

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DUALTOKEN: TOWARDS UNIFYING VISUAL UNDERSTANDING AND GENERATION WITH DUAL VISUAL VOCABULARIES

Anonymous authors

Paper under double-blind review

## ABSTRACT

The differing representation spaces required for visual understanding and generation pose a challenge in unifying them within the autoregressive paradigm of large language models. A vision tokenizer trained for reconstruction excels at capturing low-level visual appearance, making it well-suited for visual generation but lacking high-level semantic representations for understanding tasks. Conversely, a vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks. To bridge this gap, we propose **DualToken**, a method that unifies representations for both understanding and generation within a single tokenizer. However, directly integrating reconstruction and semantic objectives creates conflicts, leading to degraded performance in both reconstruction fidelity and semantic accuracy. Instead of forcing a single codebook to capture both visual appearance and semantics, DualToken disentangles them by introducing separate codebooks for high-level semantics and low-level visual details, effectively turning their inherent conflict into a synergistic relationship. As a result, DualToken sets a new record of 0.25 rFID and 82.0% zero-shot accuracy on ImageNet, and demonstrates strong effectiveness in downstream MLLM tasks for both understanding and generation. Specifically, our method surpasses VILA-U by 5.8 points on average across ten visual understanding benchmarks and delivers a 13% improvement on GenAI-Bench, [attaining state-of-the-art performance among existing autoregressive unified models](#). Notably, incorporating dual visual tokens consistently outperforms using a single token type on both understanding and generation tasks. We hope our research offers a new perspective on leveraging dual visual vocabularies for building unified vision–language models.

## 1 INTRODUCTION

Unifying visual understanding and generation within the pure autoregressive (AR) paradigm of Large Language Models (LLMs) offers a simple, end-to-end alternative to the increasingly common yet structurally complex approach of coupling LLMs with external diffusion modules (Dong et al., 2024; Huang et al., 2025; Pan et al., 2025; Chen et al., 2025b). To enable fully unified AR modeling of vision and language, a model requires a visual tokenizer to map images into discrete tokens and a corresponding detokenizer that can faithfully reconstruct them back into pixel space.

Early methods in this direction (Yu et al., 2023a; Team, 2024; Wang et al., 2024b) directly adopt the encoder and decoder of VQ-VAE as the visual tokenizer and detokenizer. While these approaches demonstrated the feasibility of unifying visual understanding and generation within the AR paradigm, their understanding capabilities are typically lacking compared to multimodal large language models (MLLMs) specialized for understanding tasks (Liu et al., 2023; Yue et al., 2023; Fu et al., 2024; Song et al., 2024). We argue that this performance gap stems from inadequate visual representations: traditional VQ-VAEs are optimized solely for reconstruction, producing image tokens that preserve low-level visual details but fail to capture high-level semantics aligned with language. By contrast, MLLMs designed for understanding tasks (Liu et al., 2024c; Chen et al., 2024b; Li et al., 2024c; 2025b; Bai et al., 2025) typically rely on CLIP-family encoders (Radford et al., 2021; Zhai et al., 2023), which are pretrained with text alignment and thus inherently encode high-level semantics, making them more suitable for downstream visual understanding tasks in MLLMs.



Figure 1: **(Left)** Challenges faced by existing visual tokenizers. **(Middle)** We compare zero-shot classification accuracy and reconstruction FID on ImageNet-1K(val) across baseline methods and DualToken. DualToken achieves results comparable to or surpassing both semantic-only and reconstruction-only methods in both tasks. **(Right)** Reconstruction results of VILA-U and DualToken, our DualToken significantly outperforms VILA-U, which suffers from severe distortion and blurriness.

To fully leverage the language-aligned semantic representations of CLIP, a natural approach is to quantize the features of a CLIP encoder and train a decoder for image reconstruction (Wu et al., 2025). This involves learning to reconstruct images for downstream generation tasks while preserving its semantic capabilities as much as possible (Wu et al., 2025). However, as shown in Fig.1 and Table.1, directly combining reconstruction and semantic objectives often leads to severe distortions and blurriness in reconstruction tasks, along with a noticeable decline in semantic metrics such as zero-shot classification and image-text retrieval, compared to its original pretrained model (Zhai et al., 2023). This degradation, as discussed in Wu et al. (2025), reflects the inherently conflict between the two training objectives, ultimately limiting both the quality of downstream image generation tasks and the performance of multimodal understanding tasks.

To disentangle the two conflicting objectives, we propose *interpreting visual appearance and visual semantics—required for visual generation and understanding—as distinct visual vocabularies*: a pixel codebook that captures low-level appearance features for generation, and a semantic codebook that encodes high-level semantic features essential for understanding. Specifically, inspired by the hierarchical structure of the human visual system (Groen et al., 2017), we partition the Vision Transformer (ViT) (Dosovitskiy et al., 2020) into shallow, middle, and deep stages based on the cosine similarity (Chen et al., 2025a) across layers and observe that shallow layers of a ViT predominantly capture low-level perceptual information—such as texture and color—making them suitable for reconstruction tasks, whereas high-level semantic representations emerge in the deeper layers (Chen et al., 2023b; 2025a). To fully exploit this inherent property of ViT, we utilize shallow-layer features for reconstruction and deep-layer features for semantic learning, thereby enabling the simultaneous derivation of both a pixel codebook and a semantic codebook within a unified tokenizer.

Surprisingly, this hierarchical decoupling not only resolves the conflict between the two objectives but also enables the semantic learning objective to enhance low-level reconstruction. Moreover, training the shallow-layer reconstruction task introduces minimal degradation to the model’s original semantic capabilities, without additional contrastive learning stages (Radford et al., 2021; Wu et al., 2025). As a result, our DualToken achieves the best semantic performance among established unified tokenizers (Wu et al., 2025; Zhao et al., 2025; Qu et al., 2024; Ma et al., 2025) while also attaining state-of-the-art performance in reconstruction. Building upon this, we further demonstrate how a multimodal large language model (MLLM) can effectively utilize the dual visual vocabularies to achieve unified vision understanding and generation.

Table 1: **Comparison to state-of-the-art visual tokenizers.** DualToken achieves the best performance among existing unified visual tokenizers in semantic metrics. It also mitigates the distortion and blurriness faced by VILA-U during reconstruction, and surpasses dedicated models in reconstruction metrics.

| METHODS                                      | Semantic               |                       |                       | Reconstruction    |                   |                   |
|----------------------------------------------|------------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|
|                                              | Zero-Shot <sup>†</sup> | T2I(R@1) <sup>†</sup> | I2T(R@1) <sup>†</sup> | rFID <sup>†</sup> | PSNR <sup>†</sup> | SSIM <sup>†</sup> |
| <i>Reconstruction Only</i>                   |                        |                       |                       |                   |                   |                   |
| MoVQGAN (Zheng et al., 2022)                 | ✗                      | ✗                     | ✗                     | 1.12              | 22.42             | 0.673             |
| RQ-VAE (Lee et al., 2022)                    | ✗                      | ✗                     | ✗                     | 2.69              | -                 | -                 |
| VIT-VQGAN (Yu et al., 2021)                  | ✗                      | ✗                     | ✗                     | 1.55              | -                 | -                 |
| Open-MAGVIT2 (Lee et al., 2024)              | ✗                      | ✗                     | ✗                     | 1.17              | 21.90             | -                 |
| SBER-MoVQGAN (ShenBank, 2023)                | ✗                      | ✗                     | ✗                     | 0.68              | 27.04             | 0.741             |
| <i>Understanding Only</i>                    |                        |                       |                       |                   |                   |                   |
| CLIP-L/14-336 (Radford et al., 2021)         | 76.6                   | 21.2                  | 21.5                  | ✗                 | ✗                 | ✗                 |
| SigLIP-L/16-256 (Zhai et al., 2023)          | 80.5                   | 21.0                  | 21.4                  | ✗                 | ✗                 | ✗                 |
| SigLIP-So/14-384 (Zhai et al., 2023)         | 83.2                   | 21.7                  | 21.6                  | ✗                 | ✗                 | ✗                 |
| SigLIP2-So/16-256 (Tschannen et al., 2025)   | 83.4                   | 21.5                  | 22.0                  | ✗                 | ✗                 | ✗                 |
| Vitamin-L/16-256 (Chen et al., 2024a)        | 81.2                   | 20.6                  | 21.2                  | ✗                 | ✗                 | ✗                 |
| <i>Reconstruction &amp; Understanding</i>    |                        |                       |                       |                   |                   |                   |
| QLIP (256px) (Zhai et al., 2025)             | 74.3                   | 16.8                  | 18.4                  | 3.21              | 23.16             | 0.628             |
| QLIP (392px) (Zhai et al., 2025)             | 79.1                   | 20.4                  | 21.0                  | 1.46              | 25.36             | 0.690             |
| UniTok (Ma et al., 2025)                     | 78.6                   | -                     | -                     | 0.38              | 25.34             | -                 |
| TokenFlow (256px) (Qu et al., 2024)          | -                      | -                     | -                     | 1.37              | 21.41             | 0.687             |
| TokenFlow (384px) (Qu et al., 2024)          | -                      | -                     | -                     | 0.63              | 22.77             | 0.731             |
| Muse-VL (256px) (Xie et al., 2025b)          | -                      | -                     | -                     | 2.26              | 20.14             | 0.646             |
| TokLIP (SigLIP-So/14-384) (Lin et al., 2025) | 80.0                   | -                     | -                     | 0.94              | 21.94             | 0.726             |
| VILA-U (SigLIP-L/16-256) (Wu et al., 2025)   | 73.3                   | 10.0                  | 11.2                  | 1.80              | 3.43              | 0.489             |
| VILA-U (SigLIP-So/14-384) (Wu et al., 2025)  | 78.0                   | -                     | -                     | 1.25              | -                 | -                 |
| DualToken (SigLIP-L/16-256)                  | 79.8                   | 20.8                  | 21.4                  | 1.06              | 27.12             | 0.693             |
| DualToken (SigLIP-So/14-384)                 | 82.0                   | 21.5                  | 21.6                  | 0.24              | 28.69             | 0.744             |
| DualToken (SigLIP2-So/16-256)                | 82.3                   | 21.1                  | 21.9                  | 0.52              | 28.03             | 0.726             |

108 Our analysis reveals three key findings: i) **Dual visual vocabularies resolve conflicts**: Decoupling vi-  
 109 sual appearance and visual semantics with separate visual vocabularies mitigates the conflict between  
 110 reconstruction and semantic objectives and transform them into a positive relationship. Our tokenizer  
 111 achieves state-of-the-art performance in both reconstruction and semantic understanding, using only  
 112 10% of the pretraining data required by VILA-U; ii) **DualToken is better than combining dual en-  
 113 coders**: We observe that DualToken, as a unified architecture, outperforms the direct combination of  
 114 two heterogeneous visual encoders, demonstrating both simplicity and effectiveness; iii) **Dual-token  
 115 promote each other**: On one hand, visual appearance tokens (pixel tokens) are not only used for  
 116 generation but also contribute fine-grained low-level features that enhance visual understanding. On  
 117 the other hand, visual semantic tokens—beyond their role in understanding tasks—act as positive  
 118 supervision during autoregressive generation, leading to more semantically aligned image outputs  
 119 compared to generating pixel tokens alone.

## 2 RELATED WORKS

123 **Unified Multimodal Models** A classic strategy for integrating visual understanding and generation  
 124 within a single MLLM is to externally connect an LLM with a Diffusion Model (Sun et al., 2024;  
 125 Dong et al., 2024; Pan et al., 2025; Chen et al., 2025b). However, pure AR architectures offer a more  
 126 elegant, fully end-to-end solution by unifying both tasks within the same autoregressive framework.  
 127 Representative works like Chameleon (Yu et al., 2023a; Team, 2024) and Emu3 (Wang et al., 2024b),  
 128 have demonstrated the feasibility of jointly modeling vision and language through a unified next-token  
 129 prediction objective. Specifically, visual inputs are first tokenized into visual tokens. These visual  
 130 tokens are then interleaved with text tokens to construct a multimodal sequence. However, these  
 131 pure AR architectures introduce generative capabilities at the cost of considerably weaker visual  
 132 understanding. An empirical explanation for this (Wu et al., 2025; Xie et al., 2025b) is that their vision  
 133 tokenizers are trained solely for reconstruction and thus primarily captures low-level visual details  
 134 for generation rather than the high-level semantics required for vision–language understanding.

135 A straightforward way to bypass such a conflict is to employ two heterogeneous vision encoders (Wu  
 136 et al., 2024a; Chen et al., 2025c; Deng et al., 2025b): a semantic tokenizer (e.g. CLIP) for understand-  
 137 ing and a reconstruction-based tokenizer (e.g. VQ-VAE) for generation. Yet this design inevitably  
 138 adds extra modules and structural complexity, making understanding and generation two loosely  
 139 coupled systems with distinct pathways rather than a truly unified model. In contrast, the text modality  
 140 relies on a single tokenizer (e.g., BPE) (Sennrich et al., 2015) that discretizes text into a unified  
 141 token space. This ensures a consistent input–output space: the input tokens that provide signals for  
 142 understanding and the output tokens produced during generation share the same vocabulary. This  
 143 unified design allows LLMs to seamlessly integrate text understanding and generation within the  
 144 next-token prediction paradigm, thereby supporting broad generalization across diverse linguistic  
 145 tasks. Therefore, the visual modality urgently requires a tokenizer that, like text tokenizers, can  
 support both understanding and generation within a unified, coherent token space.

146 **Unified Visual Tokenizers** Recent research has actively explored solutions in this direction. VILA-  
 147 U (Wu et al., 2025) and MUSE-VL (Xie et al., 2025b) strive to build a unified tokenizer by jointly  
 148 training on both reconstruction and semantic objectives. However, due to the inherent disparity  
 149 between semantic and texture features, they struggle to strike an optimal balance between the two  
 150 objectives, resulting in subpar performance in both tasks. As discussed in FQGAN (Bai et al., 2024),  
 151 decomposing the codebook in a divide-and-conquer manner may offer a more fundamental solution  
 152 to this conflict. TokenFlow (Qu et al., 2024) employs separate codebooks with a shared-mapping  
 153 mechanism. However, key differences set our approach apart: (i) TokenFlow relies on distinct vision  
 154 towers to extract semantic and low-level features, rather than leveraging a unified architecture; (ii)  
 155 the shared IDs obtained through the shared-mapping mechanism may not be the optimal matches for  
 156 either semantics or texture, potentially introducing additional losses in both domains.

## 3 METHOD

157 This section formally introduces the design of our unified tokenizer and explains how its dual visual  
 158 codebooks are utilized within the next-token prediction paradigm of LLMs for unified multimodal  
 159 understanding and generation.



Figure 2: **Comparing the design of a naive (Left) and our decoupled approach (Right).** Naively combining reconstruction and semantic loss with a single visual vocabulary leads to distorted reconstruction and degraded semantic performance. We decouple the two objectives through a hierarchy approach, where reconstruction loss is applied to supervise the shallow layers, while semantic supervision is applied to the deep layers. This enhances both reconstruction fidelity and semantic quality. Consequently, we derive two complementary visual vocabularies: a pixel codebook for low-level visual appearance, and a semantic codebook for high-level visual semantics.

### 3.1 MOTIVATION AND VERIFICATION

As discussed in Qu et al. (2024), CLIP encoders cluster images by semantic similarity, whereas VQVAE-based encoders group images by low-level attributes such as color and texture. This suggests that encoders trained for reconstruction primarily capture low-level visual appearance, while those trained with text alignment excel at capturing high-level semantics. We argue that this difference in representation space is a key factor underlying downstream MLLM performance. Yet such a claim has not been formally validated before.

Table 2: **Downstream visual understanding performance with different vision encoders within the LLaVA-1.5 framework.** The *CLIP-based* encoder corresponds to the siglip-so400m-14-384 model (Alabdulmohsin et al., 2023), whereas *CLIP-based (recon.)* denotes an encoder with the same architecture but trained solely for reconstruction from scratch, controlling for factors like model size and architecture. For the *VQVAE-based* encoder, we adopt SBER-MoVQGAN-270M, a well-established reconstruction model.

| Vision Encoder Type | MMB <sup>↑</sup> | MME <sup>↑</sup> | SEED <sup>↑</sup> | VQAv2 <sup>↑</sup> | Zero-Shot <sup>↑</sup> | rFID <sup>↓</sup> |
|---------------------|------------------|------------------|-------------------|--------------------|------------------------|-------------------|
| CLIP-based          | 61.8             | 1492.9           | 58.4              | 78.5               | 83.2                   | ✗                 |
| CLIP-based (recon.) | 36.2             | 822.4            | 30.6              | 47.5               | ✗                      | 0.96              |
| VQVAE-based         | 35.8             | 792.0            | 34.1              | 45.2               | ✗                      | 0.68              |

To validate this viewpoint, we started by a preliminary experiment following the LLaVA-1.5 pipeline (Liu et al., 2024b). In Table.2, compared to the original SigLIP model, encoders trained with reconstruction objective exhibit a significant drop in downstream MLLM vision-language understanding performance, validating that high-level semantic features are more critical for visual reasoning in MLLMs than low-level perceptual features. However, to achieve both visual understanding and generation within a single MLLM, it is essential to decode the visual tokens back into pixel space as accurately as possible. However, since the SigLIP encoder focuses on high-level semantic information rather than texture details, simply discretizing its features and training a decoder without tuning the encoder results in poor image reconstruction quality. Therefore, proposing a unified tokenizer is crucial to enable high-quality visual understanding and generation within a single MLLM.

### 3.2 UNIFIED VISION TOKENIZER WITH DUAL CODEBOOKS

To build a unified tokenizer, we started with the simplest approach, where we directly combine the reconstruction loss and semantic loss to optimize the entire vision tower and use a single visual vocabulary to tokenize its features, similar to VILA-U (Wu et al., 2025). Specifically, as illustrated in Fig.2 (left), we initialize the vision encoder with pretrained weights from SigLIP (Zhai et al., 2023) to ensure strong text-image alignment. Then the semantic loss is computed between the deeper-layer features of the model and its initial state to constrain the model from losing its semantic capability.

However, as shown in Table.3 (a), this straightforward approach leads to a clear conflict between the two objectives. On one hand, although the semantic loss is applied to preserve the model's original semantic representation capabilities, achieving this objective proves difficult, as semantic performance metrics show a significant decline compared to the original model, reflecting the disruption caused by

216 **Table 3: DualToken transforms the conflict between reconstruction and semantic objectives**  
217 **into a positive relationship.** Directly combining the two objectives leads to a drastic decline in  
218 reconstruction performance (a vs. b). However, incorporating reconstruction and semantic losses  
219 hierarchically results in better reconstruction performance compared to using reconstruction alone  
220 (d vs. c). We highlight our method in the last row. We adopt the pretrained weights from the  
221 siglip-so400m-patch14-384 in this experiment.

| # Exp.                           | Learning Objective (layer) | Feature Type | Zero-Shot Acc. $\uparrow$ | Reconstruction    |                 |                 |
|----------------------------------|----------------------------|--------------|---------------------------|-------------------|-----------------|-----------------|
|                                  |                            |              |                           | rFID $\downarrow$ | PSNR $\uparrow$ | SSIM $\uparrow$ |
| <b>Initial State</b>             |                            | Continuous   | 83.2                      | <b>x</b>          | <b>x</b>        | <b>x</b>        |
| <b>Initial State (quantized)</b> |                            | Discrete     | 82.4                      | <b>x</b>          | <b>x</b>        | <b>x</b>        |
| (a)                              | Recon. (26) + Sem. (26)    | Discrete     | 72.3                      | 3.86              | 12.64           | 0.574           |
| (b)                              | Recon. (26)                | Discrete     | <b>x</b>                  | 0.27              | 27.88           | 0.722           |
| (c)                              | Recon. (6)                 | Discrete     | <b>x</b>                  | 0.29              | 28.12           | 0.745           |
| (d)                              | Recon. (6) + Sem. (26)     | Discrete     | 82.0                      | 0.24              | 28.69           | 0.744           |

228  
229 the reconstruction training objective on semantic capabilities. On the other hand, as shown in the  
230 cropped region of Fig.2, the model also struggles to achieve satisfactory reconstruction quality, often  
231 producing distorted and blurry images.

232 To resolve this conflict, we begin by ana-  
233 lyzing the intrinsic properties of the SigLIP  
234 encoder. Specifically, we divide the ViT  
235 into shallow, middle, and deep layers based  
236 on the cosine similarity of features across  
237 layers, as shown in Fig.3 (left). Guided

238 by this partition, we extract features from  
239 the shallow and deep layer to perform clus-  
240 tering on the image representations. As  
241 shown in Fig.3 (right), we observe that fea-  
242 tures from the shallow layer tend to cluster  
243 across layers. Distinct bright square regions  
244 are observed in the ranges of layers 1–7 and 8–17, indicating strong  
245 intra-group similarity within each interval; the remaining  
246 layers are treated as deep layers. **(Right)** Visualiza-  
247 tion of image clusters derived from features of (a) the 6th layer  
248 and (b) the 26th layer of SigLIP. Features from deep lay-  
249 matics. This suggests that shallow SigLIP  
250 features capture fine-grained perceptual de-  
251 tails, while deeper layers encode high-level  
252 semantics, aligning naturally with the re-  
253 spective requirements of downstream vi-  
254 sual generation and understanding tasks.



Figure 3: **(Left)** Partitioning of the SigLIP encoder (Zhai et al., 2023) based on the cosine similarity of features across layers. Distinct bright square regions are observed in the ranges of layers 1–7 and 8–17, indicating strong intra-group similarity within each interval; the remaining layers are treated as deep layers. **(Right)** Visualization of image clusters derived from features of (a) the 6th layer and (b) the 26th layer of SigLIP. Features from deep layers cluster images based on semantic content, whereas features from shallow layers form clusters based on low-level cues such as color and texture. For example, images in cluster 0 exhibit similar grid-like textures (e.g., window screens or monitor meshes). Implementation details of the clustering process are provided in Appendix F.

255 Motivated by this, we introduce a hierarchical approach to decouple the learning of the reconstruction  
256 and semantic objectives. Specifically, as shown in Fig.2 (right), reconstruction loss is applied to  
257 supervise the shallow layers (1–6) of the vision tower, while semantic loss is applied to the deep 26-th  
258 layer (Please refer to Appendix B for the selection of the reconstruction layer). Features from the  
259 shallow and deep layers are discretized separately via residual vector quantization (Lee et al., 2022),  
260 resulting in low-level and high-level visual vocabularies, referred to as the pixel codebook and the  
261 semantic codebook, respectively. To ensure the encoder outputs align closely with the codebook  
262 entries, we utilize a Vector Quantization (VQ) commitment loss, which is defined as

$$\mathcal{L}_c = \|z - \text{quantize}(z)\|_2^2 \quad (1)$$

263 Consequently, the total loss is formulated as a weighted sum of reconstruction loss, semantic loss,  
264 and VQ commitment loss

$$\mathcal{L}_{total} = \lambda_1 \cdot \mathcal{L}_{recon} + \lambda_2 \cdot \mathcal{L}_{sem} + \lambda_3 \cdot (\mathcal{L}_{c1} + \mathcal{L}_{c2}) \quad (2)$$

265 where the reconstruction loss is the combination of pixel-wise  $L_2$  loss (Dosovitskiy & Brox, 2016),  
266 LPIPS loss (Zhang et al., 2018) and adversarial loss (Isola et al., 2017) for reconstructing an input  
267 image

$$\mathcal{L}_{recon} = \|\hat{x} - x\|_2^2 + \lambda_p \mathcal{L}_{LPIPS}(\hat{x}, x) + \lambda_g \mathcal{L}_G(\hat{x}) \quad (3)$$



Figure 4: **(a) Direct combination of two heterogeneous tokenizers.** Baseline method (Huang et al., 2025) that directly uses VQGAN and CLIP-based encoder to separately acquire high-level (semantic) and low-level (pixel) visual codebooks. **(b) Our unified tokenizer with dual codebook.** We decoupling high-level and low-level visual codebooks within a unified vision tokenizer. The image is converted into low-level visual appearance tokens (green) and text-aligned semantic tokens (red). **(c) Architecture for unifying generation and understanding task.** In image generation task, the generated low-level tokens are decoded by the visual decoder to reconstruct the visual content.

while the semantic loss is computed as the distance between the model’s final-layer feature  $F$  and its initial value  $F_0$

$$\mathcal{L}_{sem} = -\cos(F, F_0) + \|F - F_0\|_2^2 \quad (4)$$

where  $\cos(\cdot)$  denotes cosine similarity. Interestingly, as shown in Table.3 (d), even without adding an additional contrastive learning phase, but solely by applying a simple constraint on the semantic representation, incorporating a reconstruction objective within our hierarchical learning strategy causes minimal damage to the model’s semantic capability. More intriguingly, as shown in Table.3 (b)(c)(d), compared to training solely for reconstruction, learning the semantic objective in the deeper layers actually enhances the reconstruction task in the shallow layers, successfully transforming the conflict between semantic and reconstruction objectives into a positive relationship.

### 3.3 UNIFYING UNDERSTANDING AND GENERATION

In this section, we demonstrate how to integrate the dual visual codebooks of DualToken within a unified MLLM. As illustrated in Fig.4 (c), to model both textual and visual content within the autoregressive paradigm of LLMs, the pixel and semantic visual tokens are first passed through a 2-layer MLP projector to align their dimensions with the LLM backbone. These tokens are then concatenated **along the embedding dimension** (which does not increase the sequence length) to form unified visual tokens. Next, the unified visual tokens are concatenated with text tokens to construct a multimodal token sequence. The model is then trained in an autoregressive manner to predict the next token across both visual and textual content.

For simplicity, we define the language vocabulary of our MLLM as a finite set  $\mathcal{X} = \{x_1, x_2, \dots, x_{n_1}\}$ , while the low-level and high-level visual vocabulary as  $\mathcal{Y} = \{y_1, y_2, \dots, y_{n_2}\}$  and  $\mathcal{Z} = \{z_1, z_2, \dots, z_{n_3}\}$ , where  $n_1$ ,  $n_2$ , and  $n_3$  represent the vocabulary sizes for language tokens, low-level visual tokens, and high-level visual tokens, respectively.

For visual tokens, since residual quantization introduces a depth-stacked structure of codes at each visual position  $p$ , we implement our visual heads based on the depth transformer from RQ-VAE (Lee et al., 2022). As shown in Fig.4, the semantic tokens and pixel tokens are processed by independent visual heads—the pixel head and the semantic head. Both heads share the same structure, comprising three layers of depth transformers and corresponding classification head for each depth.

Given the LLM hidden state  $h_p$  for visual tokens at position  $p$ , our depth transformer autoregressively predicts  $D$  residual tokens ( $r_{p1}, r_{p2}, \dots, r_{pD}$ ). For  $d > 1$ , the input to the depth transformer at depth  $d$ , denoted as  $I_{pd}$ , is defined as the sum of the token embeddings of up to depth  $d - 1$

$$I_{pd} = \sum_{d'=1}^{d-1} \mathbf{e}(r_{pd'}), \quad (5)$$



Figure 5: Qualitative results on visual generation.

338 where  $r \in \mathcal{Y}$  for the pixel head and  $r \in \mathcal{Z}$  for the semantic head. The initial input at depth 1 is given  
 339 by  $I_{p1} = h_p$ . This formulation ensures that the depth transformer incrementally refines the predicted  
 340 feature representation by leveraging previous estimations up to depth  $d - 1$ . Consequently, the overall  
 341 negative log-likelihood loss for the entire multimodal sequence of length  $N$  is defined, if a text token  
 342 appears at position  $i$ , as

$$\mathcal{L}_{\text{NTP}} = - \sum_{i=1}^N \mathcal{P}_{i,}, \text{ where } \mathcal{P}_i = \log P(x_i | x_{<i}) \quad (6)$$

346 and if visual tokens appears at position  $i$ , as

$$\mathcal{P}_i = \sum_{d=1}^D [\log P(y_{id} | y_{i,<d}) + \log P(z_{id} | z_{i,<d})] \quad (7)$$

## 351 4 EXPERIMENTS

### 353 4.1 VISION TOKENIZER

355 **Experimental Setup** We trained two versions of our vision tokenizers at  $256 \times 256$  and  $384 \times 384$   
 356 resolutions. For fair comparison with VILA-U, we adopted the same quantization strategies and  
 357 pretrained weights (SigLIP-L/16-256 and SigLIP-so/14-384), yielding 256 / 729 tokens with residual  
 358 depths  $D = 4 / D = 8$  (whereas VILA-U uses  $D = 4 / D = 16$ ). To test stronger backbones,  
 359 we further trained on SigLIP2-so/16-256 with  $D = 8$ , and show that our method generalizes to  
 360 other backbones in Appendix. B. All models were trained on ImageNet-1K (Deng et al., 2009),  
 361 CC12M (Changpinyo et al., 2021), and 50M images from LAION-400M (Schuhmann et al., 2021).

362 **Reconstruction** We measured reconstruction FID (rFID), PSNR, and SSIM on the ImageNet-1K  
 363 (val). As shown in Table.1, our DualToken achieves the highest structural similarity and the lowest  
 364 rFID among various state-of-the-art dedicated methods, including Open-MAGVIT2 (Luo et al., 2024)  
 365 and SBER-MoVQGAN (SberBank, 2023). This demonstrates that our method effectively mitigates  
 366 the structural distortion and blurriness issues encountered by VILA-U during reconstruction.

367 **Semantic Metrics** For semantic metrics, we report the Top-1 accuracy for zero-shot classification  
 368 on ImageNet-1K (val), along with text-to-image and image-to-text retrieval performance (R@1) on  
 369 Flickr8K. As shown in Table.1, our DualToken significantly outperforms VILA-U and the latest  
 370 concurrent work, UniTok, while also surpassing dedicated models like CLIP-L-14-336 in zero-shot  
 371 image classification and achieves performance on par with the state-of-the-art SigLIP models.

372 **Downstream Performance within LLaVA-1.5** Before formally introducing the performance of  
 373 our unified model, we first conducted a controlled experiment to validate the effectiveness of our  
 374 vision tokenizer in downstream MLLM understanding tasks within the LLaVA-1.5 (Liu et al., 2024b)  
 375 framework. Specifically, we replace the vision encoder of LLaVA-1.5 with DualToken, while strictly  
 376 adhering to its training data and using LLaMA-2-7B (Touvron et al., 2023) as the foundational LLM.  
 377 As shown in Table.4 (a)(b)(d), our DualToken, as a discrete unified vision tokenizer, outperforms  
 VILA-U and even surpasses the original continuous SigLIP model.

378  
 379 **Table 4: Controlled comparison across ten visual understanding benchmarks.** We evaluate different  
 380 vision encoders/tokenizers, including siglip-large-16-256, VILA-U, and DualToken within the  
 381 LLaVA-1.5 framework. MMB refers to MMBench-dev (Liu et al., 2023), OCRB to OCRBench (Liu  
 382 et al., 2024d), and TVQA to TextVQA (Singh et al., 2019). The MME (Fu et al., 2024) score is  
 383 normalized based on its total score. *Sem.+Pix.* is the original setting of DualToken, where semantic  
 384 and pixel tokens are concated along embedding dimension to serve as visual input. *Sem. only* means  
 385 only the semantic tokens are fed as visual input.

| Vision Encoder            | Res. | MMB        | MME        | SEED       | VQAv2      | MMVet      | AI2D       | MMMU       | POPE       | OCRB       | TVQA       | Avg.       |
|---------------------------|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| (a) siglip-large-16-256   | 256  | 60.9       | 62.9       | 56.4       | 78.2       | 34.5       | 53.5       | 30.8       | 80.3       | 26.3       | 44.3       | 52.8       |
| (b) VILA-U                | 256  | 55.3(-5.6) | 53.8(-9.1) | 51.2(-5.6) | 73.1(-5.1) | 24.9(-9.6) | 49.4(-4.1) | 28.4(-2.4) | 78.2(-2.1) | 23.8(-2.5) | 42.8(-1.5) | 48.1(-4.7) |
| (c) DualToken (sem. only) | 256  | 59.8(-1.1) | 63.0(+0.1) | 56.2(-0.2) | 77.6(-0.6) | 34.0(-0.5) | 53.7(+0.2) | 30.3(-0.5) | 79.4(-0.9) | 24.6(-1.7) | 43.2(-1.1) | 52.2(-0.6) |
| (d) DualToken (sem.+pix.) | 256  | 61.3(+0.4) | 64.6(+1.7) | 57.2(+0.8) | 77.0(-1.2) | 34.6(+0.1) | 55.9(+2.4) | 30.2(-0.6) | 83.0(+2.7) | 29.2(+2.9) | 46.2(+1.9) | 53.9(+1.1) |

389  
 390 **Table 5: Quantitative results on visual understanding and generation benchmarks.**

| Type        | Method                               | # Params | POPE | MMBench | SEED | MMMU | MMVet | MathVista | MME    |
|-------------|--------------------------------------|----------|------|---------|------|------|-------|-----------|--------|
|             | InstructBLIP (Dai et al., 2023)      | 7B       | -    | 36.0    | 58.8 | 30.6 | 26.2  | 24.4      | 1137.1 |
|             | LLaVA-Phi (Zhu et al., 2024)         | 2.7B     | 85.0 | 59.8    | -    | -    | 28.9  | -         | 1335.1 |
|             | LLaVA-1.5 (Liu et al., 2024b)        | 7B       | 85.9 | 64.3    | 58.6 | 35.4 | 31.1  | 27.4      | 1510.7 |
| <i>Und.</i> | LLaVA-NeXT (Liu et al., 2024c)       | 7B       | 86.5 | 67.4    | 70.2 | 35.8 | 43.9  | 34.6      | 1519.0 |
|             | LLaVA-NeXT (Liu et al., 2024c)       | 34B      | 87.7 | 79.3    | 75.9 | 51.1 | 57.4  | 46.5      | 1631.0 |
|             | ShareGPT4V (Chen et al., 2024b)      | 7B       | -    | 68.8    | 69.7 | 37.2 | 37.6  | 26.5      | 1567.4 |
|             | VILA (Lin et al., 2024a)             | 7B       | 85.5 | 68.9    | 61.1 | -    | 34.9  | -         | 1533.0 |
|             | BAGAL (Deng et al., 2025a)           | 14B      | -    | 85.0    | -    | 55.3 | 67.2  | 73.1      | 1687.0 |
|             | Chameleon (Team, 2024)               | 7B       | -    | 31.1    | -    | 22.4 | 8.3   | -         | -      |
|             | Emu3 (Wang et al., 2024b)            | 8B       | 85.2 | 58.5    | 68.2 | 31.6 | -     | -         | -      |
|             | Show-o (Xie et al., 2024)            | 1.5B     | 73.8 | -       | -    | 25.1 | -     | -         | 948.4  |
|             | Janus (Wu et al., 2024a)             | 1.5B     | 87.0 | 69.4    | 63.7 | 30.5 | 34.3  | -         | 1338.0 |
|             | Liquid (Wu et al., 2024b)            | 7B       | 83.2 | -       | -    | -    | -     | -         | 1448.0 |
|             | MUSE-VL (256px) (Xie et al., 2025b)  | 7B       | -    | 72.1    | 69.1 | 39.7 | -     | 51.3      | 1480.9 |
| <i>Uni.</i> | TokenFlow (384px) (Qu et al., 2024)  | 13B      | 86.8 | 68.9    | 68.7 | 38.7 | 40.7  | -         | 1545.9 |
|             | UniTok (256px) (Ma et al., 2025)     | 7B       | 83.2 | 61.1    | -    | -    | 33.9  | -         | 1448.0 |
|             | UniToken (384px) (Jiao et al., 2025) | 7B       | -    | 71.1    | 69.9 | 32.8 | -     | 38.5      | -      |
|             | Show-o2 (432px) (Xie et al., 2025a)  | 1.5B     | -    | 67.4    | 65.6 | 37.1 | -     | -         | 1450.9 |
|             | Show-o2 (432px) (Xie et al., 2025a)  | 7B       | -    | 79.3    | 69.8 | 48.9 | -     | -         | 1620.5 |
|             | VILA-U (Wu et al., 2025)             | 7B       | 85.8 | -       | 59.0 | -    | 33.5  | -         | 1401.8 |
|             | DualToken-3B (256px)                 | 3B       | 86.0 | 70.9    | 70.2 | 38.6 | 32.5  | 46.5      | 1489.2 |
|             | DualToken-3B (384px)                 | 3B       | 88.1 | 76.2    | 72.2 | 40.3 | 40.2  | 49.2      | 1588.4 |
|             | DualToken-7B (256px)                 | 7B       | 88.6 | 74.9    | 71.8 | 45.8 | 40.5  | 55.8      | 1502.7 |
|             | DualToken-7B (384px)                 | 7B       | 89.4 | 80.0    | 72.5 | 47.4 | 44.3  | 57.6      | 1625.0 |

(a) Evaluation on multimodal understanding benchmarks.

| Type        | Method                           | Architecture   | Count↑ | Differ↑ | Compare↑ | Logical↑ |           | Overall↑ |
|-------------|----------------------------------|----------------|--------|---------|----------|----------|-----------|----------|
|             |                                  |                |        |         |          | Negate   | Universal |          |
|             | SD-XL (Podell et al., 2023)      | Diffusion      | 0.71   | 0.73    | 0.69     | 0.50     | 0.66      | 0.63     |
| <i>Gen.</i> | Midjourney v6 (Midjourney, 2024) | Diffusion      | 0.78   | 0.78    | 0.79     | 0.50     | 0.76      | 0.69     |
|             | DALL-E 3 (Betker et al., 2023)   | Diffusion      | 0.82   | 0.78    | 0.82     | 0.48     | 0.80      | 0.70     |
|             | Show-o (Xie et al., 2024)        | Discrete Diff. | 0.70   | 0.62    | 0.71     | 0.51     | 0.65      | 0.60     |
|             | ILLUME (Wang et al., 2024a)      | AR+Diff.       | 0.66   | 0.68    | 0.67     | 0.49     | 0.63      | 0.60     |
|             | LWM (Liu et al., 2024a)          | Autoregressive | 0.59   | 0.58    | 0.54     | 0.49     | 0.52      | 0.53     |
|             | Liquid (Wu et al., 2024b)        | Autoregressive | 0.76   | 0.73    | 0.74     | 0.46     | 0.74      | 0.65     |
| <i>Uni.</i> | UniTok (Ma et al., 2025)         | Autoregressive | 0.76   | 0.76    | 0.79     | 0.46     | 0.73      | 0.67     |
|             | VILA-U (Wu et al., 2025)         | Autoregressive | 0.70   | 0.71    | 0.74     | 0.53     | 0.66      | 0.64     |
|             | VILA-U 3B (256)                  | Autoregressive | 0.68   | 0.66    | 0.70     | 0.49     | 0.64      | 0.60     |
|             | DualToken-3B (256)               | Autoregressive | 0.76   | 0.76    | 0.78     | 0.50     | 0.72      | 0.68     |
|             | DualToken-3B (pix. only)         | Autoregressive | 0.59   | 0.59    | 0.59     | 0.47     | 0.59      | 0.55     |

(b) VQAScores on *advanced* prompts of GenAI-Bench (Lin et al., 2024b)

## 4.2 UNIFIED MODEL FOR GENERATION AND UNDERSTANDING

Building on the unified tokenizers, we further verified its potential within a unified AR framework based on Qwen-2.5-3B (Yang et al., 2024). Our training process consists of four stages: (1) Freeze the LLM and pretrain on image-caption data, training only the visual projector for multimodal alignment. (2) Unfreeze the LLM and fine-tune on visual understanding data to enhance comprehension. (3) Freeze the LLM and train only the visual heads on text-to-image data. (4) Unfreeze all components and perform joint training on a mixture of understanding, generation, and interleaved datasets.

To ensure a fair comparison with VILA-U (Wu et al., 2025), we additionally provide a reproduced version of VILA-U using Qwen-2.5-3B as the language backbone, trained with the same dataset and procedure as our method. We evaluate our model against widely used vision-language understanding benchmarks, including VQAv2 (Goyal et al., 2017), POPE (Li et al., 2023b), MME (Fu et al., 2024), SEED-IMG (Li et al., 2023a), MMBench (Liu et al., 2023), and MM-Vet (Yu et al., 2023b).

As shown in Table.5, our DualToken (3B) demonstrates strong understanding performance compared to other unified models and surpasses dedicated understanding models like LLaVA-NeXT and ShareGPT4V (Chen et al., 2024b). Meanwhile, as illustrated in Fig. 5, thanks to the significantly improved reconstruction quality of DualToken, the generated images are rich in detail and structurally realistic, accurately capturing fine textures such as animal fur and other intricate patterns—effectively resolving the blurriness and distortions observed in VILA-U. What’s more, the generated images exhibit remarkable alignment with the text, even for long and complex prompts. This is especially evident when compared with the *pix. only* method (which only predicts pixel tokens during image generation), as it often ignores important semantic content during generation—highlighting the crucial role that semantic tokens play in helping the model grasp the semantic structure of images throughout the generation process. Results on more generation benchmarks are presented in Appendix.E.

Beyond its impressive performance, we observed two interesting findings:

- *Pixel tokens enhance understanding.* As shown in Table.4 (a)(c)(d), we compared using only the semantic tokens (sem.), and a combination of semantic and pixel tokens (sem.+pcpt), concatenated along the embedding dimension to serve as visual input. Surprisingly, compared to using semantic tokens alone, jointly leveraging both semantic and pixel tokens leads to consistent improvements across various aspects, including general VQA (Liu et al., 2023; Fu et al., 2024), hallucination detection (Li et al., 2023b), and OCR-related benchmarks (Singh et al., 2019; Liu et al., 2024d). Suggesting that the supplementation of high-frequency details by pixel tokens can compensate for the subtle semantic loss introduced by vector quantization.
- *Semantic tokens also helps to generate.* As shown in Fig.5 and Table.5 (b), incorporating semantic tokens into the model’s autoregressive generation process leads to more semantically aligned image generation compared to using visual appearance tokens alone. This indicates that visual semantic tokens—beyond their role in understanding tasks—can also assist the model in grasping the semantic composition of images, thereby producing outputs that better align with the intended semantics. This is also clearly reflected in the model’s performance on GenAI-Bench.

**DualToken versus dual-encoder.** Recently, some studies have adopted dual-encoder designs to obtain visual representations (Huang et al., 2025). Specifically, a VQVAE-based pixel encoder and a CLIP-based semantic encoder. To address a fundamental question—why is it necessary to obtain dual visual vocabularies within a unified tokenizer rather than simply combining existing specialized encoders? we conducted an experiment using the codebook from SBER-MoVQGAN as the low-level vocabulary and a VQ-processed SigLIP as the high-level vocabulary, as illustrated in Fig.4 (a).

As shown in Table.6, this straightforward approach leads to significantly inferior image generation performance (See Appendix.F.4 for implementation details). To explain this discrepancy, we visualize the feature spaces of DualToken’s 6th and 26th layers, as well as those of MoVQGAN and SigLIP with UMAP (Fig.6).

As shown, while DualToken’s 6th and 26th layers yield features specialized for different purposes, they still share a largely overlapping representational space. In contrast, features from the two separate encoders (MoVQGAN and SigLIP) show significant divergence, forming clearly disjoint clusters. Therefore, we attribute the performance gap to the incompatibility of representational spaces between heterogeneous encoders. This mismatch imposes a burden on the downstream language model, which is forced to learn two entirely disjoint visual representation systems. This observation further highlights the simplicity and effectiveness of DualToken as a unified architectural solution.

Table 6: Results on the MJHQ-30K dataset (Li et al., 2024a).

| Method                        | Type           | Res. | FID <sub>↓</sub> |
|-------------------------------|----------------|------|------------------|
| SD-XL (Podell et al., 2023)   | Diffusion      | 1024 | 9.55             |
| PixArt (Chen et al., 2023a)   | Diffusion      | 1024 | 6.14             |
| Playground (Li et al., 2024a) | Diffusion      | 1024 | 4.48             |
| Liquid (Wu et al., 2024b)     | Autoregressive | 512  | 5.47             |
| Janus (Wu et al., 2024)       | Autoregressive | 384  | 10.10            |
| LWM (Liu et al., 2024a)       | Autoregressive | 256  | 17.77            |
| Show-o (Xie et al., 2024)     | Discrete Diff. | 256  | 15.18            |
| VILA-U 7B (Wu et al., 2025)   | Autoregressive | 256  | 12.81            |
| VILA-U 3B                     | Autoregressive | 256  | 15.12            |
| DualToken 3B                  | Autoregressive | 256  | 7.88             |
| Dual Encoder                  | Autoregressive | 256  | 17.55            |



Figure 6: Visualized feature spaces on Imagenet-1k (val).

## 5 CONCLUSION

This paper presents DualToken, which, to the best of our knowledge, is the first to demonstrate that a dual-codebook design—reconstructing from shallow layers while learning semantics from deep

486 layers—can effectively resolve the long-standing conflict between reconstruction and semantic objectives  
 487 within a single visual tokenizer. **Building upon DualToken**, we develop a pure autoregressive  
 488 (**AR**) unified model that achieves state-of-the-art performance in both understanding and generation  
 489 among all existing discrete AR approaches. Orthogonal to concurrent works that focus on improving  
 490 the VQ mechanism itself (Ma et al., 2025), our method emphasizes a hierarchical architectural design.  
 491 Consequently, as more advanced VQ techniques emerge, our framework can naturally benefit from  
 492 these improvements. We hope that DualToken offers a new perspective for designing unified visual  
 493 tokenizers and sheds light on building a truly unified architecture for vision–language models.

494

## 495 REFERENCES

496

497 Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit  
 498 in shape: Scaling laws for compute-optimal model design. *Advances in Neural Information  
 499 Processing Systems*, 36:16406–16425, 2023.

500 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
 501 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

502 Zechen Bai, Jianxiong Gao, Ziteng Gao, Pichao Wang, Zheng Zhang, Tong He, and Mike Zheng  
 503 Shou. Factorized visual tokenization and generation. *arXiv preprint arXiv:2411.16681*, 2024.

504 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang  
 505 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer  
 506 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

507 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image  
 508 editing instructions. *arXiv preprint arXiv:2211.09800*, 2022.

509 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing  
 510 web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

511 Haoran Chen, Junyan Lin, Xinhao Chen, Yue Fan, Xin Jin, Hui Su, Jianfeng Dong, Jinlan Fu, and Xi-  
 512 aoyu Shen. Rethinking visual layer selection in multimodal llms. *arXiv preprint arXiv:2504.21447*,  
 513 2025a.

514 Jieneng Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Vitamin: Designing  
 515 scalable vision models in the vision-language era. In *Proceedings of the IEEE/CVF Conference on  
 516 Computer Vision and Pattern Recognition*, 2024a.

517 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi  
 518 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal  
 519 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025b.

520 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James  
 521 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for  
 522 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023a.

523 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahu Lin.  
 524 Sharegpt4v: Improving large multi-modal models with better captions. In *European Conference  
 525 on Computer Vision*, pp. 370–387. Springer, 2024b.

526 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and  
 527 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model  
 528 scaling. *arXiv preprint arXiv:2501.17811*, 2025c.

529 Yongjie Chen, Hongmin Liu, Haoran Yin, and Bin Fan. Building vision transformers with hierarchy  
 530 aware feature aggregation. In *Proceedings of the IEEE/CVF International Conference on Computer  
 531 Vision*, pp. 5908–5918, 2023b.

532 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi  
 533 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial  
 534 multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024c.

540 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,  
 541 Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language  
 542 models with instruction tuning, 2023.

543

544 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao  
 545 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*  
 546 *preprint arXiv:2505.14683*, 2025a.

547 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao  
 548 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*  
 549 *preprint arXiv:2505.14683*, 2025b.

550

551 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
 552 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
 553 pp. 248–255. Ieee, 2009.

554 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian  
 555 Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, and Li Yi.  
 556 DreamLLM: Synergistic multimodal comprehension and creation. In *The Twelfth International*  
 557 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=y01KGvd9Bw>.

558

559 Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity metrics based  
 560 on deep networks. *Advances in neural information processing systems*, 29, 2016.

561

562 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 563 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
 564 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*  
 565 *arXiv:2010.11929*, 2020.

566

567 Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal  
 568 Shankar. Data filtering networks. *arXiv preprint arXiv:2309.17425*, 2023.

569

570 Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A  
 571 visual representation for neon genesis. *Image and Vision Computing*, pp. 105171, 2024.

572

573 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu  
 574 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation  
 575 benchmark for multimodal large language models, 2024.

576

577 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework  
 578 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:  
 579 52132–52152, 2023.

580

581 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V  
 582 in VQA matter: Elevating the role of image understanding in Visual Question Answering. In  
 583 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.

584

585 Iris IA Groen, Edward H Silson, and Chris I Baker. Contributions of low-and high-level properties to  
 586 neural processing of visual scenes in the human brain. *Philosophical Transactions of the Royal*  
 587 *Society B: Biological Sciences*, 372(1714):20160102, 2017.

588

589 Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin, Fei  
 590 Huang, et al. mplug-docowl 1.5: Unified structure learning for ocr-free document understanding.  
 591 *arXiv preprint arXiv:2403.12895*, 2024.

592

593 Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou,  
 594 Wei Zhang, Lanqing Hong, Hengshuang Zhao, et al. Illume+: Illuminating unified mllm with dual  
 595 visual tokenization and diffusion refinement. *arXiv preprint arXiv:2504.01934*, 2025.

596

597 Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with  
 598 conditional adversarial networks. In *Proceedings of the IEEE conference on computer vision and*  
 599 *pattern recognition*, pp. 1125–1134, 2017.

594 Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, and Yu-Gang Jiang.  
 595 Unitoken: Harmonizing multimodal understanding and generation through unified visual encoding.  
 596 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3600–3610, 2025.  
 597

598 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,  
 599 Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and  
 600 Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text documents,  
 601 2023.

602 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building  
 603 vision-language models?, 2024a.

604

605 Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots into  
 606 html code with the websight dataset, 2024b.

607

608 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image  
 609 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer*  
 610 *Vision and Pattern Recognition*, pp. 11523–11532, 2022.

611

612 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-  
 613 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,  
 614 2023a.

615

616 Daqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.  
 617 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint*  
 618 *arXiv:2402.17245*, 2024a.

619

620 Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan Li,  
 621 Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end speech  
 622 interaction. *arXiv preprint arXiv:2502.17239*, 2025a.

623

624 Xiaotong Li, Fan Zhang, Haiwen Diao, Yueze Wang, Xinlong Wang, and Lingyu Duan. Densefusion-  
 625 1m: Merging vision experts for comprehensive multimodal perception. *Advances in Neural*  
 626 *Information Processing Systems*, 37:18535–18556, 2024b.

627

628 Yadong Li, Haoze Sun, Mingan Lin, Tianpeng Li, Guosheng Dong, Tao Zhang, Bowen Ding, Wei  
 629 Song, Zhenglin Cheng, Yuqi Huo, Song Chen, Xu Li, Da Pan, Shusen Zhang, Xin Wu, Zheng  
 630 Liang, Jun Liu, Tao Zhang, Keer Lu, Yaqi Zhao, Yanjun Shen, Fan Yang, Kaicheng Yu, Tao Lin,  
 631 Jianhua Xu, Zenan Zhou, and Weipeng Chen. Baichuan-omni technical report. *arXiv preprint*  
 632 *arXiv:2410.08565*, 2024c.

633

634 Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng Ming, Gu-  
 635 osheng Dong, Da Pan, et al. Baichuan-omni-1.5 technical report. *arXiv preprint arXiv:2501.15368*,  
 636 2025b.

637

638 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object  
 639 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

640

641 Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan Sun,  
 642 and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and generation.  
 643 *arXiv preprint arXiv:2505.05422*, 2025.

644

645 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On  
 646 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*  
 647 *vision and pattern recognition*, pp. 26689–26699, 2024a.

648

649 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and  
 650 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. *arXiv preprint*  
 651 *arXiv:2404.01291*, 2024b.

652

653 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and  
 654 language with ringattention. *arXiv preprint arXiv:2402.08268*, 2024a.

648 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction  
 649 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
 650 pp. 26296–26306, 2024b.

651

652 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.  
 653 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024c. URL <https://llava-v1.github.io/blog/2024-01-30-llava-next/>.

654

655 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi  
 656 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?  
 657 *arXiv preprint arXiv:2307.06281*, 2023.

658

659 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xucheng Yin, Cheng  
 660 lin Liu, Lianwen Jin, and Xiang Bai. On the hidden mystery of ocr in large multimodal models.  
 661 *arXiv preprint arXiv:2305.07895*, 2024d.

662

663 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:  
 664 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint*  
 665 *arXiv:2409.04410*, 2024.

666

667 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-  
 668 juan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv preprint*  
 669 *arXiv:2502.20321*, 2025.

670

671 Midjourney. Midjourney version 6.1, 2024. URL <https://www.midjourney.com>.

672

673 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran  
 674 Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation for  
 675 text-to-image generation. *arXiv preprint arXiv:2503.07265*, 2025.

676

677 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang  
 678 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities  
 679 with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

680

681 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe  
 682 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image  
 683 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

684

685 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Zehuan  
 686 Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and  
 687 generation. *arXiv preprint arXiv:2412.03069*, 2024.

688

689 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 690 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 691 models from natural language supervision. In *International conference on machine learning*, pp.  
 692 8748–8763, 2021.

693

694 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 695 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-  
 696 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

697

698 SberBank. Sber-movqgan, 2023. URL [https://habr.com/ru/companies/sberbank/  
 699 articles/740624/](https://habr.com/ru/companies/sberbank/articles/740624/).

700

701 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,  
 702 Arush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of  
 703 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

704

705 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with  
 706 subword units. *arXiv preprint arXiv:1508.07909*, 2015.

707

708 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and  
 709 Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference*  
 710 *on computer vision and pattern recognition*, pp. 8317–8326, 2019.

Wei Song, Yadong Li, Jianhua Xu, Guowei Wu, Lingfeng Ming, Kexin Yi, Weihua Luo, Houyi Li, Yi Du, Fangda Guo, et al. M3gia: A cognition inspired multilingual and multimodal general intelligence ability benchmark. *arXiv preprint arXiv:2406.05343*, 2024.

Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aoju Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding. *Advances in neural information processing systems*, 36:49659–49678, 2023.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14398–14409, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint arXiv:2405.09818*, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2: Multilingual vision-language encoders with improved semantic understanding, localization, and dense features. *arXiv preprint arXiv:2502.14786*, 2025.

Chunwei Wang, Guansong Lu, Junwei Yang, Runhui Huang, Jianhua Han, Lu Hou, Wei Zhang, and Hang Xu. Illume: Illuminating your llms to see, draw, and self-enhance. *arXiv preprint arXiv:2412.06673*, 2024a.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need. *arXiv preprint arXiv:2409.18869*, 2024b.

Cong Wei, Zheyang Xiong, Weiming Ren, Xinrun Du, Ge Zhang, and Wenhui Chen. Omnedit: Building image editing generalist models through specialist supervision. *arXiv preprint arXiv:2411.07199*, 2024.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators. *arXiv preprint arXiv:2412.04332*, 2024b.

Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual understanding and generation. *The Thirteenth International Conference on Learning Representations*, 2025.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal models. *arXiv preprint arXiv:2506.15564*, 2025a.

Rongchang Xie, Chen Du, Ping Song, and Chang Liu. Muse-vl: Modeling unified vlm through semantic discrete encoding. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 24135–24146, 2025b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

756 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong  
 757 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.  
 758 *arXiv preprint arXiv:2110.04627*, 2021.

759

760 Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang, Arun  
 761 Babu, Bin Tang, Brian Karrer, Shelly Sheynin, et al. Scaling autoregressive multi-modal models:  
 762 Pretraining and instruction tuning. *arXiv preprint arXiv:2309.02591*, 2023a.

763 Weihsiao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,  
 764 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv*  
 765 *preprint arXiv:2308.02490*, 2023b.

766

767 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,  
 768 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal  
 769 understanding and reasoning benchmark for expert agi. *arXiv preprint arXiv:2311.16502*, 2023.

770 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language  
 771 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,  
 772 pp. 11975–11986, 2023.

773 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *NeurIPS*, 2019.

774

775 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
 776 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*  
 777 *computer vision and pattern recognition*, pp. 586–595, 2018.

778

779 Yue Zhao, Fuzhao Xue, Scott Reed, Linxi Fan, Yuke Zhu, Jan Kautz, Zhiding Yu, Philipp Krähenbühl,  
 780 and De-An Huang. Qlip: Text-aligned visual tokenization unifies auto-regressive multimodal  
 781 understanding and generation. *arXiv preprint arXiv:2502.05178*, 2025.

782

783 Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized  
 784 vectors for high-fidelity image generation. *Advances in Neural Information Processing Systems*,  
 785 35:23412–23425, 2022.

786

787 Kecheng Zheng, Yifei Zhang, Wei Wu, Fan Lu, Shuailei Ma, Xin Jin, Wei Chen, and Yujun Shen.  
 788 Dreamlip: Language-image pre-training with long captions. In *ECCV*, 2024.

789

790 Yichen Zhu, Minjie Zhu, Ning Liu, Zhiyuan Xu, and Yixin Peng. Llava-phi: Efficient multi-modal  
 791 assistant with small language model. In *Proceedings of the 1st International Workshop on Efficient*  
 792 *Multimedia Computing under Limited*, pp. 18–22, 2024.

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A LARGE LANGUAGE MODEL USAGE  
811812 In this paper, Large Language Models (LLMs) are used exclusively for grammatical error correction.  
813814 B LAYER SELECTION AND GENERALIZABILITY  
815816 As discussed in Sec. 3.2, we can partition the vision encoder into shallow and deep regions based on  
817 the cosine similarity between layers (see Fig. 3 and Appendix F.1). Empirically, selecting the last  
818 layer within the shallow region, typically corresponding to *the first quarter to third of layers*, yields  
819 the best results. As validated in the main text, our method successfully generalizes across multiple  
820 backbones, including SigLIP-L/16-256, SigLIP-SO/14-384, and SigLIP2-SO/16-256.  
821830 Figure 7: Additional visualizations of inter-layer cosine similarity across different backbones,  
831 revealing a consistent hierarchical pattern across architectures, model scales, and resolutions. A  
832 cohesive high-similarity region corresponding to the shallow layers can be clearly observed.  
833834 To further strengthen our claim, we include a comprehensive validation of the method’s general-  
835 ality, covering six mainstream backbones—OpenAI’s CLIP (Radford et al., 2021), Apple’s  
836 DFN (Fang et al., 2023), BAAI’s EVA (Fang et al., 2024), Google’s SigLIP (Zhai et al., 2023),  
837 SigLIP2 (Tschanne et al., 2025), and the hybrid CNN–Transformer architecture ViTamin (Chen  
838 et al., 2024a)—under consistent settings (RVQ = 8, codebook size = 16,384, 2M training samples).  
839 Our findings are summarized as follows.840 (1) **Ablations on model backbones and model size.** As shown in Table.7 and Table.8, across all  
841 tested backbones with varying types and total layer counts, selecting the *first quarter of layers* for  
842 reconstruction consistently yields the best reconstruction quality and semantic performance.  
843844 Table 7: Model backbone. Table 8: Model size and total layer. Table 9: Robustness on layers.  
845

| Backbone         | Layer recon./total | Zero-shot   | rFID        | Backbone          | Layer recon./total | Zero-shot   | rFID        | Backbone          | Layer recon./total | Zero-shot   | rFID        |
|------------------|--------------------|-------------|-------------|-------------------|--------------------|-------------|-------------|-------------------|--------------------|-------------|-------------|
| DFN-L/14-224     | 6/24               | <b>79.2</b> | <b>0.84</b> | DFN-B/16-224      | 3/12               | <b>74.1</b> | <b>0.98</b> | DFN-B/16-224      | 3/12               | <b>74.1</b> | 0.98        |
|                  | 12/24              | 77.1        | 1.35        |                   | 6/12               | 71.4        | 1.58        |                   | 4/12               | 73.9        | <b>0.97</b> |
|                  | 18/24              | 72.2        | 3.25        |                   | 9/12               | 66.1        | 3.21        |                   | 5/24               | 79.0        | <b>0.82</b> |
| EVA-02-L/14-224  | 6/24               | <b>77.8</b> | <b>0.80</b> | DFN-L/14-224      | 6/24               | <b>79.2</b> | <b>0.84</b> | DFN-L/14-224      | 6/24               | <b>79.2</b> | 0.84        |
|                  | 12/24              | 75.2        | 1.16        |                   | 12/24              | 77.1        | 1.35        |                   | 7/24               | 78.9        | 0.84        |
|                  | 18/24              | 69.9        | 3.22        |                   | 18/24              | 72.2        | 3.25        |                   | 6/32               | <b>81.1</b> | 0.73        |
| CLIP-L/14-224    | 6/24               | <b>73.2</b> | <b>0.87</b> | DFN-H/14-224      | 8/32               | <b>81.0</b> | <b>0.73</b> | DFN-H/14-224      | 8/32               | 81.0        | 0.73        |
|                  | 12/24              | 70.8        | 1.80        |                   | 12/24              | 79.5        | 1.28        |                   | 10/32              | 80.7        | <b>0.72</b> |
|                  | 18/24              | 65.5        | 3.58        |                   | 24/32              | 74.3        | 2.78        |                   | 5/24               | 80.4        | 0.74        |
| SigLIP-L/16-256  | 6/24               | <b>78.8</b> | <b>0.78</b> | SigLIP2-L/16-256  | 6/24               | <b>80.4</b> | <b>0.72</b> | SigLIP2-L/16-256  | 6/24               | <b>80.4</b> | <b>0.72</b> |
|                  | 12/24              | 76.3        | 1.27        |                   | 12/24              | 77.6        | 1.09        |                   | 7/24               | 80.2        | 0.75        |
|                  | 18/24              | 72.9        | 2.61        |                   | 18/24              | 72.9        | 2.93        |                   | 5/27               | 81.0        | 0.70        |
| SigLIP2-L/16-256 | 6/24               | <b>80.4</b> | <b>0.72</b> | SigLIP2-SO/16-256 | 7/27               | <b>81.2</b> | <b>0.69</b> | SigLIP2-SO/16-256 | 7/27               | 81.2        | 0.69        |
|                  | 12/24              | 77.6        | 1.09        |                   | 14/27              | 78.4        | 1.08        |                   | 8/27               | <b>81.3</b> | 0.67        |
|                  | 18/24              | 72.9        | 2.93        |                   | 21/27              | 73.7        | 3.02        |                   | 9/27               | 81.0        | 0.72        |
| ViTamin-XL-384   | 6/24               | <b>80.0</b> | <b>0.39</b> |                   |                    |             |             |                   |                    |             |             |
|                  | 12/24              | 78.6        | 0.88        |                   |                    |             |             |                   |                    |             |             |
|                  | 18/24              | 73.8        | 2.25        |                   |                    |             |             |                   |                    |             |             |

864 (2) **Robustness to specific layer choice.** As shown in Table. 9, our method remains stable as long  
 865 as the reconstruction layers lie roughly within the first quarter of the network. Minor shifts ( $\pm 1\text{--}2$   
 866 layers) cause negligible changes, confirming its robustness and broad applicability.  
 867

868 These findings indicate that for a new ViT architecture, one can confidently select the first quarter  
 869 of layers for reconstruction to achieve optimal results. Moreover, As shown in Fig. 7, we also  
 870 provide more visualizations of inter-layer cosine similarity across backbones, revealing a consistent  
 871 hierarchical pattern divisible into shallow and deep layers (also supported by prior study (Chen et al.,  
 872 2025a)), further supporting the universality of our method.  
 873

## 873 C DISCUSSION AND COMPARISON WITH UNITOK

874 Since UniTok adopts a more advanced visual backbone, decoder, and discriminator architecture,  
 875 we conduct a fair comparison by re-training our DualToken under the same encoder and decoder  
 876 settings used in UniTok, *i.e.*, choosing ViTamin-L/16, a hybrid architecture of CNN and transformer,  
 877 to instantiate DualToken. Under this setup, DualToken achieves stronger semantic performance and  
 878 competitive reconstruction quality, as evidenced by the comparison between (a) and (b) in Table 10.  
 879

880 Table 10: Comparison with UniTok.  
 881

| 882 Tokenizer           | rFID $\downarrow$ | Zero-Shot Acc $\uparrow$ |
|-------------------------|-------------------|--------------------------|
| 883 (a) UniTok          | 0.38              | 78.6                     |
| 884 (b) DualToken (RVQ) | 0.39              | 80.3                     |
| 885 (c) DualToken (MCQ) | 0.25              | 82.2                     |

886 Furthermore, *DualToken and UniTok are complementary*. Specifically, by replacing our original RVQ  
 887 quantizer with UniTok’s proposed **MCQ**, we observe consistent improvements in both reconstruction  
 888 fidelity and zero-shot classification, as evidenced by the comparison between (b) and (c) in Table 10.  
 889

890 These results suggest that future work may benefit from **integrating our dual visual vocabulary**  
 891 formulation with more advanced quantizers such as MCQ.  
 892

## 893 D COMPUTATIONAL ANALYSIS

894 Introducing two codebooks **DOES NOT** significantly increase the computational overhead, demon-  
 895 strated by two aspects: **parameter count** and **memory usage with inference latency**.  
 896

### 897 D.1 PARAMETER COUNT

898 The ONLY additional parameters arise from 3 components:  
 899

- 900 • The MLP projector’s dimension changes from (1024 $\rightarrow$ 2048 $\rightarrow$ 2048) to (2048 $\rightarrow$ 2048 $\rightarrow$ 2048),  
 901 which adds **2.1M** parameters.
- 902 • An additional visual head: **258M** parameters.
- 903 • An additional VQEmbedding layer: **16M** parameters.

904 Together, these account for only **8.93%** of the total parameters compared to the LLM backbone (3B).  
 905 When scaling to larger backbones (e.g., 7B), the relative impact becomes even more negligible.  
 906

### 907 D.2 MEMORY USAGE AND INFERENCE LATENCY

908 Since our dual tokens are concatenated along feature dimension rather than sequence dimension, and  
 909 the input dimension to the LLM remains unchanged, **no new pathway is introduced to the LLM**,  
 910 and the computational cost of the LLM backbone remains strictly the same. The only increase stems  
 911 from the components listed above.  
 912

913 Memory usage is measured under the same local batch size and device. FLOPs and inference time  
 914 are averaged on T2I task (256px) over the MJHQ-30K dataset. Statistics for the VQA task have also  
 915 been added to the paper.  
 916

918 Table 11: Memory Usage and Inference Latency  
919

|              | Training Memory Usage | Inference Time Cost | Single Forward GFLOPs |
|--------------|-----------------------|---------------------|-----------------------|
| single token | 73.8G                 | 11.42s              | 328.98                |
| dual token   | 78.2G                 | 12.97s              | 337.20                |

924 E RESULTS ON MORE GENERATION BENCHMARKS  
925926 Following VILA-U, we report results on GenAI-Bench and MJHQ-30K in the main text. We now  
927 extend our evaluation to include GenEval (Ghosh et al., 2023) and WISE (Niu et al., 2025). The  
928 results demonstrate that DualToken achieves competitive performance across both benchmarks.  
929930 Table 12: Evaluation results on GenEval and WISE benchmarks.  
931

| Model                              | GenEval (Overall) $\uparrow$ | WISE (Overall) $\uparrow$ |
|------------------------------------|------------------------------|---------------------------|
| SDv1.5 (Rombach et al., 2022)      | 0.43                         | 0.32                      |
| SDXL (Podell et al., 2023)         | 0.55                         | 0.43                      |
| Chameleon-7B (Team, 2024)          | 0.39                         | -                         |
| EMU3-8B (Wang et al., 2024b)       | 0.66                         | 0.39                      |
| Janus (Wu et al., 2024a)           | 0.61                         | 0.23                      |
| Janus-Pro-7B (Chen et al., 2025c)  | 0.80                         | 0.35                      |
| ILLUME-7B (Wang et al., 2024a)     | 0.61                         | -                         |
| TokenFlow-XL-14B (Qu et al., 2024) | 0.63                         | -                         |
| Muse-VL-7B (Xie et al., 2025b)     | 0.57                         | -                         |
| UniToken-7B (Jiao et al., 2025)    | 0.63                         | -                         |
| Show-o2-1.5B (Xie et al., 2025a)   | 0.73                         | 0.35                      |
| Show-o2-7B (Xie et al., 2025a)     | 0.76                         | 0.39                      |
| VILA-U-7B (Wu et al., 2025)        | -                            | 0.31                      |
| DualToken-3B                       | 0.72                         | 0.35                      |
| <b>DualToken-7B</b>                | <b>0.75</b>                  | <b>0.39</b>               |

948 F IMPLEMENTATION DETAILS  
949950 F.1 PARTITIONING OF THE SIGLIP ENCODER  
951952 We feed the ImageNet-1K (Deng et al., 2009) validation set into SigLIP-SO400M-Patch14-384 (Zhai  
953 et al., 2023). For each image, we extract the representations from all layers of the model, each with a  
954 shape of  $729 \times 1152$ . Then, we apply average pooling along the spatial dimension (the first axis) of  
955 each layer’s representation, resulting in a 1152-dimensional vector per layer.956 Specifically, for each image, we obtain feature vectors from 26 layers, and compute the pairwise  
957 cosine similarity between these layer-wise representations to construct a  $26 \times 26$  cosine similarity  
958 matrix. To capture the overall similarity structure across layers in the model, we average the cosine  
959 similarity matrices across all images. The final similarity matrix  $S^*$  is computed as:  
960

961 
$$S^* = \frac{1}{n} \sum_{i=1}^n S_i \quad (8)$$
  
962

963 where  $S_i$  denotes the cosine similarity matrix for the  $i$ -th image, and  $n$  is the total number of  
964 images.  $S^*$  thus represents the average inter-layer similarity across the dataset.  
965966 F.2 IMAGE CLUSTERING  
967968 We extract intermediate representations from the 6th and 26th layers of SigLIP-SO400M-Patch14-  
969 384 (Zhai et al., 2023) for each image in the ImageNet-1K validation set (Deng et al., 2009). The  
970 original representation shape is  $729 \times 1152$ , and we apply average pooling along the spatial dimension  
971 to obtain a single 1152-dimensional feature vector per image. For both the 6th-layer and 26th-layer

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
features, we perform k-means clustering with 1000 cluster centers (Cluster 0 to Cluster 999). The cluster analysis reveals that shallow-layer features (from the 6th layer) tend to capture low-level visual attributes such as texture and color, while deep-layer features (from the 26th layer) predominantly encode high-level semantic content. The implementation code is provided in the *supplementary material*, and additional visualizations are presented in Fig. 8.



Figure 8: More visualizations of image clusters derived from features of (a) the 6th layer and (b) the 26th layer of SigLIP. Features from deep layers primarily cluster images based on high-level semantic content, whereas shallow-layer features tend to group images according to appearance-level cues such as color and texture. For instance, Cluster 17 contains images with similar scaly textures, while Clusters 60 and 110 predominantly group images by dominant colors (e.g., red or blue).

### F.3 UMAP FEATURE SPACE VISUALIZATION

We perform dimensionality reduction using UMAP to visualize the feature spaces from DualToken’s 6th and 26th layers, as well as those from MoVQGAN and SigLIP. Specifically, we sample 1,000 images from the ImageNet-1K validation set and visualize the UMAP projections of their encoded features from each model. To ensure a fair comparison among the different visual models, all extracted features are first flattened and then uniformly processed via adaptive average pooling to maintain consistent dimensionality.

### F.4 MODEL IMPLEMENTATION DETAILS

Our backbone model is built upon a decoder-only transformer architecture, and adopt Qwen2.5 (Yang et al., 2024) as our initialization due to its strong performance and public availability. The model uses RMSNormZhang & Sennrich (2019) for normalization. For visual inputs to the LLM, we apply a projector to map the visual tokens into the same embedding space as the LLM. When predicting image tokens, the output hidden states of the LLM are passed through two separate projectors to align with the dimension of the semantic visual head and the pixel visual head. Each projector consists of two linear layers with a GeLU activation in between. We use special tokens—<image\_gen\_start> and <image\_gen\_end>—to indicate the boundaries of the image to be generated.

For visual heads, since residual quantization introduces a depth-stacked structure of codes at each visual position  $p$ , we implement our visual heads based on the depth transformer from RQ-VAE (Lee et al., 2022). Unlike the original depth transformer, which employs a single head to predict logits across all depths, we introduce separate classification heads to compute the logits for residuals at each corresponding depth (Li et al., 2025a). As shown in Fig.4, the semantic tokens and pixel tokens are processed by independent visual heads—the pixel head and the semantic head. Both heads share the same structure, comprising three layers of depth transformers and corresponding classification head for each depth. Detailed training hyper-parameters are provided in Table 13.

**Implementation of the Dual Encoder Baseline** As described in Sec. 4.2 of the main paper, some concurrent works adopt *dual-encoder* designs to obtain visual representations (Huang et al., 2025), specifically combining a VQVAE-based pixel encoder with a CLIP-based semantic encoder.

Table 13: Training hyper-parameters.

| Settings      | Visual Tokenizer | MLLM           |                            |                                           |                                                    |           |
|---------------|------------------|----------------|----------------------------|-------------------------------------------|----------------------------------------------------|-----------|
|               |                  | Stage 1        | Stage 2                    | Stage 3                                   | Stage 4-1                                          | Stage 4-2 |
| Learning Rate | 7.2e-5           | Projector 1e-3 | Projector 2e-5<br>LLM 2e-5 | Projector (Gen) 1e-4<br>Visual Heads 1e-4 | All Projectors 1e-5<br>Visual Heads 1e-5; LLM 1e-5 |           |
| Batch Size    | 64               | 64             | 256                        | 128                                       | 512                                                | 256       |
| Optimizer     | AdamW            | AdamW          | AdamW                      | AdamW                                     | AdamW                                              | AdamW     |

This raises a natural question: *Beyond architectural elegance and simplicity, does learning dual visual codebooks within a unified visual tokenizer (ours) lead to better downstream performance in unified MLLMs compared to directly combining two heterogeneous encoders?*

Since these concurrent works adopt different training datasets and downstream architectures (e.g., external diffusion decoders (Rombach et al., 2022)), it is difficult to conduct a fair comparison in the context of downstream unified models. To isolate the effectiveness of the tokenization strategy itself—that is, dual tokens within a single unified tokenizer vs. dual visual tokenizers from separate encoders—we implemented both designs under the same unified architecture proposed in our work.

Specifically, we use SigLIP-L-Patch16-256 (Zhai et al., 2023) and SBER-MoVQGAN (SberBank, 2023) to build the semantic tokenizer and pixel tokenizer, respectively:

- *The semantic tokenizer* applies an RVQ quantizer (depth=4) to the penultimate layer of the frozen SigLIP-L-Patch16-256 encoder. The encoder is fully frozen, and only the codebook is updated using commitment loss, aiming to reconstruct the input semantic features as faithfully as possible.
- *The pixel tokenizer* is derived from a modified version of SBER-MoVQGAN-270M. To match the token length of SigLIP-L-Patch16-256, we added a downsampling and a upsampling modules to its encoder and decoder, adjusting the downsampling and upsampling rate from 8 to 16. Additionally, we replaced the original quantizer with a residual vector quantizer (RVQ) of depth 4 to ensure compatibility with our unified model architecture.

Apart from the different tokenizers used to provide pixel and semantic tokens, the rest of the architecture remains fully consistent with DualToken. Specifically, we concatenate pixel and semantic tokens along the embedding dimension to form the visual input, map them into the LLM embedding space via a projector, and use separate visual heads (pixel head & semantic head) for predictions. **To ensure fairness**, we standardized all other components except for the source of dual visual tokens:

- All components are kept identical, including image resolution, token length ( $16 \times 16$ ), RVQ depth ( $D = 4$ ), embedding dimension, model architecture, and training data.
- Both tokenizers are trained on the same datasets as DualToken, as described in the main text.

## G DATASETS

Our MLLM training process consists of four stages: (1) Freeze the LLM and pretrain on image-caption data, training only the visual projector for multimodal alignment. (2) Unfreeze the LLM and fine-tune on visual understanding data to enhance comprehension. (3) Freeze the LLM and train only the visual heads on text-to-image data. (4) Unfreeze all components and perform joint training on a mixture of understanding, generation, and interleaved datasets, enabling the model to acquire generative capabilities while maintaining strong understanding performance. We listed the data in Table. 14.

Table 14: Training data list.

| Stage            | Dataset                                                                                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Visual Tokenizer | CC12M (Changpinyo et al., 2021), ImageNet-1K, 50M images from LAION-400M (Schuhmann et al., 2021)                                                                                                                       |
| MLLM Stage1      | DenseFusion-1M (Li et al., 2024b), DreamLIP (Zheng et al., 2024), InternVL-SA-1B-Caption (Chen et al., 2024c)                                                                                                           |
| MLLM Stage2      | DocStruct4M (Hu et al., 2024), WebSight (Laurençon et al., 2024b), WuKong, 2M in house VQA data, pure text data                                                                                                         |
| MLLM Stage3      | A filtered subset of ImageNet-21K, laion-aesthetics-12m, JourneyDB <sup>a</sup> (Sun et al., 2023)                                                                                                                      |
| MLLM Stage4      | In-house aesthetics data, OmniEdit (Wei et al., 2024), text2face, Cauldron (Laurençon et al., 2024a), Instruct-Pix2Pix (Brooks et al., 2022), Inhouse IFT data (Und.), OBELICS (Laurençon et al., 2023), pure text data |

<sup>a</sup>The text and image are reversed and used for image generation training.