical structure in the similarity heatmap, which allows us to divide the encoder into shallow, middle, and deep layers:

Shallow layers: Layers 1–8
Middle layers: Layers 9–18
Deep layers: Layers 19–32

We then select the **last layer within the shallow region** (*i.e.*, layer 8) for reconstruction. The performance comparison is shown as Table 7. Notably, ViTamin-XL-384 achieves even better reconstruction quality (rFID) than the original ViT backbone (SigLIP-SO400M-14-384), while achieving comparable semantic performance. The results are obtained on a 10M-sample dataset.

Table 7: Performance comparison of different backbones.

Backbone	Zero-shot ↑	rFID↓
SigLIP-SO400M-14-384	81.6	0.54
ViTamin-XL-384	80.8	0.26

C DISCUSSION AND COMPARISON WITH UNITOK

UniTok (Ma et al., 2025) is indeed an interesting and relevant work. However, we would like to clarify that our work and UniTok are in fact *concurrent*.

Since UniTok adopts a more advanced visual backbone, decoder, and discriminator architecture, we conduct a fair comparison by re-training our DualToken under the same encoder and decoder settings used in UniTok, *i.e.*, choosing ViTamin-L/16, a hybrid architecture of CNN and transformer, to instantiate DualToken. Under this setup, DualToken achieves stronger semantic performance and competitive reconstruction quality, as evidenced by the comparison between (a) and (b) in Table 8.

Furthermore, *DualToken and UniTok are complementary*. Specifically, by replacing our original RVQ quantizer with UniTok's proposed **MCQ**, we observe consistent improvements in both reconstruction fidelity and zero-shot classification, as evidenced by the comparison between (b) and (c) in Table 8.

These results suggest that future work may benefit from **integrating our dual visual vocabulary** formulation with more advanced quantizers such as MCQ.

Table 8: Comparison with UniTok.

866 867 868

Tokenizer rFID \downarrow Zero-Shot Acc ↑ (a) UniTok 0.38 (b) DualToken (RVQ) 0.39 (c) DualToken (MCQ) 0.25

78.6

80.3

82.2

870 871

D COMPUTATIONAL ANALYSIS

872 873

Introducing two codebooks **DOES NOT** significantly increase the computational overhead, demonstrated by two aspects: **parameter count** and **memory usage with inference latency**.

• The MLP projector's hidden dimension changes from $(1024 \rightarrow 2048 \rightarrow 2048)$ to

874 875 876

877

D.1 PARAMETER COUNT

878 879 880

The ONLY additional parameters arise from 3 components:

 $(2048\rightarrow 2048\rightarrow 2048)$, which adds **2.1M** parameters.

883

 An additional visual head: 258M parameters. • An additional VQEmbedding layer: **16M** parameters.

885

Together, these account for only **8.93%** of the total parameters compared to the LLM backbone (3B). When scaling to larger backbones (e.g., 7B), the relative impact becomes even more negligible.

887

889 890

MEMORY USAGE AND INFERENCE LATENCY

892 893

891

Since our dual tokens are concatenated along **feature dimension** rather than **sequence dimension**, and the input dimension to the LLM remains unchanged, no new pathway is introduced to the LLM, and the computational cost of the LLM backbone remains strictly the same. The only increase stems from the components listed above.

894 895 896

Table 9: Memory Usage and Inference Latency

897 899

	Training Memory Usage	Inference Time Cost	Single Forward GFLOPs
single token	73.8G	11.42s	328.98
dual token	78.2G	12.97s	337.20

900 901 902

903

Memory usage is measured under the same local batch size and device. FLOPs and inference time are averaged on T2I task (256px) over the MJHQ-30K dataset. Statistics for the VQA task have also been added to the paper.

904 905 906

RESULTS ON MORE GENERATION BENCHMARKS Ε

907 908 909

Following VILA-U, we initially report results on GenAI-Bench and MJHQ-30K. We have now extend our evaluation to include GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025). The results are summarized below:

910 911

The results demonstrate that DualToken achieves competitive performance across both benchmarks.

912 913

IMPLEMENTATION DETAILS

914 915

PARTITIONING OF THE SIGLIP ENCODER

916 917

We feed the ImageNet-1K (Deng et al., 2009) validation set into SigLIP-SO400M-Patch14-384 (Zhai et al., 2023). For each image, we extract the representations from all layers of the model, each with a

Table 10: Evaluation results on GenEval and WISE benchmarks.

Model	GenEval (Overall) ↑	WISE (Overall) ↑
SDv1.5	0.43	0.32
SDXL	0.55	0.43
Chameleon 7B	0.39	-
EMU3 8B	0.66	0.39
Janus	0.61	0.23
Janus-Pro-7B	0.80	0.35
ILLUME-7B	0.61	-
TokenFlow-XL14B	0.63	-
VILA-U	-	0.31
DualToken	0.72	0.35

shape of 729×1152 . Then, we apply average pooling along the spatial dimension (the first axis) of each layer's representation, resulting in a 1152-dimensional vector per layer.

Specifically, for each image, we obtain feature vectors from 26 layers, and compute the pairwise cosine similarity between these layer-wise representations to construct a 26×26 cosine similarity matrix. To capture the overall similarity structure across layers in the model, we average the cosine similarity matrices across all images. The final similarity matrix S^* is computed as:

$$S^* = \frac{1}{n} \sum_{i=1}^n S_i \tag{8}$$

where S_i denotes the cosine similarity matrix for the i-th image, and n is the total number of images. S^* thus represents the average inter-layer similarity across the dataset.

F.2 IMAGE CLUSTERING

We extract intermediate representations from the 6th and 26th layers of SigLIP-SO400M-Patch14-384 (Zhai et al., 2023) for each image in the ImageNet-1K validation set (Deng et al., 2009). The original representation shape is 729×1152 , and we apply average pooling along the spatial dimension to obtain a single 1152-dimensional feature vector per image. For both the 6th-layer and 26th-layer features, we perform k-means clustering with 1000 cluster centers (Cluster 0 to Cluster 999). The cluster analysis reveals that shallow-layer features (from the 6th layer) tend to capture low-level visual attributes such as texture and color, while deep-layer features (from the 26th layer) predominantly encode high-level semantic content. The implementation code is provided in the *supplementary material*, and additional visualizations are presented in Fig. 7.

F.3 UMAP FEATURE SPACE VISUALIZATION

We perform dimensionality reduction using UMAP to visualize the feature spaces from DualToken's 6th and 26th layers, as well as those from MoVQGAN and SigLIP. Specifically, we sample 1,000 images from the ImageNet-1K validation set and visualize the UMAP projections of their encoded features from each model. To ensure a fair comparison among the different visual models, all extracted features are first flattened and then uniformly processed via adaptive average pooling to maintain consistent dimensionality.

F.4 MODEL IMPLEMENTATION DETAILS

Our backbone model is built upon a decoder-only transformer architecture, inherited from a pretrained LLM. We adopt Qwen2.5Yang et al. (2024) as our initialization due to its strong performance and public availability. The model uses RMSNormZhang & Sennrich (2019) for normalization. For visual inputs to the LLM, we apply a projector to map the visual tokens into the same embedding space as the LLM. When predicting image tokens, the output hidden states of the LLM are passed through two separate projectors to align with the dimension of the semantic visual head and the pixel visual head. Each projector consists of two linear layers with a GeLU activation in between. We use special

Figure 7: More visualizations of image clusters derived from features of (a) the 6th layer and (b) the 26th layer of SigLIP. Features from deep layers primarily cluster images based on high-level semantic content, whereas shallow-layer features tend to group images according to appearance-level cues such as color and texture. For instance, Cluster 17 contains images with similar scaly textures, while Clusters 60 and 110 predominantly group images by dominant colors (e.g., red or blue).

Table 11: Training hyper-parameters.

Settings	Visual			MLLM		
Settings	Tokenizer		Stage 2	Stage 3	Stage 4-1	Stage 4-2
Learning Rate	7.2e-5	Projector 1e-3	Projector 2e-5	Projector (Gen) 1e-4	All Pr	ojectors 1e-5
Learning Kate	1.26-3	Frojector re-3	LLM 2e-5	Visual Heads 1e-4	Visual Head	ds 1e-5; LLM 1e-5
Batch Size	64	64	256	128	512	256
Optimizer	AdamW	AdamW	AdamW	AdamW	AdamW	AdamW

tokens—<image_gen_start> and <image_gen_end>—to indicate the boundaries of the image to be generated.

For visual heads, since residual quantization introduces a depth-stacked structure of codes at each visual position p, we implement our visual heads based on the depth transformer from RQ-VAE (Lee et al., 2022). Unlike the original depth transformer, which employs a single head to predict logits across all depths, we introduce separate classification heads to compute the logits for residuals at each corresponding depth (Li et al., 2025a). As shown in Fig.4, the semantic tokens and pixel tokens are processed by independent visual heads—the pixel head and the semantic head. Both heads share the same structure, comprising three layers of depth transformers and corresponding classification head for each depth. Detailed training hyper-parameters are provided in Table 11.

Implementation of the Dual Encoder Baseline As described in Sec. 4.2 of the main paper, some concurrent works adopt *dual-encoder* designs to obtain visual representations (Huang et al., 2025), specifically combining a VQVAE-based pixel encoder with a CLIP-based semantic encoder.

This raises a natural question: Beyond architectural elegance and simplicity, does learning dual visual codebooks within a unified visual tokenizer (ours) lead to better downstream performance in unified MLLMs compared to directly combining two heterogeneous encoders?

Since these concurrent works adopt different training datasets and downstream architectures (e.g., involving external diffusion decoders (Rombach et al., 2022)), it is difficult to conduct a fair comparison in the context of downstream unified models. To isolate the effectiveness of the tokenization strategy itself—that is, dual tokens within a single unified tokenizer vs. dual visual tokenizers from separate encoders—we implemented both designs under the same unified architecture proposed in our work.

Specifically, we use SigLIP-L-Patch16-256 (Zhai et al., 2023) and SBER-MoVQGAN (SberBank, 2023) to build the semantic tokenizer and pixel tokenizer, respectively:

- The semantic tokenizer applies an RVQ quantizer (depth=4) to the penultimate layer of the frozen SigLIP-L-Patch16-256 encoder. The encoder is fully frozen, and only the codebook is updated using commitment loss, aiming to reconstruct the input semantic features as faithfully as possible.
- The pixel tokenizer is derived from a modified version of SBER-MoVQGAN-270M. To match the token length of SigLIP-L-Patch16-256, we added a downsampling and a upsampling modules to its encoder and decoder, adjusting the downsampling and upsampling rate from 8 to 16. Additionally, we replaced the original quantizer with a residual vector quantizer (RVQ) of depth 4 to ensure compatibility with our unified model architecture.

Apart from the different tokenizers used to provide pixel and semantic tokens, the rest of the architecture remains fully consistent with our unified pipeline. Specifically, we concatenate pixel and semantic tokens along the embedding dimension to form the visual input, map them into the LLM embedding space via a projector, and use separate visual heads (a pixel head and a semantic head) for respective predictions.

To ensure rigorous control and fairness, we standardized all other components except for the source of dual visual tokens:

- All components are kept identical, including image resolution, token length (16×16), RVQ depth (D=4), embedding dimension, model architecture, and training data.
- Both tokenizers are trained on the same datasets as DualToken, as described in the main text.

G Datasets

 Our MLLM training process consists of four stages: (1) Freeze the LLM and pretrain on image-caption data, training only the visual projector for multimodal alignment. (2) Unfreeze the LLM and fine-tune on visual understanding data to enhance comprehension. (3) Freeze the LLM and train only the visual heads on text-to-image data. (4) Unfreeze all components and perform joint training on a mixture of understanding, generation, and interleaved datasets, enabling the model to acquire generative capabilities while maintaining strong understanding performance. We listed the data in Table. 12.

Table 12: Training data list.

Stage	Dataset
Visual Tokenizer	CC12M (Changpinyo et al., 2021), ImageNet-1K
	(train) (Deng et al., 2009), a sampled subset of 50M
	images from LAION-400M (Schuhmann et al.
	2021)
MI I M Ct 1	DenseFusion-1M (Li et al., 2024b), DreamLIP
MLLM Stage1	InternVL-SA-1B-Caption (Chen et al., 2024b;c)
MLLM Stage2	DocStruct4M (Hu et al., 2024), WebSight (Lau-
MILLIM Stage2	rençon et al., 2024), WuKong
	2M in house VQA data, pure text data
MLLM Stage3	A filtered subset of ImageNet-21K
MILLIM Stages	laion-aesthetics-12m, JourneyDB a
	In-house aesthetics data
MLLM Stage4	text2face, OmniEdit (Wei et al., 2024), Instruct-
MILLIM Stage4	Pix2Pix (Brooks et al., 2022)
	Cauldron, Inhouse IFT data (Und.)
	OBELICS (Laurençon et al., 2023), pure text data

^aThe text and image are reversed and used for image generation training.